Home | History | Annotate | Line # | Download | only in dev
      1  1.10  riastrad /* $NetBSD: efi.c,v 1.10 2025/03/30 14:36:48 riastradh Exp $ */
      2   1.1  jmcneill 
      3   1.1  jmcneill /*-
      4   1.1  jmcneill  * Copyright (c) 2021 Jared McNeill <jmcneill (at) invisible.ca>
      5   1.1  jmcneill  * All rights reserved.
      6   1.1  jmcneill  *
      7   1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8   1.1  jmcneill  * modification, are permitted provided that the following conditions
      9   1.1  jmcneill  * are met:
     10   1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12   1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15   1.1  jmcneill  *
     16   1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17   1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18   1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19   1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20   1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21   1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22   1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23   1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24   1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1  jmcneill  * SUCH DAMAGE.
     27   1.1  jmcneill  */
     28   1.1  jmcneill 
     29   1.1  jmcneill /*
     30   1.1  jmcneill  * This pseudo-driver implements a /dev/efi character device that provides
     31   1.1  jmcneill  * ioctls for using UEFI runtime time and variable services.
     32   1.1  jmcneill  */
     33   1.1  jmcneill 
     34   1.1  jmcneill #include <sys/cdefs.h>
     35  1.10  riastrad __KERNEL_RCSID(0, "$NetBSD: efi.c,v 1.10 2025/03/30 14:36:48 riastradh Exp $");
     36   1.1  jmcneill 
     37   1.1  jmcneill #include <sys/param.h>
     38   1.1  jmcneill #include <sys/conf.h>
     39   1.1  jmcneill #include <sys/kmem.h>
     40   1.1  jmcneill #include <sys/atomic.h>
     41   1.1  jmcneill #include <sys/efiio.h>
     42   1.1  jmcneill 
     43   1.7  riastrad #include <uvm/uvm_extern.h>
     44   1.7  riastrad 
     45   1.1  jmcneill #include <dev/efivar.h>
     46   1.7  riastrad #include <dev/mm.h>
     47   1.1  jmcneill 
     48   1.1  jmcneill #include "ioconf.h"
     49   1.1  jmcneill 
     50   1.3     skrll /*
     51  1.10  riastrad  * Maximum length of an EFI variable name in bytes. The UEFI spec
     52  1.10  riastrad  * doesn't specify a constraint, but we want to limit the size to act
     53  1.10  riastrad  * as a guard rail against allocating too much kernel memory.
     54   1.1  jmcneill  */
     55  1.10  riastrad #define	EFI_VARNAME_MAXBYTES		EFI_PAGE_SIZE
     56   1.1  jmcneill 
     57   1.1  jmcneill /*
     58   1.1  jmcneill  * Pointer to arch specific EFI backend.
     59   1.1  jmcneill  */
     60   1.1  jmcneill static const struct efi_ops *efi_ops = NULL;
     61   1.1  jmcneill 
     62   1.1  jmcneill /*
     63   1.1  jmcneill  * Only allow one user of /dev/efi at a time. Even though the MD EFI backends
     64   1.1  jmcneill  * should serialize individual UEFI RT calls, the UEFI specification says
     65   1.1  jmcneill  * that a SetVariable() call between calls to GetNextVariableName() may
     66   1.1  jmcneill  * produce unpredictable results, and we want to avoid this.
     67   1.1  jmcneill  */
     68   1.4  riastrad static volatile u_int efi_isopen = 0;
     69   1.1  jmcneill 
     70   1.1  jmcneill static dev_type_open(efi_open);
     71   1.1  jmcneill static dev_type_close(efi_close);
     72   1.1  jmcneill static dev_type_ioctl(efi_ioctl);
     73   1.1  jmcneill 
     74   1.1  jmcneill const struct cdevsw efi_cdevsw = {
     75   1.1  jmcneill 	.d_open =	efi_open,
     76   1.1  jmcneill 	.d_close =	efi_close,
     77   1.1  jmcneill 	.d_ioctl =	efi_ioctl,
     78   1.1  jmcneill 	.d_read =	noread,
     79   1.1  jmcneill 	.d_write =	nowrite,
     80   1.1  jmcneill 	.d_stop =	nostop,
     81   1.1  jmcneill 	.d_tty =	notty,
     82   1.1  jmcneill 	.d_poll =	nopoll,
     83   1.1  jmcneill 	.d_mmap =	nommap,
     84   1.1  jmcneill 	.d_kqfilter =	nokqfilter,
     85   1.1  jmcneill 	.d_discard =	nodiscard,
     86   1.1  jmcneill 	.d_flag =	D_OTHER | D_MPSAFE,
     87   1.1  jmcneill };
     88   1.1  jmcneill 
     89   1.1  jmcneill static int
     90   1.1  jmcneill efi_open(dev_t dev, int flags, int type, struct lwp *l)
     91   1.1  jmcneill {
     92   1.4  riastrad 
     93   1.1  jmcneill 	if (efi_ops == NULL) {
     94   1.1  jmcneill 		return ENXIO;
     95   1.1  jmcneill 	}
     96   1.4  riastrad 	if (atomic_swap_uint(&efi_isopen, 1) == 1) {
     97   1.1  jmcneill 		return EBUSY;
     98   1.1  jmcneill 	}
     99   1.4  riastrad 	membar_acquire();
    100   1.1  jmcneill 	return 0;
    101   1.1  jmcneill }
    102   1.1  jmcneill 
    103   1.1  jmcneill static int
    104   1.1  jmcneill efi_close(dev_t dev, int flags, int type, struct lwp *l)
    105   1.1  jmcneill {
    106   1.4  riastrad 
    107   1.1  jmcneill 	KASSERT(efi_isopen);
    108   1.4  riastrad 	atomic_store_release(&efi_isopen, 0);
    109   1.1  jmcneill 	return 0;
    110   1.1  jmcneill }
    111   1.1  jmcneill 
    112   1.1  jmcneill static int
    113   1.1  jmcneill efi_status_to_error(efi_status status)
    114   1.1  jmcneill {
    115   1.1  jmcneill 	switch (status) {
    116   1.1  jmcneill 	case EFI_SUCCESS:
    117   1.1  jmcneill 		return 0;
    118   1.1  jmcneill 	case EFI_INVALID_PARAMETER:
    119   1.1  jmcneill 		return EINVAL;
    120   1.1  jmcneill 	case EFI_UNSUPPORTED:
    121   1.1  jmcneill 		return EOPNOTSUPP;
    122   1.1  jmcneill 	case EFI_BUFFER_TOO_SMALL:
    123   1.1  jmcneill 		return ERANGE;
    124   1.1  jmcneill 	case EFI_DEVICE_ERROR:
    125   1.1  jmcneill 		return EIO;
    126   1.1  jmcneill 	case EFI_WRITE_PROTECTED:
    127   1.1  jmcneill 		return EROFS;
    128   1.1  jmcneill 	case EFI_OUT_OF_RESOURCES:
    129   1.1  jmcneill 		return ENOMEM;
    130   1.1  jmcneill 	case EFI_NOT_FOUND:
    131   1.1  jmcneill 		return ENOENT;
    132   1.1  jmcneill 	case EFI_SECURITY_VIOLATION:
    133   1.1  jmcneill 		return EACCES;
    134   1.1  jmcneill 	default:
    135   1.1  jmcneill 		return EIO;
    136   1.1  jmcneill 	}
    137   1.1  jmcneill }
    138   1.1  jmcneill 
    139   1.7  riastrad /* XXX move to efi.h */
    140   1.7  riastrad #define	EFI_SYSTEM_RESOURCE_TABLE_GUID					      \
    141   1.7  riastrad 	{0xb122a263,0x3661,0x4f68,0x99,0x29,{0x78,0xf8,0xb0,0xd6,0x21,0x80}}
    142   1.7  riastrad #define	EFI_PROPERTIES_TABLE						      \
    143   1.7  riastrad 	{0x880aaca3,0x4adc,0x4a04,0x90,0x79,{0xb7,0x47,0x34,0x08,0x25,0xe5}}
    144   1.7  riastrad 
    145   1.7  riastrad #define	EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION	1
    146   1.7  riastrad 
    147   1.7  riastrad struct EFI_SYSTEM_RESOURCE_ENTRY {
    148   1.7  riastrad 	struct uuid	FwClass;
    149   1.7  riastrad 	uint32_t	FwType;
    150   1.7  riastrad 	uint32_t	FwVersion;
    151   1.7  riastrad 	uint32_t	LowestSupportedFwVersion;
    152   1.7  riastrad 	uint32_t	CapsuleFlags;
    153   1.7  riastrad 	uint32_t	LastAttemptVersion;
    154   1.7  riastrad 	uint32_t	LastAttemptStatus;
    155   1.7  riastrad };
    156   1.7  riastrad 
    157   1.7  riastrad struct EFI_SYSTEM_RESOURCE_TABLE {
    158   1.7  riastrad 	uint32_t	FwResourceCount;
    159   1.7  riastrad 	uint32_t	FwResourceCountMax;
    160   1.7  riastrad 	uint64_t	FwResourceVersion;
    161   1.7  riastrad 	struct EFI_SYSTEM_RESOURCE_ENTRY	Entries[];
    162   1.7  riastrad };
    163   1.7  riastrad 
    164   1.7  riastrad static void *
    165   1.7  riastrad efi_map_pa(uint64_t addr, bool *directp)
    166   1.7  riastrad {
    167   1.7  riastrad 	paddr_t pa = addr;
    168   1.7  riastrad 	vaddr_t va;
    169   1.7  riastrad 
    170   1.7  riastrad 	/*
    171   1.7  riastrad 	 * Verify the address is not truncated by conversion to
    172   1.7  riastrad 	 * paddr_t.  This might happen with a 64-bit EFI booting a
    173   1.7  riastrad 	 * 32-bit OS.
    174   1.7  riastrad 	 */
    175   1.7  riastrad 	if (pa != addr)
    176   1.7  riastrad 		return NULL;
    177   1.7  riastrad 
    178   1.7  riastrad 	/*
    179   1.7  riastrad 	 * Try direct-map if we have it.  If it works, note that it was
    180   1.7  riastrad 	 * direct-mapped for efi_unmap.
    181   1.7  riastrad 	 */
    182   1.7  riastrad #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    183   1.7  riastrad 	if (mm_md_direct_mapped_phys(pa, &va)) {
    184   1.7  riastrad 		*directp = true;
    185   1.7  riastrad 		return (void *)va;
    186   1.7  riastrad 	}
    187   1.7  riastrad #endif
    188   1.7  riastrad 
    189   1.7  riastrad 	/*
    190   1.7  riastrad 	 * No direct map.  Reserve a page of kernel virtual address
    191   1.7  riastrad 	 * space, with no backing, to map to the physical address.
    192   1.7  riastrad 	 */
    193   1.7  riastrad 	va = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
    194   1.7  riastrad 	    UVM_KMF_VAONLY|UVM_KMF_WAITVA);
    195   1.7  riastrad 	KASSERT(va != 0);
    196   1.7  riastrad 
    197   1.7  riastrad 	/*
    198   1.7  riastrad 	 * Map the kva page to the physical address and update the
    199   1.7  riastrad 	 * kernel pmap so we can use it.
    200   1.7  riastrad 	 */
    201   1.7  riastrad 	pmap_kenter_pa(va, pa, VM_PROT_READ, 0);
    202   1.7  riastrad 	pmap_update(pmap_kernel());
    203   1.7  riastrad 
    204   1.7  riastrad 	/*
    205   1.7  riastrad 	 * Success!  Return the VA and note that it was not
    206   1.7  riastrad 	 * direct-mapped for efi_unmap.
    207   1.7  riastrad 	 */
    208   1.7  riastrad 	*directp = false;
    209   1.7  riastrad 	return (void *)va;
    210   1.7  riastrad }
    211   1.7  riastrad 
    212   1.7  riastrad static void
    213   1.7  riastrad efi_unmap(void *ptr, bool direct)
    214   1.7  riastrad {
    215   1.7  riastrad 	vaddr_t va = (vaddr_t)ptr;
    216   1.7  riastrad 
    217   1.7  riastrad 	/*
    218   1.7  riastrad 	 * If it was direct-mapped, nothing to do here.
    219   1.7  riastrad 	 */
    220   1.7  riastrad 	if (direct)
    221   1.7  riastrad 		return;
    222   1.7  riastrad 
    223   1.7  riastrad 	/*
    224   1.7  riastrad 	 * First remove the mapping from the kernel pmap so that it can
    225   1.7  riastrad 	 * be reused, before we free the kva and let anyone else reuse
    226   1.7  riastrad 	 * it.
    227   1.7  riastrad 	 */
    228   1.7  riastrad 	pmap_kremove(va, PAGE_SIZE);
    229   1.7  riastrad 	pmap_update(pmap_kernel());
    230   1.7  riastrad 
    231   1.7  riastrad 	/*
    232   1.7  riastrad 	 * Next free the kva so it can be reused by someone else.
    233   1.7  riastrad 	 */
    234   1.7  riastrad 	uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
    235   1.7  riastrad }
    236   1.7  riastrad 
    237   1.7  riastrad static int
    238   1.7  riastrad efi_ioctl_got_table(struct efi_get_table_ioc *ioc, void *ptr, size_t len)
    239   1.7  riastrad {
    240   1.7  riastrad 
    241   1.7  riastrad 	/*
    242   1.7  riastrad 	 * Return the actual table length.
    243   1.7  riastrad 	 */
    244   1.7  riastrad 	ioc->table_len = len;
    245   1.7  riastrad 
    246   1.7  riastrad 	/*
    247   1.7  riastrad 	 * Copy out as much as we can into the user's allocated buffer.
    248   1.7  riastrad 	 */
    249   1.7  riastrad 	return copyout(ptr, ioc->buf, MIN(ioc->buf_len, len));
    250   1.7  riastrad }
    251   1.7  riastrad 
    252   1.7  riastrad static int
    253   1.7  riastrad efi_ioctl_get_esrt(struct efi_get_table_ioc *ioc,
    254   1.7  riastrad     struct EFI_SYSTEM_RESOURCE_TABLE *tab)
    255   1.7  riastrad {
    256   1.7  riastrad 
    257   1.7  riastrad 	/*
    258   1.7  riastrad 	 * Verify the firmware resource version is one we understand.
    259   1.7  riastrad 	 */
    260   1.7  riastrad 	if (tab->FwResourceVersion !=
    261   1.7  riastrad 	    EFI_SYSTEM_RESOURCE_TABLE_FIRMWARE_RESOURCE_VERSION)
    262   1.7  riastrad 		return ENOENT;
    263   1.7  riastrad 
    264   1.7  riastrad 	/*
    265   1.7  riastrad 	 * Verify the resource count fits within the single page we
    266   1.7  riastrad 	 * have mapped.
    267   1.7  riastrad 	 *
    268   1.7  riastrad 	 * XXX What happens if it doesn't?  Are we expected to map more
    269   1.7  riastrad 	 * than one page, according to the table header?  The UEFI spec
    270   1.7  riastrad 	 * is unclear on this.
    271   1.7  riastrad 	 */
    272   1.7  riastrad 	const size_t entry_space = PAGE_SIZE -
    273   1.7  riastrad 	    offsetof(struct EFI_SYSTEM_RESOURCE_TABLE, Entries);
    274   1.7  riastrad 	if (tab->FwResourceCount > entry_space/sizeof(tab->Entries[0]))
    275   1.7  riastrad 		return ENOENT;
    276   1.7  riastrad 
    277   1.7  riastrad 	/*
    278   1.7  riastrad 	 * Success!  Return everything through the last table entry.
    279   1.7  riastrad 	 */
    280   1.7  riastrad 	const size_t len = offsetof(struct EFI_SYSTEM_RESOURCE_TABLE,
    281   1.7  riastrad 	    Entries[tab->FwResourceCount]);
    282   1.7  riastrad 	return efi_ioctl_got_table(ioc, tab, len);
    283   1.7  riastrad }
    284   1.7  riastrad 
    285   1.7  riastrad static int
    286   1.7  riastrad efi_ioctl_get_table(struct efi_get_table_ioc *ioc)
    287   1.7  riastrad {
    288   1.7  riastrad 	uint64_t addr;
    289   1.7  riastrad 	bool direct;
    290   1.7  riastrad 	efi_status status;
    291   1.7  riastrad 	int error;
    292   1.7  riastrad 
    293   1.7  riastrad 	/*
    294   1.7  riastrad 	 * If the platform doesn't support it yet, fail now.
    295   1.7  riastrad 	 */
    296   1.7  riastrad 	if (efi_ops->efi_gettab == NULL)
    297   1.7  riastrad 		return ENODEV;
    298   1.7  riastrad 
    299   1.7  riastrad 	/*
    300   1.7  riastrad 	 * Get the address of the requested table out of the EFI
    301   1.7  riastrad 	 * configuration table.
    302   1.7  riastrad 	 */
    303   1.7  riastrad 	status = efi_ops->efi_gettab(&ioc->uuid, &addr);
    304   1.7  riastrad 	if (status != EFI_SUCCESS)
    305   1.7  riastrad 		return efi_status_to_error(status);
    306   1.7  riastrad 
    307   1.7  riastrad 	/*
    308   1.7  riastrad 	 * UEFI provides no generic way to identify the size of the
    309   1.7  riastrad 	 * table, so we have to bake knowledge of every vendor GUID
    310   1.7  riastrad 	 * into this code to safely expose the right amount of data to
    311   1.7  riastrad 	 * userland.
    312   1.7  riastrad 	 *
    313   1.7  riastrad 	 * We even have to bake knowledge of which ones are physically
    314   1.7  riastrad 	 * addressed and which ones might be virtually addressed
    315   1.7  riastrad 	 * according to the vendor GUID into this code, although for
    316   1.7  riastrad 	 * the moment we never use RT->SetVirtualAddressMap so we only
    317   1.7  riastrad 	 * ever have to deal with physical addressing.
    318   1.7  riastrad 	 */
    319   1.7  riastrad 	if (memcmp(&ioc->uuid, &(struct uuid)EFI_SYSTEM_RESOURCE_TABLE_GUID,
    320   1.7  riastrad 		sizeof(ioc->uuid)) == 0) {
    321   1.7  riastrad 		struct EFI_SYSTEM_RESOURCE_TABLE *tab;
    322   1.7  riastrad 
    323   1.7  riastrad 		if ((tab = efi_map_pa(addr, &direct)) == NULL)
    324   1.7  riastrad 			return ENOENT;
    325   1.7  riastrad 		error = efi_ioctl_get_esrt(ioc, tab);
    326   1.7  riastrad 		efi_unmap(tab, direct);
    327   1.7  riastrad 	} else {
    328   1.7  riastrad 		error = ENOENT;
    329   1.7  riastrad 	}
    330   1.7  riastrad 
    331   1.7  riastrad 	return error;
    332   1.7  riastrad }
    333   1.7  riastrad 
    334   1.1  jmcneill static int
    335   1.1  jmcneill efi_ioctl_var_get(struct efi_var_ioc *var)
    336   1.1  jmcneill {
    337   1.1  jmcneill 	uint16_t *namebuf;
    338   1.1  jmcneill 	void *databuf = NULL;
    339   1.8  riastrad 	size_t databufsize;
    340   1.8  riastrad 	unsigned long datasize;
    341   1.1  jmcneill 	efi_status status;
    342   1.1  jmcneill 	int error;
    343   1.1  jmcneill 
    344   1.1  jmcneill 	if (var->name == NULL || var->namesize == 0 ||
    345   1.1  jmcneill 	    (var->data != NULL && var->datasize == 0)) {
    346   1.1  jmcneill 		return EINVAL;
    347   1.1  jmcneill 	}
    348  1.10  riastrad 	if (var->namesize > EFI_VARNAME_MAXBYTES) {
    349   1.1  jmcneill 		return ENOMEM;
    350   1.1  jmcneill 	}
    351   1.8  riastrad 	if (var->datasize > ULONG_MAX) { /* XXX stricter limit */
    352   1.8  riastrad 		return ENOMEM;
    353   1.8  riastrad 	}
    354   1.1  jmcneill 
    355   1.1  jmcneill 	namebuf = kmem_alloc(var->namesize, KM_SLEEP);
    356   1.1  jmcneill 	error = copyin(var->name, namebuf, var->namesize);
    357   1.1  jmcneill 	if (error != 0) {
    358   1.1  jmcneill 		goto done;
    359   1.1  jmcneill 	}
    360   1.1  jmcneill 	if (namebuf[var->namesize / 2 - 1] != '\0') {
    361   1.1  jmcneill 		error = EINVAL;
    362   1.1  jmcneill 		goto done;
    363   1.1  jmcneill 	}
    364   1.8  riastrad 	databufsize = var->datasize;
    365   1.8  riastrad 	if (databufsize != 0) {
    366   1.8  riastrad 		databuf = kmem_alloc(databufsize, KM_SLEEP);
    367   1.8  riastrad 		error = copyin(var->data, databuf, databufsize);
    368   1.1  jmcneill 		if (error != 0) {
    369   1.1  jmcneill 			goto done;
    370   1.1  jmcneill 		}
    371   1.1  jmcneill 	}
    372   1.1  jmcneill 
    373   1.8  riastrad 	datasize = databufsize;
    374   1.1  jmcneill 	status = efi_ops->efi_getvar(namebuf, &var->vendor, &var->attrib,
    375   1.8  riastrad 	    &datasize, databuf);
    376   1.1  jmcneill 	if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
    377   1.1  jmcneill 		error = efi_status_to_error(status);
    378   1.1  jmcneill 		goto done;
    379   1.1  jmcneill 	}
    380   1.8  riastrad 	var->datasize = datasize;
    381   1.9  riastrad 	if (status == EFI_SUCCESS && databufsize != 0) {
    382   1.9  riastrad 		error = copyout(databuf, var->data,
    383   1.9  riastrad 		    MIN(datasize, databufsize));
    384   1.1  jmcneill 	} else {
    385   1.1  jmcneill 		var->data = NULL;
    386   1.1  jmcneill 	}
    387   1.1  jmcneill 
    388   1.1  jmcneill done:
    389   1.1  jmcneill 	kmem_free(namebuf, var->namesize);
    390   1.1  jmcneill 	if (databuf != NULL) {
    391   1.8  riastrad 		kmem_free(databuf, databufsize);
    392   1.1  jmcneill 	}
    393   1.1  jmcneill 	return error;
    394   1.1  jmcneill }
    395   1.1  jmcneill 
    396   1.1  jmcneill static int
    397   1.1  jmcneill efi_ioctl_var_next(struct efi_var_ioc *var)
    398   1.1  jmcneill {
    399   1.1  jmcneill 	efi_status status;
    400   1.1  jmcneill 	uint16_t *namebuf;
    401   1.8  riastrad 	size_t namebufsize;
    402   1.8  riastrad 	unsigned long namesize;
    403   1.1  jmcneill 	int error;
    404   1.1  jmcneill 
    405   1.1  jmcneill 	if (var->name == NULL || var->namesize == 0) {
    406   1.1  jmcneill 		return EINVAL;
    407   1.1  jmcneill 	}
    408  1.10  riastrad 	if (var->namesize > EFI_VARNAME_MAXBYTES) {
    409   1.1  jmcneill 		return ENOMEM;
    410   1.1  jmcneill 	}
    411   1.1  jmcneill 
    412   1.8  riastrad 	namebufsize = var->namesize;
    413   1.8  riastrad 	namebuf = kmem_alloc(namebufsize, KM_SLEEP);
    414   1.8  riastrad 	error = copyin(var->name, namebuf, namebufsize);
    415   1.1  jmcneill 	if (error != 0) {
    416   1.1  jmcneill 		goto done;
    417   1.1  jmcneill 	}
    418   1.1  jmcneill 
    419  1.10  riastrad 	CTASSERT(EFI_VARNAME_MAXBYTES <= ULONG_MAX);
    420   1.8  riastrad 	namesize = namebufsize;
    421   1.8  riastrad 	status = efi_ops->efi_nextvar(&namesize, namebuf, &var->vendor);
    422   1.1  jmcneill 	if (status != EFI_SUCCESS && status != EFI_BUFFER_TOO_SMALL) {
    423   1.1  jmcneill 		error = efi_status_to_error(status);
    424   1.1  jmcneill 		goto done;
    425   1.1  jmcneill 	}
    426   1.8  riastrad 	var->namesize = namesize;
    427   1.1  jmcneill 	if (status == EFI_SUCCESS) {
    428   1.9  riastrad 		error = copyout(namebuf, var->name,
    429   1.9  riastrad 		    MIN(namesize, namebufsize));
    430   1.1  jmcneill 	} else {
    431   1.1  jmcneill 		var->name = NULL;
    432   1.1  jmcneill 	}
    433   1.1  jmcneill 
    434   1.1  jmcneill done:
    435   1.8  riastrad 	kmem_free(namebuf, namebufsize);
    436   1.1  jmcneill 	return error;
    437   1.1  jmcneill }
    438   1.1  jmcneill 
    439   1.1  jmcneill static int
    440   1.1  jmcneill efi_ioctl_var_set(struct efi_var_ioc *var)
    441   1.1  jmcneill {
    442   1.1  jmcneill 	efi_status status;
    443   1.1  jmcneill 	uint16_t *namebuf;
    444   1.1  jmcneill 	uint16_t *databuf = NULL;
    445   1.1  jmcneill 	int error;
    446   1.1  jmcneill 
    447   1.1  jmcneill 	if (var->name == NULL || var->namesize == 0) {
    448   1.1  jmcneill 		return EINVAL;
    449   1.1  jmcneill 	}
    450   1.1  jmcneill 
    451   1.1  jmcneill 	namebuf = kmem_alloc(var->namesize, KM_SLEEP);
    452   1.1  jmcneill 	error = copyin(var->name, namebuf, var->namesize);
    453   1.1  jmcneill 	if (error != 0) {
    454   1.1  jmcneill 		goto done;
    455   1.1  jmcneill 	}
    456   1.1  jmcneill 	if (namebuf[var->namesize / 2 - 1] != '\0') {
    457   1.1  jmcneill 		error = EINVAL;
    458   1.1  jmcneill 		goto done;
    459   1.1  jmcneill 	}
    460   1.1  jmcneill 	if (var->datasize != 0) {
    461   1.1  jmcneill 		databuf = kmem_alloc(var->datasize, KM_SLEEP);
    462   1.1  jmcneill 		error = copyin(var->data, databuf, var->datasize);
    463   1.1  jmcneill 		if (error != 0) {
    464   1.1  jmcneill 			goto done;
    465   1.1  jmcneill 		}
    466   1.1  jmcneill 	}
    467   1.1  jmcneill 
    468   1.1  jmcneill 	status = efi_ops->efi_setvar(namebuf, &var->vendor, var->attrib,
    469   1.1  jmcneill 	    var->datasize, databuf);
    470   1.1  jmcneill 	error = efi_status_to_error(status);
    471   1.1  jmcneill 
    472   1.1  jmcneill done:
    473   1.1  jmcneill 	kmem_free(namebuf, var->namesize);
    474   1.1  jmcneill 	if (databuf != NULL) {
    475   1.1  jmcneill 		kmem_free(databuf, var->datasize);
    476   1.1  jmcneill 	}
    477   1.1  jmcneill 	return error;
    478   1.1  jmcneill }
    479   1.1  jmcneill 
    480   1.1  jmcneill static int
    481   1.1  jmcneill efi_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
    482   1.1  jmcneill {
    483   1.1  jmcneill 	KASSERT(efi_ops != NULL);
    484   1.1  jmcneill 
    485   1.1  jmcneill 	switch (cmd) {
    486   1.7  riastrad 	case EFIIOC_GET_TABLE:
    487   1.7  riastrad 		return efi_ioctl_get_table(data);
    488   1.1  jmcneill 	case EFIIOC_VAR_GET:
    489   1.1  jmcneill 		return efi_ioctl_var_get(data);
    490   1.1  jmcneill 	case EFIIOC_VAR_NEXT:
    491   1.1  jmcneill 		return efi_ioctl_var_next(data);
    492   1.1  jmcneill 	case EFIIOC_VAR_SET:
    493   1.1  jmcneill 		return efi_ioctl_var_set(data);
    494   1.1  jmcneill 	}
    495   1.1  jmcneill 
    496   1.1  jmcneill 	return ENOTTY;
    497   1.1  jmcneill }
    498   1.1  jmcneill 
    499   1.1  jmcneill void
    500   1.1  jmcneill efi_register_ops(const struct efi_ops *ops)
    501   1.1  jmcneill {
    502   1.1  jmcneill 	KASSERT(efi_ops == NULL);
    503   1.1  jmcneill 	efi_ops = ops;
    504   1.1  jmcneill }
    505   1.1  jmcneill 
    506   1.1  jmcneill void
    507   1.1  jmcneill efiattach(int count)
    508   1.1  jmcneill {
    509   1.1  jmcneill }
    510