axppmic.c revision 1.37.8.1 1 1.37.8.1 perseant /* $NetBSD: axppmic.c,v 1.37.8.1 2025/08/02 05:56:39 perseant Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.37.8.1 perseant __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.37.8.1 2025/08/02 05:56:39 perseant Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/systm.h>
34 1.1 jmcneill #include <sys/kernel.h>
35 1.1 jmcneill #include <sys/device.h>
36 1.1 jmcneill #include <sys/conf.h>
37 1.1 jmcneill #include <sys/bus.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.29 thorpej #include <sys/workqueue.h>
40 1.1 jmcneill
41 1.1 jmcneill #include <dev/i2c/i2cvar.h>
42 1.1 jmcneill
43 1.1 jmcneill #include <dev/sysmon/sysmonvar.h>
44 1.1 jmcneill #include <dev/sysmon/sysmon_taskq.h>
45 1.1 jmcneill
46 1.1 jmcneill #include <dev/fdt/fdtvar.h>
47 1.1 jmcneill
48 1.3 jmcneill #define AXP_POWER_SOURCE_REG 0x00
49 1.3 jmcneill #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
50 1.3 jmcneill #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
51 1.10 jmcneill #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52 1.3 jmcneill
53 1.2 jmcneill #define AXP_POWER_MODE_REG 0x01
54 1.2 jmcneill #define AXP_POWER_MODE_BATT_VALID __BIT(4)
55 1.2 jmcneill #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
56 1.2 jmcneill #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
57 1.2 jmcneill
58 1.19 jmcneill #define AXP_CHIP_ID_REG 0x03
59 1.19 jmcneill
60 1.1 jmcneill #define AXP_POWER_DISABLE_REG 0x32
61 1.1 jmcneill #define AXP_POWER_DISABLE_CTRL __BIT(7)
62 1.1 jmcneill
63 1.1 jmcneill #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
64 1.5 jmcneill #define AXP_IRQ1_ACIN_RAISE __BIT(6)
65 1.5 jmcneill #define AXP_IRQ1_ACIN_LOWER __BIT(5)
66 1.5 jmcneill #define AXP_IRQ1_VBUS_RAISE __BIT(3)
67 1.5 jmcneill #define AXP_IRQ1_VBUS_LOWER __BIT(2)
68 1.1 jmcneill #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
69 1.1 jmcneill
70 1.10 jmcneill #define AXP_BATSENSE_HI_REG 0x78
71 1.10 jmcneill #define AXP_BATSENSE_LO_REG 0x79
72 1.10 jmcneill
73 1.10 jmcneill #define AXP_BATTCHG_HI_REG 0x7a
74 1.10 jmcneill #define AXP_BATTCHG_LO_REG 0x7b
75 1.10 jmcneill
76 1.10 jmcneill #define AXP_BATTDISCHG_HI_REG 0x7c
77 1.10 jmcneill #define AXP_BATTDISCHG_LO_REG 0x7d
78 1.10 jmcneill
79 1.10 jmcneill #define AXP_ADC_RAW(_hi, _lo) \
80 1.15 jakllsch (((u_int)(_hi) << 4) | ((_lo) & 0xf))
81 1.10 jmcneill
82 1.37 jmcneill #define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2)
83 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0)
84 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_LOW 0
85 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_HIGH 1
86 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_INPUT 2
87 1.37 jmcneill #define AXP_GPIO_SIGNAL_REG 0x94
88 1.37 jmcneill
89 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
90 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
91 1.10 jmcneill
92 1.2 jmcneill #define AXP_BATT_CAP_REG 0xb9
93 1.2 jmcneill #define AXP_BATT_CAP_VALID __BIT(7)
94 1.2 jmcneill #define AXP_BATT_CAP_PERCENT __BITS(6,0)
95 1.2 jmcneill
96 1.16 jakllsch #define AXP_BATT_MAX_CAP_HI_REG 0xe0
97 1.16 jakllsch #define AXP_BATT_MAX_CAP_VALID __BIT(7)
98 1.16 jakllsch #define AXP_BATT_MAX_CAP_LO_REG 0xe1
99 1.16 jakllsch
100 1.16 jakllsch #define AXP_BATT_COULOMB_HI_REG 0xe2
101 1.16 jakllsch #define AXP_BATT_COULOMB_VALID __BIT(7)
102 1.16 jakllsch #define AXP_BATT_COULOMB_LO_REG 0xe3
103 1.16 jakllsch
104 1.16 jakllsch #define AXP_COULOMB_RAW(_hi, _lo) \
105 1.16 jakllsch (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
106 1.16 jakllsch
107 1.2 jmcneill #define AXP_BATT_CAP_WARN_REG 0xe6
108 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
109 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
110 1.2 jmcneill
111 1.19 jmcneill #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
112 1.19 jmcneill #define AXP_ADDR_EXT_MASTER 0
113 1.19 jmcneill #define AXP_ADDR_EXT_SLAVE __BIT(4)
114 1.19 jmcneill
115 1.1 jmcneill struct axppmic_ctrl {
116 1.1 jmcneill device_t c_dev;
117 1.1 jmcneill
118 1.1 jmcneill const char * c_name;
119 1.1 jmcneill u_int c_min;
120 1.1 jmcneill u_int c_max;
121 1.1 jmcneill u_int c_step1;
122 1.1 jmcneill u_int c_step1cnt;
123 1.1 jmcneill u_int c_step2;
124 1.1 jmcneill u_int c_step2cnt;
125 1.24 jmcneill u_int c_step2start;
126 1.1 jmcneill
127 1.1 jmcneill uint8_t c_enable_reg;
128 1.1 jmcneill uint8_t c_enable_mask;
129 1.23 jmcneill uint8_t c_enable_val;
130 1.23 jmcneill uint8_t c_disable_val;
131 1.1 jmcneill
132 1.1 jmcneill uint8_t c_voltage_reg;
133 1.1 jmcneill uint8_t c_voltage_mask;
134 1.1 jmcneill };
135 1.1 jmcneill
136 1.1 jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
137 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
138 1.1 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
139 1.1 jmcneill .c_step2 = 0, .c_step2cnt = 0, \
140 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
141 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
142 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143 1.1 jmcneill
144 1.1 jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
145 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
146 1.1 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \
147 1.1 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \
148 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
149 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
150 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
151 1.1 jmcneill
152 1.24 jmcneill #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
153 1.24 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
154 1.24 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \
155 1.24 jmcneill .c_step2start = (step2start), \
156 1.24 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \
157 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
158 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
159 1.24 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160 1.24 jmcneill
161 1.23 jmcneill #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \
162 1.23 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
163 1.23 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
164 1.23 jmcneill .c_step2 = 0, .c_step2cnt = 0, \
165 1.23 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
166 1.23 jmcneill .c_enable_val = (eval), .c_disable_val = (dval), \
167 1.23 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
168 1.23 jmcneill
169 1.24 jmcneill #define AXP_CTRL_SW(name, ereg, emask) \
170 1.24 jmcneill { .c_name = (name), \
171 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
172 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0 }
173 1.23 jmcneill
174 1.1 jmcneill static const struct axppmic_ctrl axp803_ctrls[] = {
175 1.1 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
176 1.1 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
177 1.1 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
178 1.1 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
179 1.1 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
180 1.1 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
181 1.1 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
182 1.1 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
183 1.1 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
184 1.1 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
185 1.1 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
186 1.1 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
187 1.1 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
188 1.1 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
189 1.1 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
190 1.1 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
191 1.1 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
192 1.1 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
193 1.1 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
194 1.1 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
195 1.6 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
196 1.1 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
197 1.6 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
198 1.1 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
199 1.6 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
200 1.1 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
201 1.1 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
202 1.1 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
203 1.1 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
204 1.1 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
205 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
206 1.1 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
207 1.1 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
208 1.1 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
209 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
210 1.1 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
211 1.1 jmcneill };
212 1.1 jmcneill
213 1.1 jmcneill static const struct axppmic_ctrl axp805_ctrls[] = {
214 1.1 jmcneill AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
215 1.1 jmcneill 0x10, __BIT(0), 0x12, __BITS(6,0)),
216 1.1 jmcneill AXP_CTRL("dcdcb", 1000, 2550, 50,
217 1.1 jmcneill 0x10, __BIT(1), 0x13, __BITS(4,0)),
218 1.1 jmcneill AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
219 1.1 jmcneill 0x10, __BIT(2), 0x14, __BITS(6,0)),
220 1.1 jmcneill AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
221 1.1 jmcneill 0x10, __BIT(3), 0x15, __BITS(5,0)),
222 1.1 jmcneill AXP_CTRL("dcdce", 1100, 3400, 100,
223 1.1 jmcneill 0x10, __BIT(4), 0x16, __BITS(4,0)),
224 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
225 1.1 jmcneill 0x10, __BIT(5), 0x17, __BITS(4,0)),
226 1.1 jmcneill AXP_CTRL("aldo2", 700, 3400, 100,
227 1.1 jmcneill 0x10, __BIT(6), 0x18, __BITS(4,0)),
228 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
229 1.1 jmcneill 0x10, __BIT(7), 0x19, __BITS(4,0)),
230 1.1 jmcneill AXP_CTRL("bldo1", 700, 1900, 100,
231 1.1 jmcneill 0x11, __BIT(0), 0x20, __BITS(3,0)),
232 1.1 jmcneill AXP_CTRL("bldo2", 700, 1900, 100,
233 1.1 jmcneill 0x11, __BIT(1), 0x21, __BITS(3,0)),
234 1.1 jmcneill AXP_CTRL("bldo3", 700, 1900, 100,
235 1.1 jmcneill 0x11, __BIT(2), 0x22, __BITS(3,0)),
236 1.1 jmcneill AXP_CTRL("bldo4", 700, 1900, 100,
237 1.1 jmcneill 0x11, __BIT(3), 0x23, __BITS(3,0)),
238 1.37.8.1 perseant AXP_CTRL("cldo1", 700, 3300, 100,
239 1.1 jmcneill 0x11, __BIT(4), 0x24, __BITS(4,0)),
240 1.1 jmcneill AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
241 1.1 jmcneill 0x11, __BIT(5), 0x25, __BITS(4,0)),
242 1.37.8.1 perseant AXP_CTRL("cldo3", 700, 3300, 100,
243 1.1 jmcneill 0x11, __BIT(6), 0x26, __BITS(4,0)),
244 1.1 jmcneill };
245 1.1 jmcneill
246 1.21 jmcneill static const struct axppmic_ctrl axp809_ctrls[] = {
247 1.24 jmcneill AXP_CTRL("dc5ldo", 700, 1400, 100,
248 1.24 jmcneill 0x10, __BIT(0), 0x1c, __BITS(2,0)),
249 1.24 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
250 1.24 jmcneill 0x10, __BIT(1), 0x21, __BITS(4,0)),
251 1.24 jmcneill AXP_CTRL("dcdc2", 600, 1540, 20,
252 1.24 jmcneill 0x10, __BIT(2), 0x22, __BITS(5,0)),
253 1.24 jmcneill AXP_CTRL("dcdc3", 600, 1860, 20,
254 1.24 jmcneill 0x10, __BIT(3), 0x23, __BITS(5,0)),
255 1.24 jmcneill AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
256 1.24 jmcneill 0x10, __BIT(4), 0x24, __BITS(5,0)),
257 1.24 jmcneill AXP_CTRL("dcdc5", 1000, 2550, 50,
258 1.24 jmcneill 0x10, __BIT(5), 0x25, __BITS(4,0)),
259 1.24 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
260 1.24 jmcneill 0x10, __BIT(6), 0x28, __BITS(4,0)),
261 1.24 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
262 1.24 jmcneill 0x10, __BIT(7), 0x29, __BITS(4,0)),
263 1.24 jmcneill AXP_CTRL("eldo1", 700, 3300, 100,
264 1.24 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
265 1.24 jmcneill AXP_CTRL("eldo2", 700, 3300, 100,
266 1.24 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
267 1.24 jmcneill AXP_CTRL("eldo3", 700, 3300, 100,
268 1.24 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
269 1.24 jmcneill AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
270 1.24 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
271 1.24 jmcneill AXP_CTRL("dldo2", 700, 3300, 100,
272 1.24 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
273 1.24 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
274 1.24 jmcneill 0x12, __BIT(5), 0x2a, __BITS(4,0)),
275 1.24 jmcneill AXP_CTRL_SW("sw",
276 1.24 jmcneill 0x12, __BIT(6)),
277 1.24 jmcneill /* dc1sw is another switch for dcdc1 */
278 1.24 jmcneill AXP_CTRL("dc1sw", 1600, 3400, 100,
279 1.24 jmcneill 0x12, __BIT(7), 0x21, __BITS(4,0)),
280 1.23 jmcneill AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
281 1.23 jmcneill 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
282 1.23 jmcneill AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
283 1.23 jmcneill 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
284 1.21 jmcneill };
285 1.21 jmcneill
286 1.17 jmcneill static const struct axppmic_ctrl axp813_ctrls[] = {
287 1.17 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
288 1.17 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
289 1.17 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
290 1.17 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
291 1.17 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
292 1.17 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
293 1.17 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
294 1.17 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
295 1.17 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
296 1.17 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
297 1.17 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
298 1.17 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
299 1.17 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
300 1.17 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
301 1.17 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
302 1.17 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
303 1.17 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
304 1.17 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
305 1.17 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
306 1.17 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
307 1.17 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
308 1.17 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
309 1.17 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
310 1.17 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
311 1.17 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
312 1.17 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
313 1.17 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
314 1.17 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
315 1.17 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
316 1.17 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
317 1.17 jmcneill AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
318 1.17 jmcneill 0x10, __BIT(6), 0x26, __BITS(6,0)),
319 1.17 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
320 1.17 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
321 1.17 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
322 1.17 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
323 1.17 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
324 1.17 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
325 1.17 jmcneill };
326 1.17 jmcneill
327 1.37.8.1 perseant static const struct axppmic_ctrl axp15060_ctrls[] = {
328 1.37.8.1 perseant AXP_CTRL( "dcdc1", 1500, 3400, 100,
329 1.37.8.1 perseant 0x13, __BITS(4, 0),
330 1.37.8.1 perseant 0x10, __BIT(0)),
331 1.37.8.1 perseant // DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
332 1.37.8.1 perseant AXP_CTRL2_RANGE("dcdc2",
333 1.37.8.1 perseant 500, 1540, 70, 10, 1220, 16 , 20,
334 1.37.8.1 perseant 0x14, __BITS(6, 0),
335 1.37.8.1 perseant 0x10, __BIT(1)),
336 1.37.8.1 perseant // DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
337 1.37.8.1 perseant AXP_CTRL2_RANGE("dcdc3",
338 1.37.8.1 perseant 500, 1540, 70, 10, 1220, 16 , 20,
339 1.37.8.1 perseant 0x15, __BITS(6, 0),
340 1.37.8.1 perseant 0x10, __BIT(2)),
341 1.37.8.1 perseant // DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
342 1.37.8.1 perseant AXP_CTRL2_RANGE("dcdc4",
343 1.37.8.1 perseant 500, 1540, 70, 10, 1220, 16 , 20,
344 1.37.8.1 perseant 0x16, __BITS(6, 0),
345 1.37.8.1 perseant 0x10, __BIT(3)),
346 1.37.8.1 perseant // DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM
347 1.37.8.1 perseant AXP_CTRL2_RANGE("dcdc5",
348 1.37.8.1 perseant 800, 1840,
349 1.37.8.1 perseant 32, 10,
350 1.37.8.1 perseant 1140, 35, 20,
351 1.37.8.1 perseant 0x17, __BITS(6, 0),
352 1.37.8.1 perseant 0x10, __BIT(4)),
353 1.37.8.1 perseant AXP_CTRL("dcdc6", 500, 3400, 100,
354 1.37.8.1 perseant 0x18, __BITS(4, 0),
355 1.37.8.1 perseant 0x10, __BIT(5)),
356 1.37.8.1 perseant AXP_CTRL("aldo1", 700, 3300, 100,
357 1.37.8.1 perseant 0x19, __BITS(4, 0),
358 1.37.8.1 perseant 0x11, __BIT(0)),
359 1.37.8.1 perseant AXP_CTRL("aldo2", 700, 3300, 100,
360 1.37.8.1 perseant 0x20, __BITS(4, 0),
361 1.37.8.1 perseant 0x11, __BIT(1)),
362 1.37.8.1 perseant AXP_CTRL("aldo3", 700, 3300, 100,
363 1.37.8.1 perseant 0x21, __BITS(4, 0),
364 1.37.8.1 perseant 0x11, __BIT(2)),
365 1.37.8.1 perseant AXP_CTRL("aldo4", 700, 3300, 100,
366 1.37.8.1 perseant 0x22, __BITS(4, 0),
367 1.37.8.1 perseant 0x11, __BIT(3)),
368 1.37.8.1 perseant AXP_CTRL("aldo5", 700, 3300, 100,
369 1.37.8.1 perseant 0x23, __BITS(4, 0),
370 1.37.8.1 perseant 0x11, __BIT(4)),
371 1.37.8.1 perseant AXP_CTRL("bldo1", 700, 3300, 100,
372 1.37.8.1 perseant 0x24, __BITS(4, 0),
373 1.37.8.1 perseant 0x11, __BIT(5)),
374 1.37.8.1 perseant AXP_CTRL("bldo2", 700, 3300, 100,
375 1.37.8.1 perseant 0x25, __BITS(4, 0),
376 1.37.8.1 perseant 0x11, __BIT(6)),
377 1.37.8.1 perseant AXP_CTRL("bldo3", 700, 3300, 100,
378 1.37.8.1 perseant 0x26, __BITS(4, 0),
379 1.37.8.1 perseant 0x11, __BIT(7)),
380 1.37.8.1 perseant AXP_CTRL("bldo4", 700, 3300, 100,
381 1.37.8.1 perseant 0x27, __BITS(4, 0),
382 1.37.8.1 perseant 0x12, __BIT(0)),
383 1.37.8.1 perseant AXP_CTRL("bldo5", 700, 3300, 100,
384 1.37.8.1 perseant 0x28, __BITS(4, 0),
385 1.37.8.1 perseant 0x12, __BIT(1)),
386 1.37.8.1 perseant AXP_CTRL("cldo1", 700, 3300, 100,
387 1.37.8.1 perseant 0x29, __BITS(4, 0),
388 1.37.8.1 perseant 0x12, __BIT(2)),
389 1.37.8.1 perseant AXP_CTRL("cldo2", 700, 3300, 100,
390 1.37.8.1 perseant 0x2a, __BITS(4, 0),
391 1.37.8.1 perseant 0x12, __BIT(3)),
392 1.37.8.1 perseant AXP_CTRL("cldo3", 700, 3300, 100,
393 1.37.8.1 perseant 0x2b, __BITS(4, 0),
394 1.37.8.1 perseant 0x12, __BIT(4)),
395 1.37.8.1 perseant AXP_CTRL("cldo4", 700, 4200, 100,
396 1.37.8.1 perseant 0x2d, __BITS(5, 0),
397 1.37.8.1 perseant 0x12, __BIT(5)),
398 1.37.8.1 perseant AXP_CTRL("cpusldo", 700, 1400, 50,
399 1.37.8.1 perseant 0x2e, __BITS(3, 0),
400 1.37.8.1 perseant 0x12, __BIT(6)),
401 1.37.8.1 perseant };
402 1.37.8.1 perseant
403 1.37.8.1 perseant
404 1.8 jmcneill struct axppmic_irq {
405 1.8 jmcneill u_int reg;
406 1.8 jmcneill uint8_t mask;
407 1.8 jmcneill };
408 1.8 jmcneill
409 1.8 jmcneill #define AXPPMIC_IRQ(_reg, _mask) \
410 1.8 jmcneill { .reg = (_reg), .mask = (_mask) }
411 1.8 jmcneill
412 1.1 jmcneill struct axppmic_config {
413 1.1 jmcneill const char *name;
414 1.37 jmcneill const char *gpio_compat;
415 1.37 jmcneill u_int gpio_npins;
416 1.1 jmcneill const struct axppmic_ctrl *controls;
417 1.1 jmcneill u_int ncontrols;
418 1.1 jmcneill u_int irq_regs;
419 1.2 jmcneill bool has_battery;
420 1.2 jmcneill bool has_fuel_gauge;
421 1.19 jmcneill bool has_mode_set;
422 1.8 jmcneill struct axppmic_irq poklirq;
423 1.8 jmcneill struct axppmic_irq acinirq;
424 1.8 jmcneill struct axppmic_irq vbusirq;
425 1.8 jmcneill struct axppmic_irq battirq;
426 1.8 jmcneill struct axppmic_irq chargeirq;
427 1.8 jmcneill struct axppmic_irq chargestirq;
428 1.10 jmcneill u_int batsense_step; /* uV */
429 1.10 jmcneill u_int charge_step; /* uA */
430 1.10 jmcneill u_int discharge_step; /* uA */
431 1.10 jmcneill u_int maxcap_step; /* uAh */
432 1.10 jmcneill u_int coulomb_step; /* uAh */
433 1.2 jmcneill };
434 1.2 jmcneill
435 1.2 jmcneill enum axppmic_sensor {
436 1.3 jmcneill AXP_SENSOR_ACIN_PRESENT,
437 1.3 jmcneill AXP_SENSOR_VBUS_PRESENT,
438 1.2 jmcneill AXP_SENSOR_BATT_PRESENT,
439 1.2 jmcneill AXP_SENSOR_BATT_CHARGING,
440 1.2 jmcneill AXP_SENSOR_BATT_CHARGE_STATE,
441 1.10 jmcneill AXP_SENSOR_BATT_VOLTAGE,
442 1.10 jmcneill AXP_SENSOR_BATT_CHARGE_CURRENT,
443 1.10 jmcneill AXP_SENSOR_BATT_DISCHARGE_CURRENT,
444 1.10 jmcneill AXP_SENSOR_BATT_CAPACITY_PERCENT,
445 1.16 jakllsch AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
446 1.16 jakllsch AXP_SENSOR_BATT_CURRENT_CAPACITY,
447 1.2 jmcneill AXP_NSENSORS
448 1.1 jmcneill };
449 1.1 jmcneill
450 1.1 jmcneill struct axppmic_softc {
451 1.1 jmcneill device_t sc_dev;
452 1.1 jmcneill i2c_tag_t sc_i2c;
453 1.1 jmcneill i2c_addr_t sc_addr;
454 1.1 jmcneill int sc_phandle;
455 1.1 jmcneill
456 1.29 thorpej void *sc_ih;
457 1.29 thorpej struct workqueue *sc_wq;
458 1.29 thorpej
459 1.29 thorpej kmutex_t sc_intr_lock;
460 1.29 thorpej struct work sc_work;
461 1.29 thorpej bool sc_work_scheduled;
462 1.29 thorpej
463 1.8 jmcneill const struct axppmic_config *sc_conf;
464 1.2 jmcneill
465 1.1 jmcneill struct sysmon_pswitch sc_smpsw;
466 1.1 jmcneill
467 1.2 jmcneill struct sysmon_envsys *sc_sme;
468 1.3 jmcneill
469 1.2 jmcneill envsys_data_t sc_sensor[AXP_NSENSORS];
470 1.4 jmcneill
471 1.4 jmcneill u_int sc_warn_thres;
472 1.4 jmcneill u_int sc_shut_thres;
473 1.1 jmcneill };
474 1.1 jmcneill
475 1.37 jmcneill struct axppmic_gpio_pin {
476 1.37 jmcneill struct axppmic_softc *pin_sc;
477 1.37 jmcneill u_int pin_nr;
478 1.37 jmcneill int pin_flags;
479 1.37 jmcneill bool pin_actlo;
480 1.37 jmcneill };
481 1.37 jmcneill
482 1.1 jmcneill struct axpreg_softc {
483 1.1 jmcneill device_t sc_dev;
484 1.1 jmcneill i2c_tag_t sc_i2c;
485 1.1 jmcneill i2c_addr_t sc_addr;
486 1.1 jmcneill const struct axppmic_ctrl *sc_ctrl;
487 1.1 jmcneill };
488 1.1 jmcneill
489 1.1 jmcneill struct axpreg_attach_args {
490 1.1 jmcneill const struct axppmic_ctrl *reg_ctrl;
491 1.1 jmcneill int reg_phandle;
492 1.1 jmcneill i2c_tag_t reg_i2c;
493 1.1 jmcneill i2c_addr_t reg_addr;
494 1.1 jmcneill };
495 1.1 jmcneill
496 1.1 jmcneill static const struct axppmic_config axp803_config = {
497 1.1 jmcneill .name = "AXP803",
498 1.37 jmcneill .gpio_compat = "x-powers,axp803-gpio",
499 1.37 jmcneill .gpio_npins = 2,
500 1.1 jmcneill .controls = axp803_ctrls,
501 1.1 jmcneill .ncontrols = __arraycount(axp803_ctrls),
502 1.1 jmcneill .irq_regs = 6,
503 1.2 jmcneill .has_battery = true,
504 1.2 jmcneill .has_fuel_gauge = true,
505 1.10 jmcneill .batsense_step = 1100,
506 1.10 jmcneill .charge_step = 1000,
507 1.10 jmcneill .discharge_step = 1000,
508 1.16 jakllsch .maxcap_step = 1456,
509 1.16 jakllsch .coulomb_step = 1456,
510 1.8 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
511 1.8 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
512 1.8 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
513 1.8 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
514 1.8 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
515 1.37.8.1 perseant .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
516 1.1 jmcneill };
517 1.1 jmcneill
518 1.1 jmcneill static const struct axppmic_config axp805_config = {
519 1.19 jmcneill .name = "AXP805",
520 1.19 jmcneill .controls = axp805_ctrls,
521 1.19 jmcneill .ncontrols = __arraycount(axp805_ctrls),
522 1.19 jmcneill .irq_regs = 2,
523 1.19 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
524 1.19 jmcneill };
525 1.19 jmcneill
526 1.19 jmcneill static const struct axppmic_config axp806_config = {
527 1.19 jmcneill .name = "AXP806",
528 1.1 jmcneill .controls = axp805_ctrls,
529 1.1 jmcneill .ncontrols = __arraycount(axp805_ctrls),
530 1.19 jmcneill #if notyet
531 1.1 jmcneill .irq_regs = 2,
532 1.8 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
533 1.19 jmcneill #endif
534 1.19 jmcneill .has_mode_set = true,
535 1.1 jmcneill };
536 1.1 jmcneill
537 1.21 jmcneill static const struct axppmic_config axp809_config = {
538 1.21 jmcneill .name = "AXP809",
539 1.21 jmcneill .controls = axp809_ctrls,
540 1.21 jmcneill .ncontrols = __arraycount(axp809_ctrls),
541 1.21 jmcneill };
542 1.21 jmcneill
543 1.17 jmcneill static const struct axppmic_config axp813_config = {
544 1.17 jmcneill .name = "AXP813",
545 1.37 jmcneill .gpio_compat = "x-powers,axp813-gpio",
546 1.37 jmcneill .gpio_npins = 2,
547 1.17 jmcneill .controls = axp813_ctrls,
548 1.17 jmcneill .ncontrols = __arraycount(axp813_ctrls),
549 1.17 jmcneill .irq_regs = 6,
550 1.17 jmcneill .has_battery = true,
551 1.17 jmcneill .has_fuel_gauge = true,
552 1.17 jmcneill .batsense_step = 1100,
553 1.17 jmcneill .charge_step = 1000,
554 1.17 jmcneill .discharge_step = 1000,
555 1.17 jmcneill .maxcap_step = 1456,
556 1.17 jmcneill .coulomb_step = 1456,
557 1.17 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
558 1.17 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
559 1.17 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
560 1.17 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
561 1.17 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
562 1.37.8.1 perseant .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
563 1.37.8.1 perseant };
564 1.37.8.1 perseant
565 1.37.8.1 perseant static const struct axppmic_config axp15060_config = {
566 1.37.8.1 perseant .name = "AXP15060",
567 1.37.8.1 perseant .controls = axp15060_ctrls,
568 1.37.8.1 perseant .ncontrols = __arraycount(axp15060_ctrls),
569 1.17 jmcneill };
570 1.17 jmcneill
571 1.14 thorpej static const struct device_compatible_entry compat_data[] = {
572 1.30 thorpej { .compat = "x-powers,axp803", .data = &axp803_config },
573 1.30 thorpej { .compat = "x-powers,axp805", .data = &axp805_config },
574 1.30 thorpej { .compat = "x-powers,axp806", .data = &axp806_config },
575 1.30 thorpej { .compat = "x-powers,axp809", .data = &axp809_config },
576 1.30 thorpej { .compat = "x-powers,axp813", .data = &axp813_config },
577 1.37.8.1 perseant { .compat = "x-powers,axp15060", .data = &axp15060_config },
578 1.33 thorpej DEVICE_COMPAT_EOL
579 1.1 jmcneill };
580 1.1 jmcneill
581 1.1 jmcneill static int
582 1.1 jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
583 1.1 jmcneill {
584 1.1 jmcneill return iic_smbus_read_byte(tag, addr, reg, val, flags);
585 1.1 jmcneill }
586 1.1 jmcneill
587 1.1 jmcneill static int
588 1.1 jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
589 1.1 jmcneill {
590 1.1 jmcneill return iic_smbus_write_byte(tag, addr, reg, val, flags);
591 1.1 jmcneill }
592 1.1 jmcneill
593 1.1 jmcneill static int
594 1.1 jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
595 1.1 jmcneill {
596 1.1 jmcneill u_int vol, reg_val;
597 1.1 jmcneill int nstep, error;
598 1.1 jmcneill uint8_t val;
599 1.1 jmcneill
600 1.1 jmcneill if (!c->c_voltage_mask)
601 1.1 jmcneill return EINVAL;
602 1.1 jmcneill
603 1.1 jmcneill if (min < c->c_min || min > c->c_max)
604 1.1 jmcneill return EINVAL;
605 1.1 jmcneill
606 1.1 jmcneill reg_val = 0;
607 1.1 jmcneill nstep = 1;
608 1.1 jmcneill vol = c->c_min;
609 1.1 jmcneill
610 1.1 jmcneill for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
611 1.1 jmcneill ++reg_val;
612 1.1 jmcneill vol += c->c_step1;
613 1.1 jmcneill }
614 1.24 jmcneill
615 1.24 jmcneill if (c->c_step2start)
616 1.24 jmcneill vol = c->c_step2start;
617 1.24 jmcneill
618 1.1 jmcneill for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
619 1.1 jmcneill ++reg_val;
620 1.1 jmcneill vol += c->c_step2;
621 1.1 jmcneill }
622 1.1 jmcneill
623 1.1 jmcneill if (vol > max)
624 1.1 jmcneill return EINVAL;
625 1.1 jmcneill
626 1.29 thorpej iic_acquire_bus(tag, 0);
627 1.29 thorpej if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
628 1.1 jmcneill val &= ~c->c_voltage_mask;
629 1.1 jmcneill val |= __SHIFTIN(reg_val, c->c_voltage_mask);
630 1.29 thorpej error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
631 1.1 jmcneill }
632 1.29 thorpej iic_release_bus(tag, 0);
633 1.1 jmcneill
634 1.1 jmcneill return error;
635 1.1 jmcneill }
636 1.1 jmcneill
637 1.1 jmcneill static int
638 1.1 jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
639 1.1 jmcneill {
640 1.1 jmcneill int reg_val, error;
641 1.1 jmcneill uint8_t val;
642 1.1 jmcneill
643 1.1 jmcneill if (!c->c_voltage_mask)
644 1.1 jmcneill return EINVAL;
645 1.1 jmcneill
646 1.29 thorpej iic_acquire_bus(tag, 0);
647 1.29 thorpej error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
648 1.29 thorpej iic_release_bus(tag, 0);
649 1.1 jmcneill if (error)
650 1.1 jmcneill return error;
651 1.1 jmcneill
652 1.1 jmcneill reg_val = __SHIFTOUT(val, c->c_voltage_mask);
653 1.1 jmcneill if (reg_val < c->c_step1cnt) {
654 1.1 jmcneill *pvol = c->c_min + reg_val * c->c_step1;
655 1.24 jmcneill } else if (c->c_step2start) {
656 1.24 jmcneill *pvol = c->c_step2start +
657 1.24 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2);
658 1.1 jmcneill } else {
659 1.1 jmcneill *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
660 1.1 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2);
661 1.1 jmcneill }
662 1.1 jmcneill
663 1.1 jmcneill return 0;
664 1.1 jmcneill }
665 1.1 jmcneill
666 1.1 jmcneill static void
667 1.1 jmcneill axppmic_power_poweroff(device_t dev)
668 1.1 jmcneill {
669 1.1 jmcneill struct axppmic_softc *sc = device_private(dev);
670 1.28 thorpej int error;
671 1.1 jmcneill
672 1.1 jmcneill delay(1000000);
673 1.1 jmcneill
674 1.29 thorpej error = iic_acquire_bus(sc->sc_i2c, 0);
675 1.28 thorpej if (error == 0) {
676 1.28 thorpej error = axppmic_write(sc->sc_i2c, sc->sc_addr,
677 1.29 thorpej AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
678 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
679 1.28 thorpej }
680 1.28 thorpej if (error) {
681 1.28 thorpej device_printf(dev, "WARNING: unable to power off, error %d\n",
682 1.28 thorpej error);
683 1.28 thorpej }
684 1.1 jmcneill }
685 1.1 jmcneill
686 1.1 jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = {
687 1.1 jmcneill .poweroff = axppmic_power_poweroff,
688 1.1 jmcneill };
689 1.1 jmcneill
690 1.37 jmcneill static int
691 1.37 jmcneill axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
692 1.37 jmcneill {
693 1.37 jmcneill uint8_t val;
694 1.37 jmcneill int error;
695 1.37 jmcneill
696 1.37 jmcneill KASSERT(pin < sc->sc_conf->gpio_npins);
697 1.37 jmcneill KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
698 1.37 jmcneill
699 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0);
700 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
701 1.37 jmcneill &val, 0);
702 1.37 jmcneill if (error == 0) {
703 1.37 jmcneill val &= ~AXP_GPIO_CTRL_FUNC_MASK;
704 1.37 jmcneill val |= func;
705 1.37 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr,
706 1.37 jmcneill AXP_GPIO_CTRL_REG(pin), val, 0);
707 1.37 jmcneill }
708 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0);
709 1.37 jmcneill
710 1.37 jmcneill return error;
711 1.37 jmcneill }
712 1.37 jmcneill
713 1.37 jmcneill static void *
714 1.37 jmcneill axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
715 1.37 jmcneill {
716 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
717 1.37 jmcneill struct axppmic_gpio_pin *gpin;
718 1.37 jmcneill const u_int *gpio = data;
719 1.37 jmcneill int error;
720 1.37 jmcneill
721 1.37 jmcneill if (len != 12) {
722 1.37 jmcneill return NULL;
723 1.37 jmcneill }
724 1.37 jmcneill
725 1.37 jmcneill const uint8_t pin = be32toh(gpio[1]) & 0xff;
726 1.37 jmcneill const bool actlo = be32toh(gpio[2]) & 1;
727 1.37 jmcneill
728 1.37 jmcneill if (pin >= sc->sc_conf->gpio_npins) {
729 1.37 jmcneill return NULL;
730 1.37 jmcneill }
731 1.37 jmcneill
732 1.37 jmcneill if ((flags & GPIO_PIN_INPUT) != 0) {
733 1.37 jmcneill error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
734 1.37 jmcneill if (error != 0) {
735 1.37 jmcneill return NULL;
736 1.37 jmcneill }
737 1.37 jmcneill }
738 1.37 jmcneill
739 1.37 jmcneill gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
740 1.37 jmcneill gpin->pin_sc = sc;
741 1.37 jmcneill gpin->pin_nr = pin;
742 1.37 jmcneill gpin->pin_flags = flags;
743 1.37 jmcneill gpin->pin_actlo = actlo;
744 1.37 jmcneill
745 1.37 jmcneill return gpin;
746 1.37 jmcneill }
747 1.37 jmcneill
748 1.37 jmcneill static void
749 1.37 jmcneill axppmic_gpio_release(device_t dev, void *priv)
750 1.37 jmcneill {
751 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
752 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
753 1.37 jmcneill
754 1.37 jmcneill axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
755 1.37 jmcneill
756 1.37 jmcneill kmem_free(gpin, sizeof(*gpin));
757 1.37 jmcneill }
758 1.37 jmcneill
759 1.37 jmcneill static int
760 1.37 jmcneill axppmic_gpio_read(device_t dev, void *priv, bool raw)
761 1.37 jmcneill {
762 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
763 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
764 1.37 jmcneill uint8_t data;
765 1.37 jmcneill int error, val;
766 1.37 jmcneill
767 1.37 jmcneill KASSERT(sc == gpin->pin_sc);
768 1.37 jmcneill
769 1.37 jmcneill const uint8_t data_mask = __BIT(gpin->pin_nr);
770 1.37 jmcneill
771 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0);
772 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
773 1.37 jmcneill &data, 0);
774 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0);
775 1.37 jmcneill
776 1.37 jmcneill if (error != 0) {
777 1.37 jmcneill device_printf(dev, "WARNING: failed to read pin %d: %d\n",
778 1.37 jmcneill gpin->pin_nr, error);
779 1.37 jmcneill val = 0;
780 1.37 jmcneill } else {
781 1.37 jmcneill val = __SHIFTOUT(data, data_mask);
782 1.37 jmcneill }
783 1.37 jmcneill if (!raw && gpin->pin_actlo) {
784 1.37 jmcneill val = !val;
785 1.37 jmcneill }
786 1.37 jmcneill
787 1.37 jmcneill return val;
788 1.37 jmcneill }
789 1.37 jmcneill
790 1.37 jmcneill static void
791 1.37 jmcneill axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
792 1.37 jmcneill {
793 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
794 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
795 1.37 jmcneill int error;
796 1.37 jmcneill
797 1.37 jmcneill if (!raw && gpin->pin_actlo) {
798 1.37 jmcneill val = !val;
799 1.37 jmcneill }
800 1.37 jmcneill
801 1.37 jmcneill error = axppmic_gpio_ctl(sc, gpin->pin_nr,
802 1.37 jmcneill val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
803 1.37 jmcneill if (error != 0) {
804 1.37 jmcneill device_printf(dev, "WARNING: failed to write pin %d: %d\n",
805 1.37 jmcneill gpin->pin_nr, error);
806 1.37 jmcneill }
807 1.37 jmcneill }
808 1.37 jmcneill
809 1.37 jmcneill static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
810 1.37 jmcneill .acquire = axppmic_gpio_acquire,
811 1.37 jmcneill .release = axppmic_gpio_release,
812 1.37 jmcneill .read = axppmic_gpio_read,
813 1.37 jmcneill .write = axppmic_gpio_write,
814 1.37 jmcneill };
815 1.37 jmcneill
816 1.1 jmcneill static void
817 1.1 jmcneill axppmic_task_shut(void *priv)
818 1.1 jmcneill {
819 1.1 jmcneill struct axppmic_softc *sc = priv;
820 1.1 jmcneill
821 1.1 jmcneill sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
822 1.1 jmcneill }
823 1.1 jmcneill
824 1.2 jmcneill static void
825 1.8 jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
826 1.2 jmcneill {
827 1.2 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
828 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
829 1.10 jmcneill uint8_t val, lo, hi;
830 1.2 jmcneill
831 1.2 jmcneill e->state = ENVSYS_SINVALID;
832 1.2 jmcneill
833 1.10 jmcneill const bool battery_present =
834 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
835 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
836 1.10 jmcneill
837 1.2 jmcneill switch (e->private) {
838 1.3 jmcneill case AXP_SENSOR_ACIN_PRESENT:
839 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
840 1.3 jmcneill e->state = ENVSYS_SVALID;
841 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
842 1.3 jmcneill }
843 1.3 jmcneill break;
844 1.3 jmcneill case AXP_SENSOR_VBUS_PRESENT:
845 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
846 1.3 jmcneill e->state = ENVSYS_SVALID;
847 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
848 1.3 jmcneill }
849 1.3 jmcneill break;
850 1.2 jmcneill case AXP_SENSOR_BATT_PRESENT:
851 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
852 1.2 jmcneill if (val & AXP_POWER_MODE_BATT_VALID) {
853 1.2 jmcneill e->state = ENVSYS_SVALID;
854 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
855 1.2 jmcneill }
856 1.2 jmcneill }
857 1.2 jmcneill break;
858 1.2 jmcneill case AXP_SENSOR_BATT_CHARGING:
859 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
860 1.2 jmcneill e->state = ENVSYS_SVALID;
861 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
862 1.2 jmcneill }
863 1.2 jmcneill break;
864 1.2 jmcneill case AXP_SENSOR_BATT_CHARGE_STATE:
865 1.10 jmcneill if (battery_present &&
866 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
867 1.4 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
868 1.2 jmcneill const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
869 1.4 jmcneill if (batt_val <= sc->sc_shut_thres) {
870 1.2 jmcneill e->state = ENVSYS_SCRITICAL;
871 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
872 1.4 jmcneill } else if (batt_val <= sc->sc_warn_thres) {
873 1.2 jmcneill e->state = ENVSYS_SWARNUNDER;
874 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
875 1.2 jmcneill } else {
876 1.2 jmcneill e->state = ENVSYS_SVALID;
877 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
878 1.2 jmcneill }
879 1.2 jmcneill }
880 1.2 jmcneill break;
881 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
882 1.10 jmcneill if (battery_present &&
883 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
884 1.2 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
885 1.2 jmcneill e->state = ENVSYS_SVALID;
886 1.2 jmcneill e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
887 1.2 jmcneill }
888 1.2 jmcneill break;
889 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
890 1.10 jmcneill if (battery_present &&
891 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
892 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
893 1.10 jmcneill e->state = ENVSYS_SVALID;
894 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
895 1.10 jmcneill }
896 1.10 jmcneill break;
897 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
898 1.10 jmcneill if (battery_present &&
899 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
900 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
901 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
902 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
903 1.10 jmcneill e->state = ENVSYS_SVALID;
904 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
905 1.10 jmcneill }
906 1.10 jmcneill break;
907 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
908 1.10 jmcneill if (battery_present &&
909 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
910 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
911 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
912 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
913 1.10 jmcneill e->state = ENVSYS_SVALID;
914 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
915 1.10 jmcneill }
916 1.10 jmcneill break;
917 1.16 jakllsch case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
918 1.16 jakllsch if (battery_present &&
919 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
920 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
921 1.16 jakllsch e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
922 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
923 1.16 jakllsch }
924 1.16 jakllsch break;
925 1.16 jakllsch case AXP_SENSOR_BATT_CURRENT_CAPACITY:
926 1.16 jakllsch if (battery_present &&
927 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
928 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
929 1.16 jakllsch e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
930 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
931 1.16 jakllsch }
932 1.16 jakllsch break;
933 1.2 jmcneill }
934 1.8 jmcneill }
935 1.8 jmcneill
936 1.8 jmcneill static void
937 1.8 jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
938 1.8 jmcneill {
939 1.8 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
940 1.8 jmcneill
941 1.8 jmcneill switch (e->private) {
942 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
943 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
944 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
945 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
946 1.10 jmcneill /* Always update battery capacity and ADCs */
947 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
948 1.8 jmcneill axppmic_sensor_update(sme, e);
949 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
950 1.8 jmcneill break;
951 1.8 jmcneill default:
952 1.8 jmcneill /* Refresh if the sensor is not in valid state */
953 1.8 jmcneill if (e->state != ENVSYS_SVALID) {
954 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
955 1.8 jmcneill axppmic_sensor_update(sme, e);
956 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
957 1.8 jmcneill }
958 1.8 jmcneill break;
959 1.8 jmcneill }
960 1.8 jmcneill }
961 1.8 jmcneill
962 1.8 jmcneill static int
963 1.8 jmcneill axppmic_intr(void *priv)
964 1.8 jmcneill {
965 1.29 thorpej struct axppmic_softc * const sc = priv;
966 1.29 thorpej
967 1.29 thorpej mutex_enter(&sc->sc_intr_lock);
968 1.29 thorpej
969 1.29 thorpej fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
970 1.29 thorpej
971 1.29 thorpej /* Interrupt is always masked when work is scheduled! */
972 1.29 thorpej KASSERT(!sc->sc_work_scheduled);
973 1.29 thorpej sc->sc_work_scheduled = true;
974 1.29 thorpej workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
975 1.29 thorpej
976 1.29 thorpej mutex_exit(&sc->sc_intr_lock);
977 1.29 thorpej
978 1.29 thorpej return 1;
979 1.29 thorpej }
980 1.29 thorpej
981 1.29 thorpej static void
982 1.29 thorpej axppmic_work(struct work *work, void *arg)
983 1.29 thorpej {
984 1.29 thorpej struct axppmic_softc * const sc =
985 1.29 thorpej container_of(work, struct axppmic_softc, sc_work);
986 1.29 thorpej const struct axppmic_config * const c = sc->sc_conf;
987 1.29 thorpej const int flags = 0;
988 1.8 jmcneill uint8_t stat;
989 1.8 jmcneill u_int n;
990 1.8 jmcneill
991 1.29 thorpej KASSERT(sc->sc_work_scheduled);
992 1.29 thorpej
993 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
994 1.8 jmcneill for (n = 1; n <= c->irq_regs; n++) {
995 1.8 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
996 1.29 thorpej if (stat != 0) {
997 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr,
998 1.29 thorpej AXP_IRQ_STATUS_REG(n), stat, flags);
999 1.29 thorpej }
1000 1.29 thorpej
1001 1.8 jmcneill if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
1002 1.8 jmcneill sysmon_task_queue_sched(0, axppmic_task_shut, sc);
1003 1.8 jmcneill if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
1004 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
1005 1.8 jmcneill if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
1006 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
1007 1.8 jmcneill if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
1008 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
1009 1.8 jmcneill if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
1010 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
1011 1.8 jmcneill if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
1012 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
1013 1.8 jmcneill }
1014 1.8 jmcneill }
1015 1.2 jmcneill iic_release_bus(sc->sc_i2c, flags);
1016 1.8 jmcneill
1017 1.29 thorpej mutex_enter(&sc->sc_intr_lock);
1018 1.29 thorpej sc->sc_work_scheduled = false;
1019 1.29 thorpej fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
1020 1.29 thorpej mutex_exit(&sc->sc_intr_lock);
1021 1.2 jmcneill }
1022 1.2 jmcneill
1023 1.2 jmcneill static void
1024 1.3 jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc)
1025 1.3 jmcneill {
1026 1.3 jmcneill envsys_data_t *e;
1027 1.3 jmcneill
1028 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
1029 1.3 jmcneill e->private = AXP_SENSOR_ACIN_PRESENT;
1030 1.3 jmcneill e->units = ENVSYS_INDICATOR;
1031 1.3 jmcneill e->state = ENVSYS_SINVALID;
1032 1.3 jmcneill strlcpy(e->desc, "ACIN present", sizeof(e->desc));
1033 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1034 1.3 jmcneill
1035 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
1036 1.3 jmcneill e->private = AXP_SENSOR_VBUS_PRESENT;
1037 1.3 jmcneill e->units = ENVSYS_INDICATOR;
1038 1.3 jmcneill e->state = ENVSYS_SINVALID;
1039 1.3 jmcneill strlcpy(e->desc, "VBUS present", sizeof(e->desc));
1040 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1041 1.3 jmcneill }
1042 1.3 jmcneill
1043 1.3 jmcneill static void
1044 1.2 jmcneill axppmic_attach_battery(struct axppmic_softc *sc)
1045 1.2 jmcneill {
1046 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
1047 1.2 jmcneill envsys_data_t *e;
1048 1.4 jmcneill uint8_t val;
1049 1.4 jmcneill
1050 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1051 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
1052 1.4 jmcneill sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
1053 1.4 jmcneill sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
1054 1.4 jmcneill }
1055 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
1056 1.2 jmcneill
1057 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
1058 1.2 jmcneill e->private = AXP_SENSOR_BATT_PRESENT;
1059 1.2 jmcneill e->units = ENVSYS_INDICATOR;
1060 1.2 jmcneill e->state = ENVSYS_SINVALID;
1061 1.2 jmcneill strlcpy(e->desc, "battery present", sizeof(e->desc));
1062 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1063 1.2 jmcneill
1064 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
1065 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGING;
1066 1.2 jmcneill e->units = ENVSYS_BATTERY_CHARGE;
1067 1.2 jmcneill e->state = ENVSYS_SINVALID;
1068 1.2 jmcneill strlcpy(e->desc, "charging", sizeof(e->desc));
1069 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1070 1.2 jmcneill
1071 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
1072 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_STATE;
1073 1.2 jmcneill e->units = ENVSYS_BATTERY_CAPACITY;
1074 1.2 jmcneill e->flags = ENVSYS_FMONSTCHANGED;
1075 1.9 jmcneill e->state = ENVSYS_SINVALID;
1076 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
1077 1.2 jmcneill strlcpy(e->desc, "charge state", sizeof(e->desc));
1078 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1079 1.2 jmcneill
1080 1.10 jmcneill if (c->batsense_step) {
1081 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
1082 1.10 jmcneill e->private = AXP_SENSOR_BATT_VOLTAGE;
1083 1.10 jmcneill e->units = ENVSYS_SVOLTS_DC;
1084 1.10 jmcneill e->state = ENVSYS_SINVALID;
1085 1.10 jmcneill strlcpy(e->desc, "battery voltage", sizeof(e->desc));
1086 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1087 1.10 jmcneill }
1088 1.10 jmcneill
1089 1.10 jmcneill if (c->charge_step) {
1090 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
1091 1.10 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
1092 1.10 jmcneill e->units = ENVSYS_SAMPS;
1093 1.10 jmcneill e->state = ENVSYS_SINVALID;
1094 1.10 jmcneill strlcpy(e->desc, "battery charge current", sizeof(e->desc));
1095 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1096 1.10 jmcneill }
1097 1.10 jmcneill
1098 1.10 jmcneill if (c->discharge_step) {
1099 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
1100 1.10 jmcneill e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
1101 1.10 jmcneill e->units = ENVSYS_SAMPS;
1102 1.10 jmcneill e->state = ENVSYS_SINVALID;
1103 1.10 jmcneill strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
1104 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1105 1.10 jmcneill }
1106 1.10 jmcneill
1107 1.10 jmcneill if (c->has_fuel_gauge) {
1108 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
1109 1.10 jmcneill e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
1110 1.2 jmcneill e->units = ENVSYS_INTEGER;
1111 1.2 jmcneill e->state = ENVSYS_SINVALID;
1112 1.2 jmcneill e->flags = ENVSYS_FPERCENT;
1113 1.2 jmcneill strlcpy(e->desc, "battery percent", sizeof(e->desc));
1114 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1115 1.2 jmcneill }
1116 1.16 jakllsch
1117 1.16 jakllsch if (c->maxcap_step) {
1118 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
1119 1.16 jakllsch e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
1120 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
1121 1.16 jakllsch e->state = ENVSYS_SINVALID;
1122 1.16 jakllsch strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
1123 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
1124 1.16 jakllsch }
1125 1.16 jakllsch
1126 1.16 jakllsch if (c->coulomb_step) {
1127 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
1128 1.16 jakllsch e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
1129 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
1130 1.16 jakllsch e->state = ENVSYS_SINVALID;
1131 1.16 jakllsch strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
1132 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
1133 1.16 jakllsch }
1134 1.2 jmcneill }
1135 1.2 jmcneill
1136 1.2 jmcneill static void
1137 1.2 jmcneill axppmic_attach_sensors(struct axppmic_softc *sc)
1138 1.2 jmcneill {
1139 1.8 jmcneill if (sc->sc_conf->has_battery) {
1140 1.2 jmcneill sc->sc_sme = sysmon_envsys_create();
1141 1.2 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1142 1.2 jmcneill sc->sc_sme->sme_cookie = sc;
1143 1.2 jmcneill sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
1144 1.2 jmcneill sc->sc_sme->sme_class = SME_CLASS_BATTERY;
1145 1.5 jmcneill sc->sc_sme->sme_flags = SME_INIT_REFRESH;
1146 1.2 jmcneill
1147 1.3 jmcneill axppmic_attach_acadapter(sc);
1148 1.2 jmcneill axppmic_attach_battery(sc);
1149 1.2 jmcneill
1150 1.2 jmcneill sysmon_envsys_register(sc->sc_sme);
1151 1.2 jmcneill }
1152 1.2 jmcneill }
1153 1.2 jmcneill
1154 1.2 jmcneill
1155 1.1 jmcneill static int
1156 1.1 jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux)
1157 1.1 jmcneill {
1158 1.1 jmcneill struct i2c_attach_args *ia = aux;
1159 1.12 thorpej int match_result;
1160 1.1 jmcneill
1161 1.14 thorpej if (iic_use_direct_match(ia, match, compat_data, &match_result))
1162 1.12 thorpej return match_result;
1163 1.1 jmcneill
1164 1.11 thorpej /* This device is direct-config only. */
1165 1.11 thorpej
1166 1.11 thorpej return 0;
1167 1.1 jmcneill }
1168 1.1 jmcneill
1169 1.1 jmcneill static void
1170 1.1 jmcneill axppmic_attach(device_t parent, device_t self, void *aux)
1171 1.1 jmcneill {
1172 1.1 jmcneill struct axppmic_softc *sc = device_private(self);
1173 1.13 thorpej const struct device_compatible_entry *dce = NULL;
1174 1.1 jmcneill const struct axppmic_config *c;
1175 1.1 jmcneill struct axpreg_attach_args aaa;
1176 1.1 jmcneill struct i2c_attach_args *ia = aux;
1177 1.1 jmcneill int phandle, child, i;
1178 1.19 jmcneill uint8_t irq_mask, val;
1179 1.19 jmcneill int error;
1180 1.1 jmcneill
1181 1.31 thorpej dce = iic_compatible_lookup(ia, compat_data);
1182 1.12 thorpej KASSERT(dce != NULL);
1183 1.30 thorpej c = dce->data;
1184 1.1 jmcneill
1185 1.1 jmcneill sc->sc_dev = self;
1186 1.1 jmcneill sc->sc_i2c = ia->ia_tag;
1187 1.1 jmcneill sc->sc_addr = ia->ia_addr;
1188 1.1 jmcneill sc->sc_phandle = ia->ia_cookie;
1189 1.8 jmcneill sc->sc_conf = c;
1190 1.1 jmcneill
1191 1.1 jmcneill aprint_naive("\n");
1192 1.1 jmcneill aprint_normal(": %s\n", c->name);
1193 1.1 jmcneill
1194 1.19 jmcneill if (c->has_mode_set) {
1195 1.37.8.1 perseant const bool master_mode =
1196 1.37.8.1 perseant of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
1197 1.19 jmcneill of_hasprop(sc->sc_phandle, "x-powers,master-mode");
1198 1.19 jmcneill
1199 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1200 1.19 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
1201 1.27 thorpej master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
1202 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
1203 1.19 jmcneill }
1204 1.19 jmcneill
1205 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1206 1.27 thorpej error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
1207 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
1208 1.19 jmcneill if (error != 0) {
1209 1.19 jmcneill aprint_error_dev(self, "couldn't read chipid\n");
1210 1.19 jmcneill return;
1211 1.19 jmcneill }
1212 1.19 jmcneill aprint_debug_dev(self, "chipid %#x\n", val);
1213 1.19 jmcneill
1214 1.1 jmcneill sc->sc_smpsw.smpsw_name = device_xname(self);
1215 1.1 jmcneill sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
1216 1.1 jmcneill sysmon_pswitch_register(&sc->sc_smpsw);
1217 1.1 jmcneill
1218 1.29 thorpej mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
1219 1.29 thorpej
1220 1.19 jmcneill if (c->irq_regs > 0) {
1221 1.29 thorpej char intrstr[128];
1222 1.29 thorpej
1223 1.29 thorpej if (!fdtbus_intr_str(sc->sc_phandle, 0,
1224 1.29 thorpej intrstr, sizeof(intrstr))) {
1225 1.29 thorpej aprint_error_dev(self,
1226 1.29 thorpej "WARNING: failed to decode interrupt\n");
1227 1.29 thorpej }
1228 1.29 thorpej
1229 1.29 thorpej sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
1230 1.29 thorpej FDT_INTR_MPSAFE,
1231 1.29 thorpej axppmic_intr, sc);
1232 1.29 thorpej if (sc->sc_ih == NULL) {
1233 1.29 thorpej aprint_error_dev(self,
1234 1.29 thorpej "WARNING: couldn't establish interrupt handler\n");
1235 1.29 thorpej }
1236 1.29 thorpej
1237 1.29 thorpej error = workqueue_create(&sc->sc_wq, device_xname(self),
1238 1.29 thorpej axppmic_work, NULL,
1239 1.29 thorpej PRI_SOFTSERIAL, IPL_VM,
1240 1.29 thorpej WQ_MPSAFE);
1241 1.29 thorpej if (error) {
1242 1.29 thorpej sc->sc_wq = NULL;
1243 1.29 thorpej aprint_error_dev(self,
1244 1.29 thorpej "WARNING: couldn't create work queue: error %d\n",
1245 1.29 thorpej error);
1246 1.19 jmcneill }
1247 1.19 jmcneill
1248 1.29 thorpej if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1249 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1250 1.29 thorpej for (i = 1; i <= c->irq_regs; i++) {
1251 1.29 thorpej irq_mask = 0;
1252 1.29 thorpej if (i == c->poklirq.reg)
1253 1.29 thorpej irq_mask |= c->poklirq.mask;
1254 1.29 thorpej if (i == c->acinirq.reg)
1255 1.29 thorpej irq_mask |= c->acinirq.mask;
1256 1.29 thorpej if (i == c->vbusirq.reg)
1257 1.29 thorpej irq_mask |= c->vbusirq.mask;
1258 1.29 thorpej if (i == c->battirq.reg)
1259 1.29 thorpej irq_mask |= c->battirq.mask;
1260 1.29 thorpej if (i == c->chargeirq.reg)
1261 1.29 thorpej irq_mask |= c->chargeirq.mask;
1262 1.29 thorpej if (i == c->chargestirq.reg)
1263 1.29 thorpej irq_mask |= c->chargestirq.mask;
1264 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr,
1265 1.29 thorpej AXP_IRQ_ENABLE_REG(i),
1266 1.29 thorpej irq_mask, 0);
1267 1.29 thorpej }
1268 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
1269 1.19 jmcneill }
1270 1.1 jmcneill }
1271 1.1 jmcneill
1272 1.1 jmcneill fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1273 1.1 jmcneill &axppmic_power_funcs);
1274 1.1 jmcneill
1275 1.37 jmcneill if (c->gpio_compat != NULL) {
1276 1.37 jmcneill phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
1277 1.37 jmcneill if (phandle > 0) {
1278 1.37 jmcneill fdtbus_register_gpio_controller(self, phandle,
1279 1.37 jmcneill &axppmic_gpio_funcs);
1280 1.37 jmcneill }
1281 1.37 jmcneill }
1282 1.37 jmcneill
1283 1.1 jmcneill phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1284 1.2 jmcneill if (phandle > 0) {
1285 1.2 jmcneill aaa.reg_i2c = sc->sc_i2c;
1286 1.2 jmcneill aaa.reg_addr = sc->sc_addr;
1287 1.2 jmcneill for (i = 0; i < c->ncontrols; i++) {
1288 1.2 jmcneill const struct axppmic_ctrl *ctrl = &c->controls[i];
1289 1.2 jmcneill child = of_find_firstchild_byname(phandle, ctrl->c_name);
1290 1.2 jmcneill if (child <= 0)
1291 1.2 jmcneill continue;
1292 1.2 jmcneill aaa.reg_ctrl = ctrl;
1293 1.2 jmcneill aaa.reg_phandle = child;
1294 1.36 thorpej config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
1295 1.2 jmcneill }
1296 1.2 jmcneill }
1297 1.1 jmcneill
1298 1.2 jmcneill if (c->has_battery)
1299 1.2 jmcneill axppmic_attach_sensors(sc);
1300 1.1 jmcneill }
1301 1.1 jmcneill
1302 1.1 jmcneill static int
1303 1.1 jmcneill axpreg_acquire(device_t dev)
1304 1.1 jmcneill {
1305 1.1 jmcneill return 0;
1306 1.1 jmcneill }
1307 1.1 jmcneill
1308 1.1 jmcneill static void
1309 1.1 jmcneill axpreg_release(device_t dev)
1310 1.1 jmcneill {
1311 1.1 jmcneill }
1312 1.1 jmcneill
1313 1.1 jmcneill static int
1314 1.1 jmcneill axpreg_enable(device_t dev, bool enable)
1315 1.1 jmcneill {
1316 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1317 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1318 1.25 thorpej const int flags = 0;
1319 1.1 jmcneill uint8_t val;
1320 1.1 jmcneill int error;
1321 1.1 jmcneill
1322 1.1 jmcneill if (!c->c_enable_mask)
1323 1.1 jmcneill return EINVAL;
1324 1.1 jmcneill
1325 1.1 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
1326 1.1 jmcneill if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1327 1.23 jmcneill val &= ~c->c_enable_mask;
1328 1.1 jmcneill if (enable)
1329 1.23 jmcneill val |= c->c_enable_val;
1330 1.1 jmcneill else
1331 1.23 jmcneill val |= c->c_disable_val;
1332 1.1 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1333 1.1 jmcneill }
1334 1.1 jmcneill iic_release_bus(sc->sc_i2c, flags);
1335 1.1 jmcneill
1336 1.1 jmcneill return error;
1337 1.1 jmcneill }
1338 1.1 jmcneill
1339 1.1 jmcneill static int
1340 1.1 jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1341 1.1 jmcneill {
1342 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1343 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1344 1.1 jmcneill
1345 1.1 jmcneill return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1346 1.1 jmcneill min_uvol / 1000, max_uvol / 1000);
1347 1.1 jmcneill }
1348 1.1 jmcneill
1349 1.1 jmcneill static int
1350 1.1 jmcneill axpreg_get_voltage(device_t dev, u_int *puvol)
1351 1.1 jmcneill {
1352 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1353 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1354 1.1 jmcneill int error;
1355 1.1 jmcneill u_int vol;
1356 1.1 jmcneill
1357 1.1 jmcneill error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1358 1.1 jmcneill if (error)
1359 1.1 jmcneill return error;
1360 1.1 jmcneill
1361 1.1 jmcneill *puvol = vol * 1000;
1362 1.1 jmcneill return 0;
1363 1.1 jmcneill }
1364 1.1 jmcneill
1365 1.1 jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = {
1366 1.1 jmcneill .acquire = axpreg_acquire,
1367 1.1 jmcneill .release = axpreg_release,
1368 1.1 jmcneill .enable = axpreg_enable,
1369 1.1 jmcneill .set_voltage = axpreg_set_voltage,
1370 1.1 jmcneill .get_voltage = axpreg_get_voltage,
1371 1.1 jmcneill };
1372 1.1 jmcneill
1373 1.1 jmcneill static int
1374 1.1 jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux)
1375 1.1 jmcneill {
1376 1.1 jmcneill return 1;
1377 1.1 jmcneill }
1378 1.1 jmcneill
1379 1.1 jmcneill static void
1380 1.1 jmcneill axpreg_attach(device_t parent, device_t self, void *aux)
1381 1.1 jmcneill {
1382 1.1 jmcneill struct axpreg_softc *sc = device_private(self);
1383 1.1 jmcneill struct axpreg_attach_args *aaa = aux;
1384 1.1 jmcneill const int phandle = aaa->reg_phandle;
1385 1.1 jmcneill const char *name;
1386 1.20 jmcneill u_int uvol, min_uvol, max_uvol;
1387 1.1 jmcneill
1388 1.1 jmcneill sc->sc_dev = self;
1389 1.1 jmcneill sc->sc_i2c = aaa->reg_i2c;
1390 1.1 jmcneill sc->sc_addr = aaa->reg_addr;
1391 1.1 jmcneill sc->sc_ctrl = aaa->reg_ctrl;
1392 1.1 jmcneill
1393 1.1 jmcneill fdtbus_register_regulator_controller(self, phandle,
1394 1.1 jmcneill &axpreg_funcs);
1395 1.1 jmcneill
1396 1.1 jmcneill aprint_naive("\n");
1397 1.1 jmcneill name = fdtbus_get_string(phandle, "regulator-name");
1398 1.1 jmcneill if (name)
1399 1.1 jmcneill aprint_normal(": %s\n", name);
1400 1.1 jmcneill else
1401 1.1 jmcneill aprint_normal("\n");
1402 1.20 jmcneill
1403 1.35 skrll int error = axpreg_get_voltage(self, &uvol);
1404 1.35 skrll if (error)
1405 1.35 skrll return;
1406 1.35 skrll
1407 1.20 jmcneill if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1408 1.20 jmcneill of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1409 1.20 jmcneill if (uvol < min_uvol || uvol > max_uvol) {
1410 1.22 jmcneill aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1411 1.22 jmcneill uvol, min_uvol, max_uvol);
1412 1.20 jmcneill axpreg_set_voltage(self, min_uvol, max_uvol);
1413 1.20 jmcneill }
1414 1.20 jmcneill }
1415 1.22 jmcneill
1416 1.22 jmcneill if (of_hasprop(phandle, "regulator-always-on") ||
1417 1.22 jmcneill of_hasprop(phandle, "regulator-boot-on")) {
1418 1.22 jmcneill axpreg_enable(self, true);
1419 1.22 jmcneill }
1420 1.1 jmcneill }
1421 1.1 jmcneill
1422 1.1 jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1423 1.1 jmcneill axppmic_match, axppmic_attach, NULL, NULL);
1424 1.1 jmcneill
1425 1.1 jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1426 1.1 jmcneill axpreg_match, axpreg_attach, NULL, NULL);
1427