Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.28.2.1
      1  1.28.2.1        ad /* $NetBSD: axppmic.c,v 1.28.2.1 2020/02/29 20:19:07 ad Exp $ */
      2       1.1  jmcneill 
      3       1.1  jmcneill /*-
      4       1.1  jmcneill  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5       1.1  jmcneill  * All rights reserved.
      6       1.1  jmcneill  *
      7       1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8       1.1  jmcneill  * modification, are permitted provided that the following conditions
      9       1.1  jmcneill  * are met:
     10       1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11       1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12       1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14       1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15       1.1  jmcneill  *
     16       1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.1  jmcneill  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1  jmcneill  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1  jmcneill  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1  jmcneill  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1  jmcneill  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1  jmcneill  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1  jmcneill  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1  jmcneill  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1  jmcneill  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1  jmcneill  * POSSIBILITY OF SUCH DAMAGE.
     27       1.1  jmcneill  */
     28       1.1  jmcneill 
     29       1.1  jmcneill #include <sys/cdefs.h>
     30  1.28.2.1        ad __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.28.2.1 2020/02/29 20:19:07 ad Exp $");
     31       1.1  jmcneill 
     32       1.1  jmcneill #include <sys/param.h>
     33       1.1  jmcneill #include <sys/systm.h>
     34       1.1  jmcneill #include <sys/kernel.h>
     35       1.1  jmcneill #include <sys/device.h>
     36       1.1  jmcneill #include <sys/conf.h>
     37       1.1  jmcneill #include <sys/bus.h>
     38       1.1  jmcneill #include <sys/kmem.h>
     39  1.28.2.1        ad #include <sys/workqueue.h>
     40       1.1  jmcneill 
     41       1.1  jmcneill #include <dev/i2c/i2cvar.h>
     42       1.1  jmcneill 
     43       1.1  jmcneill #include <dev/sysmon/sysmonvar.h>
     44       1.1  jmcneill #include <dev/sysmon/sysmon_taskq.h>
     45       1.1  jmcneill 
     46       1.1  jmcneill #include <dev/fdt/fdtvar.h>
     47       1.1  jmcneill 
     48       1.3  jmcneill #define	AXP_POWER_SOURCE_REG	0x00
     49       1.3  jmcneill #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50       1.3  jmcneill #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51      1.10  jmcneill #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52       1.3  jmcneill 
     53       1.2  jmcneill #define	AXP_POWER_MODE_REG	0x01
     54       1.2  jmcneill #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55       1.2  jmcneill #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56       1.2  jmcneill #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57       1.2  jmcneill 
     58      1.19  jmcneill #define	AXP_CHIP_ID_REG		0x03
     59      1.19  jmcneill 
     60       1.1  jmcneill #define AXP_POWER_DISABLE_REG	0x32
     61       1.1  jmcneill #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     62       1.1  jmcneill 
     63       1.1  jmcneill #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     64       1.5  jmcneill #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     65       1.5  jmcneill #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     66       1.5  jmcneill #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     67       1.5  jmcneill #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     68       1.1  jmcneill #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     69       1.1  jmcneill 
     70      1.10  jmcneill #define	AXP_BATSENSE_HI_REG	0x78
     71      1.10  jmcneill #define	AXP_BATSENSE_LO_REG	0x79
     72      1.10  jmcneill 
     73      1.10  jmcneill #define	AXP_BATTCHG_HI_REG	0x7a
     74      1.10  jmcneill #define	AXP_BATTCHG_LO_REG	0x7b
     75      1.10  jmcneill 
     76      1.10  jmcneill #define	AXP_BATTDISCHG_HI_REG	0x7c
     77      1.10  jmcneill #define	AXP_BATTDISCHG_LO_REG	0x7d
     78      1.10  jmcneill 
     79      1.10  jmcneill #define	AXP_ADC_RAW(_hi, _lo)	\
     80      1.15  jakllsch 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     81      1.10  jmcneill 
     82       1.2  jmcneill #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     83       1.2  jmcneill #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     84      1.10  jmcneill 
     85       1.2  jmcneill #define	AXP_BATT_CAP_REG	0xb9
     86       1.2  jmcneill #define	 AXP_BATT_CAP_VALID	__BIT(7)
     87       1.2  jmcneill #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     88       1.2  jmcneill 
     89      1.16  jakllsch #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     90      1.16  jakllsch #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     91      1.16  jakllsch #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     92      1.16  jakllsch 
     93      1.16  jakllsch #define	AXP_BATT_COULOMB_HI_REG	0xe2
     94      1.16  jakllsch #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
     95      1.16  jakllsch #define	AXP_BATT_COULOMB_LO_REG	0xe3
     96      1.16  jakllsch 
     97      1.16  jakllsch #define	AXP_COULOMB_RAW(_hi, _lo)	\
     98      1.16  jakllsch 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
     99      1.16  jakllsch 
    100       1.2  jmcneill #define	AXP_BATT_CAP_WARN_REG	0xe6
    101       1.2  jmcneill #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    102       1.2  jmcneill #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    103       1.2  jmcneill 
    104      1.19  jmcneill #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    105      1.19  jmcneill #define	 AXP_ADDR_EXT_MASTER	0
    106      1.19  jmcneill #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    107      1.19  jmcneill 
    108       1.1  jmcneill struct axppmic_ctrl {
    109       1.1  jmcneill 	device_t	c_dev;
    110       1.1  jmcneill 
    111       1.1  jmcneill 	const char *	c_name;
    112       1.1  jmcneill 	u_int		c_min;
    113       1.1  jmcneill 	u_int		c_max;
    114       1.1  jmcneill 	u_int		c_step1;
    115       1.1  jmcneill 	u_int		c_step1cnt;
    116       1.1  jmcneill 	u_int		c_step2;
    117       1.1  jmcneill 	u_int		c_step2cnt;
    118      1.24  jmcneill 	u_int		c_step2start;
    119       1.1  jmcneill 
    120       1.1  jmcneill 	uint8_t		c_enable_reg;
    121       1.1  jmcneill 	uint8_t		c_enable_mask;
    122      1.23  jmcneill 	uint8_t		c_enable_val;
    123      1.23  jmcneill 	uint8_t		c_disable_val;
    124       1.1  jmcneill 
    125       1.1  jmcneill 	uint8_t		c_voltage_reg;
    126       1.1  jmcneill 	uint8_t		c_voltage_mask;
    127       1.1  jmcneill };
    128       1.1  jmcneill 
    129       1.1  jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    130       1.1  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    131       1.1  jmcneill 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    132       1.1  jmcneill 	  .c_step2 = 0, .c_step2cnt = 0,				\
    133       1.1  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    134      1.23  jmcneill 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    135       1.1  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    136       1.1  jmcneill 
    137       1.1  jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    138       1.1  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    139       1.1  jmcneill 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    140       1.1  jmcneill 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    141       1.1  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    142      1.23  jmcneill 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    143       1.1  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    144       1.1  jmcneill 
    145      1.24  jmcneill #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
    146      1.24  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    147      1.24  jmcneill 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    148      1.24  jmcneill 	  .c_step2start = (step2start),					\
    149      1.24  jmcneill 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    150      1.24  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    151      1.24  jmcneill 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    152      1.24  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    153      1.24  jmcneill 
    154      1.23  jmcneill #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
    155      1.23  jmcneill 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    156      1.23  jmcneill 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    157      1.23  jmcneill 	  .c_step2 = 0, .c_step2cnt = 0,				\
    158      1.23  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    159      1.23  jmcneill 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
    160      1.23  jmcneill 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    161      1.23  jmcneill 
    162      1.24  jmcneill #define AXP_CTRL_SW(name, ereg, emask)					\
    163      1.24  jmcneill 	{ .c_name = (name), 						\
    164      1.24  jmcneill 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    165      1.24  jmcneill 	  .c_enable_val = (emask), .c_disable_val = 0 }
    166      1.23  jmcneill 
    167       1.1  jmcneill static const struct axppmic_ctrl axp803_ctrls[] = {
    168       1.1  jmcneill 	AXP_CTRL("dldo1", 700, 3300, 100,
    169       1.1  jmcneill 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    170       1.1  jmcneill 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    171       1.1  jmcneill 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    172       1.1  jmcneill 	AXP_CTRL("dldo3", 700, 3300, 100,
    173       1.1  jmcneill 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    174       1.1  jmcneill 	AXP_CTRL("dldo4", 700, 3300, 100,
    175       1.1  jmcneill 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    176       1.1  jmcneill 	AXP_CTRL("eldo1", 700, 1900, 50,
    177       1.1  jmcneill 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    178       1.1  jmcneill 	AXP_CTRL("eldo2", 700, 1900, 50,
    179       1.1  jmcneill 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    180       1.1  jmcneill 	AXP_CTRL("eldo3", 700, 1900, 50,
    181       1.1  jmcneill 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    182       1.1  jmcneill 	AXP_CTRL("fldo1", 700, 1450, 50,
    183       1.1  jmcneill 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    184       1.1  jmcneill 	AXP_CTRL("fldo2", 700, 1450, 50,
    185       1.1  jmcneill 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    186       1.1  jmcneill 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    187       1.1  jmcneill 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    188       1.6  jmcneill 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    189       1.1  jmcneill 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    190       1.6  jmcneill 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    191       1.1  jmcneill 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    192       1.6  jmcneill 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    193       1.1  jmcneill 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    194       1.1  jmcneill 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    195       1.1  jmcneill 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    196       1.1  jmcneill 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    197       1.1  jmcneill 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    198       1.1  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    199       1.1  jmcneill 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    200       1.1  jmcneill 	AXP_CTRL("aldo2", 700, 3300, 100,
    201       1.1  jmcneill 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    202       1.1  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    203       1.1  jmcneill 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    204       1.1  jmcneill };
    205       1.1  jmcneill 
    206       1.1  jmcneill static const struct axppmic_ctrl axp805_ctrls[] = {
    207       1.1  jmcneill 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    208       1.1  jmcneill 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    209       1.1  jmcneill 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    210       1.1  jmcneill 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    211       1.1  jmcneill 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    212       1.1  jmcneill 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    213       1.1  jmcneill 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    214       1.1  jmcneill 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    215       1.1  jmcneill 	AXP_CTRL("dcdce", 1100, 3400, 100,
    216       1.1  jmcneill 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    217       1.1  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    218       1.1  jmcneill 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    219       1.1  jmcneill 	AXP_CTRL("aldo2", 700, 3400, 100,
    220       1.1  jmcneill 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    221       1.1  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    222       1.1  jmcneill 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    223       1.1  jmcneill 	AXP_CTRL("bldo1", 700, 1900, 100,
    224       1.1  jmcneill 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    225       1.1  jmcneill 	AXP_CTRL("bldo2", 700, 1900, 100,
    226       1.1  jmcneill 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    227       1.1  jmcneill 	AXP_CTRL("bldo3", 700, 1900, 100,
    228       1.1  jmcneill 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    229       1.1  jmcneill 	AXP_CTRL("bldo4", 700, 1900, 100,
    230       1.1  jmcneill 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    231       1.1  jmcneill 	AXP_CTRL("cldo1", 700, 3300, 100,
    232       1.1  jmcneill 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    233       1.1  jmcneill 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    234       1.1  jmcneill 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    235       1.1  jmcneill 	AXP_CTRL("cldo3", 700, 3300, 100,
    236       1.1  jmcneill 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    237       1.1  jmcneill };
    238       1.1  jmcneill 
    239      1.21  jmcneill static const struct axppmic_ctrl axp809_ctrls[] = {
    240      1.24  jmcneill 	AXP_CTRL("dc5ldo", 700, 1400, 100,
    241      1.24  jmcneill 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
    242      1.24  jmcneill 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    243      1.24  jmcneill 		0x10, __BIT(1), 0x21, __BITS(4,0)),
    244      1.24  jmcneill 	AXP_CTRL("dcdc2", 600, 1540, 20,
    245      1.24  jmcneill 		0x10, __BIT(2), 0x22, __BITS(5,0)),
    246      1.24  jmcneill 	AXP_CTRL("dcdc3", 600, 1860, 20,
    247      1.24  jmcneill 		0x10, __BIT(3), 0x23, __BITS(5,0)),
    248      1.24  jmcneill 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
    249      1.24  jmcneill 		0x10, __BIT(4), 0x24, __BITS(5,0)),
    250      1.24  jmcneill 	AXP_CTRL("dcdc5", 1000, 2550, 50,
    251      1.24  jmcneill 		0x10, __BIT(5), 0x25, __BITS(4,0)),
    252      1.24  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    253      1.24  jmcneill 		0x10, __BIT(6), 0x28, __BITS(4,0)),
    254      1.24  jmcneill 	AXP_CTRL("aldo2", 700, 3300, 100,
    255      1.24  jmcneill 		0x10, __BIT(7), 0x29, __BITS(4,0)),
    256      1.24  jmcneill 	AXP_CTRL("eldo1", 700, 3300, 100,
    257      1.24  jmcneill 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    258      1.24  jmcneill 	AXP_CTRL("eldo2", 700, 3300, 100,
    259      1.24  jmcneill 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    260      1.24  jmcneill 	AXP_CTRL("eldo3", 700, 3300, 100,
    261      1.24  jmcneill 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    262      1.24  jmcneill 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
    263      1.24  jmcneill 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    264      1.24  jmcneill 	AXP_CTRL("dldo2", 700, 3300, 100,
    265      1.24  jmcneill 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    266      1.24  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    267      1.24  jmcneill 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
    268      1.24  jmcneill 	AXP_CTRL_SW("sw",
    269      1.24  jmcneill 		0x12, __BIT(6)),
    270      1.24  jmcneill 	/* dc1sw is another switch for dcdc1 */
    271      1.24  jmcneill 	AXP_CTRL("dc1sw", 1600, 3400, 100,
    272      1.24  jmcneill 		0x12, __BIT(7), 0x21, __BITS(4,0)),
    273      1.23  jmcneill 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
    274      1.23  jmcneill 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
    275      1.23  jmcneill 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
    276      1.23  jmcneill 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
    277      1.21  jmcneill };
    278      1.21  jmcneill 
    279      1.17  jmcneill static const struct axppmic_ctrl axp813_ctrls[] = {
    280      1.17  jmcneill 	AXP_CTRL("dldo1", 700, 3300, 100,
    281      1.17  jmcneill 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    282      1.17  jmcneill 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    283      1.17  jmcneill 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    284      1.17  jmcneill 	AXP_CTRL("dldo3", 700, 3300, 100,
    285      1.17  jmcneill 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    286      1.17  jmcneill 	AXP_CTRL("dldo4", 700, 3300, 100,
    287      1.17  jmcneill 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    288      1.17  jmcneill 	AXP_CTRL("eldo1", 700, 1900, 50,
    289      1.17  jmcneill 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    290      1.17  jmcneill 	AXP_CTRL("eldo2", 700, 1900, 50,
    291      1.17  jmcneill 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    292      1.17  jmcneill 	AXP_CTRL("eldo3", 700, 1900, 50,
    293      1.17  jmcneill 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    294      1.17  jmcneill 	AXP_CTRL("fldo1", 700, 1450, 50,
    295      1.17  jmcneill 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    296      1.17  jmcneill 	AXP_CTRL("fldo2", 700, 1450, 50,
    297      1.17  jmcneill 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    298      1.17  jmcneill 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    299      1.17  jmcneill 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    300      1.17  jmcneill 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    301      1.17  jmcneill 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    302      1.17  jmcneill 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    303      1.17  jmcneill 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    304      1.17  jmcneill 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    305      1.17  jmcneill 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    306      1.17  jmcneill 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    307      1.17  jmcneill 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    308      1.17  jmcneill 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    309      1.17  jmcneill 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    310      1.17  jmcneill 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    311      1.17  jmcneill 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    312      1.17  jmcneill 	AXP_CTRL("aldo1", 700, 3300, 100,
    313      1.17  jmcneill 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    314      1.17  jmcneill 	AXP_CTRL("aldo2", 700, 3300, 100,
    315      1.17  jmcneill 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    316      1.17  jmcneill 	AXP_CTRL("aldo3", 700, 3300, 100,
    317      1.17  jmcneill 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    318      1.17  jmcneill };
    319      1.17  jmcneill 
    320       1.8  jmcneill struct axppmic_irq {
    321       1.8  jmcneill 	u_int reg;
    322       1.8  jmcneill 	uint8_t mask;
    323       1.8  jmcneill };
    324       1.8  jmcneill 
    325       1.8  jmcneill #define	AXPPMIC_IRQ(_reg, _mask)	\
    326       1.8  jmcneill 	{ .reg = (_reg), .mask = (_mask) }
    327       1.8  jmcneill 
    328       1.1  jmcneill struct axppmic_config {
    329       1.1  jmcneill 	const char *name;
    330       1.1  jmcneill 	const struct axppmic_ctrl *controls;
    331       1.1  jmcneill 	u_int ncontrols;
    332       1.1  jmcneill 	u_int irq_regs;
    333       1.2  jmcneill 	bool has_battery;
    334       1.2  jmcneill 	bool has_fuel_gauge;
    335      1.19  jmcneill 	bool has_mode_set;
    336       1.8  jmcneill 	struct axppmic_irq poklirq;
    337       1.8  jmcneill 	struct axppmic_irq acinirq;
    338       1.8  jmcneill 	struct axppmic_irq vbusirq;
    339       1.8  jmcneill 	struct axppmic_irq battirq;
    340       1.8  jmcneill 	struct axppmic_irq chargeirq;
    341       1.8  jmcneill 	struct axppmic_irq chargestirq;
    342      1.10  jmcneill 	u_int batsense_step;	/* uV */
    343      1.10  jmcneill 	u_int charge_step;	/* uA */
    344      1.10  jmcneill 	u_int discharge_step;	/* uA */
    345      1.10  jmcneill 	u_int maxcap_step;	/* uAh */
    346      1.10  jmcneill 	u_int coulomb_step;	/* uAh */
    347       1.2  jmcneill };
    348       1.2  jmcneill 
    349       1.2  jmcneill enum axppmic_sensor {
    350       1.3  jmcneill 	AXP_SENSOR_ACIN_PRESENT,
    351       1.3  jmcneill 	AXP_SENSOR_VBUS_PRESENT,
    352       1.2  jmcneill 	AXP_SENSOR_BATT_PRESENT,
    353       1.2  jmcneill 	AXP_SENSOR_BATT_CHARGING,
    354       1.2  jmcneill 	AXP_SENSOR_BATT_CHARGE_STATE,
    355      1.10  jmcneill 	AXP_SENSOR_BATT_VOLTAGE,
    356      1.10  jmcneill 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    357      1.10  jmcneill 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    358      1.10  jmcneill 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    359      1.16  jakllsch 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    360      1.16  jakllsch 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    361       1.2  jmcneill 	AXP_NSENSORS
    362       1.1  jmcneill };
    363       1.1  jmcneill 
    364       1.1  jmcneill struct axppmic_softc {
    365       1.1  jmcneill 	device_t	sc_dev;
    366       1.1  jmcneill 	i2c_tag_t	sc_i2c;
    367       1.1  jmcneill 	i2c_addr_t	sc_addr;
    368       1.1  jmcneill 	int		sc_phandle;
    369       1.1  jmcneill 
    370  1.28.2.1        ad 	void		*sc_ih;
    371  1.28.2.1        ad 	struct workqueue *sc_wq;
    372  1.28.2.1        ad 
    373  1.28.2.1        ad 	kmutex_t	sc_intr_lock;
    374  1.28.2.1        ad 	struct work	sc_work;
    375  1.28.2.1        ad 	bool		sc_work_scheduled;
    376  1.28.2.1        ad 
    377       1.8  jmcneill 	const struct axppmic_config *sc_conf;
    378       1.2  jmcneill 
    379       1.1  jmcneill 	struct sysmon_pswitch sc_smpsw;
    380       1.1  jmcneill 
    381       1.2  jmcneill 	struct sysmon_envsys *sc_sme;
    382       1.3  jmcneill 
    383       1.2  jmcneill 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    384       1.4  jmcneill 
    385       1.4  jmcneill 	u_int		sc_warn_thres;
    386       1.4  jmcneill 	u_int		sc_shut_thres;
    387       1.1  jmcneill };
    388       1.1  jmcneill 
    389       1.1  jmcneill struct axpreg_softc {
    390       1.1  jmcneill 	device_t	sc_dev;
    391       1.1  jmcneill 	i2c_tag_t	sc_i2c;
    392       1.1  jmcneill 	i2c_addr_t	sc_addr;
    393       1.1  jmcneill 	const struct axppmic_ctrl *sc_ctrl;
    394       1.1  jmcneill };
    395       1.1  jmcneill 
    396       1.1  jmcneill struct axpreg_attach_args {
    397       1.1  jmcneill 	const struct axppmic_ctrl *reg_ctrl;
    398       1.1  jmcneill 	int		reg_phandle;
    399       1.1  jmcneill 	i2c_tag_t	reg_i2c;
    400       1.1  jmcneill 	i2c_addr_t	reg_addr;
    401       1.1  jmcneill };
    402       1.1  jmcneill 
    403       1.1  jmcneill static const struct axppmic_config axp803_config = {
    404       1.1  jmcneill 	.name = "AXP803",
    405       1.1  jmcneill 	.controls = axp803_ctrls,
    406       1.1  jmcneill 	.ncontrols = __arraycount(axp803_ctrls),
    407       1.1  jmcneill 	.irq_regs = 6,
    408       1.2  jmcneill 	.has_battery = true,
    409       1.2  jmcneill 	.has_fuel_gauge = true,
    410      1.10  jmcneill 	.batsense_step = 1100,
    411      1.10  jmcneill 	.charge_step = 1000,
    412      1.10  jmcneill 	.discharge_step = 1000,
    413      1.16  jakllsch 	.maxcap_step = 1456,
    414      1.16  jakllsch 	.coulomb_step = 1456,
    415       1.8  jmcneill 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    416       1.8  jmcneill 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    417       1.8  jmcneill 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    418       1.8  jmcneill 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    419       1.8  jmcneill 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    420       1.8  jmcneill 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    421       1.1  jmcneill };
    422       1.1  jmcneill 
    423       1.1  jmcneill static const struct axppmic_config axp805_config = {
    424      1.19  jmcneill 	.name = "AXP805",
    425      1.19  jmcneill 	.controls = axp805_ctrls,
    426      1.19  jmcneill 	.ncontrols = __arraycount(axp805_ctrls),
    427      1.19  jmcneill 	.irq_regs = 2,
    428      1.19  jmcneill 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    429      1.19  jmcneill };
    430      1.19  jmcneill 
    431      1.19  jmcneill static const struct axppmic_config axp806_config = {
    432      1.19  jmcneill 	.name = "AXP806",
    433       1.1  jmcneill 	.controls = axp805_ctrls,
    434       1.1  jmcneill 	.ncontrols = __arraycount(axp805_ctrls),
    435      1.19  jmcneill #if notyet
    436       1.1  jmcneill 	.irq_regs = 2,
    437       1.8  jmcneill 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    438      1.19  jmcneill #endif
    439      1.19  jmcneill 	.has_mode_set = true,
    440       1.1  jmcneill };
    441       1.1  jmcneill 
    442      1.21  jmcneill static const struct axppmic_config axp809_config = {
    443      1.21  jmcneill 	.name = "AXP809",
    444      1.21  jmcneill 	.controls = axp809_ctrls,
    445      1.21  jmcneill 	.ncontrols = __arraycount(axp809_ctrls),
    446      1.21  jmcneill };
    447      1.21  jmcneill 
    448      1.17  jmcneill static const struct axppmic_config axp813_config = {
    449      1.17  jmcneill 	.name = "AXP813",
    450      1.17  jmcneill 	.controls = axp813_ctrls,
    451      1.17  jmcneill 	.ncontrols = __arraycount(axp813_ctrls),
    452      1.17  jmcneill 	.irq_regs = 6,
    453      1.17  jmcneill 	.has_battery = true,
    454      1.17  jmcneill 	.has_fuel_gauge = true,
    455      1.17  jmcneill 	.batsense_step = 1100,
    456      1.17  jmcneill 	.charge_step = 1000,
    457      1.17  jmcneill 	.discharge_step = 1000,
    458      1.17  jmcneill 	.maxcap_step = 1456,
    459      1.17  jmcneill 	.coulomb_step = 1456,
    460      1.17  jmcneill 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    461      1.17  jmcneill 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    462      1.17  jmcneill 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    463      1.17  jmcneill 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    464      1.17  jmcneill 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    465      1.17  jmcneill 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    466      1.17  jmcneill };
    467      1.17  jmcneill 
    468      1.14   thorpej static const struct device_compatible_entry compat_data[] = {
    469      1.14   thorpej 	{ "x-powers,axp803",		(uintptr_t)&axp803_config },
    470      1.14   thorpej 	{ "x-powers,axp805",		(uintptr_t)&axp805_config },
    471      1.19  jmcneill 	{ "x-powers,axp806",		(uintptr_t)&axp806_config },
    472      1.21  jmcneill 	{ "x-powers,axp809",		(uintptr_t)&axp809_config },
    473      1.17  jmcneill 	{ "x-powers,axp813",		(uintptr_t)&axp813_config },
    474      1.14   thorpej 	{ NULL,				0 }
    475       1.1  jmcneill };
    476       1.1  jmcneill 
    477       1.1  jmcneill static int
    478       1.1  jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    479       1.1  jmcneill {
    480       1.1  jmcneill 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    481       1.1  jmcneill }
    482       1.1  jmcneill 
    483       1.1  jmcneill static int
    484       1.1  jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    485       1.1  jmcneill {
    486       1.1  jmcneill 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    487       1.1  jmcneill }
    488       1.1  jmcneill 
    489       1.1  jmcneill static int
    490       1.1  jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    491       1.1  jmcneill {
    492       1.1  jmcneill 	u_int vol, reg_val;
    493       1.1  jmcneill 	int nstep, error;
    494       1.1  jmcneill 	uint8_t val;
    495       1.1  jmcneill 
    496       1.1  jmcneill 	if (!c->c_voltage_mask)
    497       1.1  jmcneill 		return EINVAL;
    498       1.1  jmcneill 
    499       1.1  jmcneill 	if (min < c->c_min || min > c->c_max)
    500       1.1  jmcneill 		return EINVAL;
    501       1.1  jmcneill 
    502       1.1  jmcneill 	reg_val = 0;
    503       1.1  jmcneill 	nstep = 1;
    504       1.1  jmcneill 	vol = c->c_min;
    505       1.1  jmcneill 
    506       1.1  jmcneill 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    507       1.1  jmcneill 		++reg_val;
    508       1.1  jmcneill 		vol += c->c_step1;
    509       1.1  jmcneill 	}
    510      1.24  jmcneill 
    511      1.24  jmcneill 	if (c->c_step2start)
    512      1.24  jmcneill 		vol = c->c_step2start;
    513      1.24  jmcneill 
    514       1.1  jmcneill 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    515       1.1  jmcneill 		++reg_val;
    516       1.1  jmcneill 		vol += c->c_step2;
    517       1.1  jmcneill 	}
    518       1.1  jmcneill 
    519       1.1  jmcneill 	if (vol > max)
    520       1.1  jmcneill 		return EINVAL;
    521       1.1  jmcneill 
    522  1.28.2.1        ad 	iic_acquire_bus(tag, 0);
    523  1.28.2.1        ad 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
    524       1.1  jmcneill 		val &= ~c->c_voltage_mask;
    525       1.1  jmcneill 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    526  1.28.2.1        ad 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
    527       1.1  jmcneill 	}
    528  1.28.2.1        ad 	iic_release_bus(tag, 0);
    529       1.1  jmcneill 
    530       1.1  jmcneill 	return error;
    531       1.1  jmcneill }
    532       1.1  jmcneill 
    533       1.1  jmcneill static int
    534       1.1  jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    535       1.1  jmcneill {
    536       1.1  jmcneill 	int reg_val, error;
    537       1.1  jmcneill 	uint8_t val;
    538       1.1  jmcneill 
    539       1.1  jmcneill 	if (!c->c_voltage_mask)
    540       1.1  jmcneill 		return EINVAL;
    541       1.1  jmcneill 
    542  1.28.2.1        ad 	iic_acquire_bus(tag, 0);
    543  1.28.2.1        ad 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
    544  1.28.2.1        ad 	iic_release_bus(tag, 0);
    545       1.1  jmcneill 	if (error)
    546       1.1  jmcneill 		return error;
    547       1.1  jmcneill 
    548       1.1  jmcneill 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    549       1.1  jmcneill 	if (reg_val < c->c_step1cnt) {
    550       1.1  jmcneill 		*pvol = c->c_min + reg_val * c->c_step1;
    551      1.24  jmcneill 	} else if (c->c_step2start) {
    552      1.24  jmcneill 		*pvol = c->c_step2start +
    553      1.24  jmcneill 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    554       1.1  jmcneill 	} else {
    555       1.1  jmcneill 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    556       1.1  jmcneill 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    557       1.1  jmcneill 	}
    558       1.1  jmcneill 
    559       1.1  jmcneill 	return 0;
    560       1.1  jmcneill }
    561       1.1  jmcneill 
    562       1.1  jmcneill static void
    563       1.1  jmcneill axppmic_power_poweroff(device_t dev)
    564       1.1  jmcneill {
    565       1.1  jmcneill 	struct axppmic_softc *sc = device_private(dev);
    566      1.28   thorpej 	int error;
    567       1.1  jmcneill 
    568       1.1  jmcneill 	delay(1000000);
    569       1.1  jmcneill 
    570  1.28.2.1        ad 	error = iic_acquire_bus(sc->sc_i2c, 0);
    571      1.28   thorpej 	if (error == 0) {
    572      1.28   thorpej 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    573  1.28.2.1        ad 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
    574  1.28.2.1        ad 		iic_release_bus(sc->sc_i2c, 0);
    575      1.28   thorpej 	}
    576      1.28   thorpej 	if (error) {
    577      1.28   thorpej 		device_printf(dev, "WARNING: unable to power off, error %d\n",
    578      1.28   thorpej 		    error);
    579      1.28   thorpej 	}
    580       1.1  jmcneill }
    581       1.1  jmcneill 
    582       1.1  jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = {
    583       1.1  jmcneill 	.poweroff = axppmic_power_poweroff,
    584       1.1  jmcneill };
    585       1.1  jmcneill 
    586       1.1  jmcneill static void
    587       1.1  jmcneill axppmic_task_shut(void *priv)
    588       1.1  jmcneill {
    589       1.1  jmcneill 	struct axppmic_softc *sc = priv;
    590       1.1  jmcneill 
    591       1.1  jmcneill 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    592       1.1  jmcneill }
    593       1.1  jmcneill 
    594       1.2  jmcneill static void
    595       1.8  jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    596       1.2  jmcneill {
    597       1.2  jmcneill 	struct axppmic_softc *sc = sme->sme_cookie;
    598      1.10  jmcneill 	const struct axppmic_config *c = sc->sc_conf;
    599      1.10  jmcneill 	uint8_t val, lo, hi;
    600       1.2  jmcneill 
    601       1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    602       1.2  jmcneill 
    603      1.10  jmcneill 	const bool battery_present =
    604      1.10  jmcneill 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    605      1.10  jmcneill 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    606      1.10  jmcneill 
    607       1.2  jmcneill 	switch (e->private) {
    608       1.3  jmcneill 	case AXP_SENSOR_ACIN_PRESENT:
    609  1.28.2.1        ad 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    610       1.3  jmcneill 			e->state = ENVSYS_SVALID;
    611       1.3  jmcneill 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    612       1.3  jmcneill 		}
    613       1.3  jmcneill 		break;
    614       1.3  jmcneill 	case AXP_SENSOR_VBUS_PRESENT:
    615  1.28.2.1        ad 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    616       1.3  jmcneill 			e->state = ENVSYS_SVALID;
    617       1.3  jmcneill 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    618       1.3  jmcneill 		}
    619       1.3  jmcneill 		break;
    620       1.2  jmcneill 	case AXP_SENSOR_BATT_PRESENT:
    621  1.28.2.1        ad 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    622       1.2  jmcneill 			if (val & AXP_POWER_MODE_BATT_VALID) {
    623       1.2  jmcneill 				e->state = ENVSYS_SVALID;
    624       1.2  jmcneill 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    625       1.2  jmcneill 			}
    626       1.2  jmcneill 		}
    627       1.2  jmcneill 		break;
    628       1.2  jmcneill 	case AXP_SENSOR_BATT_CHARGING:
    629  1.28.2.1        ad 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    630       1.2  jmcneill 			e->state = ENVSYS_SVALID;
    631       1.2  jmcneill 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    632       1.2  jmcneill 		}
    633       1.2  jmcneill 		break;
    634       1.2  jmcneill 	case AXP_SENSOR_BATT_CHARGE_STATE:
    635      1.10  jmcneill 		if (battery_present &&
    636  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    637       1.4  jmcneill 		    (val & AXP_BATT_CAP_VALID) != 0) {
    638       1.2  jmcneill 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    639       1.4  jmcneill 			if (batt_val <= sc->sc_shut_thres) {
    640       1.2  jmcneill 				e->state = ENVSYS_SCRITICAL;
    641       1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    642       1.4  jmcneill 			} else if (batt_val <= sc->sc_warn_thres) {
    643       1.2  jmcneill 				e->state = ENVSYS_SWARNUNDER;
    644       1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    645       1.2  jmcneill 			} else {
    646       1.2  jmcneill 				e->state = ENVSYS_SVALID;
    647       1.2  jmcneill 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    648       1.2  jmcneill 			}
    649       1.2  jmcneill 		}
    650       1.2  jmcneill 		break;
    651      1.10  jmcneill 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    652      1.10  jmcneill 		if (battery_present &&
    653  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    654       1.2  jmcneill 		    (val & AXP_BATT_CAP_VALID) != 0) {
    655       1.2  jmcneill 			e->state = ENVSYS_SVALID;
    656       1.2  jmcneill 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    657       1.2  jmcneill 		}
    658       1.2  jmcneill 		break;
    659      1.10  jmcneill 	case AXP_SENSOR_BATT_VOLTAGE:
    660      1.10  jmcneill 		if (battery_present &&
    661  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
    662  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
    663      1.10  jmcneill 			e->state = ENVSYS_SVALID;
    664      1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    665      1.10  jmcneill 		}
    666      1.10  jmcneill 		break;
    667      1.10  jmcneill 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    668      1.10  jmcneill 		if (battery_present &&
    669  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    670      1.10  jmcneill 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    671  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
    672  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
    673      1.10  jmcneill 			e->state = ENVSYS_SVALID;
    674      1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    675      1.10  jmcneill 		}
    676      1.10  jmcneill 		break;
    677      1.10  jmcneill 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    678      1.10  jmcneill 		if (battery_present &&
    679  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    680      1.10  jmcneill 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    681  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
    682  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
    683      1.10  jmcneill 			e->state = ENVSYS_SVALID;
    684      1.10  jmcneill 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    685      1.10  jmcneill 		}
    686      1.10  jmcneill 		break;
    687      1.16  jakllsch 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    688      1.16  jakllsch 		if (battery_present &&
    689  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
    690  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
    691      1.16  jakllsch 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    692      1.16  jakllsch 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    693      1.16  jakllsch 		}
    694      1.16  jakllsch 		break;
    695      1.16  jakllsch 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    696      1.16  jakllsch 		if (battery_present &&
    697  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
    698  1.28.2.1        ad 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
    699      1.16  jakllsch 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    700      1.16  jakllsch 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    701      1.16  jakllsch 		}
    702      1.16  jakllsch 		break;
    703       1.2  jmcneill 	}
    704       1.8  jmcneill }
    705       1.8  jmcneill 
    706       1.8  jmcneill static void
    707       1.8  jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    708       1.8  jmcneill {
    709       1.8  jmcneill 	struct axppmic_softc *sc = sme->sme_cookie;
    710       1.8  jmcneill 
    711       1.8  jmcneill 	switch (e->private) {
    712      1.10  jmcneill 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    713      1.10  jmcneill 	case AXP_SENSOR_BATT_VOLTAGE:
    714      1.10  jmcneill 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    715      1.10  jmcneill 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    716      1.10  jmcneill 		/* Always update battery capacity and ADCs */
    717  1.28.2.1        ad 		iic_acquire_bus(sc->sc_i2c, 0);
    718       1.8  jmcneill 		axppmic_sensor_update(sme, e);
    719  1.28.2.1        ad 		iic_release_bus(sc->sc_i2c, 0);
    720       1.8  jmcneill 		break;
    721       1.8  jmcneill 	default:
    722       1.8  jmcneill 		/* Refresh if the sensor is not in valid state */
    723       1.8  jmcneill 		if (e->state != ENVSYS_SVALID) {
    724  1.28.2.1        ad 			iic_acquire_bus(sc->sc_i2c, 0);
    725       1.8  jmcneill 			axppmic_sensor_update(sme, e);
    726  1.28.2.1        ad 			iic_release_bus(sc->sc_i2c, 0);
    727       1.8  jmcneill 		}
    728       1.8  jmcneill 		break;
    729       1.8  jmcneill 	}
    730       1.8  jmcneill }
    731       1.8  jmcneill 
    732       1.8  jmcneill static int
    733       1.8  jmcneill axppmic_intr(void *priv)
    734       1.8  jmcneill {
    735  1.28.2.1        ad 	struct axppmic_softc * const sc = priv;
    736  1.28.2.1        ad 
    737  1.28.2.1        ad 	mutex_enter(&sc->sc_intr_lock);
    738  1.28.2.1        ad 
    739  1.28.2.1        ad 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
    740  1.28.2.1        ad 
    741  1.28.2.1        ad 	/* Interrupt is always masked when work is scheduled! */
    742  1.28.2.1        ad 	KASSERT(!sc->sc_work_scheduled);
    743  1.28.2.1        ad 	sc->sc_work_scheduled = true;
    744  1.28.2.1        ad 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
    745  1.28.2.1        ad 
    746  1.28.2.1        ad 	mutex_exit(&sc->sc_intr_lock);
    747  1.28.2.1        ad 
    748  1.28.2.1        ad 	return 1;
    749  1.28.2.1        ad }
    750  1.28.2.1        ad 
    751  1.28.2.1        ad static void
    752  1.28.2.1        ad axppmic_work(struct work *work, void *arg)
    753  1.28.2.1        ad {
    754  1.28.2.1        ad 	struct axppmic_softc * const sc =
    755  1.28.2.1        ad 	    container_of(work, struct axppmic_softc, sc_work);
    756  1.28.2.1        ad 	const struct axppmic_config * const c = sc->sc_conf;
    757  1.28.2.1        ad 	const int flags = 0;
    758       1.8  jmcneill 	uint8_t stat;
    759       1.8  jmcneill 	u_int n;
    760       1.8  jmcneill 
    761  1.28.2.1        ad 	KASSERT(sc->sc_work_scheduled);
    762  1.28.2.1        ad 
    763       1.8  jmcneill 	iic_acquire_bus(sc->sc_i2c, flags);
    764       1.8  jmcneill 	for (n = 1; n <= c->irq_regs; n++) {
    765       1.8  jmcneill 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    766  1.28.2.1        ad 			if (stat != 0) {
    767  1.28.2.1        ad 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    768  1.28.2.1        ad 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    769  1.28.2.1        ad 			}
    770  1.28.2.1        ad 
    771       1.8  jmcneill 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    772       1.8  jmcneill 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    773       1.8  jmcneill 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    774       1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    775       1.8  jmcneill 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    776       1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    777       1.8  jmcneill 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    778       1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    779       1.8  jmcneill 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    780       1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    781       1.8  jmcneill 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    782       1.8  jmcneill 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    783       1.8  jmcneill 		}
    784       1.8  jmcneill 	}
    785       1.2  jmcneill 	iic_release_bus(sc->sc_i2c, flags);
    786       1.8  jmcneill 
    787  1.28.2.1        ad 	mutex_enter(&sc->sc_intr_lock);
    788  1.28.2.1        ad 	sc->sc_work_scheduled = false;
    789  1.28.2.1        ad 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
    790  1.28.2.1        ad 	mutex_exit(&sc->sc_intr_lock);
    791       1.2  jmcneill }
    792       1.2  jmcneill 
    793       1.2  jmcneill static void
    794       1.3  jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc)
    795       1.3  jmcneill {
    796       1.3  jmcneill 	envsys_data_t *e;
    797       1.3  jmcneill 
    798       1.3  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    799       1.3  jmcneill 	e->private = AXP_SENSOR_ACIN_PRESENT;
    800       1.3  jmcneill 	e->units = ENVSYS_INDICATOR;
    801       1.3  jmcneill 	e->state = ENVSYS_SINVALID;
    802       1.3  jmcneill 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    803       1.3  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    804       1.3  jmcneill 
    805       1.3  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    806       1.3  jmcneill 	e->private = AXP_SENSOR_VBUS_PRESENT;
    807       1.3  jmcneill 	e->units = ENVSYS_INDICATOR;
    808       1.3  jmcneill 	e->state = ENVSYS_SINVALID;
    809       1.3  jmcneill 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    810       1.3  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    811       1.3  jmcneill }
    812       1.3  jmcneill 
    813       1.3  jmcneill static void
    814       1.2  jmcneill axppmic_attach_battery(struct axppmic_softc *sc)
    815       1.2  jmcneill {
    816      1.10  jmcneill 	const struct axppmic_config *c = sc->sc_conf;
    817       1.2  jmcneill 	envsys_data_t *e;
    818       1.4  jmcneill 	uint8_t val;
    819       1.4  jmcneill 
    820      1.27   thorpej 	iic_acquire_bus(sc->sc_i2c, 0);
    821  1.28.2.1        ad 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
    822       1.4  jmcneill 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    823       1.4  jmcneill 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    824       1.4  jmcneill 	}
    825      1.27   thorpej 	iic_release_bus(sc->sc_i2c, 0);
    826       1.2  jmcneill 
    827       1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    828       1.2  jmcneill 	e->private = AXP_SENSOR_BATT_PRESENT;
    829       1.2  jmcneill 	e->units = ENVSYS_INDICATOR;
    830       1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    831       1.2  jmcneill 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    832       1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    833       1.2  jmcneill 
    834       1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    835       1.2  jmcneill 	e->private = AXP_SENSOR_BATT_CHARGING;
    836       1.2  jmcneill 	e->units = ENVSYS_BATTERY_CHARGE;
    837       1.2  jmcneill 	e->state = ENVSYS_SINVALID;
    838       1.2  jmcneill 	strlcpy(e->desc, "charging", sizeof(e->desc));
    839       1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    840       1.2  jmcneill 
    841       1.2  jmcneill 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    842       1.2  jmcneill 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    843       1.2  jmcneill 	e->units = ENVSYS_BATTERY_CAPACITY;
    844       1.2  jmcneill 	e->flags = ENVSYS_FMONSTCHANGED;
    845       1.9  jmcneill 	e->state = ENVSYS_SINVALID;
    846       1.2  jmcneill 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    847       1.2  jmcneill 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    848       1.2  jmcneill 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    849       1.2  jmcneill 
    850      1.10  jmcneill 	if (c->batsense_step) {
    851      1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    852      1.10  jmcneill 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    853      1.10  jmcneill 		e->units = ENVSYS_SVOLTS_DC;
    854      1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    855      1.10  jmcneill 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
    856      1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    857      1.10  jmcneill 	}
    858      1.10  jmcneill 
    859      1.10  jmcneill 	if (c->charge_step) {
    860      1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
    861      1.10  jmcneill 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
    862      1.10  jmcneill 		e->units = ENVSYS_SAMPS;
    863      1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    864      1.10  jmcneill 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
    865      1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    866      1.10  jmcneill 	}
    867      1.10  jmcneill 
    868      1.10  jmcneill 	if (c->discharge_step) {
    869      1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
    870      1.10  jmcneill 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
    871      1.10  jmcneill 		e->units = ENVSYS_SAMPS;
    872      1.10  jmcneill 		e->state = ENVSYS_SINVALID;
    873      1.10  jmcneill 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
    874      1.10  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    875      1.10  jmcneill 	}
    876      1.10  jmcneill 
    877      1.10  jmcneill 	if (c->has_fuel_gauge) {
    878      1.10  jmcneill 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
    879      1.10  jmcneill 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
    880       1.2  jmcneill 		e->units = ENVSYS_INTEGER;
    881       1.2  jmcneill 		e->state = ENVSYS_SINVALID;
    882       1.2  jmcneill 		e->flags = ENVSYS_FPERCENT;
    883       1.2  jmcneill 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
    884       1.2  jmcneill 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    885       1.2  jmcneill 	}
    886      1.16  jakllsch 
    887      1.16  jakllsch 	if (c->maxcap_step) {
    888      1.16  jakllsch 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
    889      1.16  jakllsch 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
    890      1.16  jakllsch 		e->units = ENVSYS_SAMPHOUR;
    891      1.16  jakllsch 		e->state = ENVSYS_SINVALID;
    892      1.16  jakllsch 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
    893      1.16  jakllsch 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    894      1.16  jakllsch 	}
    895      1.16  jakllsch 
    896      1.16  jakllsch 	if (c->coulomb_step) {
    897      1.16  jakllsch 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
    898      1.16  jakllsch 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
    899      1.16  jakllsch 		e->units = ENVSYS_SAMPHOUR;
    900      1.16  jakllsch 		e->state = ENVSYS_SINVALID;
    901      1.16  jakllsch 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
    902      1.16  jakllsch 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    903      1.16  jakllsch 	}
    904       1.2  jmcneill }
    905       1.2  jmcneill 
    906       1.2  jmcneill static void
    907       1.2  jmcneill axppmic_attach_sensors(struct axppmic_softc *sc)
    908       1.2  jmcneill {
    909       1.8  jmcneill 	if (sc->sc_conf->has_battery) {
    910       1.2  jmcneill 		sc->sc_sme = sysmon_envsys_create();
    911       1.2  jmcneill 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    912       1.2  jmcneill 		sc->sc_sme->sme_cookie = sc;
    913       1.2  jmcneill 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
    914       1.2  jmcneill 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
    915       1.5  jmcneill 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
    916       1.2  jmcneill 
    917       1.3  jmcneill 		axppmic_attach_acadapter(sc);
    918       1.2  jmcneill 		axppmic_attach_battery(sc);
    919       1.2  jmcneill 
    920       1.2  jmcneill 		sysmon_envsys_register(sc->sc_sme);
    921       1.2  jmcneill 	}
    922       1.2  jmcneill }
    923       1.2  jmcneill 
    924       1.2  jmcneill 
    925       1.1  jmcneill static int
    926       1.1  jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux)
    927       1.1  jmcneill {
    928       1.1  jmcneill 	struct i2c_attach_args *ia = aux;
    929      1.12   thorpej 	int match_result;
    930       1.1  jmcneill 
    931      1.14   thorpej 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
    932      1.12   thorpej 		return match_result;
    933       1.1  jmcneill 
    934      1.11   thorpej 	/* This device is direct-config only. */
    935      1.11   thorpej 
    936      1.11   thorpej 	return 0;
    937       1.1  jmcneill }
    938       1.1  jmcneill 
    939       1.1  jmcneill static void
    940       1.1  jmcneill axppmic_attach(device_t parent, device_t self, void *aux)
    941       1.1  jmcneill {
    942       1.1  jmcneill 	struct axppmic_softc *sc = device_private(self);
    943      1.13   thorpej 	const struct device_compatible_entry *dce = NULL;
    944       1.1  jmcneill 	const struct axppmic_config *c;
    945       1.1  jmcneill 	struct axpreg_attach_args aaa;
    946       1.1  jmcneill 	struct i2c_attach_args *ia = aux;
    947       1.1  jmcneill 	int phandle, child, i;
    948      1.19  jmcneill 	uint8_t irq_mask, val;
    949      1.19  jmcneill 	int error;
    950       1.1  jmcneill 
    951      1.14   thorpej 	(void) iic_compatible_match(ia, compat_data, &dce);
    952      1.12   thorpej 	KASSERT(dce != NULL);
    953      1.14   thorpej 	c = (void *)dce->data;
    954       1.1  jmcneill 
    955       1.1  jmcneill 	sc->sc_dev = self;
    956       1.1  jmcneill 	sc->sc_i2c = ia->ia_tag;
    957       1.1  jmcneill 	sc->sc_addr = ia->ia_addr;
    958       1.1  jmcneill 	sc->sc_phandle = ia->ia_cookie;
    959       1.8  jmcneill 	sc->sc_conf = c;
    960       1.1  jmcneill 
    961       1.1  jmcneill 	aprint_naive("\n");
    962       1.1  jmcneill 	aprint_normal(": %s\n", c->name);
    963       1.1  jmcneill 
    964      1.19  jmcneill 	if (c->has_mode_set) {
    965      1.19  jmcneill 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
    966      1.19  jmcneill 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
    967      1.19  jmcneill 
    968      1.27   thorpej 		iic_acquire_bus(sc->sc_i2c, 0);
    969      1.19  jmcneill 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
    970      1.27   thorpej 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
    971      1.27   thorpej 		iic_release_bus(sc->sc_i2c, 0);
    972      1.19  jmcneill 	}
    973      1.19  jmcneill 
    974      1.27   thorpej 	iic_acquire_bus(sc->sc_i2c, 0);
    975      1.27   thorpej 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
    976      1.27   thorpej 	iic_release_bus(sc->sc_i2c, 0);
    977      1.19  jmcneill 	if (error != 0) {
    978      1.19  jmcneill 		aprint_error_dev(self, "couldn't read chipid\n");
    979      1.19  jmcneill 		return;
    980      1.19  jmcneill 	}
    981      1.19  jmcneill 	aprint_debug_dev(self, "chipid %#x\n", val);
    982      1.19  jmcneill 
    983       1.1  jmcneill 	sc->sc_smpsw.smpsw_name = device_xname(self);
    984       1.1  jmcneill 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
    985       1.1  jmcneill 	sysmon_pswitch_register(&sc->sc_smpsw);
    986       1.1  jmcneill 
    987  1.28.2.1        ad 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
    988  1.28.2.1        ad 
    989      1.19  jmcneill 	if (c->irq_regs > 0) {
    990  1.28.2.1        ad 		char intrstr[128];
    991  1.28.2.1        ad 
    992  1.28.2.1        ad 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
    993  1.28.2.1        ad 				     intrstr, sizeof(intrstr))) {
    994  1.28.2.1        ad 			aprint_error_dev(self,
    995  1.28.2.1        ad 			    "WARNING: failed to decode interrupt\n");
    996  1.28.2.1        ad 		}
    997  1.28.2.1        ad 
    998  1.28.2.1        ad 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
    999  1.28.2.1        ad 						  FDT_INTR_MPSAFE,
   1000  1.28.2.1        ad 						  axppmic_intr, sc);
   1001  1.28.2.1        ad 		if (sc->sc_ih == NULL) {
   1002  1.28.2.1        ad 			aprint_error_dev(self,
   1003  1.28.2.1        ad 			    "WARNING: couldn't establish interrupt handler\n");
   1004      1.19  jmcneill 		}
   1005      1.19  jmcneill 
   1006  1.28.2.1        ad 		error = workqueue_create(&sc->sc_wq, device_xname(self),
   1007  1.28.2.1        ad 					 axppmic_work, NULL,
   1008  1.28.2.1        ad 					 PRI_SOFTSERIAL, IPL_VM,
   1009  1.28.2.1        ad 					 WQ_MPSAFE);
   1010  1.28.2.1        ad 		if (error) {
   1011  1.28.2.1        ad 			sc->sc_wq = NULL;
   1012  1.28.2.1        ad 			aprint_error_dev(self,
   1013  1.28.2.1        ad 			    "WARNING: couldn't create work queue: error %d\n",
   1014  1.28.2.1        ad 			    error);
   1015  1.28.2.1        ad 		}
   1016  1.28.2.1        ad 
   1017  1.28.2.1        ad 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
   1018  1.28.2.1        ad 			iic_acquire_bus(sc->sc_i2c, 0);
   1019  1.28.2.1        ad 			for (i = 1; i <= c->irq_regs; i++) {
   1020  1.28.2.1        ad 				irq_mask = 0;
   1021  1.28.2.1        ad 				if (i == c->poklirq.reg)
   1022  1.28.2.1        ad 					irq_mask |= c->poklirq.mask;
   1023  1.28.2.1        ad 				if (i == c->acinirq.reg)
   1024  1.28.2.1        ad 					irq_mask |= c->acinirq.mask;
   1025  1.28.2.1        ad 				if (i == c->vbusirq.reg)
   1026  1.28.2.1        ad 					irq_mask |= c->vbusirq.mask;
   1027  1.28.2.1        ad 				if (i == c->battirq.reg)
   1028  1.28.2.1        ad 					irq_mask |= c->battirq.mask;
   1029  1.28.2.1        ad 				if (i == c->chargeirq.reg)
   1030  1.28.2.1        ad 					irq_mask |= c->chargeirq.mask;
   1031  1.28.2.1        ad 				if (i == c->chargestirq.reg)
   1032  1.28.2.1        ad 					irq_mask |= c->chargestirq.mask;
   1033  1.28.2.1        ad 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1034  1.28.2.1        ad 					      AXP_IRQ_ENABLE_REG(i),
   1035  1.28.2.1        ad 					      irq_mask, 0);
   1036  1.28.2.1        ad 			}
   1037  1.28.2.1        ad 			iic_release_bus(sc->sc_i2c, 0);
   1038      1.19  jmcneill 		}
   1039       1.1  jmcneill 	}
   1040       1.1  jmcneill 
   1041       1.1  jmcneill 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
   1042       1.1  jmcneill 	    &axppmic_power_funcs);
   1043       1.1  jmcneill 
   1044       1.1  jmcneill 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
   1045       1.2  jmcneill 	if (phandle > 0) {
   1046       1.2  jmcneill 		aaa.reg_i2c = sc->sc_i2c;
   1047       1.2  jmcneill 		aaa.reg_addr = sc->sc_addr;
   1048       1.2  jmcneill 		for (i = 0; i < c->ncontrols; i++) {
   1049       1.2  jmcneill 			const struct axppmic_ctrl *ctrl = &c->controls[i];
   1050       1.2  jmcneill 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
   1051       1.2  jmcneill 			if (child <= 0)
   1052       1.2  jmcneill 				continue;
   1053       1.2  jmcneill 			aaa.reg_ctrl = ctrl;
   1054       1.2  jmcneill 			aaa.reg_phandle = child;
   1055       1.2  jmcneill 			config_found(sc->sc_dev, &aaa, NULL);
   1056       1.2  jmcneill 		}
   1057       1.2  jmcneill 	}
   1058       1.1  jmcneill 
   1059       1.2  jmcneill 	if (c->has_battery)
   1060       1.2  jmcneill 		axppmic_attach_sensors(sc);
   1061       1.1  jmcneill }
   1062       1.1  jmcneill 
   1063       1.1  jmcneill static int
   1064       1.1  jmcneill axpreg_acquire(device_t dev)
   1065       1.1  jmcneill {
   1066       1.1  jmcneill 	return 0;
   1067       1.1  jmcneill }
   1068       1.1  jmcneill 
   1069       1.1  jmcneill static void
   1070       1.1  jmcneill axpreg_release(device_t dev)
   1071       1.1  jmcneill {
   1072       1.1  jmcneill }
   1073       1.1  jmcneill 
   1074       1.1  jmcneill static int
   1075       1.1  jmcneill axpreg_enable(device_t dev, bool enable)
   1076       1.1  jmcneill {
   1077       1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
   1078       1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1079      1.25   thorpej 	const int flags = 0;
   1080       1.1  jmcneill 	uint8_t val;
   1081       1.1  jmcneill 	int error;
   1082       1.1  jmcneill 
   1083       1.1  jmcneill 	if (!c->c_enable_mask)
   1084       1.1  jmcneill 		return EINVAL;
   1085       1.1  jmcneill 
   1086       1.1  jmcneill 	iic_acquire_bus(sc->sc_i2c, flags);
   1087       1.1  jmcneill 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
   1088      1.23  jmcneill 		val &= ~c->c_enable_mask;
   1089       1.1  jmcneill 		if (enable)
   1090      1.23  jmcneill 			val |= c->c_enable_val;
   1091       1.1  jmcneill 		else
   1092      1.23  jmcneill 			val |= c->c_disable_val;
   1093       1.1  jmcneill 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
   1094       1.1  jmcneill 	}
   1095       1.1  jmcneill 	iic_release_bus(sc->sc_i2c, flags);
   1096       1.1  jmcneill 
   1097       1.1  jmcneill 	return error;
   1098       1.1  jmcneill }
   1099       1.1  jmcneill 
   1100       1.1  jmcneill static int
   1101       1.1  jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
   1102       1.1  jmcneill {
   1103       1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
   1104       1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1105       1.1  jmcneill 
   1106       1.1  jmcneill 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
   1107       1.1  jmcneill 	    min_uvol / 1000, max_uvol / 1000);
   1108       1.1  jmcneill }
   1109       1.1  jmcneill 
   1110       1.1  jmcneill static int
   1111       1.1  jmcneill axpreg_get_voltage(device_t dev, u_int *puvol)
   1112       1.1  jmcneill {
   1113       1.1  jmcneill 	struct axpreg_softc *sc = device_private(dev);
   1114       1.1  jmcneill 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1115       1.1  jmcneill 	int error;
   1116       1.1  jmcneill 	u_int vol;
   1117       1.1  jmcneill 
   1118       1.1  jmcneill 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
   1119       1.1  jmcneill 	if (error)
   1120       1.1  jmcneill 		return error;
   1121       1.1  jmcneill 
   1122       1.1  jmcneill 	*puvol = vol * 1000;
   1123       1.1  jmcneill 	return 0;
   1124       1.1  jmcneill }
   1125       1.1  jmcneill 
   1126       1.1  jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = {
   1127       1.1  jmcneill 	.acquire = axpreg_acquire,
   1128       1.1  jmcneill 	.release = axpreg_release,
   1129       1.1  jmcneill 	.enable = axpreg_enable,
   1130       1.1  jmcneill 	.set_voltage = axpreg_set_voltage,
   1131       1.1  jmcneill 	.get_voltage = axpreg_get_voltage,
   1132       1.1  jmcneill };
   1133       1.1  jmcneill 
   1134       1.1  jmcneill static int
   1135       1.1  jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux)
   1136       1.1  jmcneill {
   1137       1.1  jmcneill 	return 1;
   1138       1.1  jmcneill }
   1139       1.1  jmcneill 
   1140       1.1  jmcneill static void
   1141       1.1  jmcneill axpreg_attach(device_t parent, device_t self, void *aux)
   1142       1.1  jmcneill {
   1143       1.1  jmcneill 	struct axpreg_softc *sc = device_private(self);
   1144       1.1  jmcneill 	struct axpreg_attach_args *aaa = aux;
   1145       1.1  jmcneill 	const int phandle = aaa->reg_phandle;
   1146       1.1  jmcneill 	const char *name;
   1147      1.20  jmcneill 	u_int uvol, min_uvol, max_uvol;
   1148       1.1  jmcneill 
   1149       1.1  jmcneill 	sc->sc_dev = self;
   1150       1.1  jmcneill 	sc->sc_i2c = aaa->reg_i2c;
   1151       1.1  jmcneill 	sc->sc_addr = aaa->reg_addr;
   1152       1.1  jmcneill 	sc->sc_ctrl = aaa->reg_ctrl;
   1153       1.1  jmcneill 
   1154       1.1  jmcneill 	fdtbus_register_regulator_controller(self, phandle,
   1155       1.1  jmcneill 	    &axpreg_funcs);
   1156       1.1  jmcneill 
   1157       1.1  jmcneill 	aprint_naive("\n");
   1158       1.1  jmcneill 	name = fdtbus_get_string(phandle, "regulator-name");
   1159       1.1  jmcneill 	if (name)
   1160       1.1  jmcneill 		aprint_normal(": %s\n", name);
   1161       1.1  jmcneill 	else
   1162       1.1  jmcneill 		aprint_normal("\n");
   1163      1.20  jmcneill 
   1164      1.20  jmcneill 	axpreg_get_voltage(self, &uvol);
   1165      1.20  jmcneill 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1166      1.20  jmcneill 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1167      1.20  jmcneill 		if (uvol < min_uvol || uvol > max_uvol) {
   1168      1.22  jmcneill 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
   1169      1.22  jmcneill 			    uvol, min_uvol, max_uvol);
   1170      1.20  jmcneill 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1171      1.20  jmcneill 		}
   1172      1.20  jmcneill 	}
   1173      1.22  jmcneill 
   1174      1.22  jmcneill 	if (of_hasprop(phandle, "regulator-always-on") ||
   1175      1.22  jmcneill 	    of_hasprop(phandle, "regulator-boot-on")) {
   1176      1.22  jmcneill 		axpreg_enable(self, true);
   1177      1.22  jmcneill 	}
   1178       1.1  jmcneill }
   1179       1.1  jmcneill 
   1180       1.1  jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1181       1.1  jmcneill     axppmic_match, axppmic_attach, NULL, NULL);
   1182       1.1  jmcneill 
   1183       1.1  jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1184       1.1  jmcneill     axpreg_match, axpreg_attach, NULL, NULL);
   1185