axppmic.c revision 1.17 1 /* $NetBSD: axppmic.c,v 1.17 2019/01/02 17:28:55 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.17 2019/01/02 17:28:55 jmcneill Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/atomic.h>
37 #include <sys/conf.h>
38 #include <sys/bus.h>
39 #include <sys/kmem.h>
40
41 #include <dev/i2c/i2cvar.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44 #include <dev/sysmon/sysmon_taskq.h>
45
46 #include <dev/fdt/fdtvar.h>
47
48 #define AXP_POWER_SOURCE_REG 0x00
49 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
50 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
51 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52
53 #define AXP_POWER_MODE_REG 0x01
54 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
55 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
56 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
57
58 #define AXP_POWER_DISABLE_REG 0x32
59 #define AXP_POWER_DISABLE_CTRL __BIT(7)
60
61 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
62 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
63 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
64 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
65 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
66 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
67
68 #define AXP_BATSENSE_HI_REG 0x78
69 #define AXP_BATSENSE_LO_REG 0x79
70
71 #define AXP_BATTCHG_HI_REG 0x7a
72 #define AXP_BATTCHG_LO_REG 0x7b
73
74 #define AXP_BATTDISCHG_HI_REG 0x7c
75 #define AXP_BATTDISCHG_LO_REG 0x7d
76
77 #define AXP_ADC_RAW(_hi, _lo) \
78 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
79
80 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
81 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
82
83 #define AXP_BATT_CAP_REG 0xb9
84 #define AXP_BATT_CAP_VALID __BIT(7)
85 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
86
87 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
88 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
89 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
90
91 #define AXP_BATT_COULOMB_HI_REG 0xe2
92 #define AXP_BATT_COULOMB_VALID __BIT(7)
93 #define AXP_BATT_COULOMB_LO_REG 0xe3
94
95 #define AXP_COULOMB_RAW(_hi, _lo) \
96 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
97
98 #define AXP_BATT_CAP_WARN_REG 0xe6
99 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
100 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
101
102 struct axppmic_ctrl {
103 device_t c_dev;
104
105 const char * c_name;
106 u_int c_min;
107 u_int c_max;
108 u_int c_step1;
109 u_int c_step1cnt;
110 u_int c_step2;
111 u_int c_step2cnt;
112
113 uint8_t c_enable_reg;
114 uint8_t c_enable_mask;
115
116 uint8_t c_voltage_reg;
117 uint8_t c_voltage_mask;
118 };
119
120 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
121 { .c_name = (name), .c_min = (min), .c_max = (max), \
122 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
123 .c_step2 = 0, .c_step2cnt = 0, \
124 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
125 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
126
127 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
128 { .c_name = (name), .c_min = (min), .c_max = (max), \
129 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
130 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
131 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
132 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
133
134 static const struct axppmic_ctrl axp803_ctrls[] = {
135 AXP_CTRL("dldo1", 700, 3300, 100,
136 0x12, __BIT(3), 0x15, __BITS(4,0)),
137 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
138 0x12, __BIT(4), 0x16, __BITS(4,0)),
139 AXP_CTRL("dldo3", 700, 3300, 100,
140 0x12, __BIT(5), 0x17, __BITS(4,0)),
141 AXP_CTRL("dldo4", 700, 3300, 100,
142 0x12, __BIT(6), 0x18, __BITS(4,0)),
143 AXP_CTRL("eldo1", 700, 1900, 50,
144 0x12, __BIT(0), 0x19, __BITS(4,0)),
145 AXP_CTRL("eldo2", 700, 1900, 50,
146 0x12, __BIT(1), 0x1a, __BITS(4,0)),
147 AXP_CTRL("eldo3", 700, 1900, 50,
148 0x12, __BIT(2), 0x1b, __BITS(4,0)),
149 AXP_CTRL("fldo1", 700, 1450, 50,
150 0x13, __BIT(2), 0x1c, __BITS(3,0)),
151 AXP_CTRL("fldo2", 700, 1450, 50,
152 0x13, __BIT(3), 0x1d, __BITS(3,0)),
153 AXP_CTRL("dcdc1", 1600, 3400, 100,
154 0x10, __BIT(0), 0x20, __BITS(4,0)),
155 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
156 0x10, __BIT(1), 0x21, __BITS(6,0)),
157 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
158 0x10, __BIT(2), 0x22, __BITS(6,0)),
159 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
160 0x10, __BIT(3), 0x23, __BITS(6,0)),
161 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
162 0x10, __BIT(4), 0x24, __BITS(6,0)),
163 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
164 0x10, __BIT(5), 0x25, __BITS(6,0)),
165 AXP_CTRL("aldo1", 700, 3300, 100,
166 0x13, __BIT(5), 0x28, __BITS(4,0)),
167 AXP_CTRL("aldo2", 700, 3300, 100,
168 0x13, __BIT(6), 0x29, __BITS(4,0)),
169 AXP_CTRL("aldo3", 700, 3300, 100,
170 0x13, __BIT(7), 0x2a, __BITS(4,0)),
171 };
172
173 static const struct axppmic_ctrl axp805_ctrls[] = {
174 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
175 0x10, __BIT(0), 0x12, __BITS(6,0)),
176 AXP_CTRL("dcdcb", 1000, 2550, 50,
177 0x10, __BIT(1), 0x13, __BITS(4,0)),
178 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
179 0x10, __BIT(2), 0x14, __BITS(6,0)),
180 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
181 0x10, __BIT(3), 0x15, __BITS(5,0)),
182 AXP_CTRL("dcdce", 1100, 3400, 100,
183 0x10, __BIT(4), 0x16, __BITS(4,0)),
184 AXP_CTRL("aldo1", 700, 3300, 100,
185 0x10, __BIT(5), 0x17, __BITS(4,0)),
186 AXP_CTRL("aldo2", 700, 3400, 100,
187 0x10, __BIT(6), 0x18, __BITS(4,0)),
188 AXP_CTRL("aldo3", 700, 3300, 100,
189 0x10, __BIT(7), 0x19, __BITS(4,0)),
190 AXP_CTRL("bldo1", 700, 1900, 100,
191 0x11, __BIT(0), 0x20, __BITS(3,0)),
192 AXP_CTRL("bldo2", 700, 1900, 100,
193 0x11, __BIT(1), 0x21, __BITS(3,0)),
194 AXP_CTRL("bldo3", 700, 1900, 100,
195 0x11, __BIT(2), 0x22, __BITS(3,0)),
196 AXP_CTRL("bldo4", 700, 1900, 100,
197 0x11, __BIT(3), 0x23, __BITS(3,0)),
198 AXP_CTRL("cldo1", 700, 3300, 100,
199 0x11, __BIT(4), 0x24, __BITS(4,0)),
200 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
201 0x11, __BIT(5), 0x25, __BITS(4,0)),
202 AXP_CTRL("cldo3", 700, 3300, 100,
203 0x11, __BIT(6), 0x26, __BITS(4,0)),
204 };
205
206 static const struct axppmic_ctrl axp813_ctrls[] = {
207 AXP_CTRL("dldo1", 700, 3300, 100,
208 0x12, __BIT(3), 0x15, __BITS(4,0)),
209 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
210 0x12, __BIT(4), 0x16, __BITS(4,0)),
211 AXP_CTRL("dldo3", 700, 3300, 100,
212 0x12, __BIT(5), 0x17, __BITS(4,0)),
213 AXP_CTRL("dldo4", 700, 3300, 100,
214 0x12, __BIT(6), 0x18, __BITS(4,0)),
215 AXP_CTRL("eldo1", 700, 1900, 50,
216 0x12, __BIT(0), 0x19, __BITS(4,0)),
217 AXP_CTRL("eldo2", 700, 1900, 50,
218 0x12, __BIT(1), 0x1a, __BITS(4,0)),
219 AXP_CTRL("eldo3", 700, 1900, 50,
220 0x12, __BIT(2), 0x1b, __BITS(4,0)),
221 AXP_CTRL("fldo1", 700, 1450, 50,
222 0x13, __BIT(2), 0x1c, __BITS(3,0)),
223 AXP_CTRL("fldo2", 700, 1450, 50,
224 0x13, __BIT(3), 0x1d, __BITS(3,0)),
225 AXP_CTRL("dcdc1", 1600, 3400, 100,
226 0x10, __BIT(0), 0x20, __BITS(4,0)),
227 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
228 0x10, __BIT(1), 0x21, __BITS(6,0)),
229 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
230 0x10, __BIT(2), 0x22, __BITS(6,0)),
231 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
232 0x10, __BIT(3), 0x23, __BITS(6,0)),
233 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
234 0x10, __BIT(4), 0x24, __BITS(6,0)),
235 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
236 0x10, __BIT(5), 0x25, __BITS(6,0)),
237 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
238 0x10, __BIT(6), 0x26, __BITS(6,0)),
239 AXP_CTRL("aldo1", 700, 3300, 100,
240 0x13, __BIT(5), 0x28, __BITS(4,0)),
241 AXP_CTRL("aldo2", 700, 3300, 100,
242 0x13, __BIT(6), 0x29, __BITS(4,0)),
243 AXP_CTRL("aldo3", 700, 3300, 100,
244 0x13, __BIT(7), 0x2a, __BITS(4,0)),
245 };
246
247 struct axppmic_irq {
248 u_int reg;
249 uint8_t mask;
250 };
251
252 #define AXPPMIC_IRQ(_reg, _mask) \
253 { .reg = (_reg), .mask = (_mask) }
254
255 struct axppmic_config {
256 const char *name;
257 const struct axppmic_ctrl *controls;
258 u_int ncontrols;
259 u_int irq_regs;
260 bool has_battery;
261 bool has_fuel_gauge;
262 struct axppmic_irq poklirq;
263 struct axppmic_irq acinirq;
264 struct axppmic_irq vbusirq;
265 struct axppmic_irq battirq;
266 struct axppmic_irq chargeirq;
267 struct axppmic_irq chargestirq;
268 u_int batsense_step; /* uV */
269 u_int charge_step; /* uA */
270 u_int discharge_step; /* uA */
271 u_int maxcap_step; /* uAh */
272 u_int coulomb_step; /* uAh */
273 };
274
275 enum axppmic_sensor {
276 AXP_SENSOR_ACIN_PRESENT,
277 AXP_SENSOR_VBUS_PRESENT,
278 AXP_SENSOR_BATT_PRESENT,
279 AXP_SENSOR_BATT_CHARGING,
280 AXP_SENSOR_BATT_CHARGE_STATE,
281 AXP_SENSOR_BATT_VOLTAGE,
282 AXP_SENSOR_BATT_CHARGE_CURRENT,
283 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
284 AXP_SENSOR_BATT_CAPACITY_PERCENT,
285 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
286 AXP_SENSOR_BATT_CURRENT_CAPACITY,
287 AXP_NSENSORS
288 };
289
290 struct axppmic_softc {
291 device_t sc_dev;
292 i2c_tag_t sc_i2c;
293 i2c_addr_t sc_addr;
294 int sc_phandle;
295
296 const struct axppmic_config *sc_conf;
297
298 struct sysmon_pswitch sc_smpsw;
299
300 struct sysmon_envsys *sc_sme;
301
302 envsys_data_t sc_sensor[AXP_NSENSORS];
303
304 u_int sc_warn_thres;
305 u_int sc_shut_thres;
306 };
307
308 struct axpreg_softc {
309 device_t sc_dev;
310 i2c_tag_t sc_i2c;
311 i2c_addr_t sc_addr;
312 const struct axppmic_ctrl *sc_ctrl;
313 u_int sc_inuse;
314 };
315
316 struct axpreg_attach_args {
317 const struct axppmic_ctrl *reg_ctrl;
318 int reg_phandle;
319 i2c_tag_t reg_i2c;
320 i2c_addr_t reg_addr;
321 };
322
323 static const struct axppmic_config axp803_config = {
324 .name = "AXP803",
325 .controls = axp803_ctrls,
326 .ncontrols = __arraycount(axp803_ctrls),
327 .irq_regs = 6,
328 .has_battery = true,
329 .has_fuel_gauge = true,
330 .batsense_step = 1100,
331 .charge_step = 1000,
332 .discharge_step = 1000,
333 .maxcap_step = 1456,
334 .coulomb_step = 1456,
335 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
336 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
337 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
338 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
339 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
340 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
341 };
342
343 static const struct axppmic_config axp805_config = {
344 .name = "AXP805/806",
345 .controls = axp805_ctrls,
346 .ncontrols = __arraycount(axp805_ctrls),
347 .irq_regs = 2,
348 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
349 };
350
351 static const struct axppmic_config axp813_config = {
352 .name = "AXP813",
353 .controls = axp813_ctrls,
354 .ncontrols = __arraycount(axp813_ctrls),
355 .irq_regs = 6,
356 .has_battery = true,
357 .has_fuel_gauge = true,
358 .batsense_step = 1100,
359 .charge_step = 1000,
360 .discharge_step = 1000,
361 .maxcap_step = 1456,
362 .coulomb_step = 1456,
363 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
364 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
365 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
366 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
367 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
368 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
369 };
370
371 static const struct device_compatible_entry compat_data[] = {
372 { "x-powers,axp803", (uintptr_t)&axp803_config },
373 { "x-powers,axp805", (uintptr_t)&axp805_config },
374 { "x-powers,axp806", (uintptr_t)&axp805_config },
375 { "x-powers,axp813", (uintptr_t)&axp813_config },
376 { NULL, 0 }
377 };
378
379 static int
380 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
381 {
382 return iic_smbus_read_byte(tag, addr, reg, val, flags);
383 }
384
385 static int
386 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
387 {
388 return iic_smbus_write_byte(tag, addr, reg, val, flags);
389 }
390
391 static int
392 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
393 {
394 const int flags = (cold ? I2C_F_POLL : 0);
395 u_int vol, reg_val;
396 int nstep, error;
397 uint8_t val;
398
399 if (!c->c_voltage_mask)
400 return EINVAL;
401
402 if (min < c->c_min || min > c->c_max)
403 return EINVAL;
404
405 reg_val = 0;
406 nstep = 1;
407 vol = c->c_min;
408
409 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
410 ++reg_val;
411 vol += c->c_step1;
412 }
413 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
414 ++reg_val;
415 vol += c->c_step2;
416 }
417
418 if (vol > max)
419 return EINVAL;
420
421 iic_acquire_bus(tag, flags);
422 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
423 val &= ~c->c_voltage_mask;
424 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
425 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
426 }
427 iic_release_bus(tag, flags);
428
429 return error;
430 }
431
432 static int
433 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
434 {
435 const int flags = (cold ? I2C_F_POLL : 0);
436 int reg_val, error;
437 uint8_t val;
438
439 if (!c->c_voltage_mask)
440 return EINVAL;
441
442 iic_acquire_bus(tag, flags);
443 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
444 iic_release_bus(tag, flags);
445 if (error)
446 return error;
447
448 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
449 if (reg_val < c->c_step1cnt) {
450 *pvol = c->c_min + reg_val * c->c_step1;
451 } else {
452 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
453 ((reg_val - c->c_step1cnt) * c->c_step2);
454 }
455
456 return 0;
457 }
458
459 static void
460 axppmic_power_poweroff(device_t dev)
461 {
462 struct axppmic_softc *sc = device_private(dev);
463
464 delay(1000000);
465
466 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
467 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
468 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
469 }
470
471 static struct fdtbus_power_controller_func axppmic_power_funcs = {
472 .poweroff = axppmic_power_poweroff,
473 };
474
475 static void
476 axppmic_task_shut(void *priv)
477 {
478 struct axppmic_softc *sc = priv;
479
480 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
481 }
482
483 static void
484 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
485 {
486 struct axppmic_softc *sc = sme->sme_cookie;
487 const struct axppmic_config *c = sc->sc_conf;
488 const int flags = I2C_F_POLL;
489 uint8_t val, lo, hi;
490
491 e->state = ENVSYS_SINVALID;
492
493 const bool battery_present =
494 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
495 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
496
497 switch (e->private) {
498 case AXP_SENSOR_ACIN_PRESENT:
499 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
500 e->state = ENVSYS_SVALID;
501 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
502 }
503 break;
504 case AXP_SENSOR_VBUS_PRESENT:
505 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
506 e->state = ENVSYS_SVALID;
507 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
508 }
509 break;
510 case AXP_SENSOR_BATT_PRESENT:
511 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
512 if (val & AXP_POWER_MODE_BATT_VALID) {
513 e->state = ENVSYS_SVALID;
514 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
515 }
516 }
517 break;
518 case AXP_SENSOR_BATT_CHARGING:
519 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
520 e->state = ENVSYS_SVALID;
521 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
522 }
523 break;
524 case AXP_SENSOR_BATT_CHARGE_STATE:
525 if (battery_present &&
526 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
527 (val & AXP_BATT_CAP_VALID) != 0) {
528 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
529 if (batt_val <= sc->sc_shut_thres) {
530 e->state = ENVSYS_SCRITICAL;
531 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
532 } else if (batt_val <= sc->sc_warn_thres) {
533 e->state = ENVSYS_SWARNUNDER;
534 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
535 } else {
536 e->state = ENVSYS_SVALID;
537 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
538 }
539 }
540 break;
541 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
542 if (battery_present &&
543 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
544 (val & AXP_BATT_CAP_VALID) != 0) {
545 e->state = ENVSYS_SVALID;
546 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
547 }
548 break;
549 case AXP_SENSOR_BATT_VOLTAGE:
550 if (battery_present &&
551 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
552 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
553 e->state = ENVSYS_SVALID;
554 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
555 }
556 break;
557 case AXP_SENSOR_BATT_CHARGE_CURRENT:
558 if (battery_present &&
559 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
560 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
561 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
562 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
563 e->state = ENVSYS_SVALID;
564 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
565 }
566 break;
567 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
568 if (battery_present &&
569 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
570 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
571 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
572 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
573 e->state = ENVSYS_SVALID;
574 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
575 }
576 break;
577 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
578 if (battery_present &&
579 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
580 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
581 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
582 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
583 }
584 break;
585 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
586 if (battery_present &&
587 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
588 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
589 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
590 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
591 }
592 break;
593 }
594 }
595
596 static void
597 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
598 {
599 struct axppmic_softc *sc = sme->sme_cookie;
600 const int flags = I2C_F_POLL;
601
602 switch (e->private) {
603 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
604 case AXP_SENSOR_BATT_VOLTAGE:
605 case AXP_SENSOR_BATT_CHARGE_CURRENT:
606 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
607 /* Always update battery capacity and ADCs */
608 iic_acquire_bus(sc->sc_i2c, flags);
609 axppmic_sensor_update(sme, e);
610 iic_release_bus(sc->sc_i2c, flags);
611 break;
612 default:
613 /* Refresh if the sensor is not in valid state */
614 if (e->state != ENVSYS_SVALID) {
615 iic_acquire_bus(sc->sc_i2c, flags);
616 axppmic_sensor_update(sme, e);
617 iic_release_bus(sc->sc_i2c, flags);
618 }
619 break;
620 }
621 }
622
623 static int
624 axppmic_intr(void *priv)
625 {
626 struct axppmic_softc *sc = priv;
627 const struct axppmic_config *c = sc->sc_conf;
628 const int flags = I2C_F_POLL;
629 uint8_t stat;
630 u_int n;
631
632 iic_acquire_bus(sc->sc_i2c, flags);
633 for (n = 1; n <= c->irq_regs; n++) {
634 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
635 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
636 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
637 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
638 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
639 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
640 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
641 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
642 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
643 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
644 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
645 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
646 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
647
648 if (stat != 0)
649 axppmic_write(sc->sc_i2c, sc->sc_addr,
650 AXP_IRQ_STATUS_REG(n), stat, flags);
651 }
652 }
653 iic_release_bus(sc->sc_i2c, flags);
654
655 return 1;
656 }
657
658 static void
659 axppmic_attach_acadapter(struct axppmic_softc *sc)
660 {
661 envsys_data_t *e;
662
663 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
664 e->private = AXP_SENSOR_ACIN_PRESENT;
665 e->units = ENVSYS_INDICATOR;
666 e->state = ENVSYS_SINVALID;
667 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
668 sysmon_envsys_sensor_attach(sc->sc_sme, e);
669
670 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
671 e->private = AXP_SENSOR_VBUS_PRESENT;
672 e->units = ENVSYS_INDICATOR;
673 e->state = ENVSYS_SINVALID;
674 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
675 sysmon_envsys_sensor_attach(sc->sc_sme, e);
676 }
677
678 static void
679 axppmic_attach_battery(struct axppmic_softc *sc)
680 {
681 const struct axppmic_config *c = sc->sc_conf;
682 envsys_data_t *e;
683 uint8_t val;
684
685 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
686 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
687 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
688 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
689 }
690 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
691
692 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
693 e->private = AXP_SENSOR_BATT_PRESENT;
694 e->units = ENVSYS_INDICATOR;
695 e->state = ENVSYS_SINVALID;
696 strlcpy(e->desc, "battery present", sizeof(e->desc));
697 sysmon_envsys_sensor_attach(sc->sc_sme, e);
698
699 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
700 e->private = AXP_SENSOR_BATT_CHARGING;
701 e->units = ENVSYS_BATTERY_CHARGE;
702 e->state = ENVSYS_SINVALID;
703 strlcpy(e->desc, "charging", sizeof(e->desc));
704 sysmon_envsys_sensor_attach(sc->sc_sme, e);
705
706 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
707 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
708 e->units = ENVSYS_BATTERY_CAPACITY;
709 e->flags = ENVSYS_FMONSTCHANGED;
710 e->state = ENVSYS_SINVALID;
711 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
712 strlcpy(e->desc, "charge state", sizeof(e->desc));
713 sysmon_envsys_sensor_attach(sc->sc_sme, e);
714
715 if (c->batsense_step) {
716 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
717 e->private = AXP_SENSOR_BATT_VOLTAGE;
718 e->units = ENVSYS_SVOLTS_DC;
719 e->state = ENVSYS_SINVALID;
720 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
721 sysmon_envsys_sensor_attach(sc->sc_sme, e);
722 }
723
724 if (c->charge_step) {
725 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
726 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
727 e->units = ENVSYS_SAMPS;
728 e->state = ENVSYS_SINVALID;
729 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
730 sysmon_envsys_sensor_attach(sc->sc_sme, e);
731 }
732
733 if (c->discharge_step) {
734 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
735 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
736 e->units = ENVSYS_SAMPS;
737 e->state = ENVSYS_SINVALID;
738 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
739 sysmon_envsys_sensor_attach(sc->sc_sme, e);
740 }
741
742 if (c->has_fuel_gauge) {
743 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
744 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
745 e->units = ENVSYS_INTEGER;
746 e->state = ENVSYS_SINVALID;
747 e->flags = ENVSYS_FPERCENT;
748 strlcpy(e->desc, "battery percent", sizeof(e->desc));
749 sysmon_envsys_sensor_attach(sc->sc_sme, e);
750 }
751
752 if (c->maxcap_step) {
753 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
754 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
755 e->units = ENVSYS_SAMPHOUR;
756 e->state = ENVSYS_SINVALID;
757 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
758 sysmon_envsys_sensor_attach(sc->sc_sme, e);
759 }
760
761 if (c->coulomb_step) {
762 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
763 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
764 e->units = ENVSYS_SAMPHOUR;
765 e->state = ENVSYS_SINVALID;
766 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
767 sysmon_envsys_sensor_attach(sc->sc_sme, e);
768 }
769 }
770
771 static void
772 axppmic_attach_sensors(struct axppmic_softc *sc)
773 {
774 if (sc->sc_conf->has_battery) {
775 sc->sc_sme = sysmon_envsys_create();
776 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
777 sc->sc_sme->sme_cookie = sc;
778 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
779 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
780 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
781
782 axppmic_attach_acadapter(sc);
783 axppmic_attach_battery(sc);
784
785 sysmon_envsys_register(sc->sc_sme);
786 }
787 }
788
789
790 static int
791 axppmic_match(device_t parent, cfdata_t match, void *aux)
792 {
793 struct i2c_attach_args *ia = aux;
794 int match_result;
795
796 if (iic_use_direct_match(ia, match, compat_data, &match_result))
797 return match_result;
798
799 /* This device is direct-config only. */
800
801 return 0;
802 }
803
804 static void
805 axppmic_attach(device_t parent, device_t self, void *aux)
806 {
807 struct axppmic_softc *sc = device_private(self);
808 const struct device_compatible_entry *dce = NULL;
809 const struct axppmic_config *c;
810 struct axpreg_attach_args aaa;
811 struct i2c_attach_args *ia = aux;
812 int phandle, child, i;
813 uint32_t irq_mask;
814 void *ih;
815
816 (void) iic_compatible_match(ia, compat_data, &dce);
817 KASSERT(dce != NULL);
818 c = (void *)dce->data;
819
820 sc->sc_dev = self;
821 sc->sc_i2c = ia->ia_tag;
822 sc->sc_addr = ia->ia_addr;
823 sc->sc_phandle = ia->ia_cookie;
824 sc->sc_conf = c;
825
826 aprint_naive("\n");
827 aprint_normal(": %s\n", c->name);
828
829 sc->sc_smpsw.smpsw_name = device_xname(self);
830 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
831 sysmon_pswitch_register(&sc->sc_smpsw);
832
833 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
834 for (i = 1; i <= c->irq_regs; i++) {
835 irq_mask = 0;
836 if (i == c->poklirq.reg)
837 irq_mask |= c->poklirq.mask;
838 if (i == c->acinirq.reg)
839 irq_mask |= c->acinirq.mask;
840 if (i == c->vbusirq.reg)
841 irq_mask |= c->vbusirq.mask;
842 if (i == c->battirq.reg)
843 irq_mask |= c->battirq.mask;
844 if (i == c->chargeirq.reg)
845 irq_mask |= c->chargeirq.mask;
846 if (i == c->chargestirq.reg)
847 irq_mask |= c->chargestirq.mask;
848 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
849 }
850 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
851
852 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
853 axppmic_intr, sc);
854 if (ih == NULL) {
855 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
856 }
857
858 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
859 &axppmic_power_funcs);
860
861 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
862 if (phandle > 0) {
863 aaa.reg_i2c = sc->sc_i2c;
864 aaa.reg_addr = sc->sc_addr;
865 for (i = 0; i < c->ncontrols; i++) {
866 const struct axppmic_ctrl *ctrl = &c->controls[i];
867 child = of_find_firstchild_byname(phandle, ctrl->c_name);
868 if (child <= 0)
869 continue;
870 aaa.reg_ctrl = ctrl;
871 aaa.reg_phandle = child;
872 config_found(sc->sc_dev, &aaa, NULL);
873 }
874 }
875
876 if (c->has_battery)
877 axppmic_attach_sensors(sc);
878 }
879
880 static int
881 axpreg_acquire(device_t dev)
882 {
883 struct axpreg_softc *sc = device_private(dev);
884
885 if (atomic_cas_uint(&sc->sc_inuse, 0, 1) != 0)
886 return EBUSY;
887
888 return 0;
889 }
890
891 static void
892 axpreg_release(device_t dev)
893 {
894 struct axpreg_softc *sc = device_private(dev);
895
896 atomic_swap_uint(&sc->sc_inuse, 0);
897 }
898
899 static int
900 axpreg_enable(device_t dev, bool enable)
901 {
902 struct axpreg_softc *sc = device_private(dev);
903 const struct axppmic_ctrl *c = sc->sc_ctrl;
904 const int flags = (cold ? I2C_F_POLL : 0);
905 uint8_t val;
906 int error;
907
908 if (!c->c_enable_mask)
909 return EINVAL;
910
911 iic_acquire_bus(sc->sc_i2c, flags);
912 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
913 if (enable)
914 val |= c->c_enable_mask;
915 else
916 val &= ~c->c_enable_mask;
917 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
918 }
919 iic_release_bus(sc->sc_i2c, flags);
920
921 return error;
922 }
923
924 static int
925 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
926 {
927 struct axpreg_softc *sc = device_private(dev);
928 const struct axppmic_ctrl *c = sc->sc_ctrl;
929
930 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
931 min_uvol / 1000, max_uvol / 1000);
932 }
933
934 static int
935 axpreg_get_voltage(device_t dev, u_int *puvol)
936 {
937 struct axpreg_softc *sc = device_private(dev);
938 const struct axppmic_ctrl *c = sc->sc_ctrl;
939 int error;
940 u_int vol;
941
942 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
943 if (error)
944 return error;
945
946 *puvol = vol * 1000;
947 return 0;
948 }
949
950 static struct fdtbus_regulator_controller_func axpreg_funcs = {
951 .acquire = axpreg_acquire,
952 .release = axpreg_release,
953 .enable = axpreg_enable,
954 .set_voltage = axpreg_set_voltage,
955 .get_voltage = axpreg_get_voltage,
956 };
957
958 static int
959 axpreg_match(device_t parent, cfdata_t match, void *aux)
960 {
961 return 1;
962 }
963
964 static void
965 axpreg_attach(device_t parent, device_t self, void *aux)
966 {
967 struct axpreg_softc *sc = device_private(self);
968 struct axpreg_attach_args *aaa = aux;
969 const int phandle = aaa->reg_phandle;
970 const char *name;
971
972 sc->sc_dev = self;
973 sc->sc_i2c = aaa->reg_i2c;
974 sc->sc_addr = aaa->reg_addr;
975 sc->sc_ctrl = aaa->reg_ctrl;
976
977 fdtbus_register_regulator_controller(self, phandle,
978 &axpreg_funcs);
979
980 aprint_naive("\n");
981 name = fdtbus_get_string(phandle, "regulator-name");
982 if (name)
983 aprint_normal(": %s\n", name);
984 else
985 aprint_normal("\n");
986 }
987
988 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
989 axppmic_match, axppmic_attach, NULL, NULL);
990
991 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
992 axpreg_match, axpreg_attach, NULL, NULL);
993