axppmic.c revision 1.16 1 /* $NetBSD: axppmic.c,v 1.16 2018/11/13 19:06:05 jakllsch Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.16 2018/11/13 19:06:05 jakllsch Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51
52 #define AXP_POWER_MODE_REG 0x01
53 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56
57 #define AXP_POWER_DISABLE_REG 0x32
58 #define AXP_POWER_DISABLE_CTRL __BIT(7)
59
60 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
61 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
62 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
63 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
64 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
65 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
66
67 #define AXP_BATSENSE_HI_REG 0x78
68 #define AXP_BATSENSE_LO_REG 0x79
69
70 #define AXP_BATTCHG_HI_REG 0x7a
71 #define AXP_BATTCHG_LO_REG 0x7b
72
73 #define AXP_BATTDISCHG_HI_REG 0x7c
74 #define AXP_BATTDISCHG_LO_REG 0x7d
75
76 #define AXP_ADC_RAW(_hi, _lo) \
77 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
78
79 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
80 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
81
82 #define AXP_BATT_CAP_REG 0xb9
83 #define AXP_BATT_CAP_VALID __BIT(7)
84 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
85
86 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
87 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
88 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
89
90 #define AXP_BATT_COULOMB_HI_REG 0xe2
91 #define AXP_BATT_COULOMB_VALID __BIT(7)
92 #define AXP_BATT_COULOMB_LO_REG 0xe3
93
94 #define AXP_COULOMB_RAW(_hi, _lo) \
95 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
96
97 #define AXP_BATT_CAP_WARN_REG 0xe6
98 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
99 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
100
101 struct axppmic_ctrl {
102 device_t c_dev;
103
104 const char * c_name;
105 u_int c_min;
106 u_int c_max;
107 u_int c_step1;
108 u_int c_step1cnt;
109 u_int c_step2;
110 u_int c_step2cnt;
111
112 uint8_t c_enable_reg;
113 uint8_t c_enable_mask;
114
115 uint8_t c_voltage_reg;
116 uint8_t c_voltage_mask;
117 };
118
119 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
120 { .c_name = (name), .c_min = (min), .c_max = (max), \
121 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
122 .c_step2 = 0, .c_step2cnt = 0, \
123 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
124 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
125
126 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
127 { .c_name = (name), .c_min = (min), .c_max = (max), \
128 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
129 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
130 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
131 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
132
133 static const struct axppmic_ctrl axp803_ctrls[] = {
134 AXP_CTRL("dldo1", 700, 3300, 100,
135 0x12, __BIT(3), 0x15, __BITS(4,0)),
136 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
137 0x12, __BIT(4), 0x16, __BITS(4,0)),
138 AXP_CTRL("dldo3", 700, 3300, 100,
139 0x12, __BIT(5), 0x17, __BITS(4,0)),
140 AXP_CTRL("dldo4", 700, 3300, 100,
141 0x12, __BIT(6), 0x18, __BITS(4,0)),
142 AXP_CTRL("eldo1", 700, 1900, 50,
143 0x12, __BIT(0), 0x19, __BITS(4,0)),
144 AXP_CTRL("eldo2", 700, 1900, 50,
145 0x12, __BIT(1), 0x1a, __BITS(4,0)),
146 AXP_CTRL("eldo3", 700, 1900, 50,
147 0x12, __BIT(2), 0x1b, __BITS(4,0)),
148 AXP_CTRL("fldo1", 700, 1450, 50,
149 0x13, __BIT(2), 0x1c, __BITS(3,0)),
150 AXP_CTRL("fldo2", 700, 1450, 50,
151 0x13, __BIT(3), 0x1d, __BITS(3,0)),
152 AXP_CTRL("dcdc1", 1600, 3400, 100,
153 0x10, __BIT(0), 0x20, __BITS(4,0)),
154 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
155 0x10, __BIT(1), 0x21, __BITS(6,0)),
156 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
157 0x10, __BIT(2), 0x22, __BITS(6,0)),
158 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
159 0x10, __BIT(3), 0x23, __BITS(6,0)),
160 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
161 0x10, __BIT(4), 0x24, __BITS(6,0)),
162 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
163 0x10, __BIT(5), 0x25, __BITS(6,0)),
164 AXP_CTRL("aldo1", 700, 3300, 100,
165 0x13, __BIT(5), 0x28, __BITS(4,0)),
166 AXP_CTRL("aldo2", 700, 3300, 100,
167 0x13, __BIT(6), 0x29, __BITS(4,0)),
168 AXP_CTRL("aldo3", 700, 3300, 100,
169 0x13, __BIT(7), 0x2a, __BITS(4,0)),
170 };
171
172 static const struct axppmic_ctrl axp805_ctrls[] = {
173 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
174 0x10, __BIT(0), 0x12, __BITS(6,0)),
175 AXP_CTRL("dcdcb", 1000, 2550, 50,
176 0x10, __BIT(1), 0x13, __BITS(4,0)),
177 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
178 0x10, __BIT(2), 0x14, __BITS(6,0)),
179 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
180 0x10, __BIT(3), 0x15, __BITS(5,0)),
181 AXP_CTRL("dcdce", 1100, 3400, 100,
182 0x10, __BIT(4), 0x16, __BITS(4,0)),
183 AXP_CTRL("aldo1", 700, 3300, 100,
184 0x10, __BIT(5), 0x17, __BITS(4,0)),
185 AXP_CTRL("aldo2", 700, 3400, 100,
186 0x10, __BIT(6), 0x18, __BITS(4,0)),
187 AXP_CTRL("aldo3", 700, 3300, 100,
188 0x10, __BIT(7), 0x19, __BITS(4,0)),
189 AXP_CTRL("bldo1", 700, 1900, 100,
190 0x11, __BIT(0), 0x20, __BITS(3,0)),
191 AXP_CTRL("bldo2", 700, 1900, 100,
192 0x11, __BIT(1), 0x21, __BITS(3,0)),
193 AXP_CTRL("bldo3", 700, 1900, 100,
194 0x11, __BIT(2), 0x22, __BITS(3,0)),
195 AXP_CTRL("bldo4", 700, 1900, 100,
196 0x11, __BIT(3), 0x23, __BITS(3,0)),
197 AXP_CTRL("cldo1", 700, 3300, 100,
198 0x11, __BIT(4), 0x24, __BITS(4,0)),
199 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
200 0x11, __BIT(5), 0x25, __BITS(4,0)),
201 AXP_CTRL("cldo3", 700, 3300, 100,
202 0x11, __BIT(6), 0x26, __BITS(4,0)),
203 };
204
205 struct axppmic_irq {
206 u_int reg;
207 uint8_t mask;
208 };
209
210 #define AXPPMIC_IRQ(_reg, _mask) \
211 { .reg = (_reg), .mask = (_mask) }
212
213 struct axppmic_config {
214 const char *name;
215 const struct axppmic_ctrl *controls;
216 u_int ncontrols;
217 u_int irq_regs;
218 bool has_battery;
219 bool has_fuel_gauge;
220 struct axppmic_irq poklirq;
221 struct axppmic_irq acinirq;
222 struct axppmic_irq vbusirq;
223 struct axppmic_irq battirq;
224 struct axppmic_irq chargeirq;
225 struct axppmic_irq chargestirq;
226 u_int batsense_step; /* uV */
227 u_int charge_step; /* uA */
228 u_int discharge_step; /* uA */
229 u_int maxcap_step; /* uAh */
230 u_int coulomb_step; /* uAh */
231 };
232
233 enum axppmic_sensor {
234 AXP_SENSOR_ACIN_PRESENT,
235 AXP_SENSOR_VBUS_PRESENT,
236 AXP_SENSOR_BATT_PRESENT,
237 AXP_SENSOR_BATT_CHARGING,
238 AXP_SENSOR_BATT_CHARGE_STATE,
239 AXP_SENSOR_BATT_VOLTAGE,
240 AXP_SENSOR_BATT_CHARGE_CURRENT,
241 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
242 AXP_SENSOR_BATT_CAPACITY_PERCENT,
243 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
244 AXP_SENSOR_BATT_CURRENT_CAPACITY,
245 AXP_NSENSORS
246 };
247
248 struct axppmic_softc {
249 device_t sc_dev;
250 i2c_tag_t sc_i2c;
251 i2c_addr_t sc_addr;
252 int sc_phandle;
253
254 const struct axppmic_config *sc_conf;
255
256 struct sysmon_pswitch sc_smpsw;
257
258 struct sysmon_envsys *sc_sme;
259
260 envsys_data_t sc_sensor[AXP_NSENSORS];
261
262 u_int sc_warn_thres;
263 u_int sc_shut_thres;
264 };
265
266 struct axpreg_softc {
267 device_t sc_dev;
268 i2c_tag_t sc_i2c;
269 i2c_addr_t sc_addr;
270 const struct axppmic_ctrl *sc_ctrl;
271 };
272
273 struct axpreg_attach_args {
274 const struct axppmic_ctrl *reg_ctrl;
275 int reg_phandle;
276 i2c_tag_t reg_i2c;
277 i2c_addr_t reg_addr;
278 };
279
280 static const struct axppmic_config axp803_config = {
281 .name = "AXP803",
282 .controls = axp803_ctrls,
283 .ncontrols = __arraycount(axp803_ctrls),
284 .irq_regs = 6,
285 .has_battery = true,
286 .has_fuel_gauge = true,
287 .batsense_step = 1100,
288 .charge_step = 1000,
289 .discharge_step = 1000,
290 .maxcap_step = 1456,
291 .coulomb_step = 1456,
292 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
293 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
294 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
295 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
296 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
297 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
298 };
299
300 static const struct axppmic_config axp805_config = {
301 .name = "AXP805/806",
302 .controls = axp805_ctrls,
303 .ncontrols = __arraycount(axp805_ctrls),
304 .irq_regs = 2,
305 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
306 };
307
308 static const struct device_compatible_entry compat_data[] = {
309 { "x-powers,axp803", (uintptr_t)&axp803_config },
310 { "x-powers,axp805", (uintptr_t)&axp805_config },
311 { "x-powers,axp806", (uintptr_t)&axp805_config },
312 { NULL, 0 }
313 };
314
315 static int
316 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
317 {
318 return iic_smbus_read_byte(tag, addr, reg, val, flags);
319 }
320
321 static int
322 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
323 {
324 return iic_smbus_write_byte(tag, addr, reg, val, flags);
325 }
326
327 static int
328 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
329 {
330 const int flags = (cold ? I2C_F_POLL : 0);
331 u_int vol, reg_val;
332 int nstep, error;
333 uint8_t val;
334
335 if (!c->c_voltage_mask)
336 return EINVAL;
337
338 if (min < c->c_min || min > c->c_max)
339 return EINVAL;
340
341 reg_val = 0;
342 nstep = 1;
343 vol = c->c_min;
344
345 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
346 ++reg_val;
347 vol += c->c_step1;
348 }
349 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
350 ++reg_val;
351 vol += c->c_step2;
352 }
353
354 if (vol > max)
355 return EINVAL;
356
357 iic_acquire_bus(tag, flags);
358 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
359 val &= ~c->c_voltage_mask;
360 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
361 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
362 }
363 iic_release_bus(tag, flags);
364
365 return error;
366 }
367
368 static int
369 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
370 {
371 const int flags = (cold ? I2C_F_POLL : 0);
372 int reg_val, error;
373 uint8_t val;
374
375 if (!c->c_voltage_mask)
376 return EINVAL;
377
378 iic_acquire_bus(tag, flags);
379 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
380 iic_release_bus(tag, flags);
381 if (error)
382 return error;
383
384 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
385 if (reg_val < c->c_step1cnt) {
386 *pvol = c->c_min + reg_val * c->c_step1;
387 } else {
388 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
389 ((reg_val - c->c_step1cnt) * c->c_step2);
390 }
391
392 return 0;
393 }
394
395 static void
396 axppmic_power_poweroff(device_t dev)
397 {
398 struct axppmic_softc *sc = device_private(dev);
399
400 delay(1000000);
401
402 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
403 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
404 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
405 }
406
407 static struct fdtbus_power_controller_func axppmic_power_funcs = {
408 .poweroff = axppmic_power_poweroff,
409 };
410
411 static void
412 axppmic_task_shut(void *priv)
413 {
414 struct axppmic_softc *sc = priv;
415
416 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
417 }
418
419 static void
420 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
421 {
422 struct axppmic_softc *sc = sme->sme_cookie;
423 const struct axppmic_config *c = sc->sc_conf;
424 const int flags = I2C_F_POLL;
425 uint8_t val, lo, hi;
426
427 e->state = ENVSYS_SINVALID;
428
429 const bool battery_present =
430 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
431 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
432
433 switch (e->private) {
434 case AXP_SENSOR_ACIN_PRESENT:
435 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
436 e->state = ENVSYS_SVALID;
437 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
438 }
439 break;
440 case AXP_SENSOR_VBUS_PRESENT:
441 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
442 e->state = ENVSYS_SVALID;
443 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
444 }
445 break;
446 case AXP_SENSOR_BATT_PRESENT:
447 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
448 if (val & AXP_POWER_MODE_BATT_VALID) {
449 e->state = ENVSYS_SVALID;
450 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
451 }
452 }
453 break;
454 case AXP_SENSOR_BATT_CHARGING:
455 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
456 e->state = ENVSYS_SVALID;
457 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
458 }
459 break;
460 case AXP_SENSOR_BATT_CHARGE_STATE:
461 if (battery_present &&
462 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
463 (val & AXP_BATT_CAP_VALID) != 0) {
464 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
465 if (batt_val <= sc->sc_shut_thres) {
466 e->state = ENVSYS_SCRITICAL;
467 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
468 } else if (batt_val <= sc->sc_warn_thres) {
469 e->state = ENVSYS_SWARNUNDER;
470 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
471 } else {
472 e->state = ENVSYS_SVALID;
473 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
474 }
475 }
476 break;
477 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
478 if (battery_present &&
479 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
480 (val & AXP_BATT_CAP_VALID) != 0) {
481 e->state = ENVSYS_SVALID;
482 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
483 }
484 break;
485 case AXP_SENSOR_BATT_VOLTAGE:
486 if (battery_present &&
487 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
488 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
489 e->state = ENVSYS_SVALID;
490 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
491 }
492 break;
493 case AXP_SENSOR_BATT_CHARGE_CURRENT:
494 if (battery_present &&
495 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
496 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
497 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
498 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
499 e->state = ENVSYS_SVALID;
500 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
501 }
502 break;
503 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
504 if (battery_present &&
505 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
506 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
507 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
508 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
509 e->state = ENVSYS_SVALID;
510 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
511 }
512 break;
513 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
514 if (battery_present &&
515 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
516 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
517 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
518 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
519 }
520 break;
521 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
522 if (battery_present &&
523 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
524 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
525 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
526 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
527 }
528 break;
529 }
530 }
531
532 static void
533 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
534 {
535 struct axppmic_softc *sc = sme->sme_cookie;
536 const int flags = I2C_F_POLL;
537
538 switch (e->private) {
539 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
540 case AXP_SENSOR_BATT_VOLTAGE:
541 case AXP_SENSOR_BATT_CHARGE_CURRENT:
542 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
543 /* Always update battery capacity and ADCs */
544 iic_acquire_bus(sc->sc_i2c, flags);
545 axppmic_sensor_update(sme, e);
546 iic_release_bus(sc->sc_i2c, flags);
547 break;
548 default:
549 /* Refresh if the sensor is not in valid state */
550 if (e->state != ENVSYS_SVALID) {
551 iic_acquire_bus(sc->sc_i2c, flags);
552 axppmic_sensor_update(sme, e);
553 iic_release_bus(sc->sc_i2c, flags);
554 }
555 break;
556 }
557 }
558
559 static int
560 axppmic_intr(void *priv)
561 {
562 struct axppmic_softc *sc = priv;
563 const struct axppmic_config *c = sc->sc_conf;
564 const int flags = I2C_F_POLL;
565 uint8_t stat;
566 u_int n;
567
568 iic_acquire_bus(sc->sc_i2c, flags);
569 for (n = 1; n <= c->irq_regs; n++) {
570 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
571 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
572 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
573 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
574 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
575 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
576 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
577 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
578 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
579 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
580 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
581 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
582 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
583
584 if (stat != 0)
585 axppmic_write(sc->sc_i2c, sc->sc_addr,
586 AXP_IRQ_STATUS_REG(n), stat, flags);
587 }
588 }
589 iic_release_bus(sc->sc_i2c, flags);
590
591 return 1;
592 }
593
594 static void
595 axppmic_attach_acadapter(struct axppmic_softc *sc)
596 {
597 envsys_data_t *e;
598
599 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
600 e->private = AXP_SENSOR_ACIN_PRESENT;
601 e->units = ENVSYS_INDICATOR;
602 e->state = ENVSYS_SINVALID;
603 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
604 sysmon_envsys_sensor_attach(sc->sc_sme, e);
605
606 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
607 e->private = AXP_SENSOR_VBUS_PRESENT;
608 e->units = ENVSYS_INDICATOR;
609 e->state = ENVSYS_SINVALID;
610 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
611 sysmon_envsys_sensor_attach(sc->sc_sme, e);
612 }
613
614 static void
615 axppmic_attach_battery(struct axppmic_softc *sc)
616 {
617 const struct axppmic_config *c = sc->sc_conf;
618 envsys_data_t *e;
619 uint8_t val;
620
621 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
622 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
623 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
624 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
625 }
626 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
627
628 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
629 e->private = AXP_SENSOR_BATT_PRESENT;
630 e->units = ENVSYS_INDICATOR;
631 e->state = ENVSYS_SINVALID;
632 strlcpy(e->desc, "battery present", sizeof(e->desc));
633 sysmon_envsys_sensor_attach(sc->sc_sme, e);
634
635 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
636 e->private = AXP_SENSOR_BATT_CHARGING;
637 e->units = ENVSYS_BATTERY_CHARGE;
638 e->state = ENVSYS_SINVALID;
639 strlcpy(e->desc, "charging", sizeof(e->desc));
640 sysmon_envsys_sensor_attach(sc->sc_sme, e);
641
642 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
643 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
644 e->units = ENVSYS_BATTERY_CAPACITY;
645 e->flags = ENVSYS_FMONSTCHANGED;
646 e->state = ENVSYS_SINVALID;
647 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
648 strlcpy(e->desc, "charge state", sizeof(e->desc));
649 sysmon_envsys_sensor_attach(sc->sc_sme, e);
650
651 if (c->batsense_step) {
652 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
653 e->private = AXP_SENSOR_BATT_VOLTAGE;
654 e->units = ENVSYS_SVOLTS_DC;
655 e->state = ENVSYS_SINVALID;
656 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
657 sysmon_envsys_sensor_attach(sc->sc_sme, e);
658 }
659
660 if (c->charge_step) {
661 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
662 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
663 e->units = ENVSYS_SAMPS;
664 e->state = ENVSYS_SINVALID;
665 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
666 sysmon_envsys_sensor_attach(sc->sc_sme, e);
667 }
668
669 if (c->discharge_step) {
670 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
671 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
672 e->units = ENVSYS_SAMPS;
673 e->state = ENVSYS_SINVALID;
674 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
675 sysmon_envsys_sensor_attach(sc->sc_sme, e);
676 }
677
678 if (c->has_fuel_gauge) {
679 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
680 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
681 e->units = ENVSYS_INTEGER;
682 e->state = ENVSYS_SINVALID;
683 e->flags = ENVSYS_FPERCENT;
684 strlcpy(e->desc, "battery percent", sizeof(e->desc));
685 sysmon_envsys_sensor_attach(sc->sc_sme, e);
686 }
687
688 if (c->maxcap_step) {
689 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
690 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
691 e->units = ENVSYS_SAMPHOUR;
692 e->state = ENVSYS_SINVALID;
693 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
694 sysmon_envsys_sensor_attach(sc->sc_sme, e);
695 }
696
697 if (c->coulomb_step) {
698 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
699 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
700 e->units = ENVSYS_SAMPHOUR;
701 e->state = ENVSYS_SINVALID;
702 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
703 sysmon_envsys_sensor_attach(sc->sc_sme, e);
704 }
705 }
706
707 static void
708 axppmic_attach_sensors(struct axppmic_softc *sc)
709 {
710 if (sc->sc_conf->has_battery) {
711 sc->sc_sme = sysmon_envsys_create();
712 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
713 sc->sc_sme->sme_cookie = sc;
714 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
715 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
716 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
717
718 axppmic_attach_acadapter(sc);
719 axppmic_attach_battery(sc);
720
721 sysmon_envsys_register(sc->sc_sme);
722 }
723 }
724
725
726 static int
727 axppmic_match(device_t parent, cfdata_t match, void *aux)
728 {
729 struct i2c_attach_args *ia = aux;
730 int match_result;
731
732 if (iic_use_direct_match(ia, match, compat_data, &match_result))
733 return match_result;
734
735 /* This device is direct-config only. */
736
737 return 0;
738 }
739
740 static void
741 axppmic_attach(device_t parent, device_t self, void *aux)
742 {
743 struct axppmic_softc *sc = device_private(self);
744 const struct device_compatible_entry *dce = NULL;
745 const struct axppmic_config *c;
746 struct axpreg_attach_args aaa;
747 struct i2c_attach_args *ia = aux;
748 int phandle, child, i;
749 uint32_t irq_mask;
750 void *ih;
751
752 (void) iic_compatible_match(ia, compat_data, &dce);
753 KASSERT(dce != NULL);
754 c = (void *)dce->data;
755
756 sc->sc_dev = self;
757 sc->sc_i2c = ia->ia_tag;
758 sc->sc_addr = ia->ia_addr;
759 sc->sc_phandle = ia->ia_cookie;
760 sc->sc_conf = c;
761
762 aprint_naive("\n");
763 aprint_normal(": %s\n", c->name);
764
765 sc->sc_smpsw.smpsw_name = device_xname(self);
766 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
767 sysmon_pswitch_register(&sc->sc_smpsw);
768
769 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
770 for (i = 1; i <= c->irq_regs; i++) {
771 irq_mask = 0;
772 if (i == c->poklirq.reg)
773 irq_mask |= c->poklirq.mask;
774 if (i == c->acinirq.reg)
775 irq_mask |= c->acinirq.mask;
776 if (i == c->vbusirq.reg)
777 irq_mask |= c->vbusirq.mask;
778 if (i == c->battirq.reg)
779 irq_mask |= c->battirq.mask;
780 if (i == c->chargeirq.reg)
781 irq_mask |= c->chargeirq.mask;
782 if (i == c->chargestirq.reg)
783 irq_mask |= c->chargestirq.mask;
784 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
785 }
786 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
787
788 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
789 axppmic_intr, sc);
790 if (ih == NULL) {
791 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
792 }
793
794 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
795 &axppmic_power_funcs);
796
797 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
798 if (phandle > 0) {
799 aaa.reg_i2c = sc->sc_i2c;
800 aaa.reg_addr = sc->sc_addr;
801 for (i = 0; i < c->ncontrols; i++) {
802 const struct axppmic_ctrl *ctrl = &c->controls[i];
803 child = of_find_firstchild_byname(phandle, ctrl->c_name);
804 if (child <= 0)
805 continue;
806 aaa.reg_ctrl = ctrl;
807 aaa.reg_phandle = child;
808 config_found(sc->sc_dev, &aaa, NULL);
809 }
810 }
811
812 if (c->has_battery)
813 axppmic_attach_sensors(sc);
814 }
815
816 static int
817 axpreg_acquire(device_t dev)
818 {
819 return 0;
820 }
821
822 static void
823 axpreg_release(device_t dev)
824 {
825 }
826
827 static int
828 axpreg_enable(device_t dev, bool enable)
829 {
830 struct axpreg_softc *sc = device_private(dev);
831 const struct axppmic_ctrl *c = sc->sc_ctrl;
832 const int flags = (cold ? I2C_F_POLL : 0);
833 uint8_t val;
834 int error;
835
836 if (!c->c_enable_mask)
837 return EINVAL;
838
839 iic_acquire_bus(sc->sc_i2c, flags);
840 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
841 if (enable)
842 val |= c->c_enable_mask;
843 else
844 val &= ~c->c_enable_mask;
845 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
846 }
847 iic_release_bus(sc->sc_i2c, flags);
848
849 return error;
850 }
851
852 static int
853 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
854 {
855 struct axpreg_softc *sc = device_private(dev);
856 const struct axppmic_ctrl *c = sc->sc_ctrl;
857
858 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
859 min_uvol / 1000, max_uvol / 1000);
860 }
861
862 static int
863 axpreg_get_voltage(device_t dev, u_int *puvol)
864 {
865 struct axpreg_softc *sc = device_private(dev);
866 const struct axppmic_ctrl *c = sc->sc_ctrl;
867 int error;
868 u_int vol;
869
870 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
871 if (error)
872 return error;
873
874 *puvol = vol * 1000;
875 return 0;
876 }
877
878 static struct fdtbus_regulator_controller_func axpreg_funcs = {
879 .acquire = axpreg_acquire,
880 .release = axpreg_release,
881 .enable = axpreg_enable,
882 .set_voltage = axpreg_set_voltage,
883 .get_voltage = axpreg_get_voltage,
884 };
885
886 static int
887 axpreg_match(device_t parent, cfdata_t match, void *aux)
888 {
889 return 1;
890 }
891
892 static void
893 axpreg_attach(device_t parent, device_t self, void *aux)
894 {
895 struct axpreg_softc *sc = device_private(self);
896 struct axpreg_attach_args *aaa = aux;
897 const int phandle = aaa->reg_phandle;
898 const char *name;
899
900 sc->sc_dev = self;
901 sc->sc_i2c = aaa->reg_i2c;
902 sc->sc_addr = aaa->reg_addr;
903 sc->sc_ctrl = aaa->reg_ctrl;
904
905 fdtbus_register_regulator_controller(self, phandle,
906 &axpreg_funcs);
907
908 aprint_naive("\n");
909 name = fdtbus_get_string(phandle, "regulator-name");
910 if (name)
911 aprint_normal(": %s\n", name);
912 else
913 aprint_normal("\n");
914 }
915
916 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
917 axppmic_match, axppmic_attach, NULL, NULL);
918
919 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
920 axpreg_match, axpreg_attach, NULL, NULL);
921