Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.17
      1 /* $NetBSD: axppmic.c,v 1.17 2019/01/02 17:28:55 jmcneill Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.17 2019/01/02 17:28:55 jmcneill Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/atomic.h>
     37 #include <sys/conf.h>
     38 #include <sys/bus.h>
     39 #include <sys/kmem.h>
     40 
     41 #include <dev/i2c/i2cvar.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 #include <dev/sysmon/sysmon_taskq.h>
     45 
     46 #include <dev/fdt/fdtvar.h>
     47 
     48 #define	AXP_POWER_SOURCE_REG	0x00
     49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52 
     53 #define	AXP_POWER_MODE_REG	0x01
     54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57 
     58 #define AXP_POWER_DISABLE_REG	0x32
     59 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     60 
     61 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     62 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     63 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     64 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     65 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     66 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     67 
     68 #define	AXP_BATSENSE_HI_REG	0x78
     69 #define	AXP_BATSENSE_LO_REG	0x79
     70 
     71 #define	AXP_BATTCHG_HI_REG	0x7a
     72 #define	AXP_BATTCHG_LO_REG	0x7b
     73 
     74 #define	AXP_BATTDISCHG_HI_REG	0x7c
     75 #define	AXP_BATTDISCHG_LO_REG	0x7d
     76 
     77 #define	AXP_ADC_RAW(_hi, _lo)	\
     78 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     79 
     80 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     81 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     82 
     83 #define	AXP_BATT_CAP_REG	0xb9
     84 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     85 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     86 
     87 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     88 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     89 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     90 
     91 #define	AXP_BATT_COULOMB_HI_REG	0xe2
     92 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
     93 #define	AXP_BATT_COULOMB_LO_REG	0xe3
     94 
     95 #define	AXP_COULOMB_RAW(_hi, _lo)	\
     96 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
     97 
     98 #define	AXP_BATT_CAP_WARN_REG	0xe6
     99 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    100 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    101 
    102 struct axppmic_ctrl {
    103 	device_t	c_dev;
    104 
    105 	const char *	c_name;
    106 	u_int		c_min;
    107 	u_int		c_max;
    108 	u_int		c_step1;
    109 	u_int		c_step1cnt;
    110 	u_int		c_step2;
    111 	u_int		c_step2cnt;
    112 
    113 	uint8_t		c_enable_reg;
    114 	uint8_t		c_enable_mask;
    115 
    116 	uint8_t		c_voltage_reg;
    117 	uint8_t		c_voltage_mask;
    118 };
    119 
    120 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    121 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    122 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    123 	  .c_step2 = 0, .c_step2cnt = 0,				\
    124 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    125 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    126 
    127 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    128 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    129 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    130 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    131 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    132 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    133 
    134 static const struct axppmic_ctrl axp803_ctrls[] = {
    135 	AXP_CTRL("dldo1", 700, 3300, 100,
    136 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    137 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    138 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    139 	AXP_CTRL("dldo3", 700, 3300, 100,
    140 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    141 	AXP_CTRL("dldo4", 700, 3300, 100,
    142 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    143 	AXP_CTRL("eldo1", 700, 1900, 50,
    144 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    145 	AXP_CTRL("eldo2", 700, 1900, 50,
    146 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    147 	AXP_CTRL("eldo3", 700, 1900, 50,
    148 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    149 	AXP_CTRL("fldo1", 700, 1450, 50,
    150 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    151 	AXP_CTRL("fldo2", 700, 1450, 50,
    152 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    153 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    154 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    155 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    156 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    157 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    158 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    159 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    160 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    161 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    162 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    163 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    164 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    165 	AXP_CTRL("aldo1", 700, 3300, 100,
    166 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    167 	AXP_CTRL("aldo2", 700, 3300, 100,
    168 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    169 	AXP_CTRL("aldo3", 700, 3300, 100,
    170 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    171 };
    172 
    173 static const struct axppmic_ctrl axp805_ctrls[] = {
    174 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    175 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    176 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    177 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    178 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    179 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    180 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    181 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    182 	AXP_CTRL("dcdce", 1100, 3400, 100,
    183 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    184 	AXP_CTRL("aldo1", 700, 3300, 100,
    185 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    186 	AXP_CTRL("aldo2", 700, 3400, 100,
    187 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    188 	AXP_CTRL("aldo3", 700, 3300, 100,
    189 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    190 	AXP_CTRL("bldo1", 700, 1900, 100,
    191 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    192 	AXP_CTRL("bldo2", 700, 1900, 100,
    193 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    194 	AXP_CTRL("bldo3", 700, 1900, 100,
    195 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    196 	AXP_CTRL("bldo4", 700, 1900, 100,
    197 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    198 	AXP_CTRL("cldo1", 700, 3300, 100,
    199 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    200 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    201 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    202 	AXP_CTRL("cldo3", 700, 3300, 100,
    203 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    204 };
    205 
    206 static const struct axppmic_ctrl axp813_ctrls[] = {
    207 	AXP_CTRL("dldo1", 700, 3300, 100,
    208 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    209 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    210 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    211 	AXP_CTRL("dldo3", 700, 3300, 100,
    212 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    213 	AXP_CTRL("dldo4", 700, 3300, 100,
    214 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    215 	AXP_CTRL("eldo1", 700, 1900, 50,
    216 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    217 	AXP_CTRL("eldo2", 700, 1900, 50,
    218 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    219 	AXP_CTRL("eldo3", 700, 1900, 50,
    220 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    221 	AXP_CTRL("fldo1", 700, 1450, 50,
    222 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    223 	AXP_CTRL("fldo2", 700, 1450, 50,
    224 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    225 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    226 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    227 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    228 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    229 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    230 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    231 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    232 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    233 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    234 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    235 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    236 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    237 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    238 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    239 	AXP_CTRL("aldo1", 700, 3300, 100,
    240 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    241 	AXP_CTRL("aldo2", 700, 3300, 100,
    242 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    243 	AXP_CTRL("aldo3", 700, 3300, 100,
    244 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    245 };
    246 
    247 struct axppmic_irq {
    248 	u_int reg;
    249 	uint8_t mask;
    250 };
    251 
    252 #define	AXPPMIC_IRQ(_reg, _mask)	\
    253 	{ .reg = (_reg), .mask = (_mask) }
    254 
    255 struct axppmic_config {
    256 	const char *name;
    257 	const struct axppmic_ctrl *controls;
    258 	u_int ncontrols;
    259 	u_int irq_regs;
    260 	bool has_battery;
    261 	bool has_fuel_gauge;
    262 	struct axppmic_irq poklirq;
    263 	struct axppmic_irq acinirq;
    264 	struct axppmic_irq vbusirq;
    265 	struct axppmic_irq battirq;
    266 	struct axppmic_irq chargeirq;
    267 	struct axppmic_irq chargestirq;
    268 	u_int batsense_step;	/* uV */
    269 	u_int charge_step;	/* uA */
    270 	u_int discharge_step;	/* uA */
    271 	u_int maxcap_step;	/* uAh */
    272 	u_int coulomb_step;	/* uAh */
    273 };
    274 
    275 enum axppmic_sensor {
    276 	AXP_SENSOR_ACIN_PRESENT,
    277 	AXP_SENSOR_VBUS_PRESENT,
    278 	AXP_SENSOR_BATT_PRESENT,
    279 	AXP_SENSOR_BATT_CHARGING,
    280 	AXP_SENSOR_BATT_CHARGE_STATE,
    281 	AXP_SENSOR_BATT_VOLTAGE,
    282 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    283 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    284 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    285 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    286 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    287 	AXP_NSENSORS
    288 };
    289 
    290 struct axppmic_softc {
    291 	device_t	sc_dev;
    292 	i2c_tag_t	sc_i2c;
    293 	i2c_addr_t	sc_addr;
    294 	int		sc_phandle;
    295 
    296 	const struct axppmic_config *sc_conf;
    297 
    298 	struct sysmon_pswitch sc_smpsw;
    299 
    300 	struct sysmon_envsys *sc_sme;
    301 
    302 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    303 
    304 	u_int		sc_warn_thres;
    305 	u_int		sc_shut_thres;
    306 };
    307 
    308 struct axpreg_softc {
    309 	device_t	sc_dev;
    310 	i2c_tag_t	sc_i2c;
    311 	i2c_addr_t	sc_addr;
    312 	const struct axppmic_ctrl *sc_ctrl;
    313 	u_int		sc_inuse;
    314 };
    315 
    316 struct axpreg_attach_args {
    317 	const struct axppmic_ctrl *reg_ctrl;
    318 	int		reg_phandle;
    319 	i2c_tag_t	reg_i2c;
    320 	i2c_addr_t	reg_addr;
    321 };
    322 
    323 static const struct axppmic_config axp803_config = {
    324 	.name = "AXP803",
    325 	.controls = axp803_ctrls,
    326 	.ncontrols = __arraycount(axp803_ctrls),
    327 	.irq_regs = 6,
    328 	.has_battery = true,
    329 	.has_fuel_gauge = true,
    330 	.batsense_step = 1100,
    331 	.charge_step = 1000,
    332 	.discharge_step = 1000,
    333 	.maxcap_step = 1456,
    334 	.coulomb_step = 1456,
    335 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    336 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    337 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    338 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    339 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    340 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    341 };
    342 
    343 static const struct axppmic_config axp805_config = {
    344 	.name = "AXP805/806",
    345 	.controls = axp805_ctrls,
    346 	.ncontrols = __arraycount(axp805_ctrls),
    347 	.irq_regs = 2,
    348 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    349 };
    350 
    351 static const struct axppmic_config axp813_config = {
    352 	.name = "AXP813",
    353 	.controls = axp813_ctrls,
    354 	.ncontrols = __arraycount(axp813_ctrls),
    355 	.irq_regs = 6,
    356 	.has_battery = true,
    357 	.has_fuel_gauge = true,
    358 	.batsense_step = 1100,
    359 	.charge_step = 1000,
    360 	.discharge_step = 1000,
    361 	.maxcap_step = 1456,
    362 	.coulomb_step = 1456,
    363 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    364 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    365 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    366 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    367 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    368 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    369 };
    370 
    371 static const struct device_compatible_entry compat_data[] = {
    372 	{ "x-powers,axp803",		(uintptr_t)&axp803_config },
    373 	{ "x-powers,axp805",		(uintptr_t)&axp805_config },
    374 	{ "x-powers,axp806",		(uintptr_t)&axp805_config },
    375 	{ "x-powers,axp813",		(uintptr_t)&axp813_config },
    376 	{ NULL,				0 }
    377 };
    378 
    379 static int
    380 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    381 {
    382 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    383 }
    384 
    385 static int
    386 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    387 {
    388 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    389 }
    390 
    391 static int
    392 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    393 {
    394 	const int flags = (cold ? I2C_F_POLL : 0);
    395 	u_int vol, reg_val;
    396 	int nstep, error;
    397 	uint8_t val;
    398 
    399 	if (!c->c_voltage_mask)
    400 		return EINVAL;
    401 
    402 	if (min < c->c_min || min > c->c_max)
    403 		return EINVAL;
    404 
    405 	reg_val = 0;
    406 	nstep = 1;
    407 	vol = c->c_min;
    408 
    409 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    410 		++reg_val;
    411 		vol += c->c_step1;
    412 	}
    413 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    414 		++reg_val;
    415 		vol += c->c_step2;
    416 	}
    417 
    418 	if (vol > max)
    419 		return EINVAL;
    420 
    421 	iic_acquire_bus(tag, flags);
    422 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
    423 		val &= ~c->c_voltage_mask;
    424 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    425 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
    426 	}
    427 	iic_release_bus(tag, flags);
    428 
    429 	return error;
    430 }
    431 
    432 static int
    433 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    434 {
    435 	const int flags = (cold ? I2C_F_POLL : 0);
    436 	int reg_val, error;
    437 	uint8_t val;
    438 
    439 	if (!c->c_voltage_mask)
    440 		return EINVAL;
    441 
    442 	iic_acquire_bus(tag, flags);
    443 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
    444 	iic_release_bus(tag, flags);
    445 	if (error)
    446 		return error;
    447 
    448 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    449 	if (reg_val < c->c_step1cnt) {
    450 		*pvol = c->c_min + reg_val * c->c_step1;
    451 	} else {
    452 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    453 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    454 	}
    455 
    456 	return 0;
    457 }
    458 
    459 static void
    460 axppmic_power_poweroff(device_t dev)
    461 {
    462 	struct axppmic_softc *sc = device_private(dev);
    463 
    464 	delay(1000000);
    465 
    466 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    467 	axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
    468 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    469 }
    470 
    471 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    472 	.poweroff = axppmic_power_poweroff,
    473 };
    474 
    475 static void
    476 axppmic_task_shut(void *priv)
    477 {
    478 	struct axppmic_softc *sc = priv;
    479 
    480 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    481 }
    482 
    483 static void
    484 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    485 {
    486 	struct axppmic_softc *sc = sme->sme_cookie;
    487 	const struct axppmic_config *c = sc->sc_conf;
    488 	const int flags = I2C_F_POLL;
    489 	uint8_t val, lo, hi;
    490 
    491 	e->state = ENVSYS_SINVALID;
    492 
    493 	const bool battery_present =
    494 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    495 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    496 
    497 	switch (e->private) {
    498 	case AXP_SENSOR_ACIN_PRESENT:
    499 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    500 			e->state = ENVSYS_SVALID;
    501 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    502 		}
    503 		break;
    504 	case AXP_SENSOR_VBUS_PRESENT:
    505 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    506 			e->state = ENVSYS_SVALID;
    507 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    508 		}
    509 		break;
    510 	case AXP_SENSOR_BATT_PRESENT:
    511 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    512 			if (val & AXP_POWER_MODE_BATT_VALID) {
    513 				e->state = ENVSYS_SVALID;
    514 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    515 			}
    516 		}
    517 		break;
    518 	case AXP_SENSOR_BATT_CHARGING:
    519 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    520 			e->state = ENVSYS_SVALID;
    521 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    522 		}
    523 		break;
    524 	case AXP_SENSOR_BATT_CHARGE_STATE:
    525 		if (battery_present &&
    526 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    527 		    (val & AXP_BATT_CAP_VALID) != 0) {
    528 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    529 			if (batt_val <= sc->sc_shut_thres) {
    530 				e->state = ENVSYS_SCRITICAL;
    531 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    532 			} else if (batt_val <= sc->sc_warn_thres) {
    533 				e->state = ENVSYS_SWARNUNDER;
    534 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    535 			} else {
    536 				e->state = ENVSYS_SVALID;
    537 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    538 			}
    539 		}
    540 		break;
    541 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    542 		if (battery_present &&
    543 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    544 		    (val & AXP_BATT_CAP_VALID) != 0) {
    545 			e->state = ENVSYS_SVALID;
    546 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    547 		}
    548 		break;
    549 	case AXP_SENSOR_BATT_VOLTAGE:
    550 		if (battery_present &&
    551 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
    552 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
    553 			e->state = ENVSYS_SVALID;
    554 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    555 		}
    556 		break;
    557 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    558 		if (battery_present &&
    559 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    560 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    561 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
    562 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
    563 			e->state = ENVSYS_SVALID;
    564 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    565 		}
    566 		break;
    567 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    568 		if (battery_present &&
    569 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    570 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    571 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
    572 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
    573 			e->state = ENVSYS_SVALID;
    574 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    575 		}
    576 		break;
    577 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    578 		if (battery_present &&
    579 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
    580 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
    581 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    582 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    583 		}
    584 		break;
    585 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    586 		if (battery_present &&
    587 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
    588 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
    589 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    590 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    591 		}
    592 		break;
    593 	}
    594 }
    595 
    596 static void
    597 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    598 {
    599 	struct axppmic_softc *sc = sme->sme_cookie;
    600 	const int flags = I2C_F_POLL;
    601 
    602 	switch (e->private) {
    603 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    604 	case AXP_SENSOR_BATT_VOLTAGE:
    605 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    606 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    607 		/* Always update battery capacity and ADCs */
    608 		iic_acquire_bus(sc->sc_i2c, flags);
    609 		axppmic_sensor_update(sme, e);
    610 		iic_release_bus(sc->sc_i2c, flags);
    611 		break;
    612 	default:
    613 		/* Refresh if the sensor is not in valid state */
    614 		if (e->state != ENVSYS_SVALID) {
    615 			iic_acquire_bus(sc->sc_i2c, flags);
    616 			axppmic_sensor_update(sme, e);
    617 			iic_release_bus(sc->sc_i2c, flags);
    618 		}
    619 		break;
    620 	}
    621 }
    622 
    623 static int
    624 axppmic_intr(void *priv)
    625 {
    626 	struct axppmic_softc *sc = priv;
    627 	const struct axppmic_config *c = sc->sc_conf;
    628 	const int flags = I2C_F_POLL;
    629 	uint8_t stat;
    630 	u_int n;
    631 
    632 	iic_acquire_bus(sc->sc_i2c, flags);
    633 	for (n = 1; n <= c->irq_regs; n++) {
    634 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    635 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    636 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    637 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    638 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    639 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    640 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    641 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    642 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    643 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    644 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    645 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    646 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    647 
    648 			if (stat != 0)
    649 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    650 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    651 		}
    652 	}
    653 	iic_release_bus(sc->sc_i2c, flags);
    654 
    655 	return 1;
    656 }
    657 
    658 static void
    659 axppmic_attach_acadapter(struct axppmic_softc *sc)
    660 {
    661 	envsys_data_t *e;
    662 
    663 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    664 	e->private = AXP_SENSOR_ACIN_PRESENT;
    665 	e->units = ENVSYS_INDICATOR;
    666 	e->state = ENVSYS_SINVALID;
    667 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    668 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    669 
    670 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    671 	e->private = AXP_SENSOR_VBUS_PRESENT;
    672 	e->units = ENVSYS_INDICATOR;
    673 	e->state = ENVSYS_SINVALID;
    674 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    675 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    676 }
    677 
    678 static void
    679 axppmic_attach_battery(struct axppmic_softc *sc)
    680 {
    681 	const struct axppmic_config *c = sc->sc_conf;
    682 	envsys_data_t *e;
    683 	uint8_t val;
    684 
    685 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    686 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
    687 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    688 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    689 	}
    690 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    691 
    692 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    693 	e->private = AXP_SENSOR_BATT_PRESENT;
    694 	e->units = ENVSYS_INDICATOR;
    695 	e->state = ENVSYS_SINVALID;
    696 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    697 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    698 
    699 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    700 	e->private = AXP_SENSOR_BATT_CHARGING;
    701 	e->units = ENVSYS_BATTERY_CHARGE;
    702 	e->state = ENVSYS_SINVALID;
    703 	strlcpy(e->desc, "charging", sizeof(e->desc));
    704 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    705 
    706 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    707 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    708 	e->units = ENVSYS_BATTERY_CAPACITY;
    709 	e->flags = ENVSYS_FMONSTCHANGED;
    710 	e->state = ENVSYS_SINVALID;
    711 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    712 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    713 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    714 
    715 	if (c->batsense_step) {
    716 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    717 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    718 		e->units = ENVSYS_SVOLTS_DC;
    719 		e->state = ENVSYS_SINVALID;
    720 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
    721 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    722 	}
    723 
    724 	if (c->charge_step) {
    725 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
    726 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
    727 		e->units = ENVSYS_SAMPS;
    728 		e->state = ENVSYS_SINVALID;
    729 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
    730 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    731 	}
    732 
    733 	if (c->discharge_step) {
    734 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
    735 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
    736 		e->units = ENVSYS_SAMPS;
    737 		e->state = ENVSYS_SINVALID;
    738 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
    739 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    740 	}
    741 
    742 	if (c->has_fuel_gauge) {
    743 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
    744 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
    745 		e->units = ENVSYS_INTEGER;
    746 		e->state = ENVSYS_SINVALID;
    747 		e->flags = ENVSYS_FPERCENT;
    748 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
    749 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    750 	}
    751 
    752 	if (c->maxcap_step) {
    753 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
    754 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
    755 		e->units = ENVSYS_SAMPHOUR;
    756 		e->state = ENVSYS_SINVALID;
    757 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
    758 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    759 	}
    760 
    761 	if (c->coulomb_step) {
    762 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
    763 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
    764 		e->units = ENVSYS_SAMPHOUR;
    765 		e->state = ENVSYS_SINVALID;
    766 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
    767 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    768 	}
    769 }
    770 
    771 static void
    772 axppmic_attach_sensors(struct axppmic_softc *sc)
    773 {
    774 	if (sc->sc_conf->has_battery) {
    775 		sc->sc_sme = sysmon_envsys_create();
    776 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    777 		sc->sc_sme->sme_cookie = sc;
    778 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
    779 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
    780 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
    781 
    782 		axppmic_attach_acadapter(sc);
    783 		axppmic_attach_battery(sc);
    784 
    785 		sysmon_envsys_register(sc->sc_sme);
    786 	}
    787 }
    788 
    789 
    790 static int
    791 axppmic_match(device_t parent, cfdata_t match, void *aux)
    792 {
    793 	struct i2c_attach_args *ia = aux;
    794 	int match_result;
    795 
    796 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
    797 		return match_result;
    798 
    799 	/* This device is direct-config only. */
    800 
    801 	return 0;
    802 }
    803 
    804 static void
    805 axppmic_attach(device_t parent, device_t self, void *aux)
    806 {
    807 	struct axppmic_softc *sc = device_private(self);
    808 	const struct device_compatible_entry *dce = NULL;
    809 	const struct axppmic_config *c;
    810 	struct axpreg_attach_args aaa;
    811 	struct i2c_attach_args *ia = aux;
    812 	int phandle, child, i;
    813 	uint32_t irq_mask;
    814 	void *ih;
    815 
    816 	(void) iic_compatible_match(ia, compat_data, &dce);
    817 	KASSERT(dce != NULL);
    818 	c = (void *)dce->data;
    819 
    820 	sc->sc_dev = self;
    821 	sc->sc_i2c = ia->ia_tag;
    822 	sc->sc_addr = ia->ia_addr;
    823 	sc->sc_phandle = ia->ia_cookie;
    824 	sc->sc_conf = c;
    825 
    826 	aprint_naive("\n");
    827 	aprint_normal(": %s\n", c->name);
    828 
    829 	sc->sc_smpsw.smpsw_name = device_xname(self);
    830 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
    831 	sysmon_pswitch_register(&sc->sc_smpsw);
    832 
    833 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    834 	for (i = 1; i <= c->irq_regs; i++) {
    835 		irq_mask = 0;
    836 		if (i == c->poklirq.reg)
    837 			irq_mask |= c->poklirq.mask;
    838 		if (i == c->acinirq.reg)
    839 			irq_mask |= c->acinirq.mask;
    840 		if (i == c->vbusirq.reg)
    841 			irq_mask |= c->vbusirq.mask;
    842 		if (i == c->battirq.reg)
    843 			irq_mask |= c->battirq.mask;
    844 		if (i == c->chargeirq.reg)
    845 			irq_mask |= c->chargeirq.mask;
    846 		if (i == c->chargestirq.reg)
    847 			irq_mask |= c->chargestirq.mask;
    848 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
    849 	}
    850 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    851 
    852 	ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
    853 	    axppmic_intr, sc);
    854 	if (ih == NULL) {
    855 		aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
    856 	}
    857 
    858 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
    859 	    &axppmic_power_funcs);
    860 
    861 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
    862 	if (phandle > 0) {
    863 		aaa.reg_i2c = sc->sc_i2c;
    864 		aaa.reg_addr = sc->sc_addr;
    865 		for (i = 0; i < c->ncontrols; i++) {
    866 			const struct axppmic_ctrl *ctrl = &c->controls[i];
    867 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
    868 			if (child <= 0)
    869 				continue;
    870 			aaa.reg_ctrl = ctrl;
    871 			aaa.reg_phandle = child;
    872 			config_found(sc->sc_dev, &aaa, NULL);
    873 		}
    874 	}
    875 
    876 	if (c->has_battery)
    877 		axppmic_attach_sensors(sc);
    878 }
    879 
    880 static int
    881 axpreg_acquire(device_t dev)
    882 {
    883 	struct axpreg_softc *sc = device_private(dev);
    884 
    885 	if (atomic_cas_uint(&sc->sc_inuse, 0, 1) != 0)
    886 		return EBUSY;
    887 
    888 	return 0;
    889 }
    890 
    891 static void
    892 axpreg_release(device_t dev)
    893 {
    894 	struct axpreg_softc *sc = device_private(dev);
    895 
    896 	atomic_swap_uint(&sc->sc_inuse, 0);
    897 }
    898 
    899 static int
    900 axpreg_enable(device_t dev, bool enable)
    901 {
    902 	struct axpreg_softc *sc = device_private(dev);
    903 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    904 	const int flags = (cold ? I2C_F_POLL : 0);
    905 	uint8_t val;
    906 	int error;
    907 
    908 	if (!c->c_enable_mask)
    909 		return EINVAL;
    910 
    911 	iic_acquire_bus(sc->sc_i2c, flags);
    912 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
    913 		if (enable)
    914 			val |= c->c_enable_mask;
    915 		else
    916 			val &= ~c->c_enable_mask;
    917 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
    918 	}
    919 	iic_release_bus(sc->sc_i2c, flags);
    920 
    921 	return error;
    922 }
    923 
    924 static int
    925 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
    926 {
    927 	struct axpreg_softc *sc = device_private(dev);
    928 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    929 
    930 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
    931 	    min_uvol / 1000, max_uvol / 1000);
    932 }
    933 
    934 static int
    935 axpreg_get_voltage(device_t dev, u_int *puvol)
    936 {
    937 	struct axpreg_softc *sc = device_private(dev);
    938 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    939 	int error;
    940 	u_int vol;
    941 
    942 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
    943 	if (error)
    944 		return error;
    945 
    946 	*puvol = vol * 1000;
    947 	return 0;
    948 }
    949 
    950 static struct fdtbus_regulator_controller_func axpreg_funcs = {
    951 	.acquire = axpreg_acquire,
    952 	.release = axpreg_release,
    953 	.enable = axpreg_enable,
    954 	.set_voltage = axpreg_set_voltage,
    955 	.get_voltage = axpreg_get_voltage,
    956 };
    957 
    958 static int
    959 axpreg_match(device_t parent, cfdata_t match, void *aux)
    960 {
    961 	return 1;
    962 }
    963 
    964 static void
    965 axpreg_attach(device_t parent, device_t self, void *aux)
    966 {
    967 	struct axpreg_softc *sc = device_private(self);
    968 	struct axpreg_attach_args *aaa = aux;
    969 	const int phandle = aaa->reg_phandle;
    970 	const char *name;
    971 
    972 	sc->sc_dev = self;
    973 	sc->sc_i2c = aaa->reg_i2c;
    974 	sc->sc_addr = aaa->reg_addr;
    975 	sc->sc_ctrl = aaa->reg_ctrl;
    976 
    977 	fdtbus_register_regulator_controller(self, phandle,
    978 	    &axpreg_funcs);
    979 
    980 	aprint_naive("\n");
    981 	name = fdtbus_get_string(phandle, "regulator-name");
    982 	if (name)
    983 		aprint_normal(": %s\n", name);
    984 	else
    985 		aprint_normal("\n");
    986 }
    987 
    988 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
    989     axppmic_match, axppmic_attach, NULL, NULL);
    990 
    991 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
    992     axpreg_match, axpreg_attach, NULL, NULL);
    993