1 1.42 thorpej /* $NetBSD: axppmic.c,v 1.42 2025/09/17 13:42:42 thorpej Exp $ */ 2 1.1 jmcneill 3 1.1 jmcneill /*- 4 1.1 jmcneill * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca> 5 1.1 jmcneill * All rights reserved. 6 1.1 jmcneill * 7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without 8 1.1 jmcneill * modification, are permitted provided that the following conditions 9 1.1 jmcneill * are met: 10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright 11 1.1 jmcneill * notice, this list of conditions and the following disclaimer. 12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the 14 1.1 jmcneill * documentation and/or other materials provided with the distribution. 15 1.1 jmcneill * 16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE. 27 1.1 jmcneill */ 28 1.1 jmcneill 29 1.1 jmcneill #include <sys/cdefs.h> 30 1.42 thorpej __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.42 2025/09/17 13:42:42 thorpej Exp $"); 31 1.1 jmcneill 32 1.1 jmcneill #include <sys/param.h> 33 1.1 jmcneill #include <sys/systm.h> 34 1.1 jmcneill #include <sys/kernel.h> 35 1.1 jmcneill #include <sys/device.h> 36 1.1 jmcneill #include <sys/conf.h> 37 1.1 jmcneill #include <sys/bus.h> 38 1.1 jmcneill #include <sys/kmem.h> 39 1.29 thorpej #include <sys/workqueue.h> 40 1.1 jmcneill 41 1.1 jmcneill #include <dev/i2c/i2cvar.h> 42 1.1 jmcneill 43 1.1 jmcneill #include <dev/sysmon/sysmonvar.h> 44 1.1 jmcneill #include <dev/sysmon/sysmon_taskq.h> 45 1.1 jmcneill 46 1.1 jmcneill #include <dev/fdt/fdtvar.h> 47 1.1 jmcneill 48 1.3 jmcneill #define AXP_POWER_SOURCE_REG 0x00 49 1.3 jmcneill #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7) 50 1.3 jmcneill #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5) 51 1.10 jmcneill #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2) 52 1.3 jmcneill 53 1.2 jmcneill #define AXP_POWER_MODE_REG 0x01 54 1.2 jmcneill #define AXP_POWER_MODE_BATT_VALID __BIT(4) 55 1.2 jmcneill #define AXP_POWER_MODE_BATT_PRESENT __BIT(5) 56 1.2 jmcneill #define AXP_POWER_MODE_BATT_CHARGING __BIT(6) 57 1.2 jmcneill 58 1.19 jmcneill #define AXP_CHIP_ID_REG 0x03 59 1.19 jmcneill 60 1.1 jmcneill #define AXP_POWER_DISABLE_REG 0x32 61 1.1 jmcneill #define AXP_POWER_DISABLE_CTRL __BIT(7) 62 1.1 jmcneill 63 1.1 jmcneill #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1) 64 1.5 jmcneill #define AXP_IRQ1_ACIN_RAISE __BIT(6) 65 1.5 jmcneill #define AXP_IRQ1_ACIN_LOWER __BIT(5) 66 1.5 jmcneill #define AXP_IRQ1_VBUS_RAISE __BIT(3) 67 1.5 jmcneill #define AXP_IRQ1_VBUS_LOWER __BIT(2) 68 1.1 jmcneill #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1) 69 1.1 jmcneill 70 1.10 jmcneill #define AXP_BATSENSE_HI_REG 0x78 71 1.10 jmcneill #define AXP_BATSENSE_LO_REG 0x79 72 1.10 jmcneill 73 1.10 jmcneill #define AXP_BATTCHG_HI_REG 0x7a 74 1.10 jmcneill #define AXP_BATTCHG_LO_REG 0x7b 75 1.10 jmcneill 76 1.10 jmcneill #define AXP_BATTDISCHG_HI_REG 0x7c 77 1.10 jmcneill #define AXP_BATTDISCHG_LO_REG 0x7d 78 1.10 jmcneill 79 1.10 jmcneill #define AXP_ADC_RAW(_hi, _lo) \ 80 1.15 jakllsch (((u_int)(_hi) << 4) | ((_lo) & 0xf)) 81 1.10 jmcneill 82 1.37 jmcneill #define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2) 83 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0) 84 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_LOW 0 85 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_HIGH 1 86 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_INPUT 2 87 1.37 jmcneill #define AXP_GPIO_SIGNAL_REG 0x94 88 1.37 jmcneill 89 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_REG 0xb8 90 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7) 91 1.10 jmcneill 92 1.2 jmcneill #define AXP_BATT_CAP_REG 0xb9 93 1.2 jmcneill #define AXP_BATT_CAP_VALID __BIT(7) 94 1.2 jmcneill #define AXP_BATT_CAP_PERCENT __BITS(6,0) 95 1.2 jmcneill 96 1.16 jakllsch #define AXP_BATT_MAX_CAP_HI_REG 0xe0 97 1.16 jakllsch #define AXP_BATT_MAX_CAP_VALID __BIT(7) 98 1.16 jakllsch #define AXP_BATT_MAX_CAP_LO_REG 0xe1 99 1.16 jakllsch 100 1.16 jakllsch #define AXP_BATT_COULOMB_HI_REG 0xe2 101 1.16 jakllsch #define AXP_BATT_COULOMB_VALID __BIT(7) 102 1.16 jakllsch #define AXP_BATT_COULOMB_LO_REG 0xe3 103 1.16 jakllsch 104 1.16 jakllsch #define AXP_COULOMB_RAW(_hi, _lo) \ 105 1.16 jakllsch (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo)) 106 1.16 jakllsch 107 1.2 jmcneill #define AXP_BATT_CAP_WARN_REG 0xe6 108 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4) 109 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0) 110 1.2 jmcneill 111 1.19 jmcneill #define AXP_ADDR_EXT_REG 0xff /* AXP806 */ 112 1.19 jmcneill #define AXP_ADDR_EXT_MASTER 0 113 1.19 jmcneill #define AXP_ADDR_EXT_SLAVE __BIT(4) 114 1.19 jmcneill 115 1.1 jmcneill struct axppmic_ctrl { 116 1.1 jmcneill device_t c_dev; 117 1.1 jmcneill 118 1.1 jmcneill const char * c_name; 119 1.1 jmcneill u_int c_min; 120 1.1 jmcneill u_int c_max; 121 1.1 jmcneill u_int c_step1; 122 1.1 jmcneill u_int c_step1cnt; 123 1.1 jmcneill u_int c_step2; 124 1.1 jmcneill u_int c_step2cnt; 125 1.24 jmcneill u_int c_step2start; 126 1.1 jmcneill 127 1.1 jmcneill uint8_t c_enable_reg; 128 1.1 jmcneill uint8_t c_enable_mask; 129 1.23 jmcneill uint8_t c_enable_val; 130 1.23 jmcneill uint8_t c_disable_val; 131 1.1 jmcneill 132 1.1 jmcneill uint8_t c_voltage_reg; 133 1.1 jmcneill uint8_t c_voltage_mask; 134 1.1 jmcneill }; 135 1.1 jmcneill 136 1.1 jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \ 137 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \ 138 1.1 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \ 139 1.1 jmcneill .c_step2 = 0, .c_step2cnt = 0, \ 140 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \ 141 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \ 142 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } 143 1.1 jmcneill 144 1.1 jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \ 145 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \ 146 1.1 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \ 147 1.1 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \ 148 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \ 149 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \ 150 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } 151 1.1 jmcneill 152 1.24 jmcneill #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \ 153 1.24 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \ 154 1.24 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \ 155 1.24 jmcneill .c_step2start = (step2start), \ 156 1.24 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \ 157 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \ 158 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \ 159 1.24 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } 160 1.24 jmcneill 161 1.23 jmcneill #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \ 162 1.23 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \ 163 1.23 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \ 164 1.23 jmcneill .c_step2 = 0, .c_step2cnt = 0, \ 165 1.23 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \ 166 1.23 jmcneill .c_enable_val = (eval), .c_disable_val = (dval), \ 167 1.23 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) } 168 1.23 jmcneill 169 1.24 jmcneill #define AXP_CTRL_SW(name, ereg, emask) \ 170 1.24 jmcneill { .c_name = (name), \ 171 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \ 172 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0 } 173 1.23 jmcneill 174 1.1 jmcneill static const struct axppmic_ctrl axp803_ctrls[] = { 175 1.1 jmcneill AXP_CTRL("dldo1", 700, 3300, 100, 176 1.1 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)), 177 1.1 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4, 178 1.1 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)), 179 1.1 jmcneill AXP_CTRL("dldo3", 700, 3300, 100, 180 1.1 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)), 181 1.1 jmcneill AXP_CTRL("dldo4", 700, 3300, 100, 182 1.1 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)), 183 1.1 jmcneill AXP_CTRL("eldo1", 700, 1900, 50, 184 1.1 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)), 185 1.1 jmcneill AXP_CTRL("eldo2", 700, 1900, 50, 186 1.1 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)), 187 1.1 jmcneill AXP_CTRL("eldo3", 700, 1900, 50, 188 1.1 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)), 189 1.1 jmcneill AXP_CTRL("fldo1", 700, 1450, 50, 190 1.1 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)), 191 1.1 jmcneill AXP_CTRL("fldo2", 700, 1450, 50, 192 1.1 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)), 193 1.1 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100, 194 1.1 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)), 195 1.6 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5, 196 1.1 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)), 197 1.6 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5, 198 1.1 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)), 199 1.6 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5, 200 1.1 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)), 201 1.1 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36, 202 1.1 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)), 203 1.1 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21, 204 1.1 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)), 205 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100, 206 1.1 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)), 207 1.1 jmcneill AXP_CTRL("aldo2", 700, 3300, 100, 208 1.1 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)), 209 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100, 210 1.1 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)), 211 1.1 jmcneill }; 212 1.1 jmcneill 213 1.1 jmcneill static const struct axppmic_ctrl axp805_ctrls[] = { 214 1.1 jmcneill AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21, 215 1.1 jmcneill 0x10, __BIT(0), 0x12, __BITS(6,0)), 216 1.1 jmcneill AXP_CTRL("dcdcb", 1000, 2550, 50, 217 1.1 jmcneill 0x10, __BIT(1), 0x13, __BITS(4,0)), 218 1.1 jmcneill AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21, 219 1.1 jmcneill 0x10, __BIT(2), 0x14, __BITS(6,0)), 220 1.1 jmcneill AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18, 221 1.1 jmcneill 0x10, __BIT(3), 0x15, __BITS(5,0)), 222 1.1 jmcneill AXP_CTRL("dcdce", 1100, 3400, 100, 223 1.1 jmcneill 0x10, __BIT(4), 0x16, __BITS(4,0)), 224 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100, 225 1.1 jmcneill 0x10, __BIT(5), 0x17, __BITS(4,0)), 226 1.1 jmcneill AXP_CTRL("aldo2", 700, 3400, 100, 227 1.1 jmcneill 0x10, __BIT(6), 0x18, __BITS(4,0)), 228 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100, 229 1.1 jmcneill 0x10, __BIT(7), 0x19, __BITS(4,0)), 230 1.1 jmcneill AXP_CTRL("bldo1", 700, 1900, 100, 231 1.1 jmcneill 0x11, __BIT(0), 0x20, __BITS(3,0)), 232 1.1 jmcneill AXP_CTRL("bldo2", 700, 1900, 100, 233 1.1 jmcneill 0x11, __BIT(1), 0x21, __BITS(3,0)), 234 1.1 jmcneill AXP_CTRL("bldo3", 700, 1900, 100, 235 1.1 jmcneill 0x11, __BIT(2), 0x22, __BITS(3,0)), 236 1.1 jmcneill AXP_CTRL("bldo4", 700, 1900, 100, 237 1.1 jmcneill 0x11, __BIT(3), 0x23, __BITS(3,0)), 238 1.38 skrll AXP_CTRL("cldo1", 700, 3300, 100, 239 1.1 jmcneill 0x11, __BIT(4), 0x24, __BITS(4,0)), 240 1.1 jmcneill AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4, 241 1.1 jmcneill 0x11, __BIT(5), 0x25, __BITS(4,0)), 242 1.38 skrll AXP_CTRL("cldo3", 700, 3300, 100, 243 1.1 jmcneill 0x11, __BIT(6), 0x26, __BITS(4,0)), 244 1.1 jmcneill }; 245 1.1 jmcneill 246 1.21 jmcneill static const struct axppmic_ctrl axp809_ctrls[] = { 247 1.24 jmcneill AXP_CTRL("dc5ldo", 700, 1400, 100, 248 1.24 jmcneill 0x10, __BIT(0), 0x1c, __BITS(2,0)), 249 1.24 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100, 250 1.24 jmcneill 0x10, __BIT(1), 0x21, __BITS(4,0)), 251 1.24 jmcneill AXP_CTRL("dcdc2", 600, 1540, 20, 252 1.24 jmcneill 0x10, __BIT(2), 0x22, __BITS(5,0)), 253 1.24 jmcneill AXP_CTRL("dcdc3", 600, 1860, 20, 254 1.24 jmcneill 0x10, __BIT(3), 0x23, __BITS(5,0)), 255 1.24 jmcneill AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9, 256 1.24 jmcneill 0x10, __BIT(4), 0x24, __BITS(5,0)), 257 1.24 jmcneill AXP_CTRL("dcdc5", 1000, 2550, 50, 258 1.24 jmcneill 0x10, __BIT(5), 0x25, __BITS(4,0)), 259 1.24 jmcneill AXP_CTRL("aldo1", 700, 3300, 100, 260 1.24 jmcneill 0x10, __BIT(6), 0x28, __BITS(4,0)), 261 1.24 jmcneill AXP_CTRL("aldo2", 700, 3300, 100, 262 1.24 jmcneill 0x10, __BIT(7), 0x29, __BITS(4,0)), 263 1.24 jmcneill AXP_CTRL("eldo1", 700, 3300, 100, 264 1.24 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)), 265 1.24 jmcneill AXP_CTRL("eldo2", 700, 3300, 100, 266 1.24 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)), 267 1.24 jmcneill AXP_CTRL("eldo3", 700, 3300, 100, 268 1.24 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)), 269 1.24 jmcneill AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4, 270 1.24 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)), 271 1.24 jmcneill AXP_CTRL("dldo2", 700, 3300, 100, 272 1.24 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)), 273 1.24 jmcneill AXP_CTRL("aldo3", 700, 3300, 100, 274 1.24 jmcneill 0x12, __BIT(5), 0x2a, __BITS(4,0)), 275 1.24 jmcneill AXP_CTRL_SW("sw", 276 1.24 jmcneill 0x12, __BIT(6)), 277 1.24 jmcneill /* dc1sw is another switch for dcdc1 */ 278 1.24 jmcneill AXP_CTRL("dc1sw", 1600, 3400, 100, 279 1.24 jmcneill 0x12, __BIT(7), 0x21, __BITS(4,0)), 280 1.23 jmcneill AXP_CTRL_IO("ldo_io0", 700, 3300, 100, 281 1.23 jmcneill 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)), 282 1.23 jmcneill AXP_CTRL_IO("ldo_io1", 700, 3300, 100, 283 1.23 jmcneill 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)), 284 1.21 jmcneill }; 285 1.21 jmcneill 286 1.17 jmcneill static const struct axppmic_ctrl axp813_ctrls[] = { 287 1.17 jmcneill AXP_CTRL("dldo1", 700, 3300, 100, 288 1.17 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)), 289 1.17 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4, 290 1.17 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)), 291 1.17 jmcneill AXP_CTRL("dldo3", 700, 3300, 100, 292 1.17 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)), 293 1.17 jmcneill AXP_CTRL("dldo4", 700, 3300, 100, 294 1.17 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)), 295 1.17 jmcneill AXP_CTRL("eldo1", 700, 1900, 50, 296 1.17 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)), 297 1.17 jmcneill AXP_CTRL("eldo2", 700, 1900, 50, 298 1.17 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)), 299 1.17 jmcneill AXP_CTRL("eldo3", 700, 1900, 50, 300 1.17 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)), 301 1.17 jmcneill AXP_CTRL("fldo1", 700, 1450, 50, 302 1.17 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)), 303 1.17 jmcneill AXP_CTRL("fldo2", 700, 1450, 50, 304 1.17 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)), 305 1.17 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100, 306 1.17 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)), 307 1.17 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5, 308 1.17 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)), 309 1.17 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5, 310 1.17 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)), 311 1.17 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5, 312 1.17 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)), 313 1.17 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36, 314 1.17 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)), 315 1.17 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21, 316 1.17 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)), 317 1.17 jmcneill AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21, 318 1.17 jmcneill 0x10, __BIT(6), 0x26, __BITS(6,0)), 319 1.17 jmcneill AXP_CTRL("aldo1", 700, 3300, 100, 320 1.17 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)), 321 1.17 jmcneill AXP_CTRL("aldo2", 700, 3300, 100, 322 1.17 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)), 323 1.17 jmcneill AXP_CTRL("aldo3", 700, 3300, 100, 324 1.17 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)), 325 1.17 jmcneill }; 326 1.17 jmcneill 327 1.40 skrll static const struct axppmic_ctrl axp15060_ctrls[] = { 328 1.40 skrll AXP_CTRL( "dcdc1", 1500, 3400, 100, 329 1.40 skrll 0x13, __BITS(4, 0), 330 1.40 skrll 0x10, __BIT(0)), 331 1.40 skrll // DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM 332 1.40 skrll AXP_CTRL2_RANGE("dcdc2", 333 1.40 skrll 500, 1540, 70, 10, 1220, 16 , 20, 334 1.40 skrll 0x14, __BITS(6, 0), 335 1.40 skrll 0x10, __BIT(1)), 336 1.40 skrll // DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM 337 1.40 skrll AXP_CTRL2_RANGE("dcdc3", 338 1.40 skrll 500, 1540, 70, 10, 1220, 16 , 20, 339 1.40 skrll 0x15, __BITS(6, 0), 340 1.40 skrll 0x10, __BIT(2)), 341 1.40 skrll // DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM 342 1.40 skrll AXP_CTRL2_RANGE("dcdc4", 343 1.40 skrll 500, 1540, 70, 10, 1220, 16 , 20, 344 1.40 skrll 0x16, __BITS(6, 0), 345 1.40 skrll 0x10, __BIT(3)), 346 1.40 skrll // DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM 347 1.40 skrll AXP_CTRL2_RANGE("dcdc5", 348 1.40 skrll 800, 1840, 349 1.40 skrll 32, 10, 350 1.40 skrll 1140, 35, 20, 351 1.40 skrll 0x17, __BITS(6, 0), 352 1.40 skrll 0x10, __BIT(4)), 353 1.40 skrll AXP_CTRL("dcdc6", 500, 3400, 100, 354 1.40 skrll 0x18, __BITS(4, 0), 355 1.40 skrll 0x10, __BIT(5)), 356 1.40 skrll AXP_CTRL("aldo1", 700, 3300, 100, 357 1.40 skrll 0x19, __BITS(4, 0), 358 1.40 skrll 0x11, __BIT(0)), 359 1.40 skrll AXP_CTRL("aldo2", 700, 3300, 100, 360 1.40 skrll 0x20, __BITS(4, 0), 361 1.40 skrll 0x11, __BIT(1)), 362 1.40 skrll AXP_CTRL("aldo3", 700, 3300, 100, 363 1.40 skrll 0x21, __BITS(4, 0), 364 1.40 skrll 0x11, __BIT(2)), 365 1.40 skrll AXP_CTRL("aldo4", 700, 3300, 100, 366 1.40 skrll 0x22, __BITS(4, 0), 367 1.40 skrll 0x11, __BIT(3)), 368 1.40 skrll AXP_CTRL("aldo5", 700, 3300, 100, 369 1.40 skrll 0x23, __BITS(4, 0), 370 1.40 skrll 0x11, __BIT(4)), 371 1.40 skrll AXP_CTRL("bldo1", 700, 3300, 100, 372 1.40 skrll 0x24, __BITS(4, 0), 373 1.40 skrll 0x11, __BIT(5)), 374 1.40 skrll AXP_CTRL("bldo2", 700, 3300, 100, 375 1.40 skrll 0x25, __BITS(4, 0), 376 1.40 skrll 0x11, __BIT(6)), 377 1.40 skrll AXP_CTRL("bldo3", 700, 3300, 100, 378 1.40 skrll 0x26, __BITS(4, 0), 379 1.40 skrll 0x11, __BIT(7)), 380 1.40 skrll AXP_CTRL("bldo4", 700, 3300, 100, 381 1.40 skrll 0x27, __BITS(4, 0), 382 1.40 skrll 0x12, __BIT(0)), 383 1.40 skrll AXP_CTRL("bldo5", 700, 3300, 100, 384 1.40 skrll 0x28, __BITS(4, 0), 385 1.40 skrll 0x12, __BIT(1)), 386 1.40 skrll AXP_CTRL("cldo1", 700, 3300, 100, 387 1.40 skrll 0x29, __BITS(4, 0), 388 1.40 skrll 0x12, __BIT(2)), 389 1.40 skrll AXP_CTRL("cldo2", 700, 3300, 100, 390 1.40 skrll 0x2a, __BITS(4, 0), 391 1.40 skrll 0x12, __BIT(3)), 392 1.40 skrll AXP_CTRL("cldo3", 700, 3300, 100, 393 1.40 skrll 0x2b, __BITS(4, 0), 394 1.40 skrll 0x12, __BIT(4)), 395 1.40 skrll AXP_CTRL("cldo4", 700, 4200, 100, 396 1.40 skrll 0x2d, __BITS(5, 0), 397 1.40 skrll 0x12, __BIT(5)), 398 1.40 skrll AXP_CTRL("cpusldo", 700, 1400, 50, 399 1.40 skrll 0x2e, __BITS(3, 0), 400 1.40 skrll 0x12, __BIT(6)), 401 1.40 skrll }; 402 1.40 skrll 403 1.40 skrll 404 1.8 jmcneill struct axppmic_irq { 405 1.8 jmcneill u_int reg; 406 1.8 jmcneill uint8_t mask; 407 1.8 jmcneill }; 408 1.8 jmcneill 409 1.8 jmcneill #define AXPPMIC_IRQ(_reg, _mask) \ 410 1.8 jmcneill { .reg = (_reg), .mask = (_mask) } 411 1.8 jmcneill 412 1.1 jmcneill struct axppmic_config { 413 1.1 jmcneill const char *name; 414 1.37 jmcneill const char *gpio_compat; 415 1.37 jmcneill u_int gpio_npins; 416 1.1 jmcneill const struct axppmic_ctrl *controls; 417 1.1 jmcneill u_int ncontrols; 418 1.1 jmcneill u_int irq_regs; 419 1.2 jmcneill bool has_battery; 420 1.2 jmcneill bool has_fuel_gauge; 421 1.19 jmcneill bool has_mode_set; 422 1.8 jmcneill struct axppmic_irq poklirq; 423 1.8 jmcneill struct axppmic_irq acinirq; 424 1.8 jmcneill struct axppmic_irq vbusirq; 425 1.8 jmcneill struct axppmic_irq battirq; 426 1.8 jmcneill struct axppmic_irq chargeirq; 427 1.8 jmcneill struct axppmic_irq chargestirq; 428 1.10 jmcneill u_int batsense_step; /* uV */ 429 1.10 jmcneill u_int charge_step; /* uA */ 430 1.10 jmcneill u_int discharge_step; /* uA */ 431 1.10 jmcneill u_int maxcap_step; /* uAh */ 432 1.10 jmcneill u_int coulomb_step; /* uAh */ 433 1.2 jmcneill }; 434 1.2 jmcneill 435 1.2 jmcneill enum axppmic_sensor { 436 1.3 jmcneill AXP_SENSOR_ACIN_PRESENT, 437 1.3 jmcneill AXP_SENSOR_VBUS_PRESENT, 438 1.2 jmcneill AXP_SENSOR_BATT_PRESENT, 439 1.2 jmcneill AXP_SENSOR_BATT_CHARGING, 440 1.2 jmcneill AXP_SENSOR_BATT_CHARGE_STATE, 441 1.10 jmcneill AXP_SENSOR_BATT_VOLTAGE, 442 1.10 jmcneill AXP_SENSOR_BATT_CHARGE_CURRENT, 443 1.10 jmcneill AXP_SENSOR_BATT_DISCHARGE_CURRENT, 444 1.10 jmcneill AXP_SENSOR_BATT_CAPACITY_PERCENT, 445 1.16 jakllsch AXP_SENSOR_BATT_MAXIMUM_CAPACITY, 446 1.16 jakllsch AXP_SENSOR_BATT_CURRENT_CAPACITY, 447 1.2 jmcneill AXP_NSENSORS 448 1.1 jmcneill }; 449 1.1 jmcneill 450 1.1 jmcneill struct axppmic_softc { 451 1.1 jmcneill device_t sc_dev; 452 1.1 jmcneill i2c_tag_t sc_i2c; 453 1.1 jmcneill i2c_addr_t sc_addr; 454 1.1 jmcneill int sc_phandle; 455 1.1 jmcneill 456 1.29 thorpej void *sc_ih; 457 1.29 thorpej struct workqueue *sc_wq; 458 1.29 thorpej 459 1.29 thorpej kmutex_t sc_intr_lock; 460 1.29 thorpej struct work sc_work; 461 1.29 thorpej bool sc_work_scheduled; 462 1.29 thorpej 463 1.8 jmcneill const struct axppmic_config *sc_conf; 464 1.2 jmcneill 465 1.1 jmcneill struct sysmon_pswitch sc_smpsw; 466 1.1 jmcneill 467 1.2 jmcneill struct sysmon_envsys *sc_sme; 468 1.3 jmcneill 469 1.2 jmcneill envsys_data_t sc_sensor[AXP_NSENSORS]; 470 1.4 jmcneill 471 1.4 jmcneill u_int sc_warn_thres; 472 1.4 jmcneill u_int sc_shut_thres; 473 1.1 jmcneill }; 474 1.1 jmcneill 475 1.37 jmcneill struct axppmic_gpio_pin { 476 1.37 jmcneill struct axppmic_softc *pin_sc; 477 1.37 jmcneill u_int pin_nr; 478 1.37 jmcneill int pin_flags; 479 1.37 jmcneill bool pin_actlo; 480 1.37 jmcneill }; 481 1.37 jmcneill 482 1.1 jmcneill struct axpreg_softc { 483 1.1 jmcneill device_t sc_dev; 484 1.1 jmcneill i2c_tag_t sc_i2c; 485 1.1 jmcneill i2c_addr_t sc_addr; 486 1.1 jmcneill const struct axppmic_ctrl *sc_ctrl; 487 1.1 jmcneill }; 488 1.1 jmcneill 489 1.1 jmcneill struct axpreg_attach_args { 490 1.1 jmcneill const struct axppmic_ctrl *reg_ctrl; 491 1.1 jmcneill int reg_phandle; 492 1.1 jmcneill i2c_tag_t reg_i2c; 493 1.1 jmcneill i2c_addr_t reg_addr; 494 1.1 jmcneill }; 495 1.1 jmcneill 496 1.1 jmcneill static const struct axppmic_config axp803_config = { 497 1.1 jmcneill .name = "AXP803", 498 1.37 jmcneill .gpio_compat = "x-powers,axp803-gpio", 499 1.37 jmcneill .gpio_npins = 2, 500 1.1 jmcneill .controls = axp803_ctrls, 501 1.1 jmcneill .ncontrols = __arraycount(axp803_ctrls), 502 1.1 jmcneill .irq_regs = 6, 503 1.2 jmcneill .has_battery = true, 504 1.2 jmcneill .has_fuel_gauge = true, 505 1.10 jmcneill .batsense_step = 1100, 506 1.10 jmcneill .charge_step = 1000, 507 1.10 jmcneill .discharge_step = 1000, 508 1.16 jakllsch .maxcap_step = 1456, 509 1.16 jakllsch .coulomb_step = 1456, 510 1.8 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)), 511 1.8 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)), 512 1.8 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)), 513 1.8 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)), 514 1.8 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)), 515 1.38 skrll .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)), 516 1.1 jmcneill }; 517 1.1 jmcneill 518 1.1 jmcneill static const struct axppmic_config axp805_config = { 519 1.19 jmcneill .name = "AXP805", 520 1.19 jmcneill .controls = axp805_ctrls, 521 1.19 jmcneill .ncontrols = __arraycount(axp805_ctrls), 522 1.19 jmcneill .irq_regs = 2, 523 1.19 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)), 524 1.19 jmcneill }; 525 1.19 jmcneill 526 1.19 jmcneill static const struct axppmic_config axp806_config = { 527 1.19 jmcneill .name = "AXP806", 528 1.1 jmcneill .controls = axp805_ctrls, 529 1.1 jmcneill .ncontrols = __arraycount(axp805_ctrls), 530 1.19 jmcneill #if notyet 531 1.1 jmcneill .irq_regs = 2, 532 1.8 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)), 533 1.19 jmcneill #endif 534 1.19 jmcneill .has_mode_set = true, 535 1.1 jmcneill }; 536 1.1 jmcneill 537 1.21 jmcneill static const struct axppmic_config axp809_config = { 538 1.21 jmcneill .name = "AXP809", 539 1.21 jmcneill .controls = axp809_ctrls, 540 1.21 jmcneill .ncontrols = __arraycount(axp809_ctrls), 541 1.21 jmcneill }; 542 1.21 jmcneill 543 1.17 jmcneill static const struct axppmic_config axp813_config = { 544 1.17 jmcneill .name = "AXP813", 545 1.37 jmcneill .gpio_compat = "x-powers,axp813-gpio", 546 1.37 jmcneill .gpio_npins = 2, 547 1.17 jmcneill .controls = axp813_ctrls, 548 1.17 jmcneill .ncontrols = __arraycount(axp813_ctrls), 549 1.17 jmcneill .irq_regs = 6, 550 1.17 jmcneill .has_battery = true, 551 1.17 jmcneill .has_fuel_gauge = true, 552 1.17 jmcneill .batsense_step = 1100, 553 1.17 jmcneill .charge_step = 1000, 554 1.17 jmcneill .discharge_step = 1000, 555 1.17 jmcneill .maxcap_step = 1456, 556 1.17 jmcneill .coulomb_step = 1456, 557 1.17 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)), 558 1.17 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)), 559 1.17 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)), 560 1.17 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)), 561 1.17 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)), 562 1.38 skrll .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)), 563 1.17 jmcneill }; 564 1.17 jmcneill 565 1.40 skrll static const struct axppmic_config axp15060_config = { 566 1.40 skrll .name = "AXP15060", 567 1.40 skrll .controls = axp15060_ctrls, 568 1.40 skrll .ncontrols = __arraycount(axp15060_ctrls), 569 1.40 skrll }; 570 1.40 skrll 571 1.14 thorpej static const struct device_compatible_entry compat_data[] = { 572 1.30 thorpej { .compat = "x-powers,axp803", .data = &axp803_config }, 573 1.30 thorpej { .compat = "x-powers,axp805", .data = &axp805_config }, 574 1.30 thorpej { .compat = "x-powers,axp806", .data = &axp806_config }, 575 1.30 thorpej { .compat = "x-powers,axp809", .data = &axp809_config }, 576 1.30 thorpej { .compat = "x-powers,axp813", .data = &axp813_config }, 577 1.40 skrll { .compat = "x-powers,axp15060", .data = &axp15060_config }, 578 1.33 thorpej DEVICE_COMPAT_EOL 579 1.1 jmcneill }; 580 1.1 jmcneill 581 1.1 jmcneill static int 582 1.1 jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags) 583 1.1 jmcneill { 584 1.1 jmcneill return iic_smbus_read_byte(tag, addr, reg, val, flags); 585 1.1 jmcneill } 586 1.1 jmcneill 587 1.1 jmcneill static int 588 1.1 jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags) 589 1.1 jmcneill { 590 1.1 jmcneill return iic_smbus_write_byte(tag, addr, reg, val, flags); 591 1.1 jmcneill } 592 1.1 jmcneill 593 1.1 jmcneill static int 594 1.1 jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max) 595 1.1 jmcneill { 596 1.1 jmcneill u_int vol, reg_val; 597 1.1 jmcneill int nstep, error; 598 1.1 jmcneill uint8_t val; 599 1.1 jmcneill 600 1.1 jmcneill if (!c->c_voltage_mask) 601 1.1 jmcneill return EINVAL; 602 1.1 jmcneill 603 1.1 jmcneill if (min < c->c_min || min > c->c_max) 604 1.1 jmcneill return EINVAL; 605 1.1 jmcneill 606 1.1 jmcneill reg_val = 0; 607 1.1 jmcneill nstep = 1; 608 1.1 jmcneill vol = c->c_min; 609 1.1 jmcneill 610 1.1 jmcneill for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) { 611 1.1 jmcneill ++reg_val; 612 1.1 jmcneill vol += c->c_step1; 613 1.1 jmcneill } 614 1.24 jmcneill 615 1.24 jmcneill if (c->c_step2start) 616 1.24 jmcneill vol = c->c_step2start; 617 1.24 jmcneill 618 1.1 jmcneill for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) { 619 1.1 jmcneill ++reg_val; 620 1.1 jmcneill vol += c->c_step2; 621 1.1 jmcneill } 622 1.1 jmcneill 623 1.1 jmcneill if (vol > max) 624 1.1 jmcneill return EINVAL; 625 1.1 jmcneill 626 1.29 thorpej iic_acquire_bus(tag, 0); 627 1.29 thorpej if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) { 628 1.1 jmcneill val &= ~c->c_voltage_mask; 629 1.1 jmcneill val |= __SHIFTIN(reg_val, c->c_voltage_mask); 630 1.29 thorpej error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0); 631 1.1 jmcneill } 632 1.29 thorpej iic_release_bus(tag, 0); 633 1.1 jmcneill 634 1.1 jmcneill return error; 635 1.1 jmcneill } 636 1.1 jmcneill 637 1.1 jmcneill static int 638 1.1 jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol) 639 1.1 jmcneill { 640 1.1 jmcneill int reg_val, error; 641 1.1 jmcneill uint8_t val; 642 1.1 jmcneill 643 1.1 jmcneill if (!c->c_voltage_mask) 644 1.1 jmcneill return EINVAL; 645 1.1 jmcneill 646 1.29 thorpej iic_acquire_bus(tag, 0); 647 1.29 thorpej error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0); 648 1.29 thorpej iic_release_bus(tag, 0); 649 1.1 jmcneill if (error) 650 1.1 jmcneill return error; 651 1.1 jmcneill 652 1.1 jmcneill reg_val = __SHIFTOUT(val, c->c_voltage_mask); 653 1.1 jmcneill if (reg_val < c->c_step1cnt) { 654 1.1 jmcneill *pvol = c->c_min + reg_val * c->c_step1; 655 1.24 jmcneill } else if (c->c_step2start) { 656 1.24 jmcneill *pvol = c->c_step2start + 657 1.24 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2); 658 1.1 jmcneill } else { 659 1.1 jmcneill *pvol = c->c_min + (c->c_step1cnt * c->c_step1) + 660 1.1 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2); 661 1.1 jmcneill } 662 1.1 jmcneill 663 1.1 jmcneill return 0; 664 1.1 jmcneill } 665 1.1 jmcneill 666 1.1 jmcneill static void 667 1.1 jmcneill axppmic_power_poweroff(device_t dev) 668 1.1 jmcneill { 669 1.1 jmcneill struct axppmic_softc *sc = device_private(dev); 670 1.28 thorpej int error; 671 1.1 jmcneill 672 1.1 jmcneill delay(1000000); 673 1.1 jmcneill 674 1.29 thorpej error = iic_acquire_bus(sc->sc_i2c, 0); 675 1.28 thorpej if (error == 0) { 676 1.28 thorpej error = axppmic_write(sc->sc_i2c, sc->sc_addr, 677 1.29 thorpej AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0); 678 1.29 thorpej iic_release_bus(sc->sc_i2c, 0); 679 1.28 thorpej } 680 1.28 thorpej if (error) { 681 1.28 thorpej device_printf(dev, "WARNING: unable to power off, error %d\n", 682 1.28 thorpej error); 683 1.28 thorpej } 684 1.1 jmcneill } 685 1.1 jmcneill 686 1.1 jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = { 687 1.1 jmcneill .poweroff = axppmic_power_poweroff, 688 1.1 jmcneill }; 689 1.1 jmcneill 690 1.37 jmcneill static int 691 1.37 jmcneill axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func) 692 1.37 jmcneill { 693 1.37 jmcneill uint8_t val; 694 1.37 jmcneill int error; 695 1.37 jmcneill 696 1.37 jmcneill KASSERT(pin < sc->sc_conf->gpio_npins); 697 1.37 jmcneill KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0); 698 1.37 jmcneill 699 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0); 700 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin), 701 1.37 jmcneill &val, 0); 702 1.37 jmcneill if (error == 0) { 703 1.37 jmcneill val &= ~AXP_GPIO_CTRL_FUNC_MASK; 704 1.37 jmcneill val |= func; 705 1.37 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr, 706 1.37 jmcneill AXP_GPIO_CTRL_REG(pin), val, 0); 707 1.37 jmcneill } 708 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0); 709 1.37 jmcneill 710 1.37 jmcneill return error; 711 1.37 jmcneill } 712 1.37 jmcneill 713 1.37 jmcneill static void * 714 1.37 jmcneill axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags) 715 1.37 jmcneill { 716 1.37 jmcneill struct axppmic_softc *sc = device_private(dev); 717 1.37 jmcneill struct axppmic_gpio_pin *gpin; 718 1.37 jmcneill const u_int *gpio = data; 719 1.37 jmcneill int error; 720 1.37 jmcneill 721 1.37 jmcneill if (len != 12) { 722 1.37 jmcneill return NULL; 723 1.37 jmcneill } 724 1.37 jmcneill 725 1.37 jmcneill const uint8_t pin = be32toh(gpio[1]) & 0xff; 726 1.37 jmcneill const bool actlo = be32toh(gpio[2]) & 1; 727 1.37 jmcneill 728 1.37 jmcneill if (pin >= sc->sc_conf->gpio_npins) { 729 1.37 jmcneill return NULL; 730 1.37 jmcneill } 731 1.37 jmcneill 732 1.37 jmcneill if ((flags & GPIO_PIN_INPUT) != 0) { 733 1.37 jmcneill error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT); 734 1.37 jmcneill if (error != 0) { 735 1.37 jmcneill return NULL; 736 1.37 jmcneill } 737 1.37 jmcneill } 738 1.37 jmcneill 739 1.37 jmcneill gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP); 740 1.37 jmcneill gpin->pin_sc = sc; 741 1.37 jmcneill gpin->pin_nr = pin; 742 1.37 jmcneill gpin->pin_flags = flags; 743 1.37 jmcneill gpin->pin_actlo = actlo; 744 1.37 jmcneill 745 1.37 jmcneill return gpin; 746 1.37 jmcneill } 747 1.37 jmcneill 748 1.37 jmcneill static void 749 1.37 jmcneill axppmic_gpio_release(device_t dev, void *priv) 750 1.37 jmcneill { 751 1.37 jmcneill struct axppmic_softc *sc = device_private(dev); 752 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv; 753 1.37 jmcneill 754 1.37 jmcneill axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT); 755 1.37 jmcneill 756 1.37 jmcneill kmem_free(gpin, sizeof(*gpin)); 757 1.37 jmcneill } 758 1.37 jmcneill 759 1.37 jmcneill static int 760 1.37 jmcneill axppmic_gpio_read(device_t dev, void *priv, bool raw) 761 1.37 jmcneill { 762 1.37 jmcneill struct axppmic_softc *sc = device_private(dev); 763 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv; 764 1.37 jmcneill uint8_t data; 765 1.37 jmcneill int error, val; 766 1.37 jmcneill 767 1.37 jmcneill KASSERT(sc == gpin->pin_sc); 768 1.37 jmcneill 769 1.37 jmcneill const uint8_t data_mask = __BIT(gpin->pin_nr); 770 1.37 jmcneill 771 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0); 772 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG, 773 1.37 jmcneill &data, 0); 774 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0); 775 1.37 jmcneill 776 1.37 jmcneill if (error != 0) { 777 1.37 jmcneill device_printf(dev, "WARNING: failed to read pin %d: %d\n", 778 1.37 jmcneill gpin->pin_nr, error); 779 1.37 jmcneill val = 0; 780 1.37 jmcneill } else { 781 1.37 jmcneill val = __SHIFTOUT(data, data_mask); 782 1.37 jmcneill } 783 1.37 jmcneill if (!raw && gpin->pin_actlo) { 784 1.37 jmcneill val = !val; 785 1.37 jmcneill } 786 1.37 jmcneill 787 1.37 jmcneill return val; 788 1.37 jmcneill } 789 1.37 jmcneill 790 1.37 jmcneill static void 791 1.37 jmcneill axppmic_gpio_write(device_t dev, void *priv, int val, bool raw) 792 1.37 jmcneill { 793 1.37 jmcneill struct axppmic_softc *sc = device_private(dev); 794 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv; 795 1.37 jmcneill int error; 796 1.37 jmcneill 797 1.37 jmcneill if (!raw && gpin->pin_actlo) { 798 1.37 jmcneill val = !val; 799 1.37 jmcneill } 800 1.37 jmcneill 801 1.37 jmcneill error = axppmic_gpio_ctl(sc, gpin->pin_nr, 802 1.37 jmcneill val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH); 803 1.37 jmcneill if (error != 0) { 804 1.37 jmcneill device_printf(dev, "WARNING: failed to write pin %d: %d\n", 805 1.37 jmcneill gpin->pin_nr, error); 806 1.37 jmcneill } 807 1.37 jmcneill } 808 1.37 jmcneill 809 1.37 jmcneill static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = { 810 1.37 jmcneill .acquire = axppmic_gpio_acquire, 811 1.37 jmcneill .release = axppmic_gpio_release, 812 1.37 jmcneill .read = axppmic_gpio_read, 813 1.37 jmcneill .write = axppmic_gpio_write, 814 1.37 jmcneill }; 815 1.37 jmcneill 816 1.1 jmcneill static void 817 1.1 jmcneill axppmic_task_shut(void *priv) 818 1.1 jmcneill { 819 1.1 jmcneill struct axppmic_softc *sc = priv; 820 1.1 jmcneill 821 1.1 jmcneill sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED); 822 1.1 jmcneill } 823 1.1 jmcneill 824 1.2 jmcneill static void 825 1.8 jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e) 826 1.2 jmcneill { 827 1.2 jmcneill struct axppmic_softc *sc = sme->sme_cookie; 828 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf; 829 1.10 jmcneill uint8_t val, lo, hi; 830 1.2 jmcneill 831 1.2 jmcneill e->state = ENVSYS_SINVALID; 832 1.2 jmcneill 833 1.10 jmcneill const bool battery_present = 834 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID && 835 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1; 836 1.10 jmcneill 837 1.2 jmcneill switch (e->private) { 838 1.3 jmcneill case AXP_SENSOR_ACIN_PRESENT: 839 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) { 840 1.3 jmcneill e->state = ENVSYS_SVALID; 841 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT); 842 1.3 jmcneill } 843 1.3 jmcneill break; 844 1.3 jmcneill case AXP_SENSOR_VBUS_PRESENT: 845 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) { 846 1.3 jmcneill e->state = ENVSYS_SVALID; 847 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT); 848 1.3 jmcneill } 849 1.3 jmcneill break; 850 1.2 jmcneill case AXP_SENSOR_BATT_PRESENT: 851 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) { 852 1.2 jmcneill if (val & AXP_POWER_MODE_BATT_VALID) { 853 1.2 jmcneill e->state = ENVSYS_SVALID; 854 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT); 855 1.2 jmcneill } 856 1.2 jmcneill } 857 1.2 jmcneill break; 858 1.2 jmcneill case AXP_SENSOR_BATT_CHARGING: 859 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) { 860 1.2 jmcneill e->state = ENVSYS_SVALID; 861 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING); 862 1.2 jmcneill } 863 1.2 jmcneill break; 864 1.2 jmcneill case AXP_SENSOR_BATT_CHARGE_STATE: 865 1.10 jmcneill if (battery_present && 866 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 && 867 1.4 jmcneill (val & AXP_BATT_CAP_VALID) != 0) { 868 1.2 jmcneill const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT); 869 1.4 jmcneill if (batt_val <= sc->sc_shut_thres) { 870 1.2 jmcneill e->state = ENVSYS_SCRITICAL; 871 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL; 872 1.4 jmcneill } else if (batt_val <= sc->sc_warn_thres) { 873 1.2 jmcneill e->state = ENVSYS_SWARNUNDER; 874 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING; 875 1.2 jmcneill } else { 876 1.2 jmcneill e->state = ENVSYS_SVALID; 877 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL; 878 1.2 jmcneill } 879 1.2 jmcneill } 880 1.2 jmcneill break; 881 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT: 882 1.10 jmcneill if (battery_present && 883 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 && 884 1.2 jmcneill (val & AXP_BATT_CAP_VALID) != 0) { 885 1.2 jmcneill e->state = ENVSYS_SVALID; 886 1.2 jmcneill e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT); 887 1.2 jmcneill } 888 1.2 jmcneill break; 889 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE: 890 1.10 jmcneill if (battery_present && 891 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 && 892 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) { 893 1.10 jmcneill e->state = ENVSYS_SVALID; 894 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step; 895 1.10 jmcneill } 896 1.10 jmcneill break; 897 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT: 898 1.10 jmcneill if (battery_present && 899 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 && 900 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 && 901 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 && 902 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) { 903 1.10 jmcneill e->state = ENVSYS_SVALID; 904 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step; 905 1.10 jmcneill } 906 1.10 jmcneill break; 907 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT: 908 1.10 jmcneill if (battery_present && 909 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 && 910 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 && 911 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 && 912 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) { 913 1.10 jmcneill e->state = ENVSYS_SVALID; 914 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step; 915 1.10 jmcneill } 916 1.10 jmcneill break; 917 1.16 jakllsch case AXP_SENSOR_BATT_MAXIMUM_CAPACITY: 918 1.16 jakllsch if (battery_present && 919 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 && 920 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) { 921 1.16 jakllsch e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID; 922 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step; 923 1.16 jakllsch } 924 1.16 jakllsch break; 925 1.16 jakllsch case AXP_SENSOR_BATT_CURRENT_CAPACITY: 926 1.16 jakllsch if (battery_present && 927 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 && 928 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) { 929 1.16 jakllsch e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID; 930 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step; 931 1.16 jakllsch } 932 1.16 jakllsch break; 933 1.2 jmcneill } 934 1.8 jmcneill } 935 1.8 jmcneill 936 1.8 jmcneill static void 937 1.8 jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e) 938 1.8 jmcneill { 939 1.8 jmcneill struct axppmic_softc *sc = sme->sme_cookie; 940 1.8 jmcneill 941 1.8 jmcneill switch (e->private) { 942 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT: 943 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE: 944 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT: 945 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT: 946 1.10 jmcneill /* Always update battery capacity and ADCs */ 947 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0); 948 1.8 jmcneill axppmic_sensor_update(sme, e); 949 1.29 thorpej iic_release_bus(sc->sc_i2c, 0); 950 1.8 jmcneill break; 951 1.8 jmcneill default: 952 1.8 jmcneill /* Refresh if the sensor is not in valid state */ 953 1.8 jmcneill if (e->state != ENVSYS_SVALID) { 954 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0); 955 1.8 jmcneill axppmic_sensor_update(sme, e); 956 1.29 thorpej iic_release_bus(sc->sc_i2c, 0); 957 1.8 jmcneill } 958 1.8 jmcneill break; 959 1.8 jmcneill } 960 1.8 jmcneill } 961 1.8 jmcneill 962 1.8 jmcneill static int 963 1.8 jmcneill axppmic_intr(void *priv) 964 1.8 jmcneill { 965 1.29 thorpej struct axppmic_softc * const sc = priv; 966 1.29 thorpej 967 1.29 thorpej mutex_enter(&sc->sc_intr_lock); 968 1.29 thorpej 969 1.29 thorpej fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih); 970 1.29 thorpej 971 1.29 thorpej /* Interrupt is always masked when work is scheduled! */ 972 1.29 thorpej KASSERT(!sc->sc_work_scheduled); 973 1.29 thorpej sc->sc_work_scheduled = true; 974 1.29 thorpej workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL); 975 1.29 thorpej 976 1.29 thorpej mutex_exit(&sc->sc_intr_lock); 977 1.29 thorpej 978 1.29 thorpej return 1; 979 1.29 thorpej } 980 1.29 thorpej 981 1.29 thorpej static void 982 1.29 thorpej axppmic_work(struct work *work, void *arg) 983 1.29 thorpej { 984 1.29 thorpej struct axppmic_softc * const sc = 985 1.29 thorpej container_of(work, struct axppmic_softc, sc_work); 986 1.29 thorpej const struct axppmic_config * const c = sc->sc_conf; 987 1.29 thorpej const int flags = 0; 988 1.8 jmcneill uint8_t stat; 989 1.8 jmcneill u_int n; 990 1.8 jmcneill 991 1.29 thorpej KASSERT(sc->sc_work_scheduled); 992 1.29 thorpej 993 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags); 994 1.8 jmcneill for (n = 1; n <= c->irq_regs; n++) { 995 1.8 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) { 996 1.29 thorpej if (stat != 0) { 997 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr, 998 1.29 thorpej AXP_IRQ_STATUS_REG(n), stat, flags); 999 1.29 thorpej } 1000 1.29 thorpej 1001 1.8 jmcneill if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0) 1002 1.8 jmcneill sysmon_task_queue_sched(0, axppmic_task_shut, sc); 1003 1.8 jmcneill if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0) 1004 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]); 1005 1.8 jmcneill if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0) 1006 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]); 1007 1.8 jmcneill if (n == c->battirq.reg && (stat & c->battirq.mask) != 0) 1008 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]); 1009 1.8 jmcneill if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0) 1010 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]); 1011 1.8 jmcneill if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0) 1012 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]); 1013 1.8 jmcneill } 1014 1.8 jmcneill } 1015 1.2 jmcneill iic_release_bus(sc->sc_i2c, flags); 1016 1.8 jmcneill 1017 1.29 thorpej mutex_enter(&sc->sc_intr_lock); 1018 1.29 thorpej sc->sc_work_scheduled = false; 1019 1.29 thorpej fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih); 1020 1.29 thorpej mutex_exit(&sc->sc_intr_lock); 1021 1.2 jmcneill } 1022 1.2 jmcneill 1023 1.2 jmcneill static void 1024 1.3 jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc) 1025 1.3 jmcneill { 1026 1.3 jmcneill envsys_data_t *e; 1027 1.3 jmcneill 1028 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]; 1029 1.3 jmcneill e->private = AXP_SENSOR_ACIN_PRESENT; 1030 1.3 jmcneill e->units = ENVSYS_INDICATOR; 1031 1.3 jmcneill e->state = ENVSYS_SINVALID; 1032 1.3 jmcneill strlcpy(e->desc, "ACIN present", sizeof(e->desc)); 1033 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1034 1.3 jmcneill 1035 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]; 1036 1.3 jmcneill e->private = AXP_SENSOR_VBUS_PRESENT; 1037 1.3 jmcneill e->units = ENVSYS_INDICATOR; 1038 1.3 jmcneill e->state = ENVSYS_SINVALID; 1039 1.3 jmcneill strlcpy(e->desc, "VBUS present", sizeof(e->desc)); 1040 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1041 1.3 jmcneill } 1042 1.3 jmcneill 1043 1.3 jmcneill static void 1044 1.2 jmcneill axppmic_attach_battery(struct axppmic_softc *sc) 1045 1.2 jmcneill { 1046 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf; 1047 1.2 jmcneill envsys_data_t *e; 1048 1.4 jmcneill uint8_t val; 1049 1.4 jmcneill 1050 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0); 1051 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) { 1052 1.4 jmcneill sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5; 1053 1.4 jmcneill sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2); 1054 1.4 jmcneill } 1055 1.27 thorpej iic_release_bus(sc->sc_i2c, 0); 1056 1.2 jmcneill 1057 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]; 1058 1.2 jmcneill e->private = AXP_SENSOR_BATT_PRESENT; 1059 1.2 jmcneill e->units = ENVSYS_INDICATOR; 1060 1.2 jmcneill e->state = ENVSYS_SINVALID; 1061 1.2 jmcneill strlcpy(e->desc, "battery present", sizeof(e->desc)); 1062 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1063 1.2 jmcneill 1064 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]; 1065 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGING; 1066 1.2 jmcneill e->units = ENVSYS_BATTERY_CHARGE; 1067 1.2 jmcneill e->state = ENVSYS_SINVALID; 1068 1.2 jmcneill strlcpy(e->desc, "charging", sizeof(e->desc)); 1069 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1070 1.2 jmcneill 1071 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]; 1072 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_STATE; 1073 1.2 jmcneill e->units = ENVSYS_BATTERY_CAPACITY; 1074 1.2 jmcneill e->flags = ENVSYS_FMONSTCHANGED; 1075 1.9 jmcneill e->state = ENVSYS_SINVALID; 1076 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL; 1077 1.2 jmcneill strlcpy(e->desc, "charge state", sizeof(e->desc)); 1078 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1079 1.2 jmcneill 1080 1.10 jmcneill if (c->batsense_step) { 1081 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE]; 1082 1.10 jmcneill e->private = AXP_SENSOR_BATT_VOLTAGE; 1083 1.10 jmcneill e->units = ENVSYS_SVOLTS_DC; 1084 1.10 jmcneill e->state = ENVSYS_SINVALID; 1085 1.10 jmcneill strlcpy(e->desc, "battery voltage", sizeof(e->desc)); 1086 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1087 1.10 jmcneill } 1088 1.10 jmcneill 1089 1.10 jmcneill if (c->charge_step) { 1090 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT]; 1091 1.10 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_CURRENT; 1092 1.10 jmcneill e->units = ENVSYS_SAMPS; 1093 1.10 jmcneill e->state = ENVSYS_SINVALID; 1094 1.10 jmcneill strlcpy(e->desc, "battery charge current", sizeof(e->desc)); 1095 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1096 1.10 jmcneill } 1097 1.10 jmcneill 1098 1.10 jmcneill if (c->discharge_step) { 1099 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT]; 1100 1.10 jmcneill e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT; 1101 1.10 jmcneill e->units = ENVSYS_SAMPS; 1102 1.10 jmcneill e->state = ENVSYS_SINVALID; 1103 1.10 jmcneill strlcpy(e->desc, "battery discharge current", sizeof(e->desc)); 1104 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1105 1.10 jmcneill } 1106 1.10 jmcneill 1107 1.10 jmcneill if (c->has_fuel_gauge) { 1108 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT]; 1109 1.10 jmcneill e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT; 1110 1.2 jmcneill e->units = ENVSYS_INTEGER; 1111 1.2 jmcneill e->state = ENVSYS_SINVALID; 1112 1.2 jmcneill e->flags = ENVSYS_FPERCENT; 1113 1.2 jmcneill strlcpy(e->desc, "battery percent", sizeof(e->desc)); 1114 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e); 1115 1.2 jmcneill } 1116 1.16 jakllsch 1117 1.16 jakllsch if (c->maxcap_step) { 1118 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY]; 1119 1.16 jakllsch e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY; 1120 1.16 jakllsch e->units = ENVSYS_SAMPHOUR; 1121 1.16 jakllsch e->state = ENVSYS_SINVALID; 1122 1.16 jakllsch strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc)); 1123 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e); 1124 1.16 jakllsch } 1125 1.16 jakllsch 1126 1.16 jakllsch if (c->coulomb_step) { 1127 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY]; 1128 1.16 jakllsch e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY; 1129 1.16 jakllsch e->units = ENVSYS_SAMPHOUR; 1130 1.16 jakllsch e->state = ENVSYS_SINVALID; 1131 1.16 jakllsch strlcpy(e->desc, "battery current capacity", sizeof(e->desc)); 1132 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e); 1133 1.16 jakllsch } 1134 1.2 jmcneill } 1135 1.2 jmcneill 1136 1.2 jmcneill static void 1137 1.2 jmcneill axppmic_attach_sensors(struct axppmic_softc *sc) 1138 1.2 jmcneill { 1139 1.8 jmcneill if (sc->sc_conf->has_battery) { 1140 1.2 jmcneill sc->sc_sme = sysmon_envsys_create(); 1141 1.2 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev); 1142 1.2 jmcneill sc->sc_sme->sme_cookie = sc; 1143 1.2 jmcneill sc->sc_sme->sme_refresh = axppmic_sensor_refresh; 1144 1.2 jmcneill sc->sc_sme->sme_class = SME_CLASS_BATTERY; 1145 1.5 jmcneill sc->sc_sme->sme_flags = SME_INIT_REFRESH; 1146 1.2 jmcneill 1147 1.3 jmcneill axppmic_attach_acadapter(sc); 1148 1.2 jmcneill axppmic_attach_battery(sc); 1149 1.2 jmcneill 1150 1.2 jmcneill sysmon_envsys_register(sc->sc_sme); 1151 1.2 jmcneill } 1152 1.2 jmcneill } 1153 1.2 jmcneill 1154 1.2 jmcneill 1155 1.1 jmcneill static int 1156 1.1 jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux) 1157 1.1 jmcneill { 1158 1.1 jmcneill struct i2c_attach_args *ia = aux; 1159 1.12 thorpej int match_result; 1160 1.1 jmcneill 1161 1.14 thorpej if (iic_use_direct_match(ia, match, compat_data, &match_result)) 1162 1.12 thorpej return match_result; 1163 1.1 jmcneill 1164 1.11 thorpej /* This device is direct-config only. */ 1165 1.11 thorpej 1166 1.11 thorpej return 0; 1167 1.1 jmcneill } 1168 1.1 jmcneill 1169 1.1 jmcneill static void 1170 1.1 jmcneill axppmic_attach(device_t parent, device_t self, void *aux) 1171 1.1 jmcneill { 1172 1.1 jmcneill struct axppmic_softc *sc = device_private(self); 1173 1.13 thorpej const struct device_compatible_entry *dce = NULL; 1174 1.1 jmcneill const struct axppmic_config *c; 1175 1.1 jmcneill struct axpreg_attach_args aaa; 1176 1.1 jmcneill struct i2c_attach_args *ia = aux; 1177 1.1 jmcneill int phandle, child, i; 1178 1.19 jmcneill uint8_t irq_mask, val; 1179 1.19 jmcneill int error; 1180 1.1 jmcneill 1181 1.31 thorpej dce = iic_compatible_lookup(ia, compat_data); 1182 1.12 thorpej KASSERT(dce != NULL); 1183 1.30 thorpej c = dce->data; 1184 1.1 jmcneill 1185 1.1 jmcneill sc->sc_dev = self; 1186 1.1 jmcneill sc->sc_i2c = ia->ia_tag; 1187 1.1 jmcneill sc->sc_addr = ia->ia_addr; 1188 1.42 thorpej sc->sc_phandle = devhandle_to_of(device_handle(self)); 1189 1.8 jmcneill sc->sc_conf = c; 1190 1.1 jmcneill 1191 1.1 jmcneill aprint_naive("\n"); 1192 1.1 jmcneill aprint_normal(": %s\n", c->name); 1193 1.1 jmcneill 1194 1.19 jmcneill if (c->has_mode_set) { 1195 1.39 skrll const bool master_mode = 1196 1.39 skrll of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") || 1197 1.19 jmcneill of_hasprop(sc->sc_phandle, "x-powers,master-mode"); 1198 1.19 jmcneill 1199 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0); 1200 1.19 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG, 1201 1.27 thorpej master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0); 1202 1.27 thorpej iic_release_bus(sc->sc_i2c, 0); 1203 1.19 jmcneill } 1204 1.19 jmcneill 1205 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0); 1206 1.27 thorpej error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0); 1207 1.27 thorpej iic_release_bus(sc->sc_i2c, 0); 1208 1.19 jmcneill if (error != 0) { 1209 1.19 jmcneill aprint_error_dev(self, "couldn't read chipid\n"); 1210 1.19 jmcneill return; 1211 1.19 jmcneill } 1212 1.19 jmcneill aprint_debug_dev(self, "chipid %#x\n", val); 1213 1.19 jmcneill 1214 1.1 jmcneill sc->sc_smpsw.smpsw_name = device_xname(self); 1215 1.1 jmcneill sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER; 1216 1.1 jmcneill sysmon_pswitch_register(&sc->sc_smpsw); 1217 1.1 jmcneill 1218 1.29 thorpej mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM); 1219 1.29 thorpej 1220 1.19 jmcneill if (c->irq_regs > 0) { 1221 1.29 thorpej char intrstr[128]; 1222 1.29 thorpej 1223 1.29 thorpej if (!fdtbus_intr_str(sc->sc_phandle, 0, 1224 1.29 thorpej intrstr, sizeof(intrstr))) { 1225 1.29 thorpej aprint_error_dev(self, 1226 1.29 thorpej "WARNING: failed to decode interrupt\n"); 1227 1.29 thorpej } 1228 1.29 thorpej 1229 1.29 thorpej sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, 1230 1.29 thorpej FDT_INTR_MPSAFE, 1231 1.29 thorpej axppmic_intr, sc); 1232 1.29 thorpej if (sc->sc_ih == NULL) { 1233 1.29 thorpej aprint_error_dev(self, 1234 1.29 thorpej "WARNING: couldn't establish interrupt handler\n"); 1235 1.29 thorpej } 1236 1.29 thorpej 1237 1.29 thorpej error = workqueue_create(&sc->sc_wq, device_xname(self), 1238 1.29 thorpej axppmic_work, NULL, 1239 1.29 thorpej PRI_SOFTSERIAL, IPL_VM, 1240 1.29 thorpej WQ_MPSAFE); 1241 1.29 thorpej if (error) { 1242 1.29 thorpej sc->sc_wq = NULL; 1243 1.29 thorpej aprint_error_dev(self, 1244 1.29 thorpej "WARNING: couldn't create work queue: error %d\n", 1245 1.29 thorpej error); 1246 1.19 jmcneill } 1247 1.19 jmcneill 1248 1.29 thorpej if (sc->sc_ih != NULL && sc->sc_wq != NULL) { 1249 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0); 1250 1.29 thorpej for (i = 1; i <= c->irq_regs; i++) { 1251 1.29 thorpej irq_mask = 0; 1252 1.29 thorpej if (i == c->poklirq.reg) 1253 1.29 thorpej irq_mask |= c->poklirq.mask; 1254 1.29 thorpej if (i == c->acinirq.reg) 1255 1.29 thorpej irq_mask |= c->acinirq.mask; 1256 1.29 thorpej if (i == c->vbusirq.reg) 1257 1.29 thorpej irq_mask |= c->vbusirq.mask; 1258 1.29 thorpej if (i == c->battirq.reg) 1259 1.29 thorpej irq_mask |= c->battirq.mask; 1260 1.29 thorpej if (i == c->chargeirq.reg) 1261 1.29 thorpej irq_mask |= c->chargeirq.mask; 1262 1.29 thorpej if (i == c->chargestirq.reg) 1263 1.29 thorpej irq_mask |= c->chargestirq.mask; 1264 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr, 1265 1.29 thorpej AXP_IRQ_ENABLE_REG(i), 1266 1.29 thorpej irq_mask, 0); 1267 1.29 thorpej } 1268 1.29 thorpej iic_release_bus(sc->sc_i2c, 0); 1269 1.19 jmcneill } 1270 1.1 jmcneill } 1271 1.1 jmcneill 1272 1.1 jmcneill fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle, 1273 1.1 jmcneill &axppmic_power_funcs); 1274 1.1 jmcneill 1275 1.37 jmcneill if (c->gpio_compat != NULL) { 1276 1.37 jmcneill phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat); 1277 1.37 jmcneill if (phandle > 0) { 1278 1.37 jmcneill fdtbus_register_gpio_controller(self, phandle, 1279 1.37 jmcneill &axppmic_gpio_funcs); 1280 1.37 jmcneill } 1281 1.37 jmcneill } 1282 1.37 jmcneill 1283 1.1 jmcneill phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators"); 1284 1.2 jmcneill if (phandle > 0) { 1285 1.2 jmcneill aaa.reg_i2c = sc->sc_i2c; 1286 1.2 jmcneill aaa.reg_addr = sc->sc_addr; 1287 1.2 jmcneill for (i = 0; i < c->ncontrols; i++) { 1288 1.2 jmcneill const struct axppmic_ctrl *ctrl = &c->controls[i]; 1289 1.2 jmcneill child = of_find_firstchild_byname(phandle, ctrl->c_name); 1290 1.2 jmcneill if (child <= 0) 1291 1.2 jmcneill continue; 1292 1.2 jmcneill aaa.reg_ctrl = ctrl; 1293 1.2 jmcneill aaa.reg_phandle = child; 1294 1.36 thorpej config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE); 1295 1.2 jmcneill } 1296 1.2 jmcneill } 1297 1.1 jmcneill 1298 1.2 jmcneill if (c->has_battery) 1299 1.2 jmcneill axppmic_attach_sensors(sc); 1300 1.1 jmcneill } 1301 1.1 jmcneill 1302 1.1 jmcneill static int 1303 1.1 jmcneill axpreg_acquire(device_t dev) 1304 1.1 jmcneill { 1305 1.1 jmcneill return 0; 1306 1.1 jmcneill } 1307 1.1 jmcneill 1308 1.1 jmcneill static void 1309 1.1 jmcneill axpreg_release(device_t dev) 1310 1.1 jmcneill { 1311 1.1 jmcneill } 1312 1.1 jmcneill 1313 1.1 jmcneill static int 1314 1.1 jmcneill axpreg_enable(device_t dev, bool enable) 1315 1.1 jmcneill { 1316 1.1 jmcneill struct axpreg_softc *sc = device_private(dev); 1317 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl; 1318 1.25 thorpej const int flags = 0; 1319 1.1 jmcneill uint8_t val; 1320 1.1 jmcneill int error; 1321 1.1 jmcneill 1322 1.1 jmcneill if (!c->c_enable_mask) 1323 1.1 jmcneill return EINVAL; 1324 1.1 jmcneill 1325 1.1 jmcneill iic_acquire_bus(sc->sc_i2c, flags); 1326 1.1 jmcneill if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) { 1327 1.23 jmcneill val &= ~c->c_enable_mask; 1328 1.1 jmcneill if (enable) 1329 1.23 jmcneill val |= c->c_enable_val; 1330 1.1 jmcneill else 1331 1.23 jmcneill val |= c->c_disable_val; 1332 1.1 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags); 1333 1.1 jmcneill } 1334 1.1 jmcneill iic_release_bus(sc->sc_i2c, flags); 1335 1.1 jmcneill 1336 1.1 jmcneill return error; 1337 1.1 jmcneill } 1338 1.1 jmcneill 1339 1.1 jmcneill static int 1340 1.1 jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol) 1341 1.1 jmcneill { 1342 1.1 jmcneill struct axpreg_softc *sc = device_private(dev); 1343 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl; 1344 1.1 jmcneill 1345 1.1 jmcneill return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c, 1346 1.1 jmcneill min_uvol / 1000, max_uvol / 1000); 1347 1.1 jmcneill } 1348 1.1 jmcneill 1349 1.1 jmcneill static int 1350 1.1 jmcneill axpreg_get_voltage(device_t dev, u_int *puvol) 1351 1.1 jmcneill { 1352 1.1 jmcneill struct axpreg_softc *sc = device_private(dev); 1353 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl; 1354 1.1 jmcneill int error; 1355 1.1 jmcneill u_int vol; 1356 1.1 jmcneill 1357 1.1 jmcneill error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol); 1358 1.1 jmcneill if (error) 1359 1.1 jmcneill return error; 1360 1.1 jmcneill 1361 1.1 jmcneill *puvol = vol * 1000; 1362 1.1 jmcneill return 0; 1363 1.1 jmcneill } 1364 1.1 jmcneill 1365 1.1 jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = { 1366 1.1 jmcneill .acquire = axpreg_acquire, 1367 1.1 jmcneill .release = axpreg_release, 1368 1.1 jmcneill .enable = axpreg_enable, 1369 1.1 jmcneill .set_voltage = axpreg_set_voltage, 1370 1.1 jmcneill .get_voltage = axpreg_get_voltage, 1371 1.1 jmcneill }; 1372 1.1 jmcneill 1373 1.1 jmcneill static int 1374 1.1 jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux) 1375 1.1 jmcneill { 1376 1.1 jmcneill return 1; 1377 1.1 jmcneill } 1378 1.1 jmcneill 1379 1.1 jmcneill static void 1380 1.1 jmcneill axpreg_attach(device_t parent, device_t self, void *aux) 1381 1.1 jmcneill { 1382 1.1 jmcneill struct axpreg_softc *sc = device_private(self); 1383 1.1 jmcneill struct axpreg_attach_args *aaa = aux; 1384 1.1 jmcneill const int phandle = aaa->reg_phandle; 1385 1.1 jmcneill const char *name; 1386 1.20 jmcneill u_int uvol, min_uvol, max_uvol; 1387 1.1 jmcneill 1388 1.1 jmcneill sc->sc_dev = self; 1389 1.1 jmcneill sc->sc_i2c = aaa->reg_i2c; 1390 1.1 jmcneill sc->sc_addr = aaa->reg_addr; 1391 1.1 jmcneill sc->sc_ctrl = aaa->reg_ctrl; 1392 1.1 jmcneill 1393 1.1 jmcneill fdtbus_register_regulator_controller(self, phandle, 1394 1.1 jmcneill &axpreg_funcs); 1395 1.1 jmcneill 1396 1.1 jmcneill aprint_naive("\n"); 1397 1.1 jmcneill name = fdtbus_get_string(phandle, "regulator-name"); 1398 1.1 jmcneill if (name) 1399 1.1 jmcneill aprint_normal(": %s\n", name); 1400 1.1 jmcneill else 1401 1.1 jmcneill aprint_normal("\n"); 1402 1.20 jmcneill 1403 1.35 skrll int error = axpreg_get_voltage(self, &uvol); 1404 1.35 skrll if (error) 1405 1.35 skrll return; 1406 1.35 skrll 1407 1.20 jmcneill if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 && 1408 1.20 jmcneill of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) { 1409 1.20 jmcneill if (uvol < min_uvol || uvol > max_uvol) { 1410 1.22 jmcneill aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n", 1411 1.22 jmcneill uvol, min_uvol, max_uvol); 1412 1.20 jmcneill axpreg_set_voltage(self, min_uvol, max_uvol); 1413 1.20 jmcneill } 1414 1.20 jmcneill } 1415 1.22 jmcneill 1416 1.22 jmcneill if (of_hasprop(phandle, "regulator-always-on") || 1417 1.22 jmcneill of_hasprop(phandle, "regulator-boot-on")) { 1418 1.22 jmcneill axpreg_enable(self, true); 1419 1.22 jmcneill } 1420 1.1 jmcneill } 1421 1.1 jmcneill 1422 1.1 jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc), 1423 1.1 jmcneill axppmic_match, axppmic_attach, NULL, NULL); 1424 1.1 jmcneill 1425 1.1 jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc), 1426 1.1 jmcneill axpreg_match, axpreg_attach, NULL, NULL); 1427