axppmic.c revision 1.11 1 /* $NetBSD: axppmic.c,v 1.11 2018/06/16 21:22:13 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.11 2018/06/16 21:22:13 thorpej Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51
52 #define AXP_POWER_MODE_REG 0x01
53 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56
57 #define AXP_POWER_DISABLE_REG 0x32
58 #define AXP_POWER_DISABLE_CTRL __BIT(7)
59
60 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
61 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
62 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
63 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
64 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
65 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
66
67 #define AXP_BATSENSE_HI_REG 0x78
68 #define AXP_BATSENSE_LO_REG 0x79
69
70 #define AXP_BATTCHG_HI_REG 0x7a
71 #define AXP_BATTCHG_LO_REG 0x7b
72
73 #define AXP_BATTDISCHG_HI_REG 0x7c
74 #define AXP_BATTDISCHG_LO_REG 0x7d
75
76 #define AXP_ADC_RAW(_hi, _lo) \
77 (((u_int)(_hi) << 4) | ((lo) & 0xf))
78
79 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
80 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
81
82 #define AXP_BATT_CAP_REG 0xb9
83 #define AXP_BATT_CAP_VALID __BIT(7)
84 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
85
86 #define AXP_BATT_CAP_WARN_REG 0xe6
87 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
88 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
89
90 struct axppmic_ctrl {
91 device_t c_dev;
92
93 const char * c_name;
94 u_int c_min;
95 u_int c_max;
96 u_int c_step1;
97 u_int c_step1cnt;
98 u_int c_step2;
99 u_int c_step2cnt;
100
101 uint8_t c_enable_reg;
102 uint8_t c_enable_mask;
103
104 uint8_t c_voltage_reg;
105 uint8_t c_voltage_mask;
106 };
107
108 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
109 { .c_name = (name), .c_min = (min), .c_max = (max), \
110 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
111 .c_step2 = 0, .c_step2cnt = 0, \
112 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
113 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
114
115 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
116 { .c_name = (name), .c_min = (min), .c_max = (max), \
117 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
118 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
119 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
120 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
121
122 static const struct axppmic_ctrl axp803_ctrls[] = {
123 AXP_CTRL("dldo1", 700, 3300, 100,
124 0x12, __BIT(3), 0x15, __BITS(4,0)),
125 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
126 0x12, __BIT(4), 0x16, __BITS(4,0)),
127 AXP_CTRL("dldo3", 700, 3300, 100,
128 0x12, __BIT(5), 0x17, __BITS(4,0)),
129 AXP_CTRL("dldo4", 700, 3300, 100,
130 0x12, __BIT(6), 0x18, __BITS(4,0)),
131 AXP_CTRL("eldo1", 700, 1900, 50,
132 0x12, __BIT(0), 0x19, __BITS(4,0)),
133 AXP_CTRL("eldo2", 700, 1900, 50,
134 0x12, __BIT(1), 0x1a, __BITS(4,0)),
135 AXP_CTRL("eldo3", 700, 1900, 50,
136 0x12, __BIT(2), 0x1b, __BITS(4,0)),
137 AXP_CTRL("fldo1", 700, 1450, 50,
138 0x13, __BIT(2), 0x1c, __BITS(3,0)),
139 AXP_CTRL("fldo2", 700, 1450, 50,
140 0x13, __BIT(3), 0x1d, __BITS(3,0)),
141 AXP_CTRL("dcdc1", 1600, 3400, 100,
142 0x10, __BIT(0), 0x20, __BITS(4,0)),
143 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
144 0x10, __BIT(1), 0x21, __BITS(6,0)),
145 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
146 0x10, __BIT(2), 0x22, __BITS(6,0)),
147 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
148 0x10, __BIT(3), 0x23, __BITS(6,0)),
149 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
150 0x10, __BIT(4), 0x24, __BITS(6,0)),
151 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
152 0x10, __BIT(5), 0x25, __BITS(6,0)),
153 AXP_CTRL("aldo1", 700, 3300, 100,
154 0x13, __BIT(5), 0x28, __BITS(4,0)),
155 AXP_CTRL("aldo2", 700, 3300, 100,
156 0x13, __BIT(6), 0x29, __BITS(4,0)),
157 AXP_CTRL("aldo3", 700, 3300, 100,
158 0x13, __BIT(7), 0x2a, __BITS(4,0)),
159 };
160
161 static const struct axppmic_ctrl axp805_ctrls[] = {
162 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
163 0x10, __BIT(0), 0x12, __BITS(6,0)),
164 AXP_CTRL("dcdcb", 1000, 2550, 50,
165 0x10, __BIT(1), 0x13, __BITS(4,0)),
166 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
167 0x10, __BIT(2), 0x14, __BITS(6,0)),
168 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
169 0x10, __BIT(3), 0x15, __BITS(5,0)),
170 AXP_CTRL("dcdce", 1100, 3400, 100,
171 0x10, __BIT(4), 0x16, __BITS(4,0)),
172 AXP_CTRL("aldo1", 700, 3300, 100,
173 0x10, __BIT(5), 0x17, __BITS(4,0)),
174 AXP_CTRL("aldo2", 700, 3400, 100,
175 0x10, __BIT(6), 0x18, __BITS(4,0)),
176 AXP_CTRL("aldo3", 700, 3300, 100,
177 0x10, __BIT(7), 0x19, __BITS(4,0)),
178 AXP_CTRL("bldo1", 700, 1900, 100,
179 0x11, __BIT(0), 0x20, __BITS(3,0)),
180 AXP_CTRL("bldo2", 700, 1900, 100,
181 0x11, __BIT(1), 0x21, __BITS(3,0)),
182 AXP_CTRL("bldo3", 700, 1900, 100,
183 0x11, __BIT(2), 0x22, __BITS(3,0)),
184 AXP_CTRL("bldo4", 700, 1900, 100,
185 0x11, __BIT(3), 0x23, __BITS(3,0)),
186 AXP_CTRL("cldo1", 700, 3300, 100,
187 0x11, __BIT(4), 0x24, __BITS(4,0)),
188 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
189 0x11, __BIT(5), 0x25, __BITS(4,0)),
190 AXP_CTRL("cldo3", 700, 3300, 100,
191 0x11, __BIT(6), 0x26, __BITS(4,0)),
192 };
193
194 struct axppmic_irq {
195 u_int reg;
196 uint8_t mask;
197 };
198
199 #define AXPPMIC_IRQ(_reg, _mask) \
200 { .reg = (_reg), .mask = (_mask) }
201
202 struct axppmic_config {
203 const char *name;
204 const struct axppmic_ctrl *controls;
205 u_int ncontrols;
206 u_int irq_regs;
207 bool has_battery;
208 bool has_fuel_gauge;
209 struct axppmic_irq poklirq;
210 struct axppmic_irq acinirq;
211 struct axppmic_irq vbusirq;
212 struct axppmic_irq battirq;
213 struct axppmic_irq chargeirq;
214 struct axppmic_irq chargestirq;
215 u_int batsense_step; /* uV */
216 u_int charge_step; /* uA */
217 u_int discharge_step; /* uA */
218 u_int maxcap_step; /* uAh */
219 u_int coulomb_step; /* uAh */
220 };
221
222 enum axppmic_sensor {
223 AXP_SENSOR_ACIN_PRESENT,
224 AXP_SENSOR_VBUS_PRESENT,
225 AXP_SENSOR_BATT_PRESENT,
226 AXP_SENSOR_BATT_CHARGING,
227 AXP_SENSOR_BATT_CHARGE_STATE,
228 AXP_SENSOR_BATT_VOLTAGE,
229 AXP_SENSOR_BATT_CHARGE_CURRENT,
230 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
231 AXP_SENSOR_BATT_CAPACITY_PERCENT,
232 AXP_NSENSORS
233 };
234
235 struct axppmic_softc {
236 device_t sc_dev;
237 i2c_tag_t sc_i2c;
238 i2c_addr_t sc_addr;
239 int sc_phandle;
240
241 const struct axppmic_config *sc_conf;
242
243 struct sysmon_pswitch sc_smpsw;
244
245 struct sysmon_envsys *sc_sme;
246
247 envsys_data_t sc_sensor[AXP_NSENSORS];
248
249 u_int sc_warn_thres;
250 u_int sc_shut_thres;
251 };
252
253 struct axpreg_softc {
254 device_t sc_dev;
255 i2c_tag_t sc_i2c;
256 i2c_addr_t sc_addr;
257 const struct axppmic_ctrl *sc_ctrl;
258 };
259
260 struct axpreg_attach_args {
261 const struct axppmic_ctrl *reg_ctrl;
262 int reg_phandle;
263 i2c_tag_t reg_i2c;
264 i2c_addr_t reg_addr;
265 };
266
267 static const struct axppmic_config axp803_config = {
268 .name = "AXP803",
269 .controls = axp803_ctrls,
270 .ncontrols = __arraycount(axp803_ctrls),
271 .irq_regs = 6,
272 .has_battery = true,
273 .has_fuel_gauge = true,
274 .batsense_step = 1100,
275 .charge_step = 1000,
276 .discharge_step = 1000,
277 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
278 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
279 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
280 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
281 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
282 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
283 };
284
285 static const struct axppmic_config axp805_config = {
286 .name = "AXP805/806",
287 .controls = axp805_ctrls,
288 .ncontrols = __arraycount(axp805_ctrls),
289 .irq_regs = 2,
290 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
291 };
292
293 static const struct of_compat_data compat_data[] = {
294 { "x-powers,axp803", (uintptr_t)&axp803_config },
295 { "x-powers,axp805", (uintptr_t)&axp805_config },
296 { "x-powers,axp806", (uintptr_t)&axp805_config },
297 { NULL }
298 };
299
300 static int
301 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
302 {
303 return iic_smbus_read_byte(tag, addr, reg, val, flags);
304 }
305
306 static int
307 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
308 {
309 return iic_smbus_write_byte(tag, addr, reg, val, flags);
310 }
311
312 static int
313 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
314 {
315 const int flags = (cold ? I2C_F_POLL : 0);
316 u_int vol, reg_val;
317 int nstep, error;
318 uint8_t val;
319
320 if (!c->c_voltage_mask)
321 return EINVAL;
322
323 if (min < c->c_min || min > c->c_max)
324 return EINVAL;
325
326 reg_val = 0;
327 nstep = 1;
328 vol = c->c_min;
329
330 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
331 ++reg_val;
332 vol += c->c_step1;
333 }
334 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
335 ++reg_val;
336 vol += c->c_step2;
337 }
338
339 if (vol > max)
340 return EINVAL;
341
342 iic_acquire_bus(tag, flags);
343 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
344 val &= ~c->c_voltage_mask;
345 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
346 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
347 }
348 iic_release_bus(tag, flags);
349
350 return error;
351 }
352
353 static int
354 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
355 {
356 const int flags = (cold ? I2C_F_POLL : 0);
357 int reg_val, error;
358 uint8_t val;
359
360 if (!c->c_voltage_mask)
361 return EINVAL;
362
363 iic_acquire_bus(tag, flags);
364 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
365 iic_release_bus(tag, flags);
366 if (error)
367 return error;
368
369 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
370 if (reg_val < c->c_step1cnt) {
371 *pvol = c->c_min + reg_val * c->c_step1;
372 } else {
373 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
374 ((reg_val - c->c_step1cnt) * c->c_step2);
375 }
376
377 return 0;
378 }
379
380 static void
381 axppmic_power_poweroff(device_t dev)
382 {
383 struct axppmic_softc *sc = device_private(dev);
384
385 delay(1000000);
386
387 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
388 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
389 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
390 }
391
392 static struct fdtbus_power_controller_func axppmic_power_funcs = {
393 .poweroff = axppmic_power_poweroff,
394 };
395
396 static void
397 axppmic_task_shut(void *priv)
398 {
399 struct axppmic_softc *sc = priv;
400
401 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
402 }
403
404 static void
405 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
406 {
407 struct axppmic_softc *sc = sme->sme_cookie;
408 const struct axppmic_config *c = sc->sc_conf;
409 const int flags = I2C_F_POLL;
410 uint8_t val, lo, hi;
411
412 e->state = ENVSYS_SINVALID;
413
414 const bool battery_present =
415 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
416 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
417
418 switch (e->private) {
419 case AXP_SENSOR_ACIN_PRESENT:
420 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
421 e->state = ENVSYS_SVALID;
422 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
423 }
424 break;
425 case AXP_SENSOR_VBUS_PRESENT:
426 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
427 e->state = ENVSYS_SVALID;
428 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
429 }
430 break;
431 case AXP_SENSOR_BATT_PRESENT:
432 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
433 if (val & AXP_POWER_MODE_BATT_VALID) {
434 e->state = ENVSYS_SVALID;
435 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
436 }
437 }
438 break;
439 case AXP_SENSOR_BATT_CHARGING:
440 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
441 e->state = ENVSYS_SVALID;
442 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
443 }
444 break;
445 case AXP_SENSOR_BATT_CHARGE_STATE:
446 if (battery_present &&
447 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
448 (val & AXP_BATT_CAP_VALID) != 0) {
449 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
450 if (batt_val <= sc->sc_shut_thres) {
451 e->state = ENVSYS_SCRITICAL;
452 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
453 } else if (batt_val <= sc->sc_warn_thres) {
454 e->state = ENVSYS_SWARNUNDER;
455 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
456 } else {
457 e->state = ENVSYS_SVALID;
458 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
459 }
460 }
461 break;
462 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
463 if (battery_present &&
464 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
465 (val & AXP_BATT_CAP_VALID) != 0) {
466 e->state = ENVSYS_SVALID;
467 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
468 }
469 break;
470 case AXP_SENSOR_BATT_VOLTAGE:
471 if (battery_present &&
472 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
473 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
474 e->state = ENVSYS_SVALID;
475 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
476 }
477 break;
478 case AXP_SENSOR_BATT_CHARGE_CURRENT:
479 if (battery_present &&
480 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
481 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
482 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
483 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
484 e->state = ENVSYS_SVALID;
485 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
486 }
487 break;
488 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
489 if (battery_present &&
490 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
491 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
492 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
493 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
494 e->state = ENVSYS_SVALID;
495 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
496 }
497 break;
498 }
499 }
500
501 static void
502 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
503 {
504 struct axppmic_softc *sc = sme->sme_cookie;
505 const int flags = I2C_F_POLL;
506
507 switch (e->private) {
508 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
509 case AXP_SENSOR_BATT_VOLTAGE:
510 case AXP_SENSOR_BATT_CHARGE_CURRENT:
511 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
512 /* Always update battery capacity and ADCs */
513 iic_acquire_bus(sc->sc_i2c, flags);
514 axppmic_sensor_update(sme, e);
515 iic_release_bus(sc->sc_i2c, flags);
516 break;
517 default:
518 /* Refresh if the sensor is not in valid state */
519 if (e->state != ENVSYS_SVALID) {
520 iic_acquire_bus(sc->sc_i2c, flags);
521 axppmic_sensor_update(sme, e);
522 iic_release_bus(sc->sc_i2c, flags);
523 }
524 break;
525 }
526 }
527
528 static int
529 axppmic_intr(void *priv)
530 {
531 struct axppmic_softc *sc = priv;
532 const struct axppmic_config *c = sc->sc_conf;
533 const int flags = I2C_F_POLL;
534 uint8_t stat;
535 u_int n;
536
537 iic_acquire_bus(sc->sc_i2c, flags);
538 for (n = 1; n <= c->irq_regs; n++) {
539 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
540 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
541 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
542 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
543 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
544 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
545 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
546 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
547 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
548 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
549 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
550 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
551 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
552
553 if (stat != 0)
554 axppmic_write(sc->sc_i2c, sc->sc_addr,
555 AXP_IRQ_STATUS_REG(n), stat, flags);
556 }
557 }
558 iic_release_bus(sc->sc_i2c, flags);
559
560 return 1;
561 }
562
563 static void
564 axppmic_attach_acadapter(struct axppmic_softc *sc)
565 {
566 envsys_data_t *e;
567
568 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
569 e->private = AXP_SENSOR_ACIN_PRESENT;
570 e->units = ENVSYS_INDICATOR;
571 e->state = ENVSYS_SINVALID;
572 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
573 sysmon_envsys_sensor_attach(sc->sc_sme, e);
574
575 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
576 e->private = AXP_SENSOR_VBUS_PRESENT;
577 e->units = ENVSYS_INDICATOR;
578 e->state = ENVSYS_SINVALID;
579 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
580 sysmon_envsys_sensor_attach(sc->sc_sme, e);
581 }
582
583 static void
584 axppmic_attach_battery(struct axppmic_softc *sc)
585 {
586 const struct axppmic_config *c = sc->sc_conf;
587 envsys_data_t *e;
588 uint8_t val;
589
590 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
591 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
592 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
593 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
594 }
595 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
596
597 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
598 e->private = AXP_SENSOR_BATT_PRESENT;
599 e->units = ENVSYS_INDICATOR;
600 e->state = ENVSYS_SINVALID;
601 strlcpy(e->desc, "battery present", sizeof(e->desc));
602 sysmon_envsys_sensor_attach(sc->sc_sme, e);
603
604 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
605 e->private = AXP_SENSOR_BATT_CHARGING;
606 e->units = ENVSYS_BATTERY_CHARGE;
607 e->state = ENVSYS_SINVALID;
608 strlcpy(e->desc, "charging", sizeof(e->desc));
609 sysmon_envsys_sensor_attach(sc->sc_sme, e);
610
611 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
612 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
613 e->units = ENVSYS_BATTERY_CAPACITY;
614 e->flags = ENVSYS_FMONSTCHANGED;
615 e->state = ENVSYS_SINVALID;
616 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
617 strlcpy(e->desc, "charge state", sizeof(e->desc));
618 sysmon_envsys_sensor_attach(sc->sc_sme, e);
619
620 if (c->batsense_step) {
621 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
622 e->private = AXP_SENSOR_BATT_VOLTAGE;
623 e->units = ENVSYS_SVOLTS_DC;
624 e->state = ENVSYS_SINVALID;
625 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
626 sysmon_envsys_sensor_attach(sc->sc_sme, e);
627 }
628
629 if (c->charge_step) {
630 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
631 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
632 e->units = ENVSYS_SAMPS;
633 e->state = ENVSYS_SINVALID;
634 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
635 sysmon_envsys_sensor_attach(sc->sc_sme, e);
636 }
637
638 if (c->discharge_step) {
639 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
640 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
641 e->units = ENVSYS_SAMPS;
642 e->state = ENVSYS_SINVALID;
643 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
644 sysmon_envsys_sensor_attach(sc->sc_sme, e);
645 }
646
647 if (c->has_fuel_gauge) {
648 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
649 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
650 e->units = ENVSYS_INTEGER;
651 e->state = ENVSYS_SINVALID;
652 e->flags = ENVSYS_FPERCENT;
653 strlcpy(e->desc, "battery percent", sizeof(e->desc));
654 sysmon_envsys_sensor_attach(sc->sc_sme, e);
655 }
656 }
657
658 static void
659 axppmic_attach_sensors(struct axppmic_softc *sc)
660 {
661 if (sc->sc_conf->has_battery) {
662 sc->sc_sme = sysmon_envsys_create();
663 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
664 sc->sc_sme->sme_cookie = sc;
665 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
666 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
667 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
668
669 axppmic_attach_acadapter(sc);
670 axppmic_attach_battery(sc);
671
672 sysmon_envsys_register(sc->sc_sme);
673 }
674 }
675
676
677 static int
678 axppmic_match(device_t parent, cfdata_t match, void *aux)
679 {
680 struct i2c_attach_args *ia = aux;
681
682 /* XXXJRT Gross. */
683 if (ia->ia_name != NULL) {
684 if (ia->ia_cookie) {
685 int match_result =
686 of_match_compat_data(ia->ia_cookie, compat_data);
687 if (match_result) {
688 match_result = match_result - 1 +
689 I2C_MATCH_DIRECT_COMPATIBLE;
690 match_result = MIN(match_result,
691 I2C_MATCH_DIRECT_COMPATIBLE_MAX);
692 }
693 return match_result;
694 } else
695 return 0;
696 }
697
698 /* This device is direct-config only. */
699
700 return 0;
701 }
702
703 static void
704 axppmic_attach(device_t parent, device_t self, void *aux)
705 {
706 struct axppmic_softc *sc = device_private(self);
707 const struct axppmic_config *c;
708 struct axpreg_attach_args aaa;
709 struct i2c_attach_args *ia = aux;
710 int phandle, child, i;
711 uint32_t irq_mask;
712 void *ih;
713
714 c = (void *)of_search_compatible(ia->ia_cookie, compat_data)->data;
715
716 sc->sc_dev = self;
717 sc->sc_i2c = ia->ia_tag;
718 sc->sc_addr = ia->ia_addr;
719 sc->sc_phandle = ia->ia_cookie;
720 sc->sc_conf = c;
721
722 aprint_naive("\n");
723 aprint_normal(": %s\n", c->name);
724
725 sc->sc_smpsw.smpsw_name = device_xname(self);
726 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
727 sysmon_pswitch_register(&sc->sc_smpsw);
728
729 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
730 for (i = 1; i <= c->irq_regs; i++) {
731 irq_mask = 0;
732 if (i == c->poklirq.reg)
733 irq_mask |= c->poklirq.mask;
734 if (i == c->acinirq.reg)
735 irq_mask |= c->acinirq.mask;
736 if (i == c->vbusirq.reg)
737 irq_mask |= c->vbusirq.mask;
738 if (i == c->battirq.reg)
739 irq_mask |= c->battirq.mask;
740 if (i == c->chargeirq.reg)
741 irq_mask |= c->chargeirq.mask;
742 if (i == c->chargestirq.reg)
743 irq_mask |= c->chargestirq.mask;
744 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
745 }
746 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
747
748 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
749 axppmic_intr, sc);
750 if (ih == NULL) {
751 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
752 }
753
754 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
755 &axppmic_power_funcs);
756
757 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
758 if (phandle > 0) {
759 aaa.reg_i2c = sc->sc_i2c;
760 aaa.reg_addr = sc->sc_addr;
761 for (i = 0; i < c->ncontrols; i++) {
762 const struct axppmic_ctrl *ctrl = &c->controls[i];
763 child = of_find_firstchild_byname(phandle, ctrl->c_name);
764 if (child <= 0)
765 continue;
766 aaa.reg_ctrl = ctrl;
767 aaa.reg_phandle = child;
768 config_found(sc->sc_dev, &aaa, NULL);
769 }
770 }
771
772 if (c->has_battery)
773 axppmic_attach_sensors(sc);
774 }
775
776 static int
777 axpreg_acquire(device_t dev)
778 {
779 return 0;
780 }
781
782 static void
783 axpreg_release(device_t dev)
784 {
785 }
786
787 static int
788 axpreg_enable(device_t dev, bool enable)
789 {
790 struct axpreg_softc *sc = device_private(dev);
791 const struct axppmic_ctrl *c = sc->sc_ctrl;
792 const int flags = (cold ? I2C_F_POLL : 0);
793 uint8_t val;
794 int error;
795
796 if (!c->c_enable_mask)
797 return EINVAL;
798
799 iic_acquire_bus(sc->sc_i2c, flags);
800 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
801 if (enable)
802 val |= c->c_enable_mask;
803 else
804 val &= ~c->c_enable_mask;
805 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
806 }
807 iic_release_bus(sc->sc_i2c, flags);
808
809 return error;
810 }
811
812 static int
813 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
814 {
815 struct axpreg_softc *sc = device_private(dev);
816 const struct axppmic_ctrl *c = sc->sc_ctrl;
817
818 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
819 min_uvol / 1000, max_uvol / 1000);
820 }
821
822 static int
823 axpreg_get_voltage(device_t dev, u_int *puvol)
824 {
825 struct axpreg_softc *sc = device_private(dev);
826 const struct axppmic_ctrl *c = sc->sc_ctrl;
827 int error;
828 u_int vol;
829
830 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
831 if (error)
832 return error;
833
834 *puvol = vol * 1000;
835 return 0;
836 }
837
838 static struct fdtbus_regulator_controller_func axpreg_funcs = {
839 .acquire = axpreg_acquire,
840 .release = axpreg_release,
841 .enable = axpreg_enable,
842 .set_voltage = axpreg_set_voltage,
843 .get_voltage = axpreg_get_voltage,
844 };
845
846 static int
847 axpreg_match(device_t parent, cfdata_t match, void *aux)
848 {
849 return 1;
850 }
851
852 static void
853 axpreg_attach(device_t parent, device_t self, void *aux)
854 {
855 struct axpreg_softc *sc = device_private(self);
856 struct axpreg_attach_args *aaa = aux;
857 const int phandle = aaa->reg_phandle;
858 const char *name;
859
860 sc->sc_dev = self;
861 sc->sc_i2c = aaa->reg_i2c;
862 sc->sc_addr = aaa->reg_addr;
863 sc->sc_ctrl = aaa->reg_ctrl;
864
865 fdtbus_register_regulator_controller(self, phandle,
866 &axpreg_funcs);
867
868 aprint_naive("\n");
869 name = fdtbus_get_string(phandle, "regulator-name");
870 if (name)
871 aprint_normal(": %s\n", name);
872 else
873 aprint_normal("\n");
874 }
875
876 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
877 axppmic_match, axppmic_attach, NULL, NULL);
878
879 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
880 axpreg_match, axpreg_attach, NULL, NULL);
881