Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.21
      1  1.21  jmcneill /* $NetBSD: axppmic.c,v 1.21 2019/05/27 23:28:41 jmcneill Exp $ */
      2   1.1  jmcneill 
      3   1.1  jmcneill /*-
      4   1.1  jmcneill  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5   1.1  jmcneill  * All rights reserved.
      6   1.1  jmcneill  *
      7   1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8   1.1  jmcneill  * modification, are permitted provided that the following conditions
      9   1.1  jmcneill  * are met:
     10   1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12   1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15   1.1  jmcneill  *
     16   1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.1  jmcneill  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1  jmcneill  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1  jmcneill  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1  jmcneill  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1  jmcneill  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1  jmcneill  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1  jmcneill  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1  jmcneill  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1  jmcneill  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1  jmcneill  * POSSIBILITY OF SUCH DAMAGE.
     27   1.1  jmcneill  */
     28   1.1  jmcneill 
     29   1.1  jmcneill #include <sys/cdefs.h>
     30  1.21  jmcneill __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.21 2019/05/27 23:28:41 jmcneill Exp $");
     31   1.1  jmcneill 
     32   1.1  jmcneill #include <sys/param.h>
     33   1.1  jmcneill #include <sys/systm.h>
     34   1.1  jmcneill #include <sys/kernel.h>
     35   1.1  jmcneill #include <sys/device.h>
     36   1.1  jmcneill #include <sys/conf.h>
     37   1.1  jmcneill #include <sys/bus.h>
     38   1.1  jmcneill #include <sys/kmem.h>
     39   1.1  jmcneill 
     40   1.1  jmcneill #include <dev/i2c/i2cvar.h>
     41   1.1  jmcneill 
     42   1.1  jmcneill #include <dev/sysmon/sysmonvar.h>
     43   1.1  jmcneill #include <dev/sysmon/sysmon_taskq.h>
     44   1.1  jmcneill 
     45   1.1  jmcneill #include <dev/fdt/fdtvar.h>
     46   1.1  jmcneill 
     47   1.3  jmcneill #define	AXP_POWER_SOURCE_REG	0x00
     48   1.3  jmcneill #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     49   1.3  jmcneill #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     50  1.10  jmcneill #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     51   1.3  jmcneill 
     52   1.2  jmcneill #define	AXP_POWER_MODE_REG	0x01
     53   1.2  jmcneill #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     54   1.2  jmcneill #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     55   1.2  jmcneill #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     56   1.2  jmcneill 
     57  1.19  jmcneill #define	AXP_CHIP_ID_REG		0x03
     58  1.19  jmcneill 
     59   1.1  jmcneill #define AXP_POWER_DISABLE_REG	0x32
     60   1.1  jmcneill #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     61   1.1  jmcneill 
     62   1.1  jmcneill #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     63   1.5  jmcneill #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     64   1.5  jmcneill #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     65   1.5  jmcneill #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     66   1.5  jmcneill #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     67   1.1  jmcneill #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     68   1.1  jmcneill 
     69  1.10  jmcneill #define	AXP_BATSENSE_HI_REG	0x78
     70  1.10  jmcneill #define	AXP_BATSENSE_LO_REG	0x79
     71  1.10  jmcneill 
     72  1.10  jmcneill #define	AXP_BATTCHG_HI_REG	0x7a
     73  1.10  jmcneill #define	AXP_BATTCHG_LO_REG	0x7b
     74  1.10  jmcneill 
     75  1.10  jmcneill #define	AXP_BATTDISCHG_HI_REG	0x7c
     76  1.10  jmcneill #define	AXP_BATTDISCHG_LO_REG	0x7d
     77  1.10  jmcneill 
     78  1.10  jmcneill #define	AXP_ADC_RAW(_hi, _lo)	\
     79  1.15  jakllsch 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     80  1.10  jmcneill 
     81   1.2  jmcneill #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     82   1.2  jmcneill #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     83  1.10  jmcneill 
     84   1.2  jmcneill #define	AXP_BATT_CAP_REG	0xb9
     85   1.2  jmcneill #define	 AXP_BATT_CAP_VALID	__BIT(7)
     86   1.2  jmcneill #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     87   1.2  jmcneill 
     88  1.16  jakllsch #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     89  1.16  jakllsch #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     90  1.16  jakllsch #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     91  1.16  jakllsch 
     92  1.16  jakllsch #define	AXP_BATT_COULOMB_HI_REG	0xe2
     93  1.16  jakllsch #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
     94  1.16  jakllsch #define	AXP_BATT_COULOMB_LO_REG	0xe3
     95  1.16  jakllsch 
     96  1.16  jakllsch #define	AXP_COULOMB_RAW(_hi, _lo)	\
     97  1.16  jakllsch 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
     98  1.16  jakllsch 
     99   1.2  jmcneill #define	AXP_BATT_CAP_WARN_REG	0xe6
    100   1.2  jmcneill #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    101   1.2  jmcneill #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    102   1.2  jmcneill 
    103  1.19  jmcneill #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    104  1.19  jmcneill #define	 AXP_ADDR_EXT_MASTER	0
    105  1.19  jmcneill #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    106  1.19  jmcneill 
    107   1.1  jmcneill struct axppmic_ctrl {
    108   1.1  jmcneill 	device_t	c_dev;
    109   1.1  jmcneill 
    110   1.1  jmcneill 	const char *	c_name;
    111   1.1  jmcneill 	u_int		c_min;
    112   1.1  jmcneill 	u_int		c_max;
    113   1.1  jmcneill 	u_int		c_step1;
    114   1.1  jmcneill 	u_int		c_step1cnt;
    115   1.1  jmcneill 	u_int		c_step2;
    116   1.1  jmcneill 	u_int		c_step2cnt;
    117   1.1  jmcneill 
    118   1.1  jmcneill 	uint8_t		c_enable_reg;
    119   1.1  jmcneill 	uint8_t		c_enable_mask;
    120   1.1  jmcneill 
    121   1.1  jmcneill 	uint8_t		c_voltage_reg;
    122   1.1  jmcneill 	uint8_t		c_voltage_mask;
    123   1.1  jmcneill };
    124   1.1  jmcneill 
    125   1.1  jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    126   1.1  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    127   1.1  jmcneill 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    128   1.1  jmcneill 	  .c_step2 = 0, .c_step2cnt = 0,				\
    129   1.1  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    130   1.1  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    131   1.1  jmcneill 
    132   1.1  jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    133   1.1  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    134   1.1  jmcneill 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    135   1.1  jmcneill 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    136   1.1  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    137   1.1  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    138   1.1  jmcneill 
    139   1.1  jmcneill static const struct axppmic_ctrl axp803_ctrls[] = {
    140   1.1  jmcneill 	AXP_CTRL("dldo1", 700, 3300, 100,
    141   1.1  jmcneill 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    142   1.1  jmcneill 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    143   1.1  jmcneill 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    144   1.1  jmcneill 	AXP_CTRL("dldo3", 700, 3300, 100,
    145   1.1  jmcneill 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    146   1.1  jmcneill 	AXP_CTRL("dldo4", 700, 3300, 100,
    147   1.1  jmcneill 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    148   1.1  jmcneill 	AXP_CTRL("eldo1", 700, 1900, 50,
    149   1.1  jmcneill 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    150   1.1  jmcneill 	AXP_CTRL("eldo2", 700, 1900, 50,
    151   1.1  jmcneill 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    152   1.1  jmcneill 	AXP_CTRL("eldo3", 700, 1900, 50,
    153   1.1  jmcneill 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    154   1.1  jmcneill 	AXP_CTRL("fldo1", 700, 1450, 50,
    155   1.1  jmcneill 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    156   1.1  jmcneill 	AXP_CTRL("fldo2", 700, 1450, 50,
    157   1.1  jmcneill 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    158   1.1  jmcneill 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    159   1.1  jmcneill 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    160   1.6  jmcneill 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    161   1.1  jmcneill 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    162   1.6  jmcneill 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    163   1.1  jmcneill 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    164   1.6  jmcneill 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    165   1.1  jmcneill 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    166   1.1  jmcneill 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    167   1.1  jmcneill 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    168   1.1  jmcneill 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    169   1.1  jmcneill 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    170   1.1  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    171   1.1  jmcneill 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    172   1.1  jmcneill 	AXP_CTRL("aldo2", 700, 3300, 100,
    173   1.1  jmcneill 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    174   1.1  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    175   1.1  jmcneill 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    176   1.1  jmcneill };
    177   1.1  jmcneill 
    178   1.1  jmcneill static const struct axppmic_ctrl axp805_ctrls[] = {
    179   1.1  jmcneill 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    180   1.1  jmcneill 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    181   1.1  jmcneill 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    182   1.1  jmcneill 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    183   1.1  jmcneill 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    184   1.1  jmcneill 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    185   1.1  jmcneill 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    186   1.1  jmcneill 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    187   1.1  jmcneill 	AXP_CTRL("dcdce", 1100, 3400, 100,
    188   1.1  jmcneill 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    189   1.1  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    190   1.1  jmcneill 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    191   1.1  jmcneill 	AXP_CTRL("aldo2", 700, 3400, 100,
    192   1.1  jmcneill 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    193   1.1  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    194   1.1  jmcneill 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    195   1.1  jmcneill 	AXP_CTRL("bldo1", 700, 1900, 100,
    196   1.1  jmcneill 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    197   1.1  jmcneill 	AXP_CTRL("bldo2", 700, 1900, 100,
    198   1.1  jmcneill 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    199   1.1  jmcneill 	AXP_CTRL("bldo3", 700, 1900, 100,
    200   1.1  jmcneill 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    201   1.1  jmcneill 	AXP_CTRL("bldo4", 700, 1900, 100,
    202   1.1  jmcneill 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    203   1.1  jmcneill 	AXP_CTRL("cldo1", 700, 3300, 100,
    204   1.1  jmcneill 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    205   1.1  jmcneill 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    206   1.1  jmcneill 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    207   1.1  jmcneill 	AXP_CTRL("cldo3", 700, 3300, 100,
    208   1.1  jmcneill 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    209   1.1  jmcneill };
    210   1.1  jmcneill 
    211  1.21  jmcneill static const struct axppmic_ctrl axp809_ctrls[] = {
    212  1.21  jmcneill 	/* TODO: This list is incomplete */
    213  1.21  jmcneill 	AXP_CTRL("ldo_io0", 700, 3300, 100,
    214  1.21  jmcneill 		0x90, __BIT(0), 0x91, __BITS(4,0)),
    215  1.21  jmcneill 	AXP_CTRL("ldo_io1", 700, 3300, 100,
    216  1.21  jmcneill 		0x92, __BIT(0), 0x93, __BITS(4,0)),
    217  1.21  jmcneill };
    218  1.21  jmcneill 
    219  1.17  jmcneill static const struct axppmic_ctrl axp813_ctrls[] = {
    220  1.17  jmcneill 	AXP_CTRL("dldo1", 700, 3300, 100,
    221  1.17  jmcneill 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    222  1.17  jmcneill 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    223  1.17  jmcneill 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    224  1.17  jmcneill 	AXP_CTRL("dldo3", 700, 3300, 100,
    225  1.17  jmcneill 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    226  1.17  jmcneill 	AXP_CTRL("dldo4", 700, 3300, 100,
    227  1.17  jmcneill 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    228  1.17  jmcneill 	AXP_CTRL("eldo1", 700, 1900, 50,
    229  1.17  jmcneill 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    230  1.17  jmcneill 	AXP_CTRL("eldo2", 700, 1900, 50,
    231  1.17  jmcneill 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    232  1.17  jmcneill 	AXP_CTRL("eldo3", 700, 1900, 50,
    233  1.17  jmcneill 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    234  1.17  jmcneill 	AXP_CTRL("fldo1", 700, 1450, 50,
    235  1.17  jmcneill 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    236  1.17  jmcneill 	AXP_CTRL("fldo2", 700, 1450, 50,
    237  1.17  jmcneill 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    238  1.17  jmcneill 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    239  1.17  jmcneill 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    240  1.17  jmcneill 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    241  1.17  jmcneill 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    242  1.17  jmcneill 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    243  1.17  jmcneill 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    244  1.17  jmcneill 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    245  1.17  jmcneill 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    246  1.17  jmcneill 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    247  1.17  jmcneill 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    248  1.17  jmcneill 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    249  1.17  jmcneill 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    250  1.17  jmcneill 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    251  1.17  jmcneill 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    252  1.17  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    253  1.17  jmcneill 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    254  1.17  jmcneill 	AXP_CTRL("aldo2", 700, 3300, 100,
    255  1.17  jmcneill 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    256  1.17  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    257  1.17  jmcneill 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    258  1.17  jmcneill };
    259  1.17  jmcneill 
    260   1.8  jmcneill struct axppmic_irq {
    261   1.8  jmcneill 	u_int reg;
    262   1.8  jmcneill 	uint8_t mask;
    263   1.8  jmcneill };
    264   1.8  jmcneill 
    265   1.8  jmcneill #define	AXPPMIC_IRQ(_reg, _mask)	\
    266   1.8  jmcneill 	{ .reg = (_reg), .mask = (_mask) }
    267   1.8  jmcneill 
    268   1.1  jmcneill struct axppmic_config {
    269   1.1  jmcneill 	const char *name;
    270   1.1  jmcneill 	const struct axppmic_ctrl *controls;
    271   1.1  jmcneill 	u_int ncontrols;
    272   1.1  jmcneill 	u_int irq_regs;
    273   1.2  jmcneill 	bool has_battery;
    274   1.2  jmcneill 	bool has_fuel_gauge;
    275  1.19  jmcneill 	bool has_mode_set;
    276   1.8  jmcneill 	struct axppmic_irq poklirq;
    277   1.8  jmcneill 	struct axppmic_irq acinirq;
    278   1.8  jmcneill 	struct axppmic_irq vbusirq;
    279   1.8  jmcneill 	struct axppmic_irq battirq;
    280   1.8  jmcneill 	struct axppmic_irq chargeirq;
    281   1.8  jmcneill 	struct axppmic_irq chargestirq;
    282  1.10  jmcneill 	u_int batsense_step;	/* uV */
    283  1.10  jmcneill 	u_int charge_step;	/* uA */
    284  1.10  jmcneill 	u_int discharge_step;	/* uA */
    285  1.10  jmcneill 	u_int maxcap_step;	/* uAh */
    286  1.10  jmcneill 	u_int coulomb_step;	/* uAh */
    287   1.2  jmcneill };
    288   1.2  jmcneill 
    289   1.2  jmcneill enum axppmic_sensor {
    290   1.3  jmcneill 	AXP_SENSOR_ACIN_PRESENT,
    291   1.3  jmcneill 	AXP_SENSOR_VBUS_PRESENT,
    292   1.2  jmcneill 	AXP_SENSOR_BATT_PRESENT,
    293   1.2  jmcneill 	AXP_SENSOR_BATT_CHARGING,
    294   1.2  jmcneill 	AXP_SENSOR_BATT_CHARGE_STATE,
    295  1.10  jmcneill 	AXP_SENSOR_BATT_VOLTAGE,
    296  1.10  jmcneill 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    297  1.10  jmcneill 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    298  1.10  jmcneill 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    299  1.16  jakllsch 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    300  1.16  jakllsch 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    301   1.2  jmcneill 	AXP_NSENSORS
    302   1.1  jmcneill };
    303   1.1  jmcneill 
    304   1.1  jmcneill struct axppmic_softc {
    305   1.1  jmcneill 	device_t	sc_dev;
    306   1.1  jmcneill 	i2c_tag_t	sc_i2c;
    307   1.1  jmcneill 	i2c_addr_t	sc_addr;
    308   1.1  jmcneill 	int		sc_phandle;
    309   1.1  jmcneill 
    310   1.8  jmcneill 	const struct axppmic_config *sc_conf;
    311   1.2  jmcneill 
    312   1.1  jmcneill 	struct sysmon_pswitch sc_smpsw;
    313   1.1  jmcneill 
    314   1.2  jmcneill 	struct sysmon_envsys *sc_sme;
    315   1.3  jmcneill 
    316   1.2  jmcneill 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    317   1.4  jmcneill 
    318   1.4  jmcneill 	u_int		sc_warn_thres;
    319   1.4  jmcneill 	u_int		sc_shut_thres;
    320   1.1  jmcneill };
    321   1.1  jmcneill 
    322   1.1  jmcneill struct axpreg_softc {
    323   1.1  jmcneill 	device_t	sc_dev;
    324   1.1  jmcneill 	i2c_tag_t	sc_i2c;
    325   1.1  jmcneill 	i2c_addr_t	sc_addr;
    326   1.1  jmcneill 	const struct axppmic_ctrl *sc_ctrl;
    327   1.1  jmcneill };
    328   1.1  jmcneill 
    329   1.1  jmcneill struct axpreg_attach_args {
    330   1.1  jmcneill 	const struct axppmic_ctrl *reg_ctrl;
    331   1.1  jmcneill 	int		reg_phandle;
    332   1.1  jmcneill 	i2c_tag_t	reg_i2c;
    333   1.1  jmcneill 	i2c_addr_t	reg_addr;
    334   1.1  jmcneill };
    335   1.1  jmcneill 
    336   1.1  jmcneill static const struct axppmic_config axp803_config = {
    337   1.1  jmcneill 	.name = "AXP803",
    338   1.1  jmcneill 	.controls = axp803_ctrls,
    339   1.1  jmcneill 	.ncontrols = __arraycount(axp803_ctrls),
    340   1.1  jmcneill 	.irq_regs = 6,
    341   1.2  jmcneill 	.has_battery = true,
    342   1.2  jmcneill 	.has_fuel_gauge = true,
    343  1.10  jmcneill 	.batsense_step = 1100,
    344  1.10  jmcneill 	.charge_step = 1000,
    345  1.10  jmcneill 	.discharge_step = 1000,
    346  1.16  jakllsch 	.maxcap_step = 1456,
    347  1.16  jakllsch 	.coulomb_step = 1456,
    348   1.8  jmcneill 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    349   1.8  jmcneill 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    350   1.8  jmcneill 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    351   1.8  jmcneill 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    352   1.8  jmcneill 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    353   1.8  jmcneill 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    354   1.1  jmcneill };
    355   1.1  jmcneill 
    356   1.1  jmcneill static const struct axppmic_config axp805_config = {
    357  1.19  jmcneill 	.name = "AXP805",
    358  1.19  jmcneill 	.controls = axp805_ctrls,
    359  1.19  jmcneill 	.ncontrols = __arraycount(axp805_ctrls),
    360  1.19  jmcneill 	.irq_regs = 2,
    361  1.19  jmcneill 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    362  1.19  jmcneill };
    363  1.19  jmcneill 
    364  1.19  jmcneill static const struct axppmic_config axp806_config = {
    365  1.19  jmcneill 	.name = "AXP806",
    366   1.1  jmcneill 	.controls = axp805_ctrls,
    367   1.1  jmcneill 	.ncontrols = __arraycount(axp805_ctrls),
    368  1.19  jmcneill #if notyet
    369   1.1  jmcneill 	.irq_regs = 2,
    370   1.8  jmcneill 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    371  1.19  jmcneill #endif
    372  1.19  jmcneill 	.has_mode_set = true,
    373   1.1  jmcneill };
    374   1.1  jmcneill 
    375  1.21  jmcneill static const struct axppmic_config axp809_config = {
    376  1.21  jmcneill 	.name = "AXP809",
    377  1.21  jmcneill 	.controls = axp809_ctrls,
    378  1.21  jmcneill 	.ncontrols = __arraycount(axp809_ctrls),
    379  1.21  jmcneill };
    380  1.21  jmcneill 
    381  1.17  jmcneill static const struct axppmic_config axp813_config = {
    382  1.17  jmcneill 	.name = "AXP813",
    383  1.17  jmcneill 	.controls = axp813_ctrls,
    384  1.17  jmcneill 	.ncontrols = __arraycount(axp813_ctrls),
    385  1.17  jmcneill 	.irq_regs = 6,
    386  1.17  jmcneill 	.has_battery = true,
    387  1.17  jmcneill 	.has_fuel_gauge = true,
    388  1.17  jmcneill 	.batsense_step = 1100,
    389  1.17  jmcneill 	.charge_step = 1000,
    390  1.17  jmcneill 	.discharge_step = 1000,
    391  1.17  jmcneill 	.maxcap_step = 1456,
    392  1.17  jmcneill 	.coulomb_step = 1456,
    393  1.17  jmcneill 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    394  1.17  jmcneill 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    395  1.17  jmcneill 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    396  1.17  jmcneill 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    397  1.17  jmcneill 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    398  1.17  jmcneill 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    399  1.17  jmcneill };
    400  1.17  jmcneill 
    401  1.14   thorpej static const struct device_compatible_entry compat_data[] = {
    402  1.14   thorpej 	{ "x-powers,axp803",		(uintptr_t)&axp803_config },
    403  1.14   thorpej 	{ "x-powers,axp805",		(uintptr_t)&axp805_config },
    404  1.19  jmcneill 	{ "x-powers,axp806",		(uintptr_t)&axp806_config },
    405  1.21  jmcneill 	{ "x-powers,axp809",		(uintptr_t)&axp809_config },
    406  1.17  jmcneill 	{ "x-powers,axp813",		(uintptr_t)&axp813_config },
    407  1.14   thorpej 	{ NULL,				0 }
    408   1.1  jmcneill };
    409   1.1  jmcneill 
    410   1.1  jmcneill static int
    411   1.1  jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    412   1.1  jmcneill {
    413   1.1  jmcneill 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    414   1.1  jmcneill }
    415   1.1  jmcneill 
    416   1.1  jmcneill static int
    417   1.1  jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    418   1.1  jmcneill {
    419   1.1  jmcneill 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    420   1.1  jmcneill }
    421   1.1  jmcneill 
    422   1.1  jmcneill static int
    423   1.1  jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    424   1.1  jmcneill {
    425   1.1  jmcneill 	const int flags = (cold ? I2C_F_POLL : 0);
    426   1.1  jmcneill 	u_int vol, reg_val;
    427   1.1  jmcneill 	int nstep, error;
    428   1.1  jmcneill 	uint8_t val;
    429   1.1  jmcneill 
    430   1.1  jmcneill 	if (!c->c_voltage_mask)
    431   1.1  jmcneill 		return EINVAL;
    432   1.1  jmcneill 
    433   1.1  jmcneill 	if (min < c->c_min || min > c->c_max)
    434   1.1  jmcneill 		return EINVAL;
    435   1.1  jmcneill 
    436   1.1  jmcneill 	reg_val = 0;
    437   1.1  jmcneill 	nstep = 1;
    438   1.1  jmcneill 	vol = c->c_min;
    439   1.1  jmcneill 
    440   1.1  jmcneill 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    441   1.1  jmcneill 		++reg_val;
    442   1.1  jmcneill 		vol += c->c_step1;
    443   1.1  jmcneill 	}
    444   1.1  jmcneill 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    445   1.1  jmcneill 		++reg_val;
    446   1.1  jmcneill 		vol += c->c_step2;
    447   1.1  jmcneill 	}
    448   1.1  jmcneill 
    449   1.1  jmcneill 	if (vol > max)
    450   1.1  jmcneill 		return EINVAL;
    451   1.1  jmcneill 
    452   1.1  jmcneill 	iic_acquire_bus(tag, flags);
    453   1.1  jmcneill 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
    454   1.1  jmcneill 		val &= ~c->c_voltage_mask;
    455   1.1  jmcneill 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    456   1.1  jmcneill 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
    457   1.1  jmcneill 	}
    458   1.1  jmcneill 	iic_release_bus(tag, flags);
    459   1.1  jmcneill 
    460   1.1  jmcneill 	return error;
    461   1.1  jmcneill }
    462   1.1  jmcneill 
    463   1.1  jmcneill static int
    464   1.1  jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    465   1.1  jmcneill {
    466   1.1  jmcneill 	const int flags = (cold ? I2C_F_POLL : 0);
    467   1.1  jmcneill 	int reg_val, error;
    468   1.1  jmcneill 	uint8_t val;
    469   1.1  jmcneill 
    470   1.1  jmcneill 	if (!c->c_voltage_mask)
    471   1.1  jmcneill 		return EINVAL;
    472   1.1  jmcneill 
    473   1.1  jmcneill 	iic_acquire_bus(tag, flags);
    474   1.1  jmcneill 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
    475   1.1  jmcneill 	iic_release_bus(tag, flags);
    476   1.1  jmcneill 	if (error)
    477   1.1  jmcneill 		return error;
    478   1.1  jmcneill 
    479   1.1  jmcneill 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    480   1.1  jmcneill 	if (reg_val < c->c_step1cnt) {
    481   1.1  jmcneill 		*pvol = c->c_min + reg_val * c->c_step1;
    482   1.1  jmcneill 	} else {
    483   1.1  jmcneill 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    484   1.1  jmcneill 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    485   1.1  jmcneill 	}
    486   1.1  jmcneill 
    487   1.1  jmcneill 	return 0;
    488   1.1  jmcneill }
    489   1.1  jmcneill 
    490   1.1  jmcneill static void
    491   1.1  jmcneill axppmic_power_poweroff(device_t dev)
    492   1.1  jmcneill {
    493   1.1  jmcneill 	struct axppmic_softc *sc = device_private(dev);
    494   1.1  jmcneill 
    495   1.1  jmcneill 	delay(1000000);
    496   1.1  jmcneill 
    497   1.1  jmcneill 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    498   1.1  jmcneill 	axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
    499   1.1  jmcneill 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    500   1.1  jmcneill }
    501   1.1  jmcneill 
    502   1.1  jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = {
    503   1.1  jmcneill 	.poweroff = axppmic_power_poweroff,
    504   1.1  jmcneill };
    505   1.1  jmcneill 
    506   1.1  jmcneill static void
    507   1.1  jmcneill axppmic_task_shut(void *priv)
    508   1.1  jmcneill {
    509   1.1  jmcneill 	struct axppmic_softc *sc = priv;
    510   1.1  jmcneill 
    511   1.1  jmcneill 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    512   1.1  jmcneill }
    513   1.1  jmcneill 
    514   1.2  jmcneill static void
    515   1.8  jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    516   1.2  jmcneill {
    517   1.2  jmcneill 	struct axppmic_softc *sc = sme->sme_cookie;
    518  1.10  jmcneill 	const struct axppmic_config *c = sc->sc_conf;
    519   1.2  jmcneill 	const int flags = I2C_F_POLL;
    520  1.10  jmcneill 	uint8_t val, lo, hi;
    521   1.2  jmcneill 
    522   1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    523   1.2  jmcneill 
    524  1.10  jmcneill 	const bool battery_present =
    525  1.10  jmcneill 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    526  1.10  jmcneill 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    527  1.10  jmcneill 
    528   1.2  jmcneill 	switch (e->private) {
    529   1.3  jmcneill 	case AXP_SENSOR_ACIN_PRESENT:
    530   1.3  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    531   1.3  jmcneill 			e->state = ENVSYS_SVALID;
    532   1.3  jmcneill 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    533   1.3  jmcneill 		}
    534   1.3  jmcneill 		break;
    535   1.3  jmcneill 	case AXP_SENSOR_VBUS_PRESENT:
    536   1.3  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    537   1.3  jmcneill 			e->state = ENVSYS_SVALID;
    538   1.3  jmcneill 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    539   1.3  jmcneill 		}
    540   1.3  jmcneill 		break;
    541   1.2  jmcneill 	case AXP_SENSOR_BATT_PRESENT:
    542   1.2  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    543   1.2  jmcneill 			if (val & AXP_POWER_MODE_BATT_VALID) {
    544   1.2  jmcneill 				e->state = ENVSYS_SVALID;
    545   1.2  jmcneill 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    546   1.2  jmcneill 			}
    547   1.2  jmcneill 		}
    548   1.2  jmcneill 		break;
    549   1.2  jmcneill 	case AXP_SENSOR_BATT_CHARGING:
    550   1.2  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    551   1.2  jmcneill 			e->state = ENVSYS_SVALID;
    552   1.2  jmcneill 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    553   1.2  jmcneill 		}
    554   1.2  jmcneill 		break;
    555   1.2  jmcneill 	case AXP_SENSOR_BATT_CHARGE_STATE:
    556  1.10  jmcneill 		if (battery_present &&
    557   1.2  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    558   1.4  jmcneill 		    (val & AXP_BATT_CAP_VALID) != 0) {
    559   1.2  jmcneill 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    560   1.4  jmcneill 			if (batt_val <= sc->sc_shut_thres) {
    561   1.2  jmcneill 				e->state = ENVSYS_SCRITICAL;
    562   1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    563   1.4  jmcneill 			} else if (batt_val <= sc->sc_warn_thres) {
    564   1.2  jmcneill 				e->state = ENVSYS_SWARNUNDER;
    565   1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    566   1.2  jmcneill 			} else {
    567   1.2  jmcneill 				e->state = ENVSYS_SVALID;
    568   1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    569   1.2  jmcneill 			}
    570   1.2  jmcneill 		}
    571   1.2  jmcneill 		break;
    572  1.10  jmcneill 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    573  1.10  jmcneill 		if (battery_present &&
    574   1.2  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    575   1.2  jmcneill 		    (val & AXP_BATT_CAP_VALID) != 0) {
    576   1.2  jmcneill 			e->state = ENVSYS_SVALID;
    577   1.2  jmcneill 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    578   1.2  jmcneill 		}
    579   1.2  jmcneill 		break;
    580  1.10  jmcneill 	case AXP_SENSOR_BATT_VOLTAGE:
    581  1.10  jmcneill 		if (battery_present &&
    582  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
    583  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
    584  1.10  jmcneill 			e->state = ENVSYS_SVALID;
    585  1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    586  1.10  jmcneill 		}
    587  1.10  jmcneill 		break;
    588  1.10  jmcneill 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    589  1.10  jmcneill 		if (battery_present &&
    590  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    591  1.10  jmcneill 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    592  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
    593  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
    594  1.10  jmcneill 			e->state = ENVSYS_SVALID;
    595  1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    596  1.10  jmcneill 		}
    597  1.10  jmcneill 		break;
    598  1.10  jmcneill 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    599  1.10  jmcneill 		if (battery_present &&
    600  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    601  1.10  jmcneill 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    602  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
    603  1.10  jmcneill 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
    604  1.10  jmcneill 			e->state = ENVSYS_SVALID;
    605  1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    606  1.10  jmcneill 		}
    607  1.10  jmcneill 		break;
    608  1.16  jakllsch 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    609  1.16  jakllsch 		if (battery_present &&
    610  1.16  jakllsch 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
    611  1.16  jakllsch 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
    612  1.16  jakllsch 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    613  1.16  jakllsch 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    614  1.16  jakllsch 		}
    615  1.16  jakllsch 		break;
    616  1.16  jakllsch 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    617  1.16  jakllsch 		if (battery_present &&
    618  1.16  jakllsch 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
    619  1.16  jakllsch 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
    620  1.16  jakllsch 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    621  1.16  jakllsch 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    622  1.16  jakllsch 		}
    623  1.16  jakllsch 		break;
    624   1.2  jmcneill 	}
    625   1.8  jmcneill }
    626   1.8  jmcneill 
    627   1.8  jmcneill static void
    628   1.8  jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    629   1.8  jmcneill {
    630   1.8  jmcneill 	struct axppmic_softc *sc = sme->sme_cookie;
    631   1.8  jmcneill 	const int flags = I2C_F_POLL;
    632   1.8  jmcneill 
    633   1.8  jmcneill 	switch (e->private) {
    634  1.10  jmcneill 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    635  1.10  jmcneill 	case AXP_SENSOR_BATT_VOLTAGE:
    636  1.10  jmcneill 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    637  1.10  jmcneill 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    638  1.10  jmcneill 		/* Always update battery capacity and ADCs */
    639   1.8  jmcneill 		iic_acquire_bus(sc->sc_i2c, flags);
    640   1.8  jmcneill 		axppmic_sensor_update(sme, e);
    641   1.8  jmcneill 		iic_release_bus(sc->sc_i2c, flags);
    642   1.8  jmcneill 		break;
    643   1.8  jmcneill 	default:
    644   1.8  jmcneill 		/* Refresh if the sensor is not in valid state */
    645   1.8  jmcneill 		if (e->state != ENVSYS_SVALID) {
    646   1.8  jmcneill 			iic_acquire_bus(sc->sc_i2c, flags);
    647   1.8  jmcneill 			axppmic_sensor_update(sme, e);
    648   1.8  jmcneill 			iic_release_bus(sc->sc_i2c, flags);
    649   1.8  jmcneill 		}
    650   1.8  jmcneill 		break;
    651   1.8  jmcneill 	}
    652   1.8  jmcneill }
    653   1.8  jmcneill 
    654   1.8  jmcneill static int
    655   1.8  jmcneill axppmic_intr(void *priv)
    656   1.8  jmcneill {
    657   1.8  jmcneill 	struct axppmic_softc *sc = priv;
    658   1.8  jmcneill 	const struct axppmic_config *c = sc->sc_conf;
    659   1.8  jmcneill 	const int flags = I2C_F_POLL;
    660   1.8  jmcneill 	uint8_t stat;
    661   1.8  jmcneill 	u_int n;
    662   1.8  jmcneill 
    663   1.8  jmcneill 	iic_acquire_bus(sc->sc_i2c, flags);
    664   1.8  jmcneill 	for (n = 1; n <= c->irq_regs; n++) {
    665   1.8  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    666   1.8  jmcneill 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    667   1.8  jmcneill 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    668   1.8  jmcneill 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    669   1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    670   1.8  jmcneill 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    671   1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    672   1.8  jmcneill 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    673   1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    674   1.8  jmcneill 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    675   1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    676   1.8  jmcneill 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    677   1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    678   1.8  jmcneill 
    679   1.8  jmcneill 			if (stat != 0)
    680   1.8  jmcneill 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    681   1.8  jmcneill 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    682   1.8  jmcneill 		}
    683   1.8  jmcneill 	}
    684   1.2  jmcneill 	iic_release_bus(sc->sc_i2c, flags);
    685   1.8  jmcneill 
    686   1.8  jmcneill 	return 1;
    687   1.2  jmcneill }
    688   1.2  jmcneill 
    689   1.2  jmcneill static void
    690   1.3  jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc)
    691   1.3  jmcneill {
    692   1.3  jmcneill 	envsys_data_t *e;
    693   1.3  jmcneill 
    694   1.3  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    695   1.3  jmcneill 	e->private = AXP_SENSOR_ACIN_PRESENT;
    696   1.3  jmcneill 	e->units = ENVSYS_INDICATOR;
    697   1.3  jmcneill 	e->state = ENVSYS_SINVALID;
    698   1.3  jmcneill 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    699   1.3  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    700   1.3  jmcneill 
    701   1.3  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    702   1.3  jmcneill 	e->private = AXP_SENSOR_VBUS_PRESENT;
    703   1.3  jmcneill 	e->units = ENVSYS_INDICATOR;
    704   1.3  jmcneill 	e->state = ENVSYS_SINVALID;
    705   1.3  jmcneill 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    706   1.3  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    707   1.3  jmcneill }
    708   1.3  jmcneill 
    709   1.3  jmcneill static void
    710   1.2  jmcneill axppmic_attach_battery(struct axppmic_softc *sc)
    711   1.2  jmcneill {
    712  1.10  jmcneill 	const struct axppmic_config *c = sc->sc_conf;
    713   1.2  jmcneill 	envsys_data_t *e;
    714   1.4  jmcneill 	uint8_t val;
    715   1.4  jmcneill 
    716   1.4  jmcneill 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    717   1.4  jmcneill 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
    718   1.4  jmcneill 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    719   1.4  jmcneill 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    720   1.4  jmcneill 	}
    721   1.4  jmcneill 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    722   1.2  jmcneill 
    723   1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    724   1.2  jmcneill 	e->private = AXP_SENSOR_BATT_PRESENT;
    725   1.2  jmcneill 	e->units = ENVSYS_INDICATOR;
    726   1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    727   1.2  jmcneill 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    728   1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    729   1.2  jmcneill 
    730   1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    731   1.2  jmcneill 	e->private = AXP_SENSOR_BATT_CHARGING;
    732   1.2  jmcneill 	e->units = ENVSYS_BATTERY_CHARGE;
    733   1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    734   1.2  jmcneill 	strlcpy(e->desc, "charging", sizeof(e->desc));
    735   1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    736   1.2  jmcneill 
    737   1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    738   1.2  jmcneill 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    739   1.2  jmcneill 	e->units = ENVSYS_BATTERY_CAPACITY;
    740   1.2  jmcneill 	e->flags = ENVSYS_FMONSTCHANGED;
    741   1.9  jmcneill 	e->state = ENVSYS_SINVALID;
    742   1.2  jmcneill 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    743   1.2  jmcneill 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    744   1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    745   1.2  jmcneill 
    746  1.10  jmcneill 	if (c->batsense_step) {
    747  1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    748  1.10  jmcneill 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    749  1.10  jmcneill 		e->units = ENVSYS_SVOLTS_DC;
    750  1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    751  1.10  jmcneill 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
    752  1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    753  1.10  jmcneill 	}
    754  1.10  jmcneill 
    755  1.10  jmcneill 	if (c->charge_step) {
    756  1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
    757  1.10  jmcneill 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
    758  1.10  jmcneill 		e->units = ENVSYS_SAMPS;
    759  1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    760  1.10  jmcneill 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
    761  1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    762  1.10  jmcneill 	}
    763  1.10  jmcneill 
    764  1.10  jmcneill 	if (c->discharge_step) {
    765  1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
    766  1.10  jmcneill 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
    767  1.10  jmcneill 		e->units = ENVSYS_SAMPS;
    768  1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    769  1.10  jmcneill 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
    770  1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    771  1.10  jmcneill 	}
    772  1.10  jmcneill 
    773  1.10  jmcneill 	if (c->has_fuel_gauge) {
    774  1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
    775  1.10  jmcneill 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
    776   1.2  jmcneill 		e->units = ENVSYS_INTEGER;
    777   1.2  jmcneill 		e->state = ENVSYS_SINVALID;
    778   1.2  jmcneill 		e->flags = ENVSYS_FPERCENT;
    779   1.2  jmcneill 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
    780   1.2  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    781   1.2  jmcneill 	}
    782  1.16  jakllsch 
    783  1.16  jakllsch 	if (c->maxcap_step) {
    784  1.16  jakllsch 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
    785  1.16  jakllsch 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
    786  1.16  jakllsch 		e->units = ENVSYS_SAMPHOUR;
    787  1.16  jakllsch 		e->state = ENVSYS_SINVALID;
    788  1.16  jakllsch 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
    789  1.16  jakllsch 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    790  1.16  jakllsch 	}
    791  1.16  jakllsch 
    792  1.16  jakllsch 	if (c->coulomb_step) {
    793  1.16  jakllsch 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
    794  1.16  jakllsch 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
    795  1.16  jakllsch 		e->units = ENVSYS_SAMPHOUR;
    796  1.16  jakllsch 		e->state = ENVSYS_SINVALID;
    797  1.16  jakllsch 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
    798  1.16  jakllsch 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    799  1.16  jakllsch 	}
    800   1.2  jmcneill }
    801   1.2  jmcneill 
    802   1.2  jmcneill static void
    803   1.2  jmcneill axppmic_attach_sensors(struct axppmic_softc *sc)
    804   1.2  jmcneill {
    805   1.8  jmcneill 	if (sc->sc_conf->has_battery) {
    806   1.2  jmcneill 		sc->sc_sme = sysmon_envsys_create();
    807   1.2  jmcneill 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    808   1.2  jmcneill 		sc->sc_sme->sme_cookie = sc;
    809   1.2  jmcneill 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
    810   1.2  jmcneill 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
    811   1.5  jmcneill 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
    812   1.2  jmcneill 
    813   1.3  jmcneill 		axppmic_attach_acadapter(sc);
    814   1.2  jmcneill 		axppmic_attach_battery(sc);
    815   1.2  jmcneill 
    816   1.2  jmcneill 		sysmon_envsys_register(sc->sc_sme);
    817   1.2  jmcneill 	}
    818   1.2  jmcneill }
    819   1.2  jmcneill 
    820   1.2  jmcneill 
    821   1.1  jmcneill static int
    822   1.1  jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux)
    823   1.1  jmcneill {
    824   1.1  jmcneill 	struct i2c_attach_args *ia = aux;
    825  1.12   thorpej 	int match_result;
    826   1.1  jmcneill 
    827  1.14   thorpej 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
    828  1.12   thorpej 		return match_result;
    829   1.1  jmcneill 
    830  1.11   thorpej 	/* This device is direct-config only. */
    831  1.11   thorpej 
    832  1.11   thorpej 	return 0;
    833   1.1  jmcneill }
    834   1.1  jmcneill 
    835   1.1  jmcneill static void
    836   1.1  jmcneill axppmic_attach(device_t parent, device_t self, void *aux)
    837   1.1  jmcneill {
    838   1.1  jmcneill 	struct axppmic_softc *sc = device_private(self);
    839  1.13   thorpej 	const struct device_compatible_entry *dce = NULL;
    840   1.1  jmcneill 	const struct axppmic_config *c;
    841   1.1  jmcneill 	struct axpreg_attach_args aaa;
    842   1.1  jmcneill 	struct i2c_attach_args *ia = aux;
    843   1.1  jmcneill 	int phandle, child, i;
    844  1.19  jmcneill 	uint8_t irq_mask, val;
    845  1.19  jmcneill 	int error;
    846   1.1  jmcneill 	void *ih;
    847   1.1  jmcneill 
    848  1.14   thorpej 	(void) iic_compatible_match(ia, compat_data, &dce);
    849  1.12   thorpej 	KASSERT(dce != NULL);
    850  1.14   thorpej 	c = (void *)dce->data;
    851   1.1  jmcneill 
    852   1.1  jmcneill 	sc->sc_dev = self;
    853   1.1  jmcneill 	sc->sc_i2c = ia->ia_tag;
    854   1.1  jmcneill 	sc->sc_addr = ia->ia_addr;
    855   1.1  jmcneill 	sc->sc_phandle = ia->ia_cookie;
    856   1.8  jmcneill 	sc->sc_conf = c;
    857   1.1  jmcneill 
    858   1.1  jmcneill 	aprint_naive("\n");
    859   1.1  jmcneill 	aprint_normal(": %s\n", c->name);
    860   1.1  jmcneill 
    861  1.19  jmcneill 	if (c->has_mode_set) {
    862  1.19  jmcneill 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
    863  1.19  jmcneill 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
    864  1.19  jmcneill 
    865  1.19  jmcneill 		iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    866  1.19  jmcneill 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
    867  1.19  jmcneill 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, I2C_F_POLL);
    868  1.19  jmcneill 		iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    869  1.19  jmcneill 	}
    870  1.19  jmcneill 
    871  1.19  jmcneill 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    872  1.19  jmcneill 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, I2C_F_POLL);
    873  1.19  jmcneill 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    874  1.19  jmcneill 	if (error != 0) {
    875  1.19  jmcneill 		aprint_error_dev(self, "couldn't read chipid\n");
    876  1.19  jmcneill 		return;
    877  1.19  jmcneill 	}
    878  1.19  jmcneill 	aprint_debug_dev(self, "chipid %#x\n", val);
    879  1.19  jmcneill 
    880   1.1  jmcneill 	sc->sc_smpsw.smpsw_name = device_xname(self);
    881   1.1  jmcneill 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
    882   1.1  jmcneill 	sysmon_pswitch_register(&sc->sc_smpsw);
    883   1.1  jmcneill 
    884  1.19  jmcneill 	if (c->irq_regs > 0) {
    885  1.19  jmcneill 		iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    886  1.19  jmcneill 		for (i = 1; i <= c->irq_regs; i++) {
    887  1.19  jmcneill 			irq_mask = 0;
    888  1.19  jmcneill 			if (i == c->poklirq.reg)
    889  1.19  jmcneill 				irq_mask |= c->poklirq.mask;
    890  1.19  jmcneill 			if (i == c->acinirq.reg)
    891  1.19  jmcneill 				irq_mask |= c->acinirq.mask;
    892  1.19  jmcneill 			if (i == c->vbusirq.reg)
    893  1.19  jmcneill 				irq_mask |= c->vbusirq.mask;
    894  1.19  jmcneill 			if (i == c->battirq.reg)
    895  1.19  jmcneill 				irq_mask |= c->battirq.mask;
    896  1.19  jmcneill 			if (i == c->chargeirq.reg)
    897  1.19  jmcneill 				irq_mask |= c->chargeirq.mask;
    898  1.19  jmcneill 			if (i == c->chargestirq.reg)
    899  1.19  jmcneill 				irq_mask |= c->chargestirq.mask;
    900  1.19  jmcneill 			axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
    901  1.19  jmcneill 		}
    902  1.19  jmcneill 		iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    903  1.19  jmcneill 
    904  1.19  jmcneill 		ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
    905  1.19  jmcneill 		    axppmic_intr, sc);
    906  1.19  jmcneill 		if (ih == NULL) {
    907  1.19  jmcneill 			aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
    908  1.19  jmcneill 		}
    909   1.1  jmcneill 	}
    910   1.1  jmcneill 
    911   1.1  jmcneill 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
    912   1.1  jmcneill 	    &axppmic_power_funcs);
    913   1.1  jmcneill 
    914   1.1  jmcneill 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
    915   1.2  jmcneill 	if (phandle > 0) {
    916   1.2  jmcneill 		aaa.reg_i2c = sc->sc_i2c;
    917   1.2  jmcneill 		aaa.reg_addr = sc->sc_addr;
    918   1.2  jmcneill 		for (i = 0; i < c->ncontrols; i++) {
    919   1.2  jmcneill 			const struct axppmic_ctrl *ctrl = &c->controls[i];
    920   1.2  jmcneill 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
    921   1.2  jmcneill 			if (child <= 0)
    922   1.2  jmcneill 				continue;
    923   1.2  jmcneill 			aaa.reg_ctrl = ctrl;
    924   1.2  jmcneill 			aaa.reg_phandle = child;
    925   1.2  jmcneill 			config_found(sc->sc_dev, &aaa, NULL);
    926   1.2  jmcneill 		}
    927   1.2  jmcneill 	}
    928   1.1  jmcneill 
    929  1.21  jmcneill 	/* Notify pinctrl drivers that regulators are available. */
    930  1.21  jmcneill 	fdtbus_pinctrl_configure();
    931  1.21  jmcneill 
    932   1.2  jmcneill 	if (c->has_battery)
    933   1.2  jmcneill 		axppmic_attach_sensors(sc);
    934   1.1  jmcneill }
    935   1.1  jmcneill 
    936   1.1  jmcneill static int
    937   1.1  jmcneill axpreg_acquire(device_t dev)
    938   1.1  jmcneill {
    939   1.1  jmcneill 	return 0;
    940   1.1  jmcneill }
    941   1.1  jmcneill 
    942   1.1  jmcneill static void
    943   1.1  jmcneill axpreg_release(device_t dev)
    944   1.1  jmcneill {
    945   1.1  jmcneill }
    946   1.1  jmcneill 
    947   1.1  jmcneill static int
    948   1.1  jmcneill axpreg_enable(device_t dev, bool enable)
    949   1.1  jmcneill {
    950   1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
    951   1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    952   1.1  jmcneill 	const int flags = (cold ? I2C_F_POLL : 0);
    953   1.1  jmcneill 	uint8_t val;
    954   1.1  jmcneill 	int error;
    955   1.1  jmcneill 
    956   1.1  jmcneill 	if (!c->c_enable_mask)
    957   1.1  jmcneill 		return EINVAL;
    958   1.1  jmcneill 
    959   1.1  jmcneill 	iic_acquire_bus(sc->sc_i2c, flags);
    960   1.1  jmcneill 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
    961   1.1  jmcneill 		if (enable)
    962   1.1  jmcneill 			val |= c->c_enable_mask;
    963   1.1  jmcneill 		else
    964   1.1  jmcneill 			val &= ~c->c_enable_mask;
    965   1.1  jmcneill 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
    966   1.1  jmcneill 	}
    967   1.1  jmcneill 	iic_release_bus(sc->sc_i2c, flags);
    968   1.1  jmcneill 
    969   1.1  jmcneill 	return error;
    970   1.1  jmcneill }
    971   1.1  jmcneill 
    972   1.1  jmcneill static int
    973   1.1  jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
    974   1.1  jmcneill {
    975   1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
    976   1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    977   1.1  jmcneill 
    978   1.1  jmcneill 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
    979   1.1  jmcneill 	    min_uvol / 1000, max_uvol / 1000);
    980   1.1  jmcneill }
    981   1.1  jmcneill 
    982   1.1  jmcneill static int
    983   1.1  jmcneill axpreg_get_voltage(device_t dev, u_int *puvol)
    984   1.1  jmcneill {
    985   1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
    986   1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    987   1.1  jmcneill 	int error;
    988   1.1  jmcneill 	u_int vol;
    989   1.1  jmcneill 
    990   1.1  jmcneill 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
    991   1.1  jmcneill 	if (error)
    992   1.1  jmcneill 		return error;
    993   1.1  jmcneill 
    994   1.1  jmcneill 	*puvol = vol * 1000;
    995   1.1  jmcneill 	return 0;
    996   1.1  jmcneill }
    997   1.1  jmcneill 
    998   1.1  jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = {
    999   1.1  jmcneill 	.acquire = axpreg_acquire,
   1000   1.1  jmcneill 	.release = axpreg_release,
   1001   1.1  jmcneill 	.enable = axpreg_enable,
   1002   1.1  jmcneill 	.set_voltage = axpreg_set_voltage,
   1003   1.1  jmcneill 	.get_voltage = axpreg_get_voltage,
   1004   1.1  jmcneill };
   1005   1.1  jmcneill 
   1006   1.1  jmcneill static int
   1007   1.1  jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux)
   1008   1.1  jmcneill {
   1009   1.1  jmcneill 	return 1;
   1010   1.1  jmcneill }
   1011   1.1  jmcneill 
   1012   1.1  jmcneill static void
   1013   1.1  jmcneill axpreg_attach(device_t parent, device_t self, void *aux)
   1014   1.1  jmcneill {
   1015   1.1  jmcneill 	struct axpreg_softc *sc = device_private(self);
   1016   1.1  jmcneill 	struct axpreg_attach_args *aaa = aux;
   1017   1.1  jmcneill 	const int phandle = aaa->reg_phandle;
   1018   1.1  jmcneill 	const char *name;
   1019  1.20  jmcneill 	u_int uvol, min_uvol, max_uvol;
   1020   1.1  jmcneill 
   1021   1.1  jmcneill 	sc->sc_dev = self;
   1022   1.1  jmcneill 	sc->sc_i2c = aaa->reg_i2c;
   1023   1.1  jmcneill 	sc->sc_addr = aaa->reg_addr;
   1024   1.1  jmcneill 	sc->sc_ctrl = aaa->reg_ctrl;
   1025   1.1  jmcneill 
   1026   1.1  jmcneill 	fdtbus_register_regulator_controller(self, phandle,
   1027   1.1  jmcneill 	    &axpreg_funcs);
   1028   1.1  jmcneill 
   1029   1.1  jmcneill 	aprint_naive("\n");
   1030   1.1  jmcneill 	name = fdtbus_get_string(phandle, "regulator-name");
   1031   1.1  jmcneill 	if (name)
   1032   1.1  jmcneill 		aprint_normal(": %s\n", name);
   1033   1.1  jmcneill 	else
   1034   1.1  jmcneill 		aprint_normal("\n");
   1035  1.20  jmcneill 
   1036  1.20  jmcneill 	axpreg_get_voltage(self, &uvol);
   1037  1.20  jmcneill 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1038  1.20  jmcneill 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1039  1.20  jmcneill 		if (uvol < min_uvol || uvol > max_uvol) {
   1040  1.20  jmcneill 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n", uvol, min_uvol, max_uvol);
   1041  1.20  jmcneill 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1042  1.20  jmcneill 		}
   1043  1.20  jmcneill 	}
   1044   1.1  jmcneill }
   1045   1.1  jmcneill 
   1046   1.1  jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1047   1.1  jmcneill     axppmic_match, axppmic_attach, NULL, NULL);
   1048   1.1  jmcneill 
   1049   1.1  jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1050   1.1  jmcneill     axpreg_match, axpreg_attach, NULL, NULL);
   1051