axppmic.c revision 1.38 1 1.38 skrll /* $NetBSD: axppmic.c,v 1.38 2025/01/04 14:35:49 skrll Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.38 skrll __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.38 2025/01/04 14:35:49 skrll Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/systm.h>
34 1.1 jmcneill #include <sys/kernel.h>
35 1.1 jmcneill #include <sys/device.h>
36 1.1 jmcneill #include <sys/conf.h>
37 1.1 jmcneill #include <sys/bus.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.29 thorpej #include <sys/workqueue.h>
40 1.1 jmcneill
41 1.1 jmcneill #include <dev/i2c/i2cvar.h>
42 1.1 jmcneill
43 1.1 jmcneill #include <dev/sysmon/sysmonvar.h>
44 1.1 jmcneill #include <dev/sysmon/sysmon_taskq.h>
45 1.1 jmcneill
46 1.1 jmcneill #include <dev/fdt/fdtvar.h>
47 1.1 jmcneill
48 1.3 jmcneill #define AXP_POWER_SOURCE_REG 0x00
49 1.3 jmcneill #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
50 1.3 jmcneill #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
51 1.10 jmcneill #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52 1.3 jmcneill
53 1.2 jmcneill #define AXP_POWER_MODE_REG 0x01
54 1.2 jmcneill #define AXP_POWER_MODE_BATT_VALID __BIT(4)
55 1.2 jmcneill #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
56 1.2 jmcneill #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
57 1.2 jmcneill
58 1.19 jmcneill #define AXP_CHIP_ID_REG 0x03
59 1.19 jmcneill
60 1.1 jmcneill #define AXP_POWER_DISABLE_REG 0x32
61 1.1 jmcneill #define AXP_POWER_DISABLE_CTRL __BIT(7)
62 1.1 jmcneill
63 1.1 jmcneill #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
64 1.5 jmcneill #define AXP_IRQ1_ACIN_RAISE __BIT(6)
65 1.5 jmcneill #define AXP_IRQ1_ACIN_LOWER __BIT(5)
66 1.5 jmcneill #define AXP_IRQ1_VBUS_RAISE __BIT(3)
67 1.5 jmcneill #define AXP_IRQ1_VBUS_LOWER __BIT(2)
68 1.1 jmcneill #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
69 1.1 jmcneill
70 1.10 jmcneill #define AXP_BATSENSE_HI_REG 0x78
71 1.10 jmcneill #define AXP_BATSENSE_LO_REG 0x79
72 1.10 jmcneill
73 1.10 jmcneill #define AXP_BATTCHG_HI_REG 0x7a
74 1.10 jmcneill #define AXP_BATTCHG_LO_REG 0x7b
75 1.10 jmcneill
76 1.10 jmcneill #define AXP_BATTDISCHG_HI_REG 0x7c
77 1.10 jmcneill #define AXP_BATTDISCHG_LO_REG 0x7d
78 1.10 jmcneill
79 1.10 jmcneill #define AXP_ADC_RAW(_hi, _lo) \
80 1.15 jakllsch (((u_int)(_hi) << 4) | ((_lo) & 0xf))
81 1.10 jmcneill
82 1.37 jmcneill #define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2)
83 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0)
84 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_LOW 0
85 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_HIGH 1
86 1.37 jmcneill #define AXP_GPIO_CTRL_FUNC_INPUT 2
87 1.37 jmcneill #define AXP_GPIO_SIGNAL_REG 0x94
88 1.37 jmcneill
89 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
90 1.2 jmcneill #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
91 1.10 jmcneill
92 1.2 jmcneill #define AXP_BATT_CAP_REG 0xb9
93 1.2 jmcneill #define AXP_BATT_CAP_VALID __BIT(7)
94 1.2 jmcneill #define AXP_BATT_CAP_PERCENT __BITS(6,0)
95 1.2 jmcneill
96 1.16 jakllsch #define AXP_BATT_MAX_CAP_HI_REG 0xe0
97 1.16 jakllsch #define AXP_BATT_MAX_CAP_VALID __BIT(7)
98 1.16 jakllsch #define AXP_BATT_MAX_CAP_LO_REG 0xe1
99 1.16 jakllsch
100 1.16 jakllsch #define AXP_BATT_COULOMB_HI_REG 0xe2
101 1.16 jakllsch #define AXP_BATT_COULOMB_VALID __BIT(7)
102 1.16 jakllsch #define AXP_BATT_COULOMB_LO_REG 0xe3
103 1.16 jakllsch
104 1.16 jakllsch #define AXP_COULOMB_RAW(_hi, _lo) \
105 1.16 jakllsch (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
106 1.16 jakllsch
107 1.2 jmcneill #define AXP_BATT_CAP_WARN_REG 0xe6
108 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
109 1.2 jmcneill #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
110 1.2 jmcneill
111 1.19 jmcneill #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
112 1.19 jmcneill #define AXP_ADDR_EXT_MASTER 0
113 1.19 jmcneill #define AXP_ADDR_EXT_SLAVE __BIT(4)
114 1.19 jmcneill
115 1.1 jmcneill struct axppmic_ctrl {
116 1.1 jmcneill device_t c_dev;
117 1.1 jmcneill
118 1.1 jmcneill const char * c_name;
119 1.1 jmcneill u_int c_min;
120 1.1 jmcneill u_int c_max;
121 1.1 jmcneill u_int c_step1;
122 1.1 jmcneill u_int c_step1cnt;
123 1.1 jmcneill u_int c_step2;
124 1.1 jmcneill u_int c_step2cnt;
125 1.24 jmcneill u_int c_step2start;
126 1.1 jmcneill
127 1.1 jmcneill uint8_t c_enable_reg;
128 1.1 jmcneill uint8_t c_enable_mask;
129 1.23 jmcneill uint8_t c_enable_val;
130 1.23 jmcneill uint8_t c_disable_val;
131 1.1 jmcneill
132 1.1 jmcneill uint8_t c_voltage_reg;
133 1.1 jmcneill uint8_t c_voltage_mask;
134 1.1 jmcneill };
135 1.1 jmcneill
136 1.1 jmcneill #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
137 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
138 1.1 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
139 1.1 jmcneill .c_step2 = 0, .c_step2cnt = 0, \
140 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
141 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
142 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143 1.1 jmcneill
144 1.1 jmcneill #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
145 1.1 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
146 1.1 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \
147 1.1 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \
148 1.1 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
149 1.23 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
150 1.1 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
151 1.1 jmcneill
152 1.24 jmcneill #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
153 1.24 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
154 1.24 jmcneill .c_step1 = (step1), .c_step1cnt = (step1cnt), \
155 1.24 jmcneill .c_step2start = (step2start), \
156 1.24 jmcneill .c_step2 = (step2), .c_step2cnt = (step2cnt), \
157 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
158 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0, \
159 1.24 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160 1.24 jmcneill
161 1.23 jmcneill #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \
162 1.23 jmcneill { .c_name = (name), .c_min = (min), .c_max = (max), \
163 1.23 jmcneill .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
164 1.23 jmcneill .c_step2 = 0, .c_step2cnt = 0, \
165 1.23 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
166 1.23 jmcneill .c_enable_val = (eval), .c_disable_val = (dval), \
167 1.23 jmcneill .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
168 1.23 jmcneill
169 1.24 jmcneill #define AXP_CTRL_SW(name, ereg, emask) \
170 1.24 jmcneill { .c_name = (name), \
171 1.24 jmcneill .c_enable_reg = (ereg), .c_enable_mask = (emask), \
172 1.24 jmcneill .c_enable_val = (emask), .c_disable_val = 0 }
173 1.23 jmcneill
174 1.1 jmcneill static const struct axppmic_ctrl axp803_ctrls[] = {
175 1.1 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
176 1.1 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
177 1.1 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
178 1.1 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
179 1.1 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
180 1.1 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
181 1.1 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
182 1.1 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
183 1.1 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
184 1.1 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
185 1.1 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
186 1.1 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
187 1.1 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
188 1.1 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
189 1.1 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
190 1.1 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
191 1.1 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
192 1.1 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
193 1.1 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
194 1.1 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
195 1.6 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
196 1.1 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
197 1.6 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
198 1.1 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
199 1.6 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
200 1.1 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
201 1.1 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
202 1.1 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
203 1.1 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
204 1.1 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
205 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
206 1.1 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
207 1.1 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
208 1.1 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
209 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
210 1.1 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
211 1.1 jmcneill };
212 1.1 jmcneill
213 1.1 jmcneill static const struct axppmic_ctrl axp805_ctrls[] = {
214 1.1 jmcneill AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
215 1.1 jmcneill 0x10, __BIT(0), 0x12, __BITS(6,0)),
216 1.1 jmcneill AXP_CTRL("dcdcb", 1000, 2550, 50,
217 1.1 jmcneill 0x10, __BIT(1), 0x13, __BITS(4,0)),
218 1.1 jmcneill AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
219 1.1 jmcneill 0x10, __BIT(2), 0x14, __BITS(6,0)),
220 1.1 jmcneill AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
221 1.1 jmcneill 0x10, __BIT(3), 0x15, __BITS(5,0)),
222 1.1 jmcneill AXP_CTRL("dcdce", 1100, 3400, 100,
223 1.1 jmcneill 0x10, __BIT(4), 0x16, __BITS(4,0)),
224 1.1 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
225 1.1 jmcneill 0x10, __BIT(5), 0x17, __BITS(4,0)),
226 1.1 jmcneill AXP_CTRL("aldo2", 700, 3400, 100,
227 1.1 jmcneill 0x10, __BIT(6), 0x18, __BITS(4,0)),
228 1.1 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
229 1.1 jmcneill 0x10, __BIT(7), 0x19, __BITS(4,0)),
230 1.1 jmcneill AXP_CTRL("bldo1", 700, 1900, 100,
231 1.1 jmcneill 0x11, __BIT(0), 0x20, __BITS(3,0)),
232 1.1 jmcneill AXP_CTRL("bldo2", 700, 1900, 100,
233 1.1 jmcneill 0x11, __BIT(1), 0x21, __BITS(3,0)),
234 1.1 jmcneill AXP_CTRL("bldo3", 700, 1900, 100,
235 1.1 jmcneill 0x11, __BIT(2), 0x22, __BITS(3,0)),
236 1.1 jmcneill AXP_CTRL("bldo4", 700, 1900, 100,
237 1.1 jmcneill 0x11, __BIT(3), 0x23, __BITS(3,0)),
238 1.38 skrll AXP_CTRL("cldo1", 700, 3300, 100,
239 1.1 jmcneill 0x11, __BIT(4), 0x24, __BITS(4,0)),
240 1.1 jmcneill AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
241 1.1 jmcneill 0x11, __BIT(5), 0x25, __BITS(4,0)),
242 1.38 skrll AXP_CTRL("cldo3", 700, 3300, 100,
243 1.1 jmcneill 0x11, __BIT(6), 0x26, __BITS(4,0)),
244 1.1 jmcneill };
245 1.1 jmcneill
246 1.21 jmcneill static const struct axppmic_ctrl axp809_ctrls[] = {
247 1.24 jmcneill AXP_CTRL("dc5ldo", 700, 1400, 100,
248 1.24 jmcneill 0x10, __BIT(0), 0x1c, __BITS(2,0)),
249 1.24 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
250 1.24 jmcneill 0x10, __BIT(1), 0x21, __BITS(4,0)),
251 1.24 jmcneill AXP_CTRL("dcdc2", 600, 1540, 20,
252 1.24 jmcneill 0x10, __BIT(2), 0x22, __BITS(5,0)),
253 1.24 jmcneill AXP_CTRL("dcdc3", 600, 1860, 20,
254 1.24 jmcneill 0x10, __BIT(3), 0x23, __BITS(5,0)),
255 1.24 jmcneill AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
256 1.24 jmcneill 0x10, __BIT(4), 0x24, __BITS(5,0)),
257 1.24 jmcneill AXP_CTRL("dcdc5", 1000, 2550, 50,
258 1.24 jmcneill 0x10, __BIT(5), 0x25, __BITS(4,0)),
259 1.24 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
260 1.24 jmcneill 0x10, __BIT(6), 0x28, __BITS(4,0)),
261 1.24 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
262 1.24 jmcneill 0x10, __BIT(7), 0x29, __BITS(4,0)),
263 1.24 jmcneill AXP_CTRL("eldo1", 700, 3300, 100,
264 1.24 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
265 1.24 jmcneill AXP_CTRL("eldo2", 700, 3300, 100,
266 1.24 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
267 1.24 jmcneill AXP_CTRL("eldo3", 700, 3300, 100,
268 1.24 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
269 1.24 jmcneill AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
270 1.24 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
271 1.24 jmcneill AXP_CTRL("dldo2", 700, 3300, 100,
272 1.24 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
273 1.24 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
274 1.24 jmcneill 0x12, __BIT(5), 0x2a, __BITS(4,0)),
275 1.24 jmcneill AXP_CTRL_SW("sw",
276 1.24 jmcneill 0x12, __BIT(6)),
277 1.24 jmcneill /* dc1sw is another switch for dcdc1 */
278 1.24 jmcneill AXP_CTRL("dc1sw", 1600, 3400, 100,
279 1.24 jmcneill 0x12, __BIT(7), 0x21, __BITS(4,0)),
280 1.23 jmcneill AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
281 1.23 jmcneill 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
282 1.23 jmcneill AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
283 1.23 jmcneill 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
284 1.21 jmcneill };
285 1.21 jmcneill
286 1.17 jmcneill static const struct axppmic_ctrl axp813_ctrls[] = {
287 1.17 jmcneill AXP_CTRL("dldo1", 700, 3300, 100,
288 1.17 jmcneill 0x12, __BIT(3), 0x15, __BITS(4,0)),
289 1.17 jmcneill AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
290 1.17 jmcneill 0x12, __BIT(4), 0x16, __BITS(4,0)),
291 1.17 jmcneill AXP_CTRL("dldo3", 700, 3300, 100,
292 1.17 jmcneill 0x12, __BIT(5), 0x17, __BITS(4,0)),
293 1.17 jmcneill AXP_CTRL("dldo4", 700, 3300, 100,
294 1.17 jmcneill 0x12, __BIT(6), 0x18, __BITS(4,0)),
295 1.17 jmcneill AXP_CTRL("eldo1", 700, 1900, 50,
296 1.17 jmcneill 0x12, __BIT(0), 0x19, __BITS(4,0)),
297 1.17 jmcneill AXP_CTRL("eldo2", 700, 1900, 50,
298 1.17 jmcneill 0x12, __BIT(1), 0x1a, __BITS(4,0)),
299 1.17 jmcneill AXP_CTRL("eldo3", 700, 1900, 50,
300 1.17 jmcneill 0x12, __BIT(2), 0x1b, __BITS(4,0)),
301 1.17 jmcneill AXP_CTRL("fldo1", 700, 1450, 50,
302 1.17 jmcneill 0x13, __BIT(2), 0x1c, __BITS(3,0)),
303 1.17 jmcneill AXP_CTRL("fldo2", 700, 1450, 50,
304 1.17 jmcneill 0x13, __BIT(3), 0x1d, __BITS(3,0)),
305 1.17 jmcneill AXP_CTRL("dcdc1", 1600, 3400, 100,
306 1.17 jmcneill 0x10, __BIT(0), 0x20, __BITS(4,0)),
307 1.17 jmcneill AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
308 1.17 jmcneill 0x10, __BIT(1), 0x21, __BITS(6,0)),
309 1.17 jmcneill AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
310 1.17 jmcneill 0x10, __BIT(2), 0x22, __BITS(6,0)),
311 1.17 jmcneill AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
312 1.17 jmcneill 0x10, __BIT(3), 0x23, __BITS(6,0)),
313 1.17 jmcneill AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
314 1.17 jmcneill 0x10, __BIT(4), 0x24, __BITS(6,0)),
315 1.17 jmcneill AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
316 1.17 jmcneill 0x10, __BIT(5), 0x25, __BITS(6,0)),
317 1.17 jmcneill AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
318 1.17 jmcneill 0x10, __BIT(6), 0x26, __BITS(6,0)),
319 1.17 jmcneill AXP_CTRL("aldo1", 700, 3300, 100,
320 1.17 jmcneill 0x13, __BIT(5), 0x28, __BITS(4,0)),
321 1.17 jmcneill AXP_CTRL("aldo2", 700, 3300, 100,
322 1.17 jmcneill 0x13, __BIT(6), 0x29, __BITS(4,0)),
323 1.17 jmcneill AXP_CTRL("aldo3", 700, 3300, 100,
324 1.17 jmcneill 0x13, __BIT(7), 0x2a, __BITS(4,0)),
325 1.17 jmcneill };
326 1.17 jmcneill
327 1.8 jmcneill struct axppmic_irq {
328 1.8 jmcneill u_int reg;
329 1.8 jmcneill uint8_t mask;
330 1.8 jmcneill };
331 1.8 jmcneill
332 1.8 jmcneill #define AXPPMIC_IRQ(_reg, _mask) \
333 1.8 jmcneill { .reg = (_reg), .mask = (_mask) }
334 1.8 jmcneill
335 1.1 jmcneill struct axppmic_config {
336 1.1 jmcneill const char *name;
337 1.37 jmcneill const char *gpio_compat;
338 1.37 jmcneill u_int gpio_npins;
339 1.1 jmcneill const struct axppmic_ctrl *controls;
340 1.1 jmcneill u_int ncontrols;
341 1.1 jmcneill u_int irq_regs;
342 1.2 jmcneill bool has_battery;
343 1.2 jmcneill bool has_fuel_gauge;
344 1.19 jmcneill bool has_mode_set;
345 1.8 jmcneill struct axppmic_irq poklirq;
346 1.8 jmcneill struct axppmic_irq acinirq;
347 1.8 jmcneill struct axppmic_irq vbusirq;
348 1.8 jmcneill struct axppmic_irq battirq;
349 1.8 jmcneill struct axppmic_irq chargeirq;
350 1.8 jmcneill struct axppmic_irq chargestirq;
351 1.10 jmcneill u_int batsense_step; /* uV */
352 1.10 jmcneill u_int charge_step; /* uA */
353 1.10 jmcneill u_int discharge_step; /* uA */
354 1.10 jmcneill u_int maxcap_step; /* uAh */
355 1.10 jmcneill u_int coulomb_step; /* uAh */
356 1.2 jmcneill };
357 1.2 jmcneill
358 1.2 jmcneill enum axppmic_sensor {
359 1.3 jmcneill AXP_SENSOR_ACIN_PRESENT,
360 1.3 jmcneill AXP_SENSOR_VBUS_PRESENT,
361 1.2 jmcneill AXP_SENSOR_BATT_PRESENT,
362 1.2 jmcneill AXP_SENSOR_BATT_CHARGING,
363 1.2 jmcneill AXP_SENSOR_BATT_CHARGE_STATE,
364 1.10 jmcneill AXP_SENSOR_BATT_VOLTAGE,
365 1.10 jmcneill AXP_SENSOR_BATT_CHARGE_CURRENT,
366 1.10 jmcneill AXP_SENSOR_BATT_DISCHARGE_CURRENT,
367 1.10 jmcneill AXP_SENSOR_BATT_CAPACITY_PERCENT,
368 1.16 jakllsch AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
369 1.16 jakllsch AXP_SENSOR_BATT_CURRENT_CAPACITY,
370 1.2 jmcneill AXP_NSENSORS
371 1.1 jmcneill };
372 1.1 jmcneill
373 1.1 jmcneill struct axppmic_softc {
374 1.1 jmcneill device_t sc_dev;
375 1.1 jmcneill i2c_tag_t sc_i2c;
376 1.1 jmcneill i2c_addr_t sc_addr;
377 1.1 jmcneill int sc_phandle;
378 1.1 jmcneill
379 1.29 thorpej void *sc_ih;
380 1.29 thorpej struct workqueue *sc_wq;
381 1.29 thorpej
382 1.29 thorpej kmutex_t sc_intr_lock;
383 1.29 thorpej struct work sc_work;
384 1.29 thorpej bool sc_work_scheduled;
385 1.29 thorpej
386 1.8 jmcneill const struct axppmic_config *sc_conf;
387 1.2 jmcneill
388 1.1 jmcneill struct sysmon_pswitch sc_smpsw;
389 1.1 jmcneill
390 1.2 jmcneill struct sysmon_envsys *sc_sme;
391 1.3 jmcneill
392 1.2 jmcneill envsys_data_t sc_sensor[AXP_NSENSORS];
393 1.4 jmcneill
394 1.4 jmcneill u_int sc_warn_thres;
395 1.4 jmcneill u_int sc_shut_thres;
396 1.1 jmcneill };
397 1.1 jmcneill
398 1.37 jmcneill struct axppmic_gpio_pin {
399 1.37 jmcneill struct axppmic_softc *pin_sc;
400 1.37 jmcneill u_int pin_nr;
401 1.37 jmcneill int pin_flags;
402 1.37 jmcneill bool pin_actlo;
403 1.37 jmcneill };
404 1.37 jmcneill
405 1.1 jmcneill struct axpreg_softc {
406 1.1 jmcneill device_t sc_dev;
407 1.1 jmcneill i2c_tag_t sc_i2c;
408 1.1 jmcneill i2c_addr_t sc_addr;
409 1.1 jmcneill const struct axppmic_ctrl *sc_ctrl;
410 1.1 jmcneill };
411 1.1 jmcneill
412 1.1 jmcneill struct axpreg_attach_args {
413 1.1 jmcneill const struct axppmic_ctrl *reg_ctrl;
414 1.1 jmcneill int reg_phandle;
415 1.1 jmcneill i2c_tag_t reg_i2c;
416 1.1 jmcneill i2c_addr_t reg_addr;
417 1.1 jmcneill };
418 1.1 jmcneill
419 1.1 jmcneill static const struct axppmic_config axp803_config = {
420 1.1 jmcneill .name = "AXP803",
421 1.37 jmcneill .gpio_compat = "x-powers,axp803-gpio",
422 1.37 jmcneill .gpio_npins = 2,
423 1.1 jmcneill .controls = axp803_ctrls,
424 1.1 jmcneill .ncontrols = __arraycount(axp803_ctrls),
425 1.1 jmcneill .irq_regs = 6,
426 1.2 jmcneill .has_battery = true,
427 1.2 jmcneill .has_fuel_gauge = true,
428 1.10 jmcneill .batsense_step = 1100,
429 1.10 jmcneill .charge_step = 1000,
430 1.10 jmcneill .discharge_step = 1000,
431 1.16 jakllsch .maxcap_step = 1456,
432 1.16 jakllsch .coulomb_step = 1456,
433 1.8 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
434 1.8 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
435 1.8 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
436 1.8 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
437 1.8 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
438 1.38 skrll .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
439 1.1 jmcneill };
440 1.1 jmcneill
441 1.1 jmcneill static const struct axppmic_config axp805_config = {
442 1.19 jmcneill .name = "AXP805",
443 1.19 jmcneill .controls = axp805_ctrls,
444 1.19 jmcneill .ncontrols = __arraycount(axp805_ctrls),
445 1.19 jmcneill .irq_regs = 2,
446 1.19 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
447 1.19 jmcneill };
448 1.19 jmcneill
449 1.19 jmcneill static const struct axppmic_config axp806_config = {
450 1.19 jmcneill .name = "AXP806",
451 1.1 jmcneill .controls = axp805_ctrls,
452 1.1 jmcneill .ncontrols = __arraycount(axp805_ctrls),
453 1.19 jmcneill #if notyet
454 1.1 jmcneill .irq_regs = 2,
455 1.8 jmcneill .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
456 1.19 jmcneill #endif
457 1.19 jmcneill .has_mode_set = true,
458 1.1 jmcneill };
459 1.1 jmcneill
460 1.21 jmcneill static const struct axppmic_config axp809_config = {
461 1.21 jmcneill .name = "AXP809",
462 1.21 jmcneill .controls = axp809_ctrls,
463 1.21 jmcneill .ncontrols = __arraycount(axp809_ctrls),
464 1.21 jmcneill };
465 1.21 jmcneill
466 1.17 jmcneill static const struct axppmic_config axp813_config = {
467 1.17 jmcneill .name = "AXP813",
468 1.37 jmcneill .gpio_compat = "x-powers,axp813-gpio",
469 1.37 jmcneill .gpio_npins = 2,
470 1.17 jmcneill .controls = axp813_ctrls,
471 1.17 jmcneill .ncontrols = __arraycount(axp813_ctrls),
472 1.17 jmcneill .irq_regs = 6,
473 1.17 jmcneill .has_battery = true,
474 1.17 jmcneill .has_fuel_gauge = true,
475 1.17 jmcneill .batsense_step = 1100,
476 1.17 jmcneill .charge_step = 1000,
477 1.17 jmcneill .discharge_step = 1000,
478 1.17 jmcneill .maxcap_step = 1456,
479 1.17 jmcneill .coulomb_step = 1456,
480 1.17 jmcneill .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
481 1.17 jmcneill .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
482 1.17 jmcneill .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
483 1.17 jmcneill .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
484 1.17 jmcneill .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
485 1.38 skrll .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
486 1.17 jmcneill };
487 1.17 jmcneill
488 1.14 thorpej static const struct device_compatible_entry compat_data[] = {
489 1.30 thorpej { .compat = "x-powers,axp803", .data = &axp803_config },
490 1.30 thorpej { .compat = "x-powers,axp805", .data = &axp805_config },
491 1.30 thorpej { .compat = "x-powers,axp806", .data = &axp806_config },
492 1.30 thorpej { .compat = "x-powers,axp809", .data = &axp809_config },
493 1.30 thorpej { .compat = "x-powers,axp813", .data = &axp813_config },
494 1.33 thorpej DEVICE_COMPAT_EOL
495 1.1 jmcneill };
496 1.1 jmcneill
497 1.1 jmcneill static int
498 1.1 jmcneill axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
499 1.1 jmcneill {
500 1.1 jmcneill return iic_smbus_read_byte(tag, addr, reg, val, flags);
501 1.1 jmcneill }
502 1.1 jmcneill
503 1.1 jmcneill static int
504 1.1 jmcneill axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
505 1.1 jmcneill {
506 1.1 jmcneill return iic_smbus_write_byte(tag, addr, reg, val, flags);
507 1.1 jmcneill }
508 1.1 jmcneill
509 1.1 jmcneill static int
510 1.1 jmcneill axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
511 1.1 jmcneill {
512 1.1 jmcneill u_int vol, reg_val;
513 1.1 jmcneill int nstep, error;
514 1.1 jmcneill uint8_t val;
515 1.1 jmcneill
516 1.1 jmcneill if (!c->c_voltage_mask)
517 1.1 jmcneill return EINVAL;
518 1.1 jmcneill
519 1.1 jmcneill if (min < c->c_min || min > c->c_max)
520 1.1 jmcneill return EINVAL;
521 1.1 jmcneill
522 1.1 jmcneill reg_val = 0;
523 1.1 jmcneill nstep = 1;
524 1.1 jmcneill vol = c->c_min;
525 1.1 jmcneill
526 1.1 jmcneill for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
527 1.1 jmcneill ++reg_val;
528 1.1 jmcneill vol += c->c_step1;
529 1.1 jmcneill }
530 1.24 jmcneill
531 1.24 jmcneill if (c->c_step2start)
532 1.24 jmcneill vol = c->c_step2start;
533 1.24 jmcneill
534 1.1 jmcneill for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
535 1.1 jmcneill ++reg_val;
536 1.1 jmcneill vol += c->c_step2;
537 1.1 jmcneill }
538 1.1 jmcneill
539 1.1 jmcneill if (vol > max)
540 1.1 jmcneill return EINVAL;
541 1.1 jmcneill
542 1.29 thorpej iic_acquire_bus(tag, 0);
543 1.29 thorpej if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
544 1.1 jmcneill val &= ~c->c_voltage_mask;
545 1.1 jmcneill val |= __SHIFTIN(reg_val, c->c_voltage_mask);
546 1.29 thorpej error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
547 1.1 jmcneill }
548 1.29 thorpej iic_release_bus(tag, 0);
549 1.1 jmcneill
550 1.1 jmcneill return error;
551 1.1 jmcneill }
552 1.1 jmcneill
553 1.1 jmcneill static int
554 1.1 jmcneill axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
555 1.1 jmcneill {
556 1.1 jmcneill int reg_val, error;
557 1.1 jmcneill uint8_t val;
558 1.1 jmcneill
559 1.1 jmcneill if (!c->c_voltage_mask)
560 1.1 jmcneill return EINVAL;
561 1.1 jmcneill
562 1.29 thorpej iic_acquire_bus(tag, 0);
563 1.29 thorpej error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
564 1.29 thorpej iic_release_bus(tag, 0);
565 1.1 jmcneill if (error)
566 1.1 jmcneill return error;
567 1.1 jmcneill
568 1.1 jmcneill reg_val = __SHIFTOUT(val, c->c_voltage_mask);
569 1.1 jmcneill if (reg_val < c->c_step1cnt) {
570 1.1 jmcneill *pvol = c->c_min + reg_val * c->c_step1;
571 1.24 jmcneill } else if (c->c_step2start) {
572 1.24 jmcneill *pvol = c->c_step2start +
573 1.24 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2);
574 1.1 jmcneill } else {
575 1.1 jmcneill *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
576 1.1 jmcneill ((reg_val - c->c_step1cnt) * c->c_step2);
577 1.1 jmcneill }
578 1.1 jmcneill
579 1.1 jmcneill return 0;
580 1.1 jmcneill }
581 1.1 jmcneill
582 1.1 jmcneill static void
583 1.1 jmcneill axppmic_power_poweroff(device_t dev)
584 1.1 jmcneill {
585 1.1 jmcneill struct axppmic_softc *sc = device_private(dev);
586 1.28 thorpej int error;
587 1.1 jmcneill
588 1.1 jmcneill delay(1000000);
589 1.1 jmcneill
590 1.29 thorpej error = iic_acquire_bus(sc->sc_i2c, 0);
591 1.28 thorpej if (error == 0) {
592 1.28 thorpej error = axppmic_write(sc->sc_i2c, sc->sc_addr,
593 1.29 thorpej AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
594 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
595 1.28 thorpej }
596 1.28 thorpej if (error) {
597 1.28 thorpej device_printf(dev, "WARNING: unable to power off, error %d\n",
598 1.28 thorpej error);
599 1.28 thorpej }
600 1.1 jmcneill }
601 1.1 jmcneill
602 1.1 jmcneill static struct fdtbus_power_controller_func axppmic_power_funcs = {
603 1.1 jmcneill .poweroff = axppmic_power_poweroff,
604 1.1 jmcneill };
605 1.1 jmcneill
606 1.37 jmcneill static int
607 1.37 jmcneill axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
608 1.37 jmcneill {
609 1.37 jmcneill uint8_t val;
610 1.37 jmcneill int error;
611 1.37 jmcneill
612 1.37 jmcneill KASSERT(pin < sc->sc_conf->gpio_npins);
613 1.37 jmcneill KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
614 1.37 jmcneill
615 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0);
616 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
617 1.37 jmcneill &val, 0);
618 1.37 jmcneill if (error == 0) {
619 1.37 jmcneill val &= ~AXP_GPIO_CTRL_FUNC_MASK;
620 1.37 jmcneill val |= func;
621 1.37 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr,
622 1.37 jmcneill AXP_GPIO_CTRL_REG(pin), val, 0);
623 1.37 jmcneill }
624 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0);
625 1.37 jmcneill
626 1.37 jmcneill return error;
627 1.37 jmcneill }
628 1.37 jmcneill
629 1.37 jmcneill static void *
630 1.37 jmcneill axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
631 1.37 jmcneill {
632 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
633 1.37 jmcneill struct axppmic_gpio_pin *gpin;
634 1.37 jmcneill const u_int *gpio = data;
635 1.37 jmcneill int error;
636 1.37 jmcneill
637 1.37 jmcneill if (len != 12) {
638 1.37 jmcneill return NULL;
639 1.37 jmcneill }
640 1.37 jmcneill
641 1.37 jmcneill const uint8_t pin = be32toh(gpio[1]) & 0xff;
642 1.37 jmcneill const bool actlo = be32toh(gpio[2]) & 1;
643 1.37 jmcneill
644 1.37 jmcneill if (pin >= sc->sc_conf->gpio_npins) {
645 1.37 jmcneill return NULL;
646 1.37 jmcneill }
647 1.37 jmcneill
648 1.37 jmcneill if ((flags & GPIO_PIN_INPUT) != 0) {
649 1.37 jmcneill error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
650 1.37 jmcneill if (error != 0) {
651 1.37 jmcneill return NULL;
652 1.37 jmcneill }
653 1.37 jmcneill }
654 1.37 jmcneill
655 1.37 jmcneill gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
656 1.37 jmcneill gpin->pin_sc = sc;
657 1.37 jmcneill gpin->pin_nr = pin;
658 1.37 jmcneill gpin->pin_flags = flags;
659 1.37 jmcneill gpin->pin_actlo = actlo;
660 1.37 jmcneill
661 1.37 jmcneill return gpin;
662 1.37 jmcneill }
663 1.37 jmcneill
664 1.37 jmcneill static void
665 1.37 jmcneill axppmic_gpio_release(device_t dev, void *priv)
666 1.37 jmcneill {
667 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
668 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
669 1.37 jmcneill
670 1.37 jmcneill axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
671 1.37 jmcneill
672 1.37 jmcneill kmem_free(gpin, sizeof(*gpin));
673 1.37 jmcneill }
674 1.37 jmcneill
675 1.37 jmcneill static int
676 1.37 jmcneill axppmic_gpio_read(device_t dev, void *priv, bool raw)
677 1.37 jmcneill {
678 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
679 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
680 1.37 jmcneill uint8_t data;
681 1.37 jmcneill int error, val;
682 1.37 jmcneill
683 1.37 jmcneill KASSERT(sc == gpin->pin_sc);
684 1.37 jmcneill
685 1.37 jmcneill const uint8_t data_mask = __BIT(gpin->pin_nr);
686 1.37 jmcneill
687 1.37 jmcneill iic_acquire_bus(sc->sc_i2c, 0);
688 1.37 jmcneill error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
689 1.37 jmcneill &data, 0);
690 1.37 jmcneill iic_release_bus(sc->sc_i2c, 0);
691 1.37 jmcneill
692 1.37 jmcneill if (error != 0) {
693 1.37 jmcneill device_printf(dev, "WARNING: failed to read pin %d: %d\n",
694 1.37 jmcneill gpin->pin_nr, error);
695 1.37 jmcneill val = 0;
696 1.37 jmcneill } else {
697 1.37 jmcneill val = __SHIFTOUT(data, data_mask);
698 1.37 jmcneill }
699 1.37 jmcneill if (!raw && gpin->pin_actlo) {
700 1.37 jmcneill val = !val;
701 1.37 jmcneill }
702 1.37 jmcneill
703 1.37 jmcneill return val;
704 1.37 jmcneill }
705 1.37 jmcneill
706 1.37 jmcneill static void
707 1.37 jmcneill axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
708 1.37 jmcneill {
709 1.37 jmcneill struct axppmic_softc *sc = device_private(dev);
710 1.37 jmcneill struct axppmic_gpio_pin *gpin = priv;
711 1.37 jmcneill int error;
712 1.37 jmcneill
713 1.37 jmcneill if (!raw && gpin->pin_actlo) {
714 1.37 jmcneill val = !val;
715 1.37 jmcneill }
716 1.37 jmcneill
717 1.37 jmcneill error = axppmic_gpio_ctl(sc, gpin->pin_nr,
718 1.37 jmcneill val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
719 1.37 jmcneill if (error != 0) {
720 1.37 jmcneill device_printf(dev, "WARNING: failed to write pin %d: %d\n",
721 1.37 jmcneill gpin->pin_nr, error);
722 1.37 jmcneill }
723 1.37 jmcneill }
724 1.37 jmcneill
725 1.37 jmcneill static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
726 1.37 jmcneill .acquire = axppmic_gpio_acquire,
727 1.37 jmcneill .release = axppmic_gpio_release,
728 1.37 jmcneill .read = axppmic_gpio_read,
729 1.37 jmcneill .write = axppmic_gpio_write,
730 1.37 jmcneill };
731 1.37 jmcneill
732 1.1 jmcneill static void
733 1.1 jmcneill axppmic_task_shut(void *priv)
734 1.1 jmcneill {
735 1.1 jmcneill struct axppmic_softc *sc = priv;
736 1.1 jmcneill
737 1.1 jmcneill sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
738 1.1 jmcneill }
739 1.1 jmcneill
740 1.2 jmcneill static void
741 1.8 jmcneill axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
742 1.2 jmcneill {
743 1.2 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
744 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
745 1.10 jmcneill uint8_t val, lo, hi;
746 1.2 jmcneill
747 1.2 jmcneill e->state = ENVSYS_SINVALID;
748 1.2 jmcneill
749 1.10 jmcneill const bool battery_present =
750 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
751 1.10 jmcneill sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
752 1.10 jmcneill
753 1.2 jmcneill switch (e->private) {
754 1.3 jmcneill case AXP_SENSOR_ACIN_PRESENT:
755 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
756 1.3 jmcneill e->state = ENVSYS_SVALID;
757 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
758 1.3 jmcneill }
759 1.3 jmcneill break;
760 1.3 jmcneill case AXP_SENSOR_VBUS_PRESENT:
761 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
762 1.3 jmcneill e->state = ENVSYS_SVALID;
763 1.3 jmcneill e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
764 1.3 jmcneill }
765 1.3 jmcneill break;
766 1.2 jmcneill case AXP_SENSOR_BATT_PRESENT:
767 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
768 1.2 jmcneill if (val & AXP_POWER_MODE_BATT_VALID) {
769 1.2 jmcneill e->state = ENVSYS_SVALID;
770 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
771 1.2 jmcneill }
772 1.2 jmcneill }
773 1.2 jmcneill break;
774 1.2 jmcneill case AXP_SENSOR_BATT_CHARGING:
775 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
776 1.2 jmcneill e->state = ENVSYS_SVALID;
777 1.2 jmcneill e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
778 1.2 jmcneill }
779 1.2 jmcneill break;
780 1.2 jmcneill case AXP_SENSOR_BATT_CHARGE_STATE:
781 1.10 jmcneill if (battery_present &&
782 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
783 1.4 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
784 1.2 jmcneill const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
785 1.4 jmcneill if (batt_val <= sc->sc_shut_thres) {
786 1.2 jmcneill e->state = ENVSYS_SCRITICAL;
787 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
788 1.4 jmcneill } else if (batt_val <= sc->sc_warn_thres) {
789 1.2 jmcneill e->state = ENVSYS_SWARNUNDER;
790 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
791 1.2 jmcneill } else {
792 1.2 jmcneill e->state = ENVSYS_SVALID;
793 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
794 1.2 jmcneill }
795 1.2 jmcneill }
796 1.2 jmcneill break;
797 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
798 1.10 jmcneill if (battery_present &&
799 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
800 1.2 jmcneill (val & AXP_BATT_CAP_VALID) != 0) {
801 1.2 jmcneill e->state = ENVSYS_SVALID;
802 1.2 jmcneill e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
803 1.2 jmcneill }
804 1.2 jmcneill break;
805 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
806 1.10 jmcneill if (battery_present &&
807 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
808 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
809 1.10 jmcneill e->state = ENVSYS_SVALID;
810 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
811 1.10 jmcneill }
812 1.10 jmcneill break;
813 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
814 1.10 jmcneill if (battery_present &&
815 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
816 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
817 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
818 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
819 1.10 jmcneill e->state = ENVSYS_SVALID;
820 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
821 1.10 jmcneill }
822 1.10 jmcneill break;
823 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
824 1.10 jmcneill if (battery_present &&
825 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
826 1.10 jmcneill (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
827 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
828 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
829 1.10 jmcneill e->state = ENVSYS_SVALID;
830 1.10 jmcneill e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
831 1.10 jmcneill }
832 1.10 jmcneill break;
833 1.16 jakllsch case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
834 1.16 jakllsch if (battery_present &&
835 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
836 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
837 1.16 jakllsch e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
838 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
839 1.16 jakllsch }
840 1.16 jakllsch break;
841 1.16 jakllsch case AXP_SENSOR_BATT_CURRENT_CAPACITY:
842 1.16 jakllsch if (battery_present &&
843 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
844 1.29 thorpej axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
845 1.16 jakllsch e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
846 1.16 jakllsch e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
847 1.16 jakllsch }
848 1.16 jakllsch break;
849 1.2 jmcneill }
850 1.8 jmcneill }
851 1.8 jmcneill
852 1.8 jmcneill static void
853 1.8 jmcneill axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
854 1.8 jmcneill {
855 1.8 jmcneill struct axppmic_softc *sc = sme->sme_cookie;
856 1.8 jmcneill
857 1.8 jmcneill switch (e->private) {
858 1.10 jmcneill case AXP_SENSOR_BATT_CAPACITY_PERCENT:
859 1.10 jmcneill case AXP_SENSOR_BATT_VOLTAGE:
860 1.10 jmcneill case AXP_SENSOR_BATT_CHARGE_CURRENT:
861 1.10 jmcneill case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
862 1.10 jmcneill /* Always update battery capacity and ADCs */
863 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
864 1.8 jmcneill axppmic_sensor_update(sme, e);
865 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
866 1.8 jmcneill break;
867 1.8 jmcneill default:
868 1.8 jmcneill /* Refresh if the sensor is not in valid state */
869 1.8 jmcneill if (e->state != ENVSYS_SVALID) {
870 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
871 1.8 jmcneill axppmic_sensor_update(sme, e);
872 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
873 1.8 jmcneill }
874 1.8 jmcneill break;
875 1.8 jmcneill }
876 1.8 jmcneill }
877 1.8 jmcneill
878 1.8 jmcneill static int
879 1.8 jmcneill axppmic_intr(void *priv)
880 1.8 jmcneill {
881 1.29 thorpej struct axppmic_softc * const sc = priv;
882 1.29 thorpej
883 1.29 thorpej mutex_enter(&sc->sc_intr_lock);
884 1.29 thorpej
885 1.29 thorpej fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
886 1.29 thorpej
887 1.29 thorpej /* Interrupt is always masked when work is scheduled! */
888 1.29 thorpej KASSERT(!sc->sc_work_scheduled);
889 1.29 thorpej sc->sc_work_scheduled = true;
890 1.29 thorpej workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
891 1.29 thorpej
892 1.29 thorpej mutex_exit(&sc->sc_intr_lock);
893 1.29 thorpej
894 1.29 thorpej return 1;
895 1.29 thorpej }
896 1.29 thorpej
897 1.29 thorpej static void
898 1.29 thorpej axppmic_work(struct work *work, void *arg)
899 1.29 thorpej {
900 1.29 thorpej struct axppmic_softc * const sc =
901 1.29 thorpej container_of(work, struct axppmic_softc, sc_work);
902 1.29 thorpej const struct axppmic_config * const c = sc->sc_conf;
903 1.29 thorpej const int flags = 0;
904 1.8 jmcneill uint8_t stat;
905 1.8 jmcneill u_int n;
906 1.8 jmcneill
907 1.29 thorpej KASSERT(sc->sc_work_scheduled);
908 1.29 thorpej
909 1.8 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
910 1.8 jmcneill for (n = 1; n <= c->irq_regs; n++) {
911 1.8 jmcneill if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
912 1.29 thorpej if (stat != 0) {
913 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr,
914 1.29 thorpej AXP_IRQ_STATUS_REG(n), stat, flags);
915 1.29 thorpej }
916 1.29 thorpej
917 1.8 jmcneill if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
918 1.8 jmcneill sysmon_task_queue_sched(0, axppmic_task_shut, sc);
919 1.8 jmcneill if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
920 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
921 1.8 jmcneill if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
922 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
923 1.8 jmcneill if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
924 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
925 1.8 jmcneill if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
926 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
927 1.8 jmcneill if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
928 1.8 jmcneill axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
929 1.8 jmcneill }
930 1.8 jmcneill }
931 1.2 jmcneill iic_release_bus(sc->sc_i2c, flags);
932 1.8 jmcneill
933 1.29 thorpej mutex_enter(&sc->sc_intr_lock);
934 1.29 thorpej sc->sc_work_scheduled = false;
935 1.29 thorpej fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
936 1.29 thorpej mutex_exit(&sc->sc_intr_lock);
937 1.2 jmcneill }
938 1.2 jmcneill
939 1.2 jmcneill static void
940 1.3 jmcneill axppmic_attach_acadapter(struct axppmic_softc *sc)
941 1.3 jmcneill {
942 1.3 jmcneill envsys_data_t *e;
943 1.3 jmcneill
944 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
945 1.3 jmcneill e->private = AXP_SENSOR_ACIN_PRESENT;
946 1.3 jmcneill e->units = ENVSYS_INDICATOR;
947 1.3 jmcneill e->state = ENVSYS_SINVALID;
948 1.3 jmcneill strlcpy(e->desc, "ACIN present", sizeof(e->desc));
949 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
950 1.3 jmcneill
951 1.3 jmcneill e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
952 1.3 jmcneill e->private = AXP_SENSOR_VBUS_PRESENT;
953 1.3 jmcneill e->units = ENVSYS_INDICATOR;
954 1.3 jmcneill e->state = ENVSYS_SINVALID;
955 1.3 jmcneill strlcpy(e->desc, "VBUS present", sizeof(e->desc));
956 1.3 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
957 1.3 jmcneill }
958 1.3 jmcneill
959 1.3 jmcneill static void
960 1.2 jmcneill axppmic_attach_battery(struct axppmic_softc *sc)
961 1.2 jmcneill {
962 1.10 jmcneill const struct axppmic_config *c = sc->sc_conf;
963 1.2 jmcneill envsys_data_t *e;
964 1.4 jmcneill uint8_t val;
965 1.4 jmcneill
966 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
967 1.29 thorpej if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
968 1.4 jmcneill sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
969 1.4 jmcneill sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
970 1.4 jmcneill }
971 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
972 1.2 jmcneill
973 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
974 1.2 jmcneill e->private = AXP_SENSOR_BATT_PRESENT;
975 1.2 jmcneill e->units = ENVSYS_INDICATOR;
976 1.2 jmcneill e->state = ENVSYS_SINVALID;
977 1.2 jmcneill strlcpy(e->desc, "battery present", sizeof(e->desc));
978 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
979 1.2 jmcneill
980 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
981 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGING;
982 1.2 jmcneill e->units = ENVSYS_BATTERY_CHARGE;
983 1.2 jmcneill e->state = ENVSYS_SINVALID;
984 1.2 jmcneill strlcpy(e->desc, "charging", sizeof(e->desc));
985 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
986 1.2 jmcneill
987 1.2 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
988 1.2 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_STATE;
989 1.2 jmcneill e->units = ENVSYS_BATTERY_CAPACITY;
990 1.2 jmcneill e->flags = ENVSYS_FMONSTCHANGED;
991 1.9 jmcneill e->state = ENVSYS_SINVALID;
992 1.2 jmcneill e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
993 1.2 jmcneill strlcpy(e->desc, "charge state", sizeof(e->desc));
994 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
995 1.2 jmcneill
996 1.10 jmcneill if (c->batsense_step) {
997 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
998 1.10 jmcneill e->private = AXP_SENSOR_BATT_VOLTAGE;
999 1.10 jmcneill e->units = ENVSYS_SVOLTS_DC;
1000 1.10 jmcneill e->state = ENVSYS_SINVALID;
1001 1.10 jmcneill strlcpy(e->desc, "battery voltage", sizeof(e->desc));
1002 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1003 1.10 jmcneill }
1004 1.10 jmcneill
1005 1.10 jmcneill if (c->charge_step) {
1006 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
1007 1.10 jmcneill e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
1008 1.10 jmcneill e->units = ENVSYS_SAMPS;
1009 1.10 jmcneill e->state = ENVSYS_SINVALID;
1010 1.10 jmcneill strlcpy(e->desc, "battery charge current", sizeof(e->desc));
1011 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1012 1.10 jmcneill }
1013 1.10 jmcneill
1014 1.10 jmcneill if (c->discharge_step) {
1015 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
1016 1.10 jmcneill e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
1017 1.10 jmcneill e->units = ENVSYS_SAMPS;
1018 1.10 jmcneill e->state = ENVSYS_SINVALID;
1019 1.10 jmcneill strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
1020 1.10 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1021 1.10 jmcneill }
1022 1.10 jmcneill
1023 1.10 jmcneill if (c->has_fuel_gauge) {
1024 1.10 jmcneill e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
1025 1.10 jmcneill e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
1026 1.2 jmcneill e->units = ENVSYS_INTEGER;
1027 1.2 jmcneill e->state = ENVSYS_SINVALID;
1028 1.2 jmcneill e->flags = ENVSYS_FPERCENT;
1029 1.2 jmcneill strlcpy(e->desc, "battery percent", sizeof(e->desc));
1030 1.2 jmcneill sysmon_envsys_sensor_attach(sc->sc_sme, e);
1031 1.2 jmcneill }
1032 1.16 jakllsch
1033 1.16 jakllsch if (c->maxcap_step) {
1034 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
1035 1.16 jakllsch e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
1036 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
1037 1.16 jakllsch e->state = ENVSYS_SINVALID;
1038 1.16 jakllsch strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
1039 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
1040 1.16 jakllsch }
1041 1.16 jakllsch
1042 1.16 jakllsch if (c->coulomb_step) {
1043 1.16 jakllsch e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
1044 1.16 jakllsch e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
1045 1.16 jakllsch e->units = ENVSYS_SAMPHOUR;
1046 1.16 jakllsch e->state = ENVSYS_SINVALID;
1047 1.16 jakllsch strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
1048 1.16 jakllsch sysmon_envsys_sensor_attach(sc->sc_sme, e);
1049 1.16 jakllsch }
1050 1.2 jmcneill }
1051 1.2 jmcneill
1052 1.2 jmcneill static void
1053 1.2 jmcneill axppmic_attach_sensors(struct axppmic_softc *sc)
1054 1.2 jmcneill {
1055 1.8 jmcneill if (sc->sc_conf->has_battery) {
1056 1.2 jmcneill sc->sc_sme = sysmon_envsys_create();
1057 1.2 jmcneill sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1058 1.2 jmcneill sc->sc_sme->sme_cookie = sc;
1059 1.2 jmcneill sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
1060 1.2 jmcneill sc->sc_sme->sme_class = SME_CLASS_BATTERY;
1061 1.5 jmcneill sc->sc_sme->sme_flags = SME_INIT_REFRESH;
1062 1.2 jmcneill
1063 1.3 jmcneill axppmic_attach_acadapter(sc);
1064 1.2 jmcneill axppmic_attach_battery(sc);
1065 1.2 jmcneill
1066 1.2 jmcneill sysmon_envsys_register(sc->sc_sme);
1067 1.2 jmcneill }
1068 1.2 jmcneill }
1069 1.2 jmcneill
1070 1.2 jmcneill
1071 1.1 jmcneill static int
1072 1.1 jmcneill axppmic_match(device_t parent, cfdata_t match, void *aux)
1073 1.1 jmcneill {
1074 1.1 jmcneill struct i2c_attach_args *ia = aux;
1075 1.12 thorpej int match_result;
1076 1.1 jmcneill
1077 1.14 thorpej if (iic_use_direct_match(ia, match, compat_data, &match_result))
1078 1.12 thorpej return match_result;
1079 1.1 jmcneill
1080 1.11 thorpej /* This device is direct-config only. */
1081 1.11 thorpej
1082 1.11 thorpej return 0;
1083 1.1 jmcneill }
1084 1.1 jmcneill
1085 1.1 jmcneill static void
1086 1.1 jmcneill axppmic_attach(device_t parent, device_t self, void *aux)
1087 1.1 jmcneill {
1088 1.1 jmcneill struct axppmic_softc *sc = device_private(self);
1089 1.13 thorpej const struct device_compatible_entry *dce = NULL;
1090 1.1 jmcneill const struct axppmic_config *c;
1091 1.1 jmcneill struct axpreg_attach_args aaa;
1092 1.1 jmcneill struct i2c_attach_args *ia = aux;
1093 1.1 jmcneill int phandle, child, i;
1094 1.19 jmcneill uint8_t irq_mask, val;
1095 1.19 jmcneill int error;
1096 1.1 jmcneill
1097 1.31 thorpej dce = iic_compatible_lookup(ia, compat_data);
1098 1.12 thorpej KASSERT(dce != NULL);
1099 1.30 thorpej c = dce->data;
1100 1.1 jmcneill
1101 1.1 jmcneill sc->sc_dev = self;
1102 1.1 jmcneill sc->sc_i2c = ia->ia_tag;
1103 1.1 jmcneill sc->sc_addr = ia->ia_addr;
1104 1.1 jmcneill sc->sc_phandle = ia->ia_cookie;
1105 1.8 jmcneill sc->sc_conf = c;
1106 1.1 jmcneill
1107 1.1 jmcneill aprint_naive("\n");
1108 1.1 jmcneill aprint_normal(": %s\n", c->name);
1109 1.1 jmcneill
1110 1.19 jmcneill if (c->has_mode_set) {
1111 1.19 jmcneill const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
1112 1.19 jmcneill of_hasprop(sc->sc_phandle, "x-powers,master-mode");
1113 1.19 jmcneill
1114 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1115 1.19 jmcneill axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
1116 1.27 thorpej master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
1117 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
1118 1.19 jmcneill }
1119 1.19 jmcneill
1120 1.27 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1121 1.27 thorpej error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
1122 1.27 thorpej iic_release_bus(sc->sc_i2c, 0);
1123 1.19 jmcneill if (error != 0) {
1124 1.19 jmcneill aprint_error_dev(self, "couldn't read chipid\n");
1125 1.19 jmcneill return;
1126 1.19 jmcneill }
1127 1.19 jmcneill aprint_debug_dev(self, "chipid %#x\n", val);
1128 1.19 jmcneill
1129 1.1 jmcneill sc->sc_smpsw.smpsw_name = device_xname(self);
1130 1.1 jmcneill sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
1131 1.1 jmcneill sysmon_pswitch_register(&sc->sc_smpsw);
1132 1.1 jmcneill
1133 1.29 thorpej mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
1134 1.29 thorpej
1135 1.19 jmcneill if (c->irq_regs > 0) {
1136 1.29 thorpej char intrstr[128];
1137 1.29 thorpej
1138 1.29 thorpej if (!fdtbus_intr_str(sc->sc_phandle, 0,
1139 1.29 thorpej intrstr, sizeof(intrstr))) {
1140 1.29 thorpej aprint_error_dev(self,
1141 1.29 thorpej "WARNING: failed to decode interrupt\n");
1142 1.29 thorpej }
1143 1.29 thorpej
1144 1.29 thorpej sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
1145 1.29 thorpej FDT_INTR_MPSAFE,
1146 1.29 thorpej axppmic_intr, sc);
1147 1.29 thorpej if (sc->sc_ih == NULL) {
1148 1.29 thorpej aprint_error_dev(self,
1149 1.29 thorpej "WARNING: couldn't establish interrupt handler\n");
1150 1.29 thorpej }
1151 1.29 thorpej
1152 1.29 thorpej error = workqueue_create(&sc->sc_wq, device_xname(self),
1153 1.29 thorpej axppmic_work, NULL,
1154 1.29 thorpej PRI_SOFTSERIAL, IPL_VM,
1155 1.29 thorpej WQ_MPSAFE);
1156 1.29 thorpej if (error) {
1157 1.29 thorpej sc->sc_wq = NULL;
1158 1.29 thorpej aprint_error_dev(self,
1159 1.29 thorpej "WARNING: couldn't create work queue: error %d\n",
1160 1.29 thorpej error);
1161 1.19 jmcneill }
1162 1.19 jmcneill
1163 1.29 thorpej if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1164 1.29 thorpej iic_acquire_bus(sc->sc_i2c, 0);
1165 1.29 thorpej for (i = 1; i <= c->irq_regs; i++) {
1166 1.29 thorpej irq_mask = 0;
1167 1.29 thorpej if (i == c->poklirq.reg)
1168 1.29 thorpej irq_mask |= c->poklirq.mask;
1169 1.29 thorpej if (i == c->acinirq.reg)
1170 1.29 thorpej irq_mask |= c->acinirq.mask;
1171 1.29 thorpej if (i == c->vbusirq.reg)
1172 1.29 thorpej irq_mask |= c->vbusirq.mask;
1173 1.29 thorpej if (i == c->battirq.reg)
1174 1.29 thorpej irq_mask |= c->battirq.mask;
1175 1.29 thorpej if (i == c->chargeirq.reg)
1176 1.29 thorpej irq_mask |= c->chargeirq.mask;
1177 1.29 thorpej if (i == c->chargestirq.reg)
1178 1.29 thorpej irq_mask |= c->chargestirq.mask;
1179 1.29 thorpej axppmic_write(sc->sc_i2c, sc->sc_addr,
1180 1.29 thorpej AXP_IRQ_ENABLE_REG(i),
1181 1.29 thorpej irq_mask, 0);
1182 1.29 thorpej }
1183 1.29 thorpej iic_release_bus(sc->sc_i2c, 0);
1184 1.19 jmcneill }
1185 1.1 jmcneill }
1186 1.1 jmcneill
1187 1.1 jmcneill fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1188 1.1 jmcneill &axppmic_power_funcs);
1189 1.1 jmcneill
1190 1.37 jmcneill if (c->gpio_compat != NULL) {
1191 1.37 jmcneill phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
1192 1.37 jmcneill if (phandle > 0) {
1193 1.37 jmcneill fdtbus_register_gpio_controller(self, phandle,
1194 1.37 jmcneill &axppmic_gpio_funcs);
1195 1.37 jmcneill }
1196 1.37 jmcneill }
1197 1.37 jmcneill
1198 1.1 jmcneill phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1199 1.2 jmcneill if (phandle > 0) {
1200 1.2 jmcneill aaa.reg_i2c = sc->sc_i2c;
1201 1.2 jmcneill aaa.reg_addr = sc->sc_addr;
1202 1.2 jmcneill for (i = 0; i < c->ncontrols; i++) {
1203 1.2 jmcneill const struct axppmic_ctrl *ctrl = &c->controls[i];
1204 1.2 jmcneill child = of_find_firstchild_byname(phandle, ctrl->c_name);
1205 1.2 jmcneill if (child <= 0)
1206 1.2 jmcneill continue;
1207 1.2 jmcneill aaa.reg_ctrl = ctrl;
1208 1.2 jmcneill aaa.reg_phandle = child;
1209 1.36 thorpej config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
1210 1.2 jmcneill }
1211 1.2 jmcneill }
1212 1.1 jmcneill
1213 1.2 jmcneill if (c->has_battery)
1214 1.2 jmcneill axppmic_attach_sensors(sc);
1215 1.1 jmcneill }
1216 1.1 jmcneill
1217 1.1 jmcneill static int
1218 1.1 jmcneill axpreg_acquire(device_t dev)
1219 1.1 jmcneill {
1220 1.1 jmcneill return 0;
1221 1.1 jmcneill }
1222 1.1 jmcneill
1223 1.1 jmcneill static void
1224 1.1 jmcneill axpreg_release(device_t dev)
1225 1.1 jmcneill {
1226 1.1 jmcneill }
1227 1.1 jmcneill
1228 1.1 jmcneill static int
1229 1.1 jmcneill axpreg_enable(device_t dev, bool enable)
1230 1.1 jmcneill {
1231 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1232 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1233 1.25 thorpej const int flags = 0;
1234 1.1 jmcneill uint8_t val;
1235 1.1 jmcneill int error;
1236 1.1 jmcneill
1237 1.1 jmcneill if (!c->c_enable_mask)
1238 1.1 jmcneill return EINVAL;
1239 1.1 jmcneill
1240 1.1 jmcneill iic_acquire_bus(sc->sc_i2c, flags);
1241 1.1 jmcneill if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1242 1.23 jmcneill val &= ~c->c_enable_mask;
1243 1.1 jmcneill if (enable)
1244 1.23 jmcneill val |= c->c_enable_val;
1245 1.1 jmcneill else
1246 1.23 jmcneill val |= c->c_disable_val;
1247 1.1 jmcneill error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1248 1.1 jmcneill }
1249 1.1 jmcneill iic_release_bus(sc->sc_i2c, flags);
1250 1.1 jmcneill
1251 1.1 jmcneill return error;
1252 1.1 jmcneill }
1253 1.1 jmcneill
1254 1.1 jmcneill static int
1255 1.1 jmcneill axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1256 1.1 jmcneill {
1257 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1258 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1259 1.1 jmcneill
1260 1.1 jmcneill return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1261 1.1 jmcneill min_uvol / 1000, max_uvol / 1000);
1262 1.1 jmcneill }
1263 1.1 jmcneill
1264 1.1 jmcneill static int
1265 1.1 jmcneill axpreg_get_voltage(device_t dev, u_int *puvol)
1266 1.1 jmcneill {
1267 1.1 jmcneill struct axpreg_softc *sc = device_private(dev);
1268 1.1 jmcneill const struct axppmic_ctrl *c = sc->sc_ctrl;
1269 1.1 jmcneill int error;
1270 1.1 jmcneill u_int vol;
1271 1.1 jmcneill
1272 1.1 jmcneill error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1273 1.1 jmcneill if (error)
1274 1.1 jmcneill return error;
1275 1.1 jmcneill
1276 1.1 jmcneill *puvol = vol * 1000;
1277 1.1 jmcneill return 0;
1278 1.1 jmcneill }
1279 1.1 jmcneill
1280 1.1 jmcneill static struct fdtbus_regulator_controller_func axpreg_funcs = {
1281 1.1 jmcneill .acquire = axpreg_acquire,
1282 1.1 jmcneill .release = axpreg_release,
1283 1.1 jmcneill .enable = axpreg_enable,
1284 1.1 jmcneill .set_voltage = axpreg_set_voltage,
1285 1.1 jmcneill .get_voltage = axpreg_get_voltage,
1286 1.1 jmcneill };
1287 1.1 jmcneill
1288 1.1 jmcneill static int
1289 1.1 jmcneill axpreg_match(device_t parent, cfdata_t match, void *aux)
1290 1.1 jmcneill {
1291 1.1 jmcneill return 1;
1292 1.1 jmcneill }
1293 1.1 jmcneill
1294 1.1 jmcneill static void
1295 1.1 jmcneill axpreg_attach(device_t parent, device_t self, void *aux)
1296 1.1 jmcneill {
1297 1.1 jmcneill struct axpreg_softc *sc = device_private(self);
1298 1.1 jmcneill struct axpreg_attach_args *aaa = aux;
1299 1.1 jmcneill const int phandle = aaa->reg_phandle;
1300 1.1 jmcneill const char *name;
1301 1.20 jmcneill u_int uvol, min_uvol, max_uvol;
1302 1.1 jmcneill
1303 1.1 jmcneill sc->sc_dev = self;
1304 1.1 jmcneill sc->sc_i2c = aaa->reg_i2c;
1305 1.1 jmcneill sc->sc_addr = aaa->reg_addr;
1306 1.1 jmcneill sc->sc_ctrl = aaa->reg_ctrl;
1307 1.1 jmcneill
1308 1.1 jmcneill fdtbus_register_regulator_controller(self, phandle,
1309 1.1 jmcneill &axpreg_funcs);
1310 1.1 jmcneill
1311 1.1 jmcneill aprint_naive("\n");
1312 1.1 jmcneill name = fdtbus_get_string(phandle, "regulator-name");
1313 1.1 jmcneill if (name)
1314 1.1 jmcneill aprint_normal(": %s\n", name);
1315 1.1 jmcneill else
1316 1.1 jmcneill aprint_normal("\n");
1317 1.20 jmcneill
1318 1.35 skrll int error = axpreg_get_voltage(self, &uvol);
1319 1.35 skrll if (error)
1320 1.35 skrll return;
1321 1.35 skrll
1322 1.20 jmcneill if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1323 1.20 jmcneill of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1324 1.20 jmcneill if (uvol < min_uvol || uvol > max_uvol) {
1325 1.22 jmcneill aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1326 1.22 jmcneill uvol, min_uvol, max_uvol);
1327 1.20 jmcneill axpreg_set_voltage(self, min_uvol, max_uvol);
1328 1.20 jmcneill }
1329 1.20 jmcneill }
1330 1.22 jmcneill
1331 1.22 jmcneill if (of_hasprop(phandle, "regulator-always-on") ||
1332 1.22 jmcneill of_hasprop(phandle, "regulator-boot-on")) {
1333 1.22 jmcneill axpreg_enable(self, true);
1334 1.22 jmcneill }
1335 1.1 jmcneill }
1336 1.1 jmcneill
1337 1.1 jmcneill CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1338 1.1 jmcneill axppmic_match, axppmic_attach, NULL, NULL);
1339 1.1 jmcneill
1340 1.1 jmcneill CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1341 1.1 jmcneill axpreg_match, axpreg_attach, NULL, NULL);
1342