axppmic.c revision 1.19 1 1.19 jmcneill /* $NetBSD: axppmic.c,v 1.19 2019/05/27 21:10:44 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.19 jmcneill __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.19 2019/05/27 21:10:44 jmcneill Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/systm.h>
34 1.1 jmcneill #include <sys/kernel.h>
35 1.1 jmcneill #include <sys/device.h>
36 1.1 jmcneill #include <sys/conf.h>
37 1.1 jmcneill #include <sys/bus.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.1 jmcneill
40 1.1 jmcneill #include <dev/i2c/i2cvar.h>
41 1.1 jmcneill
42 1.1 jmcneill #include <dev/sysmon/sysmonvar.h>
43 1.1 jmcneill #include <dev/sysmon/sysmon_taskq.h>
44 1.1 jmcneill
45 1.1 jmcneill #include <dev/fdt/fdtvar.h>
46 1.1 jmcneill
47 1.3 jmcneill #define AXP_POWER_SOURCE_REG 0x00
48 1.3 jmcneill #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 1.3 jmcneill #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 1.10 jmcneill #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51 1.3 jmcneill
52 1.2 jmcneill #define AXP_POWER_MODE_REG 0x01
53 1.2 jmcneill #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 1.2 jmcneill #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 1.2 jmcneill #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56 1.2 jmcneill
57 1.19 jmcneill #define AXP_CHIP_ID_REG 0x03
58 1.19 jmcneill
59 1.1 jmcneill #define AXP_POWER_DISABLE_REG 0x32
60 1.1 jmcneill #define AXP_POWER_DISABLE_CTRL __BIT(7)
61 1.1 jmcneill
62 1.1 jmcneill #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
63 1.5 jmcneill #define AXP_IRQ1_ACIN_RAISE __BIT(6)
64 1.5 jmcneill #define AXP_IRQ1_ACIN_LOWER __BIT(5)
65 1.5 jmcneill #define AXP_IRQ1_VBUS_RAISE __BIT(3)
66 1.5 jmcneill #define AXP_IRQ1_VBUS_LOWER __BIT(2)
67 1.1 jmcneill #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
68 1.1 jmcneill
69 1.10 jmcneill #define AXP_BATSENSE_HI_REG 0x78
70 1.10 jmcneill #define AXP_BATSENSE_LO_REG 0x79
71 1.10 jmcneill
72 1.10 jmcneill #define AXP_BATTCHG_HI_REG 0x7a
73 1.10 jmcneill #define AXP_BATTCHG_LO_REG 0x7b
74 1.10 jmcneill
75 1.10 jmcneill #define AXP_BATTDISCHG_HI_REG 0x7c
76 1.10 jmcneill #define AXP_BATTDISCHG_LO_REG 0x7d
77 1.10 jmcneill
78 1.10 jmcneill #define AXP_ADC_RAW(_hi, _lo) \
79 1.15 jakllsch (((u_int)(_hi) << 4) | ((_lo) & 0xf))
80 1.10 jmcneill
81 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
82 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
83 1.10 jmcneill
84 1.2 jmcneill #define AXP_BATT_CAP_REG 0xb9
85 1.2 jmcneill #define AXP_BATT_CAP_VALID __BIT(7)
86 1.2 jmcneill #define AXP_BATT_CAP_PERCENT __BITS(6,0)
87 1.2 jmcneill
88 1.16 jakllsch #define AXP_BATT_MAX_CAP_HI_REG 0xe0
89 1.16 jakllsch #define AXP_BATT_MAX_CAP_VALID __BIT(7)
90 1.16 jakllsch #define AXP_BATT_MAX_CAP_LO_REG 0xe1
91 1.16 jakllsch
92 1.16 jakllsch #define AXP_BATT_COULOMB_HI_REG 0xe2
93 1.16 jakllsch #define AXP_BATT_COULOMB_VALID __BIT(7)
94 1.16 jakllsch #define AXP_BATT_COULOMB_LO_REG 0xe3
95 1.16 jakllsch
96 1.16 jakllsch #define AXP_COULOMB_RAW(_hi, _lo) \
97 1.16 jakllsch (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
98 1.16 jakllsch
99 1.2 jmcneill #define AXP_BATT_CAP_WARN_REG 0xe6
100 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
101 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
102 1.2 jmcneill
103 1.19 jmcneill #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
104 1.19 jmcneill #define AXP_ADDR_EXT_MASTER 0
105 1.19 jmcneill #define AXP_ADDR_EXT_SLAVE __BIT(4)
106 1.19 jmcneill
107 1.1 jmcneill struct axppmic_ctrl {
108 1.1 jmcneill device_t c_dev;
109 1.1 jmcneill
110 1.1 jmcneill const char * c_name;
111 1.1 jmcneill u_int c_min;
112 1.1 jmcneill u_int c_max;
113 1.1 jmcneill u_int c_step1;
114 1.1 jmcneill u_int c_step1cnt;
115 1.1 jmcneill u_int c_step2;
116 1.1 jmcneill u_int c_step2cnt;
117 1.1 jmcneill
118 1.1 jmcneill uint8_t c_enable_reg;
119 1.1 jmcneill uint8_t c_enable_mask;
120 1.1 jmcneill
121 1.1 jmcneill uint8_t c_voltage_reg;
122 1.1 jmcneill uint8_t c_voltage_mask;
123 1.1 jmcneill };
124 1.1 jmcneill
125 1.1 jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
126 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
127 1.1 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
128 1.1 jmcneill .c_step2 = 0, .c_step2cnt = 0, \
129 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
130 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
131 1.1 jmcneill
132 1.1 jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
133 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
134 1.1 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \
135 1.1 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \
136 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
137 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
138 1.1 jmcneill
139 1.1 jmcneill static const struct axppmic_ctrl axp803_ctrls[] = {
140 1.1 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
141 1.1 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
142 1.1 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
143 1.1 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
144 1.1 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
145 1.1 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
146 1.1 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
147 1.1 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
148 1.1 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
149 1.1 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
150 1.1 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
151 1.1 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
152 1.1 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
153 1.1 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
154 1.1 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
155 1.1 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
156 1.1 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
157 1.1 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
158 1.1 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
159 1.1 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
160 1.6 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
161 1.1 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
162 1.6 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
163 1.1 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
164 1.6 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
165 1.1 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
166 1.1 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
167 1.1 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
168 1.1 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
169 1.1 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
170 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
171 1.1 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
172 1.1 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
173 1.1 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
174 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
175 1.1 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
176 1.1 jmcneill };
177 1.1 jmcneill
178 1.1 jmcneill static const struct axppmic_ctrl axp805_ctrls[] = {
179 1.1 jmcneill AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
180 1.1 jmcneill 0x10, __BIT(0), 0x12, __BITS(6,0)),
181 1.1 jmcneill AXP_CTRL("dcdcb", 1000, 2550, 50,
182 1.1 jmcneill 0x10, __BIT(1), 0x13, __BITS(4,0)),
183 1.1 jmcneill AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
184 1.1 jmcneill 0x10, __BIT(2), 0x14, __BITS(6,0)),
185 1.1 jmcneill AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
186 1.1 jmcneill 0x10, __BIT(3), 0x15, __BITS(5,0)),
187 1.1 jmcneill AXP_CTRL("dcdce", 1100, 3400, 100,
188 1.1 jmcneill 0x10, __BIT(4), 0x16, __BITS(4,0)),
189 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
190 1.1 jmcneill 0x10, __BIT(5), 0x17, __BITS(4,0)),
191 1.1 jmcneill AXP_CTRL("aldo2", 700, 3400, 100,
192 1.1 jmcneill 0x10, __BIT(6), 0x18, __BITS(4,0)),
193 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
194 1.1 jmcneill 0x10, __BIT(7), 0x19, __BITS(4,0)),
195 1.1 jmcneill AXP_CTRL("bldo1", 700, 1900, 100,
196 1.1 jmcneill 0x11, __BIT(0), 0x20, __BITS(3,0)),
197 1.1 jmcneill AXP_CTRL("bldo2", 700, 1900, 100,
198 1.1 jmcneill 0x11, __BIT(1), 0x21, __BITS(3,0)),
199 1.1 jmcneill AXP_CTRL("bldo3", 700, 1900, 100,
200 1.1 jmcneill 0x11, __BIT(2), 0x22, __BITS(3,0)),
201 1.1 jmcneill AXP_CTRL("bldo4", 700, 1900, 100,
202 1.1 jmcneill 0x11, __BIT(3), 0x23, __BITS(3,0)),
203 1.1 jmcneill AXP_CTRL("cldo1", 700, 3300, 100,
204 1.1 jmcneill 0x11, __BIT(4), 0x24, __BITS(4,0)),
205 1.1 jmcneill AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
206 1.1 jmcneill 0x11, __BIT(5), 0x25, __BITS(4,0)),
207 1.1 jmcneill AXP_CTRL("cldo3", 700, 3300, 100,
208 1.1 jmcneill 0x11, __BIT(6), 0x26, __BITS(4,0)),
209 1.1 jmcneill };
210 1.1 jmcneill
211 1.17 jmcneill static const struct axppmic_ctrl axp813_ctrls[] = {
212 1.17 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
213 1.17 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
214 1.17 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
215 1.17 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
216 1.17 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
217 1.17 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
218 1.17 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
219 1.17 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
220 1.17 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
221 1.17 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
222 1.17 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
223 1.17 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
224 1.17 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
225 1.17 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
226 1.17 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
227 1.17 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
228 1.17 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
229 1.17 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
230 1.17 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
231 1.17 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
232 1.17 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
233 1.17 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
234 1.17 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
235 1.17 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
236 1.17 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
237 1.17 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
238 1.17 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
239 1.17 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
240 1.17 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
241 1.17 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
242 1.17 jmcneill AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
243 1.17 jmcneill 0x10, __BIT(6), 0x26, __BITS(6,0)),
244 1.17 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
245 1.17 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
246 1.17 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
247 1.17 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
248 1.17 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
249 1.17 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
250 1.17 jmcneill };
251 1.17 jmcneill
252 1.8 jmcneill struct axppmic_irq {
253 1.8 jmcneill u_int reg;
254 1.8 jmcneill uint8_t mask;
255 1.8 jmcneill };
256 1.8 jmcneill
257 1.8 jmcneill #define AXPPMIC_IRQ(_reg, _mask) \
258 1.8 jmcneill { .reg = (_reg), .mask = (_mask) }
259 1.8 jmcneill
260 1.1 jmcneill struct axppmic_config {
261 1.1 jmcneill const char *name;
262 1.1 jmcneill const struct axppmic_ctrl *controls;
263 1.1 jmcneill u_int ncontrols;
264 1.1 jmcneill u_int irq_regs;
265 1.2 jmcneill bool has_battery;
266 1.2 jmcneill bool has_fuel_gauge;
267 1.19 jmcneill bool has_mode_set;
268 1.8 jmcneill struct axppmic_irq poklirq;
269 1.8 jmcneill struct axppmic_irq acinirq;
270 1.8 jmcneill struct axppmic_irq vbusirq;
271 1.8 jmcneill struct axppmic_irq battirq;
272 1.8 jmcneill struct axppmic_irq chargeirq;
273 1.8 jmcneill struct axppmic_irq chargestirq;
274 1.10 jmcneill u_int batsense_step; /* uV */
275 1.10 jmcneill u_int charge_step; /* uA */
276 1.10 jmcneill u_int discharge_step; /* uA */
277 1.10 jmcneill u_int maxcap_step; /* uAh */
278 1.10 jmcneill u_int coulomb_step; /* uAh */
279 1.2 jmcneill };
280 1.2 jmcneill
281 1.2 jmcneill enum axppmic_sensor {
282 1.3 jmcneill AXP_SENSOR_ACIN_PRESENT,
283 1.3 jmcneill AXP_SENSOR_VBUS_PRESENT,
284 1.2 jmcneill AXP_SENSOR_BATT_PRESENT,
285 1.2 jmcneill AXP_SENSOR_BATT_CHARGING,
286 1.2 jmcneill AXP_SENSOR_BATT_CHARGE_STATE,
287 1.10 jmcneill AXP_SENSOR_BATT_VOLTAGE,
288 1.10 jmcneill AXP_SENSOR_BATT_CHARGE_CURRENT,
289 1.10 jmcneill AXP_SENSOR_BATT_DISCHARGE_CURRENT,
290 1.10 jmcneill AXP_SENSOR_BATT_CAPACITY_PERCENT,
291 1.16 jakllsch AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
292 1.16 jakllsch AXP_SENSOR_BATT_CURRENT_CAPACITY,
293 1.2 jmcneill AXP_NSENSORS
294 1.1 jmcneill };
295 1.1 jmcneill
296 1.1 jmcneill struct axppmic_softc {
297 1.1 jmcneill device_t sc_dev;
298 1.1 jmcneill i2c_tag_t sc_i2c;
299 1.1 jmcneill i2c_addr_t sc_addr;
300 1.1 jmcneill int sc_phandle;
301 1.1 jmcneill
302 1.8 jmcneill const struct axppmic_config *sc_conf;
303 1.2 jmcneill
304 1.1 jmcneill struct sysmon_pswitch sc_smpsw;
305 1.1 jmcneill
306 1.2 jmcneill struct sysmon_envsys *sc_sme;
307 1.3 jmcneill
308 1.2 jmcneill envsys_data_t sc_sensor[AXP_NSENSORS];
309 1.4 jmcneill
310 1.4 jmcneill u_int sc_warn_thres;
311 1.4 jmcneill u_int sc_shut_thres;
312 1.1 jmcneill };
313 1.1 jmcneill
314 1.1 jmcneill struct axpreg_softc {
315 1.1 jmcneill device_t sc_dev;
316 1.1 jmcneill i2c_tag_t sc_i2c;
317 1.1 jmcneill i2c_addr_t sc_addr;
318 1.1 jmcneill const struct axppmic_ctrl *sc_ctrl;
319 1.1 jmcneill };
320 1.1 jmcneill
321 1.1 jmcneill struct axpreg_attach_args {
322 1.1 jmcneill const struct axppmic_ctrl *reg_ctrl;
323 1.1 jmcneill int reg_phandle;
324 1.1 jmcneill i2c_tag_t reg_i2c;
325 1.1 jmcneill i2c_addr_t reg_addr;
326 1.1 jmcneill };
327 1.1 jmcneill
328 1.1 jmcneill static const struct axppmic_config axp803_config = {
329 1.1 jmcneill .name = "AXP803",
330 1.1 jmcneill .controls = axp803_ctrls,
331 1.1 jmcneill .ncontrols = __arraycount(axp803_ctrls),
332 1.1 jmcneill .irq_regs = 6,
333 1.2 jmcneill .has_battery = true,
334 1.2 jmcneill .has_fuel_gauge = true,
335 1.10 jmcneill .batsense_step = 1100,
336 1.10 jmcneill .charge_step = 1000,
337 1.10 jmcneill .discharge_step = 1000,
338 1.16 jakllsch .maxcap_step = 1456,
339 1.16 jakllsch .coulomb_step = 1456,
340 1.8 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
341 1.8 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
342 1.8 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
343 1.8 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
344 1.8 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
345 1.8 jmcneill .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
346 1.1 jmcneill };
347 1.1 jmcneill
348 1.1 jmcneill static const struct axppmic_config axp805_config = {
349 1.19 jmcneill .name = "AXP805",
350 1.19 jmcneill .controls = axp805_ctrls,
351 1.19 jmcneill .ncontrols = __arraycount(axp805_ctrls),
352 1.19 jmcneill .irq_regs = 2,
353 1.19 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
354 1.19 jmcneill };
355 1.19 jmcneill
356 1.19 jmcneill static const struct axppmic_config axp806_config = {
357 1.19 jmcneill .name = "AXP806",
358 1.1 jmcneill .controls = axp805_ctrls,
359 1.1 jmcneill .ncontrols = __arraycount(axp805_ctrls),
360 1.19 jmcneill #if notyet
361 1.1 jmcneill .irq_regs = 2,
362 1.8 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
363 1.19 jmcneill #endif
364 1.19 jmcneill .has_mode_set = true,
365 1.1 jmcneill };
366 1.1 jmcneill
367 1.17 jmcneill static const struct axppmic_config axp813_config = {
368 1.17 jmcneill .name = "AXP813",
369 1.17 jmcneill .controls = axp813_ctrls,
370 1.17 jmcneill .ncontrols = __arraycount(axp813_ctrls),
371 1.17 jmcneill .irq_regs = 6,
372 1.17 jmcneill .has_battery = true,
373 1.17 jmcneill .has_fuel_gauge = true,
374 1.17 jmcneill .batsense_step = 1100,
375 1.17 jmcneill .charge_step = 1000,
376 1.17 jmcneill .discharge_step = 1000,
377 1.17 jmcneill .maxcap_step = 1456,
378 1.17 jmcneill .coulomb_step = 1456,
379 1.17 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
380 1.17 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
381 1.17 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
382 1.17 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
383 1.17 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
384 1.17 jmcneill .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
385 1.17 jmcneill };
386 1.17 jmcneill
387 1.14 thorpej static const struct device_compatible_entry compat_data[] = {
388 1.14 thorpej { "x-powers,axp803", (uintptr_t)&axp803_config },
389 1.14 thorpej { "x-powers,axp805", (uintptr_t)&axp805_config },
390 1.19 jmcneill { "x-powers,axp806", (uintptr_t)&axp806_config },
391 1.17 jmcneill { "x-powers,axp813", (uintptr_t)&axp813_config },
392 1.14 thorpej { NULL, 0 }
393 1.1 jmcneill };
394 1.1 jmcneill
395 1.1 jmcneill static int
396 1.1 jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
397 1.1 jmcneill {
398 1.1 jmcneill return iic_smbus_read_byte(tag, addr, reg, val, flags);
399 1.1 jmcneill }
400 1.1 jmcneill
401 1.1 jmcneill static int
402 1.1 jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
403 1.1 jmcneill {
404 1.1 jmcneill return iic_smbus_write_byte(tag, addr, reg, val, flags);
405 1.1 jmcneill }
406 1.1 jmcneill
407 1.1 jmcneill static int
408 1.1 jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
409 1.1 jmcneill {
410 1.1 jmcneill const int flags = (cold ? I2C_F_POLL : 0);
411 1.1 jmcneill u_int vol, reg_val;
412 1.1 jmcneill int nstep, error;
413 1.1 jmcneill uint8_t val;
414 1.1 jmcneill
415 1.1 jmcneill if (!c->c_voltage_mask)
416 1.1 jmcneill return EINVAL;
417 1.1 jmcneill
418 1.1 jmcneill if (min < c->c_min || min > c->c_max)
419 1.1 jmcneill return EINVAL;
420 1.1 jmcneill
421 1.1 jmcneill reg_val = 0;
422 1.1 jmcneill nstep = 1;
423 1.1 jmcneill vol = c->c_min;
424 1.1 jmcneill
425 1.1 jmcneill for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
426 1.1 jmcneill ++reg_val;
427 1.1 jmcneill vol += c->c_step1;
428 1.1 jmcneill }
429 1.1 jmcneill for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
430 1.1 jmcneill ++reg_val;
431 1.1 jmcneill vol += c->c_step2;
432 1.1 jmcneill }
433 1.1 jmcneill
434 1.1 jmcneill if (vol > max)
435 1.1 jmcneill return EINVAL;
436 1.1 jmcneill
437 1.1 jmcneill iic_acquire_bus(tag, flags);
438 1.1 jmcneill if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
439 1.1 jmcneill val &= ~c->c_voltage_mask;
440 1.1 jmcneill val |= __SHIFTIN(reg_val, c->c_voltage_mask);
441 1.1 jmcneill error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
442 1.1 jmcneill }
443 1.1 jmcneill iic_release_bus(tag, flags);
444 1.1 jmcneill
445 1.1 jmcneill return error;
446 1.1 jmcneill }
447 1.1 jmcneill
448 1.1 jmcneill static int
449 1.1 jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
450 1.1 jmcneill {
451 1.1 jmcneill const int flags = (cold ? I2C_F_POLL : 0);
452 1.1 jmcneill int reg_val, error;
453 1.1 jmcneill uint8_t val;
454 1.1 jmcneill
455 1.1 jmcneill if (!c->c_voltage_mask)
456 1.1 jmcneill return EINVAL;
457 1.1 jmcneill
458 1.1 jmcneill iic_acquire_bus(tag, flags);
459 1.1 jmcneill error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
460 1.1 jmcneill iic_release_bus(tag, flags);
461 1.1 jmcneill if (error)
462 1.1 jmcneill return error;
463 1.1 jmcneill
464 1.1 jmcneill reg_val = __SHIFTOUT(val, c->c_voltage_mask);
465 1.1 jmcneill if (reg_val < c->c_step1cnt) {
466 1.1 jmcneill *pvol = c->c_min + reg_val * c->c_step1;
467 1.1 jmcneill } else {
468 1.1 jmcneill *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
469 1.1 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2);
470 1.1 jmcneill }
471 1.1 jmcneill
472 1.1 jmcneill return 0;
473 1.1 jmcneill }
474 1.1 jmcneill
475 1.1 jmcneill static void
476 1.1 jmcneill axppmic_power_poweroff(device_t dev)
477 1.1 jmcneill {
478 1.1 jmcneill struct axppmic_softc *sc = device_private(dev);
479 1.1 jmcneill
480 1.1 jmcneill delay(1000000);
481 1.1 jmcneill
482 1.1 jmcneill iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
483 1.1 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
484 1.1 jmcneill iic_release_bus(sc->sc_i2c, I2C_F_POLL);
485 1.1 jmcneill }
486 1.1 jmcneill
487 1.1 jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = {
488 1.1 jmcneill .poweroff = axppmic_power_poweroff,
489 1.1 jmcneill };
490 1.1 jmcneill
491 1.1 jmcneill static void
492 1.1 jmcneill axppmic_task_shut(void *priv)
493 1.1 jmcneill {
494 1.1 jmcneill struct axppmic_softc *sc = priv;
495 1.1 jmcneill
496 1.1 jmcneill sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
497 1.1 jmcneill }
498 1.1 jmcneill
499 1.2 jmcneill static void
500 1.8 jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
501 1.2 jmcneill {
502 1.2 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
503 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
504 1.2 jmcneill const int flags = I2C_F_POLL;
505 1.10 jmcneill uint8_t val, lo, hi;
506 1.2 jmcneill
507 1.2 jmcneill e->state = ENVSYS_SINVALID;
508 1.2 jmcneill
509 1.10 jmcneill const bool battery_present =
510 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
511 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
512 1.10 jmcneill
513 1.2 jmcneill switch (e->private) {
514 1.3 jmcneill case AXP_SENSOR_ACIN_PRESENT:
515 1.3 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
516 1.3 jmcneill e->state = ENVSYS_SVALID;
517 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
518 1.3 jmcneill }
519 1.3 jmcneill break;
520 1.3 jmcneill case AXP_SENSOR_VBUS_PRESENT:
521 1.3 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
522 1.3 jmcneill e->state = ENVSYS_SVALID;
523 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
524 1.3 jmcneill }
525 1.3 jmcneill break;
526 1.2 jmcneill case AXP_SENSOR_BATT_PRESENT:
527 1.2 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
528 1.2 jmcneill if (val & AXP_POWER_MODE_BATT_VALID) {
529 1.2 jmcneill e->state = ENVSYS_SVALID;
530 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
531 1.2 jmcneill }
532 1.2 jmcneill }
533 1.2 jmcneill break;
534 1.2 jmcneill case AXP_SENSOR_BATT_CHARGING:
535 1.2 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
536 1.2 jmcneill e->state = ENVSYS_SVALID;
537 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
538 1.2 jmcneill }
539 1.2 jmcneill break;
540 1.2 jmcneill case AXP_SENSOR_BATT_CHARGE_STATE:
541 1.10 jmcneill if (battery_present &&
542 1.2 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
543 1.4 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
544 1.2 jmcneill const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
545 1.4 jmcneill if (batt_val <= sc->sc_shut_thres) {
546 1.2 jmcneill e->state = ENVSYS_SCRITICAL;
547 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
548 1.4 jmcneill } else if (batt_val <= sc->sc_warn_thres) {
549 1.2 jmcneill e->state = ENVSYS_SWARNUNDER;
550 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
551 1.2 jmcneill } else {
552 1.2 jmcneill e->state = ENVSYS_SVALID;
553 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
554 1.2 jmcneill }
555 1.2 jmcneill }
556 1.2 jmcneill break;
557 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
558 1.10 jmcneill if (battery_present &&
559 1.2 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
560 1.2 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
561 1.2 jmcneill e->state = ENVSYS_SVALID;
562 1.2 jmcneill e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
563 1.2 jmcneill }
564 1.2 jmcneill break;
565 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
566 1.10 jmcneill if (battery_present &&
567 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
568 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
569 1.10 jmcneill e->state = ENVSYS_SVALID;
570 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
571 1.10 jmcneill }
572 1.10 jmcneill break;
573 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
574 1.10 jmcneill if (battery_present &&
575 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
576 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
577 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
578 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
579 1.10 jmcneill e->state = ENVSYS_SVALID;
580 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
581 1.10 jmcneill }
582 1.10 jmcneill break;
583 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
584 1.10 jmcneill if (battery_present &&
585 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
586 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
587 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
588 1.10 jmcneill axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
589 1.10 jmcneill e->state = ENVSYS_SVALID;
590 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
591 1.10 jmcneill }
592 1.10 jmcneill break;
593 1.16 jakllsch case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
594 1.16 jakllsch if (battery_present &&
595 1.16 jakllsch axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
596 1.16 jakllsch axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
597 1.16 jakllsch e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
598 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
599 1.16 jakllsch }
600 1.16 jakllsch break;
601 1.16 jakllsch case AXP_SENSOR_BATT_CURRENT_CAPACITY:
602 1.16 jakllsch if (battery_present &&
603 1.16 jakllsch axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
604 1.16 jakllsch axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
605 1.16 jakllsch e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
606 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
607 1.16 jakllsch }
608 1.16 jakllsch break;
609 1.2 jmcneill }
610 1.8 jmcneill }
611 1.8 jmcneill
612 1.8 jmcneill static void
613 1.8 jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
614 1.8 jmcneill {
615 1.8 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
616 1.8 jmcneill const int flags = I2C_F_POLL;
617 1.8 jmcneill
618 1.8 jmcneill switch (e->private) {
619 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
620 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
621 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
622 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
623 1.10 jmcneill /* Always update battery capacity and ADCs */
624 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
625 1.8 jmcneill axppmic_sensor_update(sme, e);
626 1.8 jmcneill iic_release_bus(sc->sc_i2c, flags);
627 1.8 jmcneill break;
628 1.8 jmcneill default:
629 1.8 jmcneill /* Refresh if the sensor is not in valid state */
630 1.8 jmcneill if (e->state != ENVSYS_SVALID) {
631 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
632 1.8 jmcneill axppmic_sensor_update(sme, e);
633 1.8 jmcneill iic_release_bus(sc->sc_i2c, flags);
634 1.8 jmcneill }
635 1.8 jmcneill break;
636 1.8 jmcneill }
637 1.8 jmcneill }
638 1.8 jmcneill
639 1.8 jmcneill static int
640 1.8 jmcneill axppmic_intr(void *priv)
641 1.8 jmcneill {
642 1.8 jmcneill struct axppmic_softc *sc = priv;
643 1.8 jmcneill const struct axppmic_config *c = sc->sc_conf;
644 1.8 jmcneill const int flags = I2C_F_POLL;
645 1.8 jmcneill uint8_t stat;
646 1.8 jmcneill u_int n;
647 1.8 jmcneill
648 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
649 1.8 jmcneill for (n = 1; n <= c->irq_regs; n++) {
650 1.8 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
651 1.8 jmcneill if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
652 1.8 jmcneill sysmon_task_queue_sched(0, axppmic_task_shut, sc);
653 1.8 jmcneill if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
654 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
655 1.8 jmcneill if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
656 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
657 1.8 jmcneill if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
658 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
659 1.8 jmcneill if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
660 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
661 1.8 jmcneill if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
662 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
663 1.8 jmcneill
664 1.8 jmcneill if (stat != 0)
665 1.8 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr,
666 1.8 jmcneill AXP_IRQ_STATUS_REG(n), stat, flags);
667 1.8 jmcneill }
668 1.8 jmcneill }
669 1.2 jmcneill iic_release_bus(sc->sc_i2c, flags);
670 1.8 jmcneill
671 1.8 jmcneill return 1;
672 1.2 jmcneill }
673 1.2 jmcneill
674 1.2 jmcneill static void
675 1.3 jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc)
676 1.3 jmcneill {
677 1.3 jmcneill envsys_data_t *e;
678 1.3 jmcneill
679 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
680 1.3 jmcneill e->private = AXP_SENSOR_ACIN_PRESENT;
681 1.3 jmcneill e->units = ENVSYS_INDICATOR;
682 1.3 jmcneill e->state = ENVSYS_SINVALID;
683 1.3 jmcneill strlcpy(e->desc, "ACIN present", sizeof(e->desc));
684 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
685 1.3 jmcneill
686 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
687 1.3 jmcneill e->private = AXP_SENSOR_VBUS_PRESENT;
688 1.3 jmcneill e->units = ENVSYS_INDICATOR;
689 1.3 jmcneill e->state = ENVSYS_SINVALID;
690 1.3 jmcneill strlcpy(e->desc, "VBUS present", sizeof(e->desc));
691 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
692 1.3 jmcneill }
693 1.3 jmcneill
694 1.3 jmcneill static void
695 1.2 jmcneill axppmic_attach_battery(struct axppmic_softc *sc)
696 1.2 jmcneill {
697 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
698 1.2 jmcneill envsys_data_t *e;
699 1.4 jmcneill uint8_t val;
700 1.4 jmcneill
701 1.4 jmcneill iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
702 1.4 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
703 1.4 jmcneill sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
704 1.4 jmcneill sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
705 1.4 jmcneill }
706 1.4 jmcneill iic_release_bus(sc->sc_i2c, I2C_F_POLL);
707 1.2 jmcneill
708 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
709 1.2 jmcneill e->private = AXP_SENSOR_BATT_PRESENT;
710 1.2 jmcneill e->units = ENVSYS_INDICATOR;
711 1.2 jmcneill e->state = ENVSYS_SINVALID;
712 1.2 jmcneill strlcpy(e->desc, "battery present", sizeof(e->desc));
713 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
714 1.2 jmcneill
715 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
716 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGING;
717 1.2 jmcneill e->units = ENVSYS_BATTERY_CHARGE;
718 1.2 jmcneill e->state = ENVSYS_SINVALID;
719 1.2 jmcneill strlcpy(e->desc, "charging", sizeof(e->desc));
720 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
721 1.2 jmcneill
722 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
723 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_STATE;
724 1.2 jmcneill e->units = ENVSYS_BATTERY_CAPACITY;
725 1.2 jmcneill e->flags = ENVSYS_FMONSTCHANGED;
726 1.9 jmcneill e->state = ENVSYS_SINVALID;
727 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
728 1.2 jmcneill strlcpy(e->desc, "charge state", sizeof(e->desc));
729 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
730 1.2 jmcneill
731 1.10 jmcneill if (c->batsense_step) {
732 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
733 1.10 jmcneill e->private = AXP_SENSOR_BATT_VOLTAGE;
734 1.10 jmcneill e->units = ENVSYS_SVOLTS_DC;
735 1.10 jmcneill e->state = ENVSYS_SINVALID;
736 1.10 jmcneill strlcpy(e->desc, "battery voltage", sizeof(e->desc));
737 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
738 1.10 jmcneill }
739 1.10 jmcneill
740 1.10 jmcneill if (c->charge_step) {
741 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
742 1.10 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
743 1.10 jmcneill e->units = ENVSYS_SAMPS;
744 1.10 jmcneill e->state = ENVSYS_SINVALID;
745 1.10 jmcneill strlcpy(e->desc, "battery charge current", sizeof(e->desc));
746 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
747 1.10 jmcneill }
748 1.10 jmcneill
749 1.10 jmcneill if (c->discharge_step) {
750 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
751 1.10 jmcneill e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
752 1.10 jmcneill e->units = ENVSYS_SAMPS;
753 1.10 jmcneill e->state = ENVSYS_SINVALID;
754 1.10 jmcneill strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
755 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
756 1.10 jmcneill }
757 1.10 jmcneill
758 1.10 jmcneill if (c->has_fuel_gauge) {
759 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
760 1.10 jmcneill e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
761 1.2 jmcneill e->units = ENVSYS_INTEGER;
762 1.2 jmcneill e->state = ENVSYS_SINVALID;
763 1.2 jmcneill e->flags = ENVSYS_FPERCENT;
764 1.2 jmcneill strlcpy(e->desc, "battery percent", sizeof(e->desc));
765 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
766 1.2 jmcneill }
767 1.16 jakllsch
768 1.16 jakllsch if (c->maxcap_step) {
769 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
770 1.16 jakllsch e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
771 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
772 1.16 jakllsch e->state = ENVSYS_SINVALID;
773 1.16 jakllsch strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
774 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
775 1.16 jakllsch }
776 1.16 jakllsch
777 1.16 jakllsch if (c->coulomb_step) {
778 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
779 1.16 jakllsch e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
780 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
781 1.16 jakllsch e->state = ENVSYS_SINVALID;
782 1.16 jakllsch strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
783 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
784 1.16 jakllsch }
785 1.2 jmcneill }
786 1.2 jmcneill
787 1.2 jmcneill static void
788 1.2 jmcneill axppmic_attach_sensors(struct axppmic_softc *sc)
789 1.2 jmcneill {
790 1.8 jmcneill if (sc->sc_conf->has_battery) {
791 1.2 jmcneill sc->sc_sme = sysmon_envsys_create();
792 1.2 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev);
793 1.2 jmcneill sc->sc_sme->sme_cookie = sc;
794 1.2 jmcneill sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
795 1.2 jmcneill sc->sc_sme->sme_class = SME_CLASS_BATTERY;
796 1.5 jmcneill sc->sc_sme->sme_flags = SME_INIT_REFRESH;
797 1.2 jmcneill
798 1.3 jmcneill axppmic_attach_acadapter(sc);
799 1.2 jmcneill axppmic_attach_battery(sc);
800 1.2 jmcneill
801 1.2 jmcneill sysmon_envsys_register(sc->sc_sme);
802 1.2 jmcneill }
803 1.2 jmcneill }
804 1.2 jmcneill
805 1.2 jmcneill
806 1.1 jmcneill static int
807 1.1 jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux)
808 1.1 jmcneill {
809 1.1 jmcneill struct i2c_attach_args *ia = aux;
810 1.12 thorpej int match_result;
811 1.1 jmcneill
812 1.14 thorpej if (iic_use_direct_match(ia, match, compat_data, &match_result))
813 1.12 thorpej return match_result;
814 1.1 jmcneill
815 1.11 thorpej /* This device is direct-config only. */
816 1.11 thorpej
817 1.11 thorpej return 0;
818 1.1 jmcneill }
819 1.1 jmcneill
820 1.1 jmcneill static void
821 1.1 jmcneill axppmic_attach(device_t parent, device_t self, void *aux)
822 1.1 jmcneill {
823 1.1 jmcneill struct axppmic_softc *sc = device_private(self);
824 1.13 thorpej const struct device_compatible_entry *dce = NULL;
825 1.1 jmcneill const struct axppmic_config *c;
826 1.1 jmcneill struct axpreg_attach_args aaa;
827 1.1 jmcneill struct i2c_attach_args *ia = aux;
828 1.1 jmcneill int phandle, child, i;
829 1.19 jmcneill uint8_t irq_mask, val;
830 1.19 jmcneill int error;
831 1.1 jmcneill void *ih;
832 1.1 jmcneill
833 1.14 thorpej (void) iic_compatible_match(ia, compat_data, &dce);
834 1.12 thorpej KASSERT(dce != NULL);
835 1.14 thorpej c = (void *)dce->data;
836 1.1 jmcneill
837 1.1 jmcneill sc->sc_dev = self;
838 1.1 jmcneill sc->sc_i2c = ia->ia_tag;
839 1.1 jmcneill sc->sc_addr = ia->ia_addr;
840 1.1 jmcneill sc->sc_phandle = ia->ia_cookie;
841 1.8 jmcneill sc->sc_conf = c;
842 1.1 jmcneill
843 1.1 jmcneill aprint_naive("\n");
844 1.1 jmcneill aprint_normal(": %s\n", c->name);
845 1.1 jmcneill
846 1.19 jmcneill if (c->has_mode_set) {
847 1.19 jmcneill const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
848 1.19 jmcneill of_hasprop(sc->sc_phandle, "x-powers,master-mode");
849 1.19 jmcneill
850 1.19 jmcneill iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
851 1.19 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
852 1.19 jmcneill master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, I2C_F_POLL);
853 1.19 jmcneill iic_release_bus(sc->sc_i2c, I2C_F_POLL);
854 1.19 jmcneill }
855 1.19 jmcneill
856 1.19 jmcneill iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
857 1.19 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, I2C_F_POLL);
858 1.19 jmcneill iic_release_bus(sc->sc_i2c, I2C_F_POLL);
859 1.19 jmcneill if (error != 0) {
860 1.19 jmcneill aprint_error_dev(self, "couldn't read chipid\n");
861 1.19 jmcneill return;
862 1.19 jmcneill }
863 1.19 jmcneill aprint_debug_dev(self, "chipid %#x\n", val);
864 1.19 jmcneill
865 1.1 jmcneill sc->sc_smpsw.smpsw_name = device_xname(self);
866 1.1 jmcneill sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
867 1.1 jmcneill sysmon_pswitch_register(&sc->sc_smpsw);
868 1.1 jmcneill
869 1.19 jmcneill if (c->irq_regs > 0) {
870 1.19 jmcneill iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
871 1.19 jmcneill for (i = 1; i <= c->irq_regs; i++) {
872 1.19 jmcneill irq_mask = 0;
873 1.19 jmcneill if (i == c->poklirq.reg)
874 1.19 jmcneill irq_mask |= c->poklirq.mask;
875 1.19 jmcneill if (i == c->acinirq.reg)
876 1.19 jmcneill irq_mask |= c->acinirq.mask;
877 1.19 jmcneill if (i == c->vbusirq.reg)
878 1.19 jmcneill irq_mask |= c->vbusirq.mask;
879 1.19 jmcneill if (i == c->battirq.reg)
880 1.19 jmcneill irq_mask |= c->battirq.mask;
881 1.19 jmcneill if (i == c->chargeirq.reg)
882 1.19 jmcneill irq_mask |= c->chargeirq.mask;
883 1.19 jmcneill if (i == c->chargestirq.reg)
884 1.19 jmcneill irq_mask |= c->chargestirq.mask;
885 1.19 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
886 1.19 jmcneill }
887 1.19 jmcneill iic_release_bus(sc->sc_i2c, I2C_F_POLL);
888 1.19 jmcneill
889 1.19 jmcneill ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
890 1.19 jmcneill axppmic_intr, sc);
891 1.19 jmcneill if (ih == NULL) {
892 1.19 jmcneill aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
893 1.19 jmcneill }
894 1.1 jmcneill }
895 1.1 jmcneill
896 1.1 jmcneill fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
897 1.1 jmcneill &axppmic_power_funcs);
898 1.1 jmcneill
899 1.1 jmcneill phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
900 1.2 jmcneill if (phandle > 0) {
901 1.2 jmcneill aaa.reg_i2c = sc->sc_i2c;
902 1.2 jmcneill aaa.reg_addr = sc->sc_addr;
903 1.2 jmcneill for (i = 0; i < c->ncontrols; i++) {
904 1.2 jmcneill const struct axppmic_ctrl *ctrl = &c->controls[i];
905 1.2 jmcneill child = of_find_firstchild_byname(phandle, ctrl->c_name);
906 1.2 jmcneill if (child <= 0)
907 1.2 jmcneill continue;
908 1.2 jmcneill aaa.reg_ctrl = ctrl;
909 1.2 jmcneill aaa.reg_phandle = child;
910 1.2 jmcneill config_found(sc->sc_dev, &aaa, NULL);
911 1.2 jmcneill }
912 1.2 jmcneill }
913 1.1 jmcneill
914 1.2 jmcneill if (c->has_battery)
915 1.2 jmcneill axppmic_attach_sensors(sc);
916 1.1 jmcneill }
917 1.1 jmcneill
918 1.1 jmcneill static int
919 1.1 jmcneill axpreg_acquire(device_t dev)
920 1.1 jmcneill {
921 1.1 jmcneill return 0;
922 1.1 jmcneill }
923 1.1 jmcneill
924 1.1 jmcneill static void
925 1.1 jmcneill axpreg_release(device_t dev)
926 1.1 jmcneill {
927 1.1 jmcneill }
928 1.1 jmcneill
929 1.1 jmcneill static int
930 1.1 jmcneill axpreg_enable(device_t dev, bool enable)
931 1.1 jmcneill {
932 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
933 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
934 1.1 jmcneill const int flags = (cold ? I2C_F_POLL : 0);
935 1.1 jmcneill uint8_t val;
936 1.1 jmcneill int error;
937 1.1 jmcneill
938 1.1 jmcneill if (!c->c_enable_mask)
939 1.1 jmcneill return EINVAL;
940 1.1 jmcneill
941 1.1 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
942 1.1 jmcneill if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
943 1.1 jmcneill if (enable)
944 1.1 jmcneill val |= c->c_enable_mask;
945 1.1 jmcneill else
946 1.1 jmcneill val &= ~c->c_enable_mask;
947 1.1 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
948 1.1 jmcneill }
949 1.1 jmcneill iic_release_bus(sc->sc_i2c, flags);
950 1.1 jmcneill
951 1.1 jmcneill return error;
952 1.1 jmcneill }
953 1.1 jmcneill
954 1.1 jmcneill static int
955 1.1 jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
956 1.1 jmcneill {
957 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
958 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
959 1.1 jmcneill
960 1.1 jmcneill return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
961 1.1 jmcneill min_uvol / 1000, max_uvol / 1000);
962 1.1 jmcneill }
963 1.1 jmcneill
964 1.1 jmcneill static int
965 1.1 jmcneill axpreg_get_voltage(device_t dev, u_int *puvol)
966 1.1 jmcneill {
967 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
968 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
969 1.1 jmcneill int error;
970 1.1 jmcneill u_int vol;
971 1.1 jmcneill
972 1.1 jmcneill error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
973 1.1 jmcneill if (error)
974 1.1 jmcneill return error;
975 1.1 jmcneill
976 1.1 jmcneill *puvol = vol * 1000;
977 1.1 jmcneill return 0;
978 1.1 jmcneill }
979 1.1 jmcneill
980 1.1 jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = {
981 1.1 jmcneill .acquire = axpreg_acquire,
982 1.1 jmcneill .release = axpreg_release,
983 1.1 jmcneill .enable = axpreg_enable,
984 1.1 jmcneill .set_voltage = axpreg_set_voltage,
985 1.1 jmcneill .get_voltage = axpreg_get_voltage,
986 1.1 jmcneill };
987 1.1 jmcneill
988 1.1 jmcneill static int
989 1.1 jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux)
990 1.1 jmcneill {
991 1.1 jmcneill return 1;
992 1.1 jmcneill }
993 1.1 jmcneill
994 1.1 jmcneill static void
995 1.1 jmcneill axpreg_attach(device_t parent, device_t self, void *aux)
996 1.1 jmcneill {
997 1.1 jmcneill struct axpreg_softc *sc = device_private(self);
998 1.1 jmcneill struct axpreg_attach_args *aaa = aux;
999 1.1 jmcneill const int phandle = aaa->reg_phandle;
1000 1.1 jmcneill const char *name;
1001 1.1 jmcneill
1002 1.1 jmcneill sc->sc_dev = self;
1003 1.1 jmcneill sc->sc_i2c = aaa->reg_i2c;
1004 1.1 jmcneill sc->sc_addr = aaa->reg_addr;
1005 1.1 jmcneill sc->sc_ctrl = aaa->reg_ctrl;
1006 1.1 jmcneill
1007 1.1 jmcneill fdtbus_register_regulator_controller(self, phandle,
1008 1.1 jmcneill &axpreg_funcs);
1009 1.1 jmcneill
1010 1.1 jmcneill aprint_naive("\n");
1011 1.1 jmcneill name = fdtbus_get_string(phandle, "regulator-name");
1012 1.1 jmcneill if (name)
1013 1.1 jmcneill aprint_normal(": %s\n", name);
1014 1.1 jmcneill else
1015 1.1 jmcneill aprint_normal("\n");
1016 1.1 jmcneill }
1017 1.1 jmcneill
1018 1.1 jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1019 1.1 jmcneill axppmic_match, axppmic_attach, NULL, NULL);
1020 1.1 jmcneill
1021 1.1 jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1022 1.1 jmcneill axpreg_match, axpreg_attach, NULL, NULL);
1023