axppmic.c revision 1.19 1 /* $NetBSD: axppmic.c,v 1.19 2019/05/27 21:10:44 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.19 2019/05/27 21:10:44 jmcneill Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51
52 #define AXP_POWER_MODE_REG 0x01
53 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56
57 #define AXP_CHIP_ID_REG 0x03
58
59 #define AXP_POWER_DISABLE_REG 0x32
60 #define AXP_POWER_DISABLE_CTRL __BIT(7)
61
62 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
63 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
64 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
65 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
66 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
67 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
68
69 #define AXP_BATSENSE_HI_REG 0x78
70 #define AXP_BATSENSE_LO_REG 0x79
71
72 #define AXP_BATTCHG_HI_REG 0x7a
73 #define AXP_BATTCHG_LO_REG 0x7b
74
75 #define AXP_BATTDISCHG_HI_REG 0x7c
76 #define AXP_BATTDISCHG_LO_REG 0x7d
77
78 #define AXP_ADC_RAW(_hi, _lo) \
79 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
80
81 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
82 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
83
84 #define AXP_BATT_CAP_REG 0xb9
85 #define AXP_BATT_CAP_VALID __BIT(7)
86 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
87
88 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
89 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
90 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
91
92 #define AXP_BATT_COULOMB_HI_REG 0xe2
93 #define AXP_BATT_COULOMB_VALID __BIT(7)
94 #define AXP_BATT_COULOMB_LO_REG 0xe3
95
96 #define AXP_COULOMB_RAW(_hi, _lo) \
97 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
98
99 #define AXP_BATT_CAP_WARN_REG 0xe6
100 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
101 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
102
103 #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
104 #define AXP_ADDR_EXT_MASTER 0
105 #define AXP_ADDR_EXT_SLAVE __BIT(4)
106
107 struct axppmic_ctrl {
108 device_t c_dev;
109
110 const char * c_name;
111 u_int c_min;
112 u_int c_max;
113 u_int c_step1;
114 u_int c_step1cnt;
115 u_int c_step2;
116 u_int c_step2cnt;
117
118 uint8_t c_enable_reg;
119 uint8_t c_enable_mask;
120
121 uint8_t c_voltage_reg;
122 uint8_t c_voltage_mask;
123 };
124
125 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
126 { .c_name = (name), .c_min = (min), .c_max = (max), \
127 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
128 .c_step2 = 0, .c_step2cnt = 0, \
129 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
130 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
131
132 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
133 { .c_name = (name), .c_min = (min), .c_max = (max), \
134 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
135 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
136 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
137 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
138
139 static const struct axppmic_ctrl axp803_ctrls[] = {
140 AXP_CTRL("dldo1", 700, 3300, 100,
141 0x12, __BIT(3), 0x15, __BITS(4,0)),
142 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
143 0x12, __BIT(4), 0x16, __BITS(4,0)),
144 AXP_CTRL("dldo3", 700, 3300, 100,
145 0x12, __BIT(5), 0x17, __BITS(4,0)),
146 AXP_CTRL("dldo4", 700, 3300, 100,
147 0x12, __BIT(6), 0x18, __BITS(4,0)),
148 AXP_CTRL("eldo1", 700, 1900, 50,
149 0x12, __BIT(0), 0x19, __BITS(4,0)),
150 AXP_CTRL("eldo2", 700, 1900, 50,
151 0x12, __BIT(1), 0x1a, __BITS(4,0)),
152 AXP_CTRL("eldo3", 700, 1900, 50,
153 0x12, __BIT(2), 0x1b, __BITS(4,0)),
154 AXP_CTRL("fldo1", 700, 1450, 50,
155 0x13, __BIT(2), 0x1c, __BITS(3,0)),
156 AXP_CTRL("fldo2", 700, 1450, 50,
157 0x13, __BIT(3), 0x1d, __BITS(3,0)),
158 AXP_CTRL("dcdc1", 1600, 3400, 100,
159 0x10, __BIT(0), 0x20, __BITS(4,0)),
160 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
161 0x10, __BIT(1), 0x21, __BITS(6,0)),
162 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
163 0x10, __BIT(2), 0x22, __BITS(6,0)),
164 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
165 0x10, __BIT(3), 0x23, __BITS(6,0)),
166 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
167 0x10, __BIT(4), 0x24, __BITS(6,0)),
168 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
169 0x10, __BIT(5), 0x25, __BITS(6,0)),
170 AXP_CTRL("aldo1", 700, 3300, 100,
171 0x13, __BIT(5), 0x28, __BITS(4,0)),
172 AXP_CTRL("aldo2", 700, 3300, 100,
173 0x13, __BIT(6), 0x29, __BITS(4,0)),
174 AXP_CTRL("aldo3", 700, 3300, 100,
175 0x13, __BIT(7), 0x2a, __BITS(4,0)),
176 };
177
178 static const struct axppmic_ctrl axp805_ctrls[] = {
179 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
180 0x10, __BIT(0), 0x12, __BITS(6,0)),
181 AXP_CTRL("dcdcb", 1000, 2550, 50,
182 0x10, __BIT(1), 0x13, __BITS(4,0)),
183 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
184 0x10, __BIT(2), 0x14, __BITS(6,0)),
185 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
186 0x10, __BIT(3), 0x15, __BITS(5,0)),
187 AXP_CTRL("dcdce", 1100, 3400, 100,
188 0x10, __BIT(4), 0x16, __BITS(4,0)),
189 AXP_CTRL("aldo1", 700, 3300, 100,
190 0x10, __BIT(5), 0x17, __BITS(4,0)),
191 AXP_CTRL("aldo2", 700, 3400, 100,
192 0x10, __BIT(6), 0x18, __BITS(4,0)),
193 AXP_CTRL("aldo3", 700, 3300, 100,
194 0x10, __BIT(7), 0x19, __BITS(4,0)),
195 AXP_CTRL("bldo1", 700, 1900, 100,
196 0x11, __BIT(0), 0x20, __BITS(3,0)),
197 AXP_CTRL("bldo2", 700, 1900, 100,
198 0x11, __BIT(1), 0x21, __BITS(3,0)),
199 AXP_CTRL("bldo3", 700, 1900, 100,
200 0x11, __BIT(2), 0x22, __BITS(3,0)),
201 AXP_CTRL("bldo4", 700, 1900, 100,
202 0x11, __BIT(3), 0x23, __BITS(3,0)),
203 AXP_CTRL("cldo1", 700, 3300, 100,
204 0x11, __BIT(4), 0x24, __BITS(4,0)),
205 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
206 0x11, __BIT(5), 0x25, __BITS(4,0)),
207 AXP_CTRL("cldo3", 700, 3300, 100,
208 0x11, __BIT(6), 0x26, __BITS(4,0)),
209 };
210
211 static const struct axppmic_ctrl axp813_ctrls[] = {
212 AXP_CTRL("dldo1", 700, 3300, 100,
213 0x12, __BIT(3), 0x15, __BITS(4,0)),
214 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
215 0x12, __BIT(4), 0x16, __BITS(4,0)),
216 AXP_CTRL("dldo3", 700, 3300, 100,
217 0x12, __BIT(5), 0x17, __BITS(4,0)),
218 AXP_CTRL("dldo4", 700, 3300, 100,
219 0x12, __BIT(6), 0x18, __BITS(4,0)),
220 AXP_CTRL("eldo1", 700, 1900, 50,
221 0x12, __BIT(0), 0x19, __BITS(4,0)),
222 AXP_CTRL("eldo2", 700, 1900, 50,
223 0x12, __BIT(1), 0x1a, __BITS(4,0)),
224 AXP_CTRL("eldo3", 700, 1900, 50,
225 0x12, __BIT(2), 0x1b, __BITS(4,0)),
226 AXP_CTRL("fldo1", 700, 1450, 50,
227 0x13, __BIT(2), 0x1c, __BITS(3,0)),
228 AXP_CTRL("fldo2", 700, 1450, 50,
229 0x13, __BIT(3), 0x1d, __BITS(3,0)),
230 AXP_CTRL("dcdc1", 1600, 3400, 100,
231 0x10, __BIT(0), 0x20, __BITS(4,0)),
232 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
233 0x10, __BIT(1), 0x21, __BITS(6,0)),
234 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
235 0x10, __BIT(2), 0x22, __BITS(6,0)),
236 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
237 0x10, __BIT(3), 0x23, __BITS(6,0)),
238 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
239 0x10, __BIT(4), 0x24, __BITS(6,0)),
240 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
241 0x10, __BIT(5), 0x25, __BITS(6,0)),
242 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
243 0x10, __BIT(6), 0x26, __BITS(6,0)),
244 AXP_CTRL("aldo1", 700, 3300, 100,
245 0x13, __BIT(5), 0x28, __BITS(4,0)),
246 AXP_CTRL("aldo2", 700, 3300, 100,
247 0x13, __BIT(6), 0x29, __BITS(4,0)),
248 AXP_CTRL("aldo3", 700, 3300, 100,
249 0x13, __BIT(7), 0x2a, __BITS(4,0)),
250 };
251
252 struct axppmic_irq {
253 u_int reg;
254 uint8_t mask;
255 };
256
257 #define AXPPMIC_IRQ(_reg, _mask) \
258 { .reg = (_reg), .mask = (_mask) }
259
260 struct axppmic_config {
261 const char *name;
262 const struct axppmic_ctrl *controls;
263 u_int ncontrols;
264 u_int irq_regs;
265 bool has_battery;
266 bool has_fuel_gauge;
267 bool has_mode_set;
268 struct axppmic_irq poklirq;
269 struct axppmic_irq acinirq;
270 struct axppmic_irq vbusirq;
271 struct axppmic_irq battirq;
272 struct axppmic_irq chargeirq;
273 struct axppmic_irq chargestirq;
274 u_int batsense_step; /* uV */
275 u_int charge_step; /* uA */
276 u_int discharge_step; /* uA */
277 u_int maxcap_step; /* uAh */
278 u_int coulomb_step; /* uAh */
279 };
280
281 enum axppmic_sensor {
282 AXP_SENSOR_ACIN_PRESENT,
283 AXP_SENSOR_VBUS_PRESENT,
284 AXP_SENSOR_BATT_PRESENT,
285 AXP_SENSOR_BATT_CHARGING,
286 AXP_SENSOR_BATT_CHARGE_STATE,
287 AXP_SENSOR_BATT_VOLTAGE,
288 AXP_SENSOR_BATT_CHARGE_CURRENT,
289 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
290 AXP_SENSOR_BATT_CAPACITY_PERCENT,
291 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
292 AXP_SENSOR_BATT_CURRENT_CAPACITY,
293 AXP_NSENSORS
294 };
295
296 struct axppmic_softc {
297 device_t sc_dev;
298 i2c_tag_t sc_i2c;
299 i2c_addr_t sc_addr;
300 int sc_phandle;
301
302 const struct axppmic_config *sc_conf;
303
304 struct sysmon_pswitch sc_smpsw;
305
306 struct sysmon_envsys *sc_sme;
307
308 envsys_data_t sc_sensor[AXP_NSENSORS];
309
310 u_int sc_warn_thres;
311 u_int sc_shut_thres;
312 };
313
314 struct axpreg_softc {
315 device_t sc_dev;
316 i2c_tag_t sc_i2c;
317 i2c_addr_t sc_addr;
318 const struct axppmic_ctrl *sc_ctrl;
319 };
320
321 struct axpreg_attach_args {
322 const struct axppmic_ctrl *reg_ctrl;
323 int reg_phandle;
324 i2c_tag_t reg_i2c;
325 i2c_addr_t reg_addr;
326 };
327
328 static const struct axppmic_config axp803_config = {
329 .name = "AXP803",
330 .controls = axp803_ctrls,
331 .ncontrols = __arraycount(axp803_ctrls),
332 .irq_regs = 6,
333 .has_battery = true,
334 .has_fuel_gauge = true,
335 .batsense_step = 1100,
336 .charge_step = 1000,
337 .discharge_step = 1000,
338 .maxcap_step = 1456,
339 .coulomb_step = 1456,
340 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
341 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
342 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
343 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
344 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
345 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
346 };
347
348 static const struct axppmic_config axp805_config = {
349 .name = "AXP805",
350 .controls = axp805_ctrls,
351 .ncontrols = __arraycount(axp805_ctrls),
352 .irq_regs = 2,
353 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
354 };
355
356 static const struct axppmic_config axp806_config = {
357 .name = "AXP806",
358 .controls = axp805_ctrls,
359 .ncontrols = __arraycount(axp805_ctrls),
360 #if notyet
361 .irq_regs = 2,
362 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
363 #endif
364 .has_mode_set = true,
365 };
366
367 static const struct axppmic_config axp813_config = {
368 .name = "AXP813",
369 .controls = axp813_ctrls,
370 .ncontrols = __arraycount(axp813_ctrls),
371 .irq_regs = 6,
372 .has_battery = true,
373 .has_fuel_gauge = true,
374 .batsense_step = 1100,
375 .charge_step = 1000,
376 .discharge_step = 1000,
377 .maxcap_step = 1456,
378 .coulomb_step = 1456,
379 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
380 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
381 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
382 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
383 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
384 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
385 };
386
387 static const struct device_compatible_entry compat_data[] = {
388 { "x-powers,axp803", (uintptr_t)&axp803_config },
389 { "x-powers,axp805", (uintptr_t)&axp805_config },
390 { "x-powers,axp806", (uintptr_t)&axp806_config },
391 { "x-powers,axp813", (uintptr_t)&axp813_config },
392 { NULL, 0 }
393 };
394
395 static int
396 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
397 {
398 return iic_smbus_read_byte(tag, addr, reg, val, flags);
399 }
400
401 static int
402 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
403 {
404 return iic_smbus_write_byte(tag, addr, reg, val, flags);
405 }
406
407 static int
408 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
409 {
410 const int flags = (cold ? I2C_F_POLL : 0);
411 u_int vol, reg_val;
412 int nstep, error;
413 uint8_t val;
414
415 if (!c->c_voltage_mask)
416 return EINVAL;
417
418 if (min < c->c_min || min > c->c_max)
419 return EINVAL;
420
421 reg_val = 0;
422 nstep = 1;
423 vol = c->c_min;
424
425 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
426 ++reg_val;
427 vol += c->c_step1;
428 }
429 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
430 ++reg_val;
431 vol += c->c_step2;
432 }
433
434 if (vol > max)
435 return EINVAL;
436
437 iic_acquire_bus(tag, flags);
438 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
439 val &= ~c->c_voltage_mask;
440 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
441 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
442 }
443 iic_release_bus(tag, flags);
444
445 return error;
446 }
447
448 static int
449 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
450 {
451 const int flags = (cold ? I2C_F_POLL : 0);
452 int reg_val, error;
453 uint8_t val;
454
455 if (!c->c_voltage_mask)
456 return EINVAL;
457
458 iic_acquire_bus(tag, flags);
459 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
460 iic_release_bus(tag, flags);
461 if (error)
462 return error;
463
464 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
465 if (reg_val < c->c_step1cnt) {
466 *pvol = c->c_min + reg_val * c->c_step1;
467 } else {
468 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
469 ((reg_val - c->c_step1cnt) * c->c_step2);
470 }
471
472 return 0;
473 }
474
475 static void
476 axppmic_power_poweroff(device_t dev)
477 {
478 struct axppmic_softc *sc = device_private(dev);
479
480 delay(1000000);
481
482 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
483 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
484 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
485 }
486
487 static struct fdtbus_power_controller_func axppmic_power_funcs = {
488 .poweroff = axppmic_power_poweroff,
489 };
490
491 static void
492 axppmic_task_shut(void *priv)
493 {
494 struct axppmic_softc *sc = priv;
495
496 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
497 }
498
499 static void
500 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
501 {
502 struct axppmic_softc *sc = sme->sme_cookie;
503 const struct axppmic_config *c = sc->sc_conf;
504 const int flags = I2C_F_POLL;
505 uint8_t val, lo, hi;
506
507 e->state = ENVSYS_SINVALID;
508
509 const bool battery_present =
510 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
511 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
512
513 switch (e->private) {
514 case AXP_SENSOR_ACIN_PRESENT:
515 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
516 e->state = ENVSYS_SVALID;
517 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
518 }
519 break;
520 case AXP_SENSOR_VBUS_PRESENT:
521 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
522 e->state = ENVSYS_SVALID;
523 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
524 }
525 break;
526 case AXP_SENSOR_BATT_PRESENT:
527 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
528 if (val & AXP_POWER_MODE_BATT_VALID) {
529 e->state = ENVSYS_SVALID;
530 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
531 }
532 }
533 break;
534 case AXP_SENSOR_BATT_CHARGING:
535 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
536 e->state = ENVSYS_SVALID;
537 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
538 }
539 break;
540 case AXP_SENSOR_BATT_CHARGE_STATE:
541 if (battery_present &&
542 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
543 (val & AXP_BATT_CAP_VALID) != 0) {
544 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
545 if (batt_val <= sc->sc_shut_thres) {
546 e->state = ENVSYS_SCRITICAL;
547 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
548 } else if (batt_val <= sc->sc_warn_thres) {
549 e->state = ENVSYS_SWARNUNDER;
550 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
551 } else {
552 e->state = ENVSYS_SVALID;
553 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
554 }
555 }
556 break;
557 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
558 if (battery_present &&
559 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
560 (val & AXP_BATT_CAP_VALID) != 0) {
561 e->state = ENVSYS_SVALID;
562 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
563 }
564 break;
565 case AXP_SENSOR_BATT_VOLTAGE:
566 if (battery_present &&
567 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
568 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
569 e->state = ENVSYS_SVALID;
570 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
571 }
572 break;
573 case AXP_SENSOR_BATT_CHARGE_CURRENT:
574 if (battery_present &&
575 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
576 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
577 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
578 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
579 e->state = ENVSYS_SVALID;
580 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
581 }
582 break;
583 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
584 if (battery_present &&
585 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
586 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
587 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
588 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
589 e->state = ENVSYS_SVALID;
590 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
591 }
592 break;
593 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
594 if (battery_present &&
595 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
596 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
597 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
598 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
599 }
600 break;
601 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
602 if (battery_present &&
603 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
604 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
605 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
606 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
607 }
608 break;
609 }
610 }
611
612 static void
613 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
614 {
615 struct axppmic_softc *sc = sme->sme_cookie;
616 const int flags = I2C_F_POLL;
617
618 switch (e->private) {
619 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
620 case AXP_SENSOR_BATT_VOLTAGE:
621 case AXP_SENSOR_BATT_CHARGE_CURRENT:
622 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
623 /* Always update battery capacity and ADCs */
624 iic_acquire_bus(sc->sc_i2c, flags);
625 axppmic_sensor_update(sme, e);
626 iic_release_bus(sc->sc_i2c, flags);
627 break;
628 default:
629 /* Refresh if the sensor is not in valid state */
630 if (e->state != ENVSYS_SVALID) {
631 iic_acquire_bus(sc->sc_i2c, flags);
632 axppmic_sensor_update(sme, e);
633 iic_release_bus(sc->sc_i2c, flags);
634 }
635 break;
636 }
637 }
638
639 static int
640 axppmic_intr(void *priv)
641 {
642 struct axppmic_softc *sc = priv;
643 const struct axppmic_config *c = sc->sc_conf;
644 const int flags = I2C_F_POLL;
645 uint8_t stat;
646 u_int n;
647
648 iic_acquire_bus(sc->sc_i2c, flags);
649 for (n = 1; n <= c->irq_regs; n++) {
650 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
651 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
652 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
653 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
654 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
655 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
656 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
657 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
658 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
659 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
660 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
661 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
662 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
663
664 if (stat != 0)
665 axppmic_write(sc->sc_i2c, sc->sc_addr,
666 AXP_IRQ_STATUS_REG(n), stat, flags);
667 }
668 }
669 iic_release_bus(sc->sc_i2c, flags);
670
671 return 1;
672 }
673
674 static void
675 axppmic_attach_acadapter(struct axppmic_softc *sc)
676 {
677 envsys_data_t *e;
678
679 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
680 e->private = AXP_SENSOR_ACIN_PRESENT;
681 e->units = ENVSYS_INDICATOR;
682 e->state = ENVSYS_SINVALID;
683 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
684 sysmon_envsys_sensor_attach(sc->sc_sme, e);
685
686 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
687 e->private = AXP_SENSOR_VBUS_PRESENT;
688 e->units = ENVSYS_INDICATOR;
689 e->state = ENVSYS_SINVALID;
690 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
691 sysmon_envsys_sensor_attach(sc->sc_sme, e);
692 }
693
694 static void
695 axppmic_attach_battery(struct axppmic_softc *sc)
696 {
697 const struct axppmic_config *c = sc->sc_conf;
698 envsys_data_t *e;
699 uint8_t val;
700
701 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
702 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
703 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
704 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
705 }
706 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
707
708 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
709 e->private = AXP_SENSOR_BATT_PRESENT;
710 e->units = ENVSYS_INDICATOR;
711 e->state = ENVSYS_SINVALID;
712 strlcpy(e->desc, "battery present", sizeof(e->desc));
713 sysmon_envsys_sensor_attach(sc->sc_sme, e);
714
715 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
716 e->private = AXP_SENSOR_BATT_CHARGING;
717 e->units = ENVSYS_BATTERY_CHARGE;
718 e->state = ENVSYS_SINVALID;
719 strlcpy(e->desc, "charging", sizeof(e->desc));
720 sysmon_envsys_sensor_attach(sc->sc_sme, e);
721
722 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
723 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
724 e->units = ENVSYS_BATTERY_CAPACITY;
725 e->flags = ENVSYS_FMONSTCHANGED;
726 e->state = ENVSYS_SINVALID;
727 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
728 strlcpy(e->desc, "charge state", sizeof(e->desc));
729 sysmon_envsys_sensor_attach(sc->sc_sme, e);
730
731 if (c->batsense_step) {
732 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
733 e->private = AXP_SENSOR_BATT_VOLTAGE;
734 e->units = ENVSYS_SVOLTS_DC;
735 e->state = ENVSYS_SINVALID;
736 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
737 sysmon_envsys_sensor_attach(sc->sc_sme, e);
738 }
739
740 if (c->charge_step) {
741 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
742 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
743 e->units = ENVSYS_SAMPS;
744 e->state = ENVSYS_SINVALID;
745 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
746 sysmon_envsys_sensor_attach(sc->sc_sme, e);
747 }
748
749 if (c->discharge_step) {
750 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
751 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
752 e->units = ENVSYS_SAMPS;
753 e->state = ENVSYS_SINVALID;
754 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
755 sysmon_envsys_sensor_attach(sc->sc_sme, e);
756 }
757
758 if (c->has_fuel_gauge) {
759 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
760 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
761 e->units = ENVSYS_INTEGER;
762 e->state = ENVSYS_SINVALID;
763 e->flags = ENVSYS_FPERCENT;
764 strlcpy(e->desc, "battery percent", sizeof(e->desc));
765 sysmon_envsys_sensor_attach(sc->sc_sme, e);
766 }
767
768 if (c->maxcap_step) {
769 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
770 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
771 e->units = ENVSYS_SAMPHOUR;
772 e->state = ENVSYS_SINVALID;
773 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
774 sysmon_envsys_sensor_attach(sc->sc_sme, e);
775 }
776
777 if (c->coulomb_step) {
778 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
779 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
780 e->units = ENVSYS_SAMPHOUR;
781 e->state = ENVSYS_SINVALID;
782 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
783 sysmon_envsys_sensor_attach(sc->sc_sme, e);
784 }
785 }
786
787 static void
788 axppmic_attach_sensors(struct axppmic_softc *sc)
789 {
790 if (sc->sc_conf->has_battery) {
791 sc->sc_sme = sysmon_envsys_create();
792 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
793 sc->sc_sme->sme_cookie = sc;
794 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
795 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
796 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
797
798 axppmic_attach_acadapter(sc);
799 axppmic_attach_battery(sc);
800
801 sysmon_envsys_register(sc->sc_sme);
802 }
803 }
804
805
806 static int
807 axppmic_match(device_t parent, cfdata_t match, void *aux)
808 {
809 struct i2c_attach_args *ia = aux;
810 int match_result;
811
812 if (iic_use_direct_match(ia, match, compat_data, &match_result))
813 return match_result;
814
815 /* This device is direct-config only. */
816
817 return 0;
818 }
819
820 static void
821 axppmic_attach(device_t parent, device_t self, void *aux)
822 {
823 struct axppmic_softc *sc = device_private(self);
824 const struct device_compatible_entry *dce = NULL;
825 const struct axppmic_config *c;
826 struct axpreg_attach_args aaa;
827 struct i2c_attach_args *ia = aux;
828 int phandle, child, i;
829 uint8_t irq_mask, val;
830 int error;
831 void *ih;
832
833 (void) iic_compatible_match(ia, compat_data, &dce);
834 KASSERT(dce != NULL);
835 c = (void *)dce->data;
836
837 sc->sc_dev = self;
838 sc->sc_i2c = ia->ia_tag;
839 sc->sc_addr = ia->ia_addr;
840 sc->sc_phandle = ia->ia_cookie;
841 sc->sc_conf = c;
842
843 aprint_naive("\n");
844 aprint_normal(": %s\n", c->name);
845
846 if (c->has_mode_set) {
847 const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
848 of_hasprop(sc->sc_phandle, "x-powers,master-mode");
849
850 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
851 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
852 master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, I2C_F_POLL);
853 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
854 }
855
856 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
857 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, I2C_F_POLL);
858 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
859 if (error != 0) {
860 aprint_error_dev(self, "couldn't read chipid\n");
861 return;
862 }
863 aprint_debug_dev(self, "chipid %#x\n", val);
864
865 sc->sc_smpsw.smpsw_name = device_xname(self);
866 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
867 sysmon_pswitch_register(&sc->sc_smpsw);
868
869 if (c->irq_regs > 0) {
870 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
871 for (i = 1; i <= c->irq_regs; i++) {
872 irq_mask = 0;
873 if (i == c->poklirq.reg)
874 irq_mask |= c->poklirq.mask;
875 if (i == c->acinirq.reg)
876 irq_mask |= c->acinirq.mask;
877 if (i == c->vbusirq.reg)
878 irq_mask |= c->vbusirq.mask;
879 if (i == c->battirq.reg)
880 irq_mask |= c->battirq.mask;
881 if (i == c->chargeirq.reg)
882 irq_mask |= c->chargeirq.mask;
883 if (i == c->chargestirq.reg)
884 irq_mask |= c->chargestirq.mask;
885 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
886 }
887 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
888
889 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
890 axppmic_intr, sc);
891 if (ih == NULL) {
892 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
893 }
894 }
895
896 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
897 &axppmic_power_funcs);
898
899 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
900 if (phandle > 0) {
901 aaa.reg_i2c = sc->sc_i2c;
902 aaa.reg_addr = sc->sc_addr;
903 for (i = 0; i < c->ncontrols; i++) {
904 const struct axppmic_ctrl *ctrl = &c->controls[i];
905 child = of_find_firstchild_byname(phandle, ctrl->c_name);
906 if (child <= 0)
907 continue;
908 aaa.reg_ctrl = ctrl;
909 aaa.reg_phandle = child;
910 config_found(sc->sc_dev, &aaa, NULL);
911 }
912 }
913
914 if (c->has_battery)
915 axppmic_attach_sensors(sc);
916 }
917
918 static int
919 axpreg_acquire(device_t dev)
920 {
921 return 0;
922 }
923
924 static void
925 axpreg_release(device_t dev)
926 {
927 }
928
929 static int
930 axpreg_enable(device_t dev, bool enable)
931 {
932 struct axpreg_softc *sc = device_private(dev);
933 const struct axppmic_ctrl *c = sc->sc_ctrl;
934 const int flags = (cold ? I2C_F_POLL : 0);
935 uint8_t val;
936 int error;
937
938 if (!c->c_enable_mask)
939 return EINVAL;
940
941 iic_acquire_bus(sc->sc_i2c, flags);
942 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
943 if (enable)
944 val |= c->c_enable_mask;
945 else
946 val &= ~c->c_enable_mask;
947 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
948 }
949 iic_release_bus(sc->sc_i2c, flags);
950
951 return error;
952 }
953
954 static int
955 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
956 {
957 struct axpreg_softc *sc = device_private(dev);
958 const struct axppmic_ctrl *c = sc->sc_ctrl;
959
960 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
961 min_uvol / 1000, max_uvol / 1000);
962 }
963
964 static int
965 axpreg_get_voltage(device_t dev, u_int *puvol)
966 {
967 struct axpreg_softc *sc = device_private(dev);
968 const struct axppmic_ctrl *c = sc->sc_ctrl;
969 int error;
970 u_int vol;
971
972 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
973 if (error)
974 return error;
975
976 *puvol = vol * 1000;
977 return 0;
978 }
979
980 static struct fdtbus_regulator_controller_func axpreg_funcs = {
981 .acquire = axpreg_acquire,
982 .release = axpreg_release,
983 .enable = axpreg_enable,
984 .set_voltage = axpreg_set_voltage,
985 .get_voltage = axpreg_get_voltage,
986 };
987
988 static int
989 axpreg_match(device_t parent, cfdata_t match, void *aux)
990 {
991 return 1;
992 }
993
994 static void
995 axpreg_attach(device_t parent, device_t self, void *aux)
996 {
997 struct axpreg_softc *sc = device_private(self);
998 struct axpreg_attach_args *aaa = aux;
999 const int phandle = aaa->reg_phandle;
1000 const char *name;
1001
1002 sc->sc_dev = self;
1003 sc->sc_i2c = aaa->reg_i2c;
1004 sc->sc_addr = aaa->reg_addr;
1005 sc->sc_ctrl = aaa->reg_ctrl;
1006
1007 fdtbus_register_regulator_controller(self, phandle,
1008 &axpreg_funcs);
1009
1010 aprint_naive("\n");
1011 name = fdtbus_get_string(phandle, "regulator-name");
1012 if (name)
1013 aprint_normal(": %s\n", name);
1014 else
1015 aprint_normal("\n");
1016 }
1017
1018 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1019 axppmic_match, axppmic_attach, NULL, NULL);
1020
1021 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1022 axpreg_match, axpreg_attach, NULL, NULL);
1023