axppmic.c revision 1.22 1 /* $NetBSD: axppmic.c,v 1.22 2019/05/28 09:52:17 jmcneill Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.22 2019/05/28 09:52:17 jmcneill Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51
52 #define AXP_POWER_MODE_REG 0x01
53 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56
57 #define AXP_CHIP_ID_REG 0x03
58
59 #define AXP_POWER_DISABLE_REG 0x32
60 #define AXP_POWER_DISABLE_CTRL __BIT(7)
61
62 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
63 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
64 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
65 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
66 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
67 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
68
69 #define AXP_BATSENSE_HI_REG 0x78
70 #define AXP_BATSENSE_LO_REG 0x79
71
72 #define AXP_BATTCHG_HI_REG 0x7a
73 #define AXP_BATTCHG_LO_REG 0x7b
74
75 #define AXP_BATTDISCHG_HI_REG 0x7c
76 #define AXP_BATTDISCHG_LO_REG 0x7d
77
78 #define AXP_ADC_RAW(_hi, _lo) \
79 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
80
81 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
82 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
83
84 #define AXP_BATT_CAP_REG 0xb9
85 #define AXP_BATT_CAP_VALID __BIT(7)
86 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
87
88 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
89 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
90 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
91
92 #define AXP_BATT_COULOMB_HI_REG 0xe2
93 #define AXP_BATT_COULOMB_VALID __BIT(7)
94 #define AXP_BATT_COULOMB_LO_REG 0xe3
95
96 #define AXP_COULOMB_RAW(_hi, _lo) \
97 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
98
99 #define AXP_BATT_CAP_WARN_REG 0xe6
100 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
101 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
102
103 #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
104 #define AXP_ADDR_EXT_MASTER 0
105 #define AXP_ADDR_EXT_SLAVE __BIT(4)
106
107 struct axppmic_ctrl {
108 device_t c_dev;
109
110 const char * c_name;
111 u_int c_min;
112 u_int c_max;
113 u_int c_step1;
114 u_int c_step1cnt;
115 u_int c_step2;
116 u_int c_step2cnt;
117
118 uint8_t c_enable_reg;
119 uint8_t c_enable_mask;
120
121 uint8_t c_voltage_reg;
122 uint8_t c_voltage_mask;
123 };
124
125 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
126 { .c_name = (name), .c_min = (min), .c_max = (max), \
127 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
128 .c_step2 = 0, .c_step2cnt = 0, \
129 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
130 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
131
132 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
133 { .c_name = (name), .c_min = (min), .c_max = (max), \
134 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
135 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
136 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
137 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
138
139 static const struct axppmic_ctrl axp803_ctrls[] = {
140 AXP_CTRL("dldo1", 700, 3300, 100,
141 0x12, __BIT(3), 0x15, __BITS(4,0)),
142 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
143 0x12, __BIT(4), 0x16, __BITS(4,0)),
144 AXP_CTRL("dldo3", 700, 3300, 100,
145 0x12, __BIT(5), 0x17, __BITS(4,0)),
146 AXP_CTRL("dldo4", 700, 3300, 100,
147 0x12, __BIT(6), 0x18, __BITS(4,0)),
148 AXP_CTRL("eldo1", 700, 1900, 50,
149 0x12, __BIT(0), 0x19, __BITS(4,0)),
150 AXP_CTRL("eldo2", 700, 1900, 50,
151 0x12, __BIT(1), 0x1a, __BITS(4,0)),
152 AXP_CTRL("eldo3", 700, 1900, 50,
153 0x12, __BIT(2), 0x1b, __BITS(4,0)),
154 AXP_CTRL("fldo1", 700, 1450, 50,
155 0x13, __BIT(2), 0x1c, __BITS(3,0)),
156 AXP_CTRL("fldo2", 700, 1450, 50,
157 0x13, __BIT(3), 0x1d, __BITS(3,0)),
158 AXP_CTRL("dcdc1", 1600, 3400, 100,
159 0x10, __BIT(0), 0x20, __BITS(4,0)),
160 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
161 0x10, __BIT(1), 0x21, __BITS(6,0)),
162 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
163 0x10, __BIT(2), 0x22, __BITS(6,0)),
164 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
165 0x10, __BIT(3), 0x23, __BITS(6,0)),
166 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
167 0x10, __BIT(4), 0x24, __BITS(6,0)),
168 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
169 0x10, __BIT(5), 0x25, __BITS(6,0)),
170 AXP_CTRL("aldo1", 700, 3300, 100,
171 0x13, __BIT(5), 0x28, __BITS(4,0)),
172 AXP_CTRL("aldo2", 700, 3300, 100,
173 0x13, __BIT(6), 0x29, __BITS(4,0)),
174 AXP_CTRL("aldo3", 700, 3300, 100,
175 0x13, __BIT(7), 0x2a, __BITS(4,0)),
176 };
177
178 static const struct axppmic_ctrl axp805_ctrls[] = {
179 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
180 0x10, __BIT(0), 0x12, __BITS(6,0)),
181 AXP_CTRL("dcdcb", 1000, 2550, 50,
182 0x10, __BIT(1), 0x13, __BITS(4,0)),
183 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
184 0x10, __BIT(2), 0x14, __BITS(6,0)),
185 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
186 0x10, __BIT(3), 0x15, __BITS(5,0)),
187 AXP_CTRL("dcdce", 1100, 3400, 100,
188 0x10, __BIT(4), 0x16, __BITS(4,0)),
189 AXP_CTRL("aldo1", 700, 3300, 100,
190 0x10, __BIT(5), 0x17, __BITS(4,0)),
191 AXP_CTRL("aldo2", 700, 3400, 100,
192 0x10, __BIT(6), 0x18, __BITS(4,0)),
193 AXP_CTRL("aldo3", 700, 3300, 100,
194 0x10, __BIT(7), 0x19, __BITS(4,0)),
195 AXP_CTRL("bldo1", 700, 1900, 100,
196 0x11, __BIT(0), 0x20, __BITS(3,0)),
197 AXP_CTRL("bldo2", 700, 1900, 100,
198 0x11, __BIT(1), 0x21, __BITS(3,0)),
199 AXP_CTRL("bldo3", 700, 1900, 100,
200 0x11, __BIT(2), 0x22, __BITS(3,0)),
201 AXP_CTRL("bldo4", 700, 1900, 100,
202 0x11, __BIT(3), 0x23, __BITS(3,0)),
203 AXP_CTRL("cldo1", 700, 3300, 100,
204 0x11, __BIT(4), 0x24, __BITS(4,0)),
205 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
206 0x11, __BIT(5), 0x25, __BITS(4,0)),
207 AXP_CTRL("cldo3", 700, 3300, 100,
208 0x11, __BIT(6), 0x26, __BITS(4,0)),
209 };
210
211 static const struct axppmic_ctrl axp809_ctrls[] = {
212 /* TODO: This list is incomplete */
213 AXP_CTRL("ldo_io0", 700, 3300, 100,
214 0x90, __BIT(0), 0x91, __BITS(4,0)),
215 AXP_CTRL("ldo_io1", 700, 3300, 100,
216 0x92, __BIT(0), 0x93, __BITS(4,0)),
217 };
218
219 static const struct axppmic_ctrl axp813_ctrls[] = {
220 AXP_CTRL("dldo1", 700, 3300, 100,
221 0x12, __BIT(3), 0x15, __BITS(4,0)),
222 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
223 0x12, __BIT(4), 0x16, __BITS(4,0)),
224 AXP_CTRL("dldo3", 700, 3300, 100,
225 0x12, __BIT(5), 0x17, __BITS(4,0)),
226 AXP_CTRL("dldo4", 700, 3300, 100,
227 0x12, __BIT(6), 0x18, __BITS(4,0)),
228 AXP_CTRL("eldo1", 700, 1900, 50,
229 0x12, __BIT(0), 0x19, __BITS(4,0)),
230 AXP_CTRL("eldo2", 700, 1900, 50,
231 0x12, __BIT(1), 0x1a, __BITS(4,0)),
232 AXP_CTRL("eldo3", 700, 1900, 50,
233 0x12, __BIT(2), 0x1b, __BITS(4,0)),
234 AXP_CTRL("fldo1", 700, 1450, 50,
235 0x13, __BIT(2), 0x1c, __BITS(3,0)),
236 AXP_CTRL("fldo2", 700, 1450, 50,
237 0x13, __BIT(3), 0x1d, __BITS(3,0)),
238 AXP_CTRL("dcdc1", 1600, 3400, 100,
239 0x10, __BIT(0), 0x20, __BITS(4,0)),
240 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
241 0x10, __BIT(1), 0x21, __BITS(6,0)),
242 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
243 0x10, __BIT(2), 0x22, __BITS(6,0)),
244 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
245 0x10, __BIT(3), 0x23, __BITS(6,0)),
246 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
247 0x10, __BIT(4), 0x24, __BITS(6,0)),
248 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
249 0x10, __BIT(5), 0x25, __BITS(6,0)),
250 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
251 0x10, __BIT(6), 0x26, __BITS(6,0)),
252 AXP_CTRL("aldo1", 700, 3300, 100,
253 0x13, __BIT(5), 0x28, __BITS(4,0)),
254 AXP_CTRL("aldo2", 700, 3300, 100,
255 0x13, __BIT(6), 0x29, __BITS(4,0)),
256 AXP_CTRL("aldo3", 700, 3300, 100,
257 0x13, __BIT(7), 0x2a, __BITS(4,0)),
258 };
259
260 struct axppmic_irq {
261 u_int reg;
262 uint8_t mask;
263 };
264
265 #define AXPPMIC_IRQ(_reg, _mask) \
266 { .reg = (_reg), .mask = (_mask) }
267
268 struct axppmic_config {
269 const char *name;
270 const struct axppmic_ctrl *controls;
271 u_int ncontrols;
272 u_int irq_regs;
273 bool has_battery;
274 bool has_fuel_gauge;
275 bool has_mode_set;
276 struct axppmic_irq poklirq;
277 struct axppmic_irq acinirq;
278 struct axppmic_irq vbusirq;
279 struct axppmic_irq battirq;
280 struct axppmic_irq chargeirq;
281 struct axppmic_irq chargestirq;
282 u_int batsense_step; /* uV */
283 u_int charge_step; /* uA */
284 u_int discharge_step; /* uA */
285 u_int maxcap_step; /* uAh */
286 u_int coulomb_step; /* uAh */
287 };
288
289 enum axppmic_sensor {
290 AXP_SENSOR_ACIN_PRESENT,
291 AXP_SENSOR_VBUS_PRESENT,
292 AXP_SENSOR_BATT_PRESENT,
293 AXP_SENSOR_BATT_CHARGING,
294 AXP_SENSOR_BATT_CHARGE_STATE,
295 AXP_SENSOR_BATT_VOLTAGE,
296 AXP_SENSOR_BATT_CHARGE_CURRENT,
297 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
298 AXP_SENSOR_BATT_CAPACITY_PERCENT,
299 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
300 AXP_SENSOR_BATT_CURRENT_CAPACITY,
301 AXP_NSENSORS
302 };
303
304 struct axppmic_softc {
305 device_t sc_dev;
306 i2c_tag_t sc_i2c;
307 i2c_addr_t sc_addr;
308 int sc_phandle;
309
310 const struct axppmic_config *sc_conf;
311
312 struct sysmon_pswitch sc_smpsw;
313
314 struct sysmon_envsys *sc_sme;
315
316 envsys_data_t sc_sensor[AXP_NSENSORS];
317
318 u_int sc_warn_thres;
319 u_int sc_shut_thres;
320 };
321
322 struct axpreg_softc {
323 device_t sc_dev;
324 i2c_tag_t sc_i2c;
325 i2c_addr_t sc_addr;
326 const struct axppmic_ctrl *sc_ctrl;
327 };
328
329 struct axpreg_attach_args {
330 const struct axppmic_ctrl *reg_ctrl;
331 int reg_phandle;
332 i2c_tag_t reg_i2c;
333 i2c_addr_t reg_addr;
334 };
335
336 static const struct axppmic_config axp803_config = {
337 .name = "AXP803",
338 .controls = axp803_ctrls,
339 .ncontrols = __arraycount(axp803_ctrls),
340 .irq_regs = 6,
341 .has_battery = true,
342 .has_fuel_gauge = true,
343 .batsense_step = 1100,
344 .charge_step = 1000,
345 .discharge_step = 1000,
346 .maxcap_step = 1456,
347 .coulomb_step = 1456,
348 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
349 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
350 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
351 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
352 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
353 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
354 };
355
356 static const struct axppmic_config axp805_config = {
357 .name = "AXP805",
358 .controls = axp805_ctrls,
359 .ncontrols = __arraycount(axp805_ctrls),
360 .irq_regs = 2,
361 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
362 };
363
364 static const struct axppmic_config axp806_config = {
365 .name = "AXP806",
366 .controls = axp805_ctrls,
367 .ncontrols = __arraycount(axp805_ctrls),
368 #if notyet
369 .irq_regs = 2,
370 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
371 #endif
372 .has_mode_set = true,
373 };
374
375 static const struct axppmic_config axp809_config = {
376 .name = "AXP809",
377 .controls = axp809_ctrls,
378 .ncontrols = __arraycount(axp809_ctrls),
379 };
380
381 static const struct axppmic_config axp813_config = {
382 .name = "AXP813",
383 .controls = axp813_ctrls,
384 .ncontrols = __arraycount(axp813_ctrls),
385 .irq_regs = 6,
386 .has_battery = true,
387 .has_fuel_gauge = true,
388 .batsense_step = 1100,
389 .charge_step = 1000,
390 .discharge_step = 1000,
391 .maxcap_step = 1456,
392 .coulomb_step = 1456,
393 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
394 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
395 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
396 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
397 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
398 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
399 };
400
401 static const struct device_compatible_entry compat_data[] = {
402 { "x-powers,axp803", (uintptr_t)&axp803_config },
403 { "x-powers,axp805", (uintptr_t)&axp805_config },
404 { "x-powers,axp806", (uintptr_t)&axp806_config },
405 { "x-powers,axp809", (uintptr_t)&axp809_config },
406 { "x-powers,axp813", (uintptr_t)&axp813_config },
407 { NULL, 0 }
408 };
409
410 static int
411 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
412 {
413 return iic_smbus_read_byte(tag, addr, reg, val, flags);
414 }
415
416 static int
417 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
418 {
419 return iic_smbus_write_byte(tag, addr, reg, val, flags);
420 }
421
422 static int
423 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
424 {
425 const int flags = (cold ? I2C_F_POLL : 0);
426 u_int vol, reg_val;
427 int nstep, error;
428 uint8_t val;
429
430 if (!c->c_voltage_mask)
431 return EINVAL;
432
433 if (min < c->c_min || min > c->c_max)
434 return EINVAL;
435
436 reg_val = 0;
437 nstep = 1;
438 vol = c->c_min;
439
440 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
441 ++reg_val;
442 vol += c->c_step1;
443 }
444 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
445 ++reg_val;
446 vol += c->c_step2;
447 }
448
449 if (vol > max)
450 return EINVAL;
451
452 iic_acquire_bus(tag, flags);
453 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
454 val &= ~c->c_voltage_mask;
455 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
456 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
457 }
458 iic_release_bus(tag, flags);
459
460 return error;
461 }
462
463 static int
464 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
465 {
466 const int flags = (cold ? I2C_F_POLL : 0);
467 int reg_val, error;
468 uint8_t val;
469
470 if (!c->c_voltage_mask)
471 return EINVAL;
472
473 iic_acquire_bus(tag, flags);
474 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
475 iic_release_bus(tag, flags);
476 if (error)
477 return error;
478
479 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
480 if (reg_val < c->c_step1cnt) {
481 *pvol = c->c_min + reg_val * c->c_step1;
482 } else {
483 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
484 ((reg_val - c->c_step1cnt) * c->c_step2);
485 }
486
487 return 0;
488 }
489
490 static void
491 axppmic_power_poweroff(device_t dev)
492 {
493 struct axppmic_softc *sc = device_private(dev);
494
495 delay(1000000);
496
497 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
498 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
499 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
500 }
501
502 static struct fdtbus_power_controller_func axppmic_power_funcs = {
503 .poweroff = axppmic_power_poweroff,
504 };
505
506 static void
507 axppmic_task_shut(void *priv)
508 {
509 struct axppmic_softc *sc = priv;
510
511 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
512 }
513
514 static void
515 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
516 {
517 struct axppmic_softc *sc = sme->sme_cookie;
518 const struct axppmic_config *c = sc->sc_conf;
519 const int flags = I2C_F_POLL;
520 uint8_t val, lo, hi;
521
522 e->state = ENVSYS_SINVALID;
523
524 const bool battery_present =
525 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
526 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
527
528 switch (e->private) {
529 case AXP_SENSOR_ACIN_PRESENT:
530 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
531 e->state = ENVSYS_SVALID;
532 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
533 }
534 break;
535 case AXP_SENSOR_VBUS_PRESENT:
536 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
537 e->state = ENVSYS_SVALID;
538 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
539 }
540 break;
541 case AXP_SENSOR_BATT_PRESENT:
542 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
543 if (val & AXP_POWER_MODE_BATT_VALID) {
544 e->state = ENVSYS_SVALID;
545 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
546 }
547 }
548 break;
549 case AXP_SENSOR_BATT_CHARGING:
550 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
551 e->state = ENVSYS_SVALID;
552 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
553 }
554 break;
555 case AXP_SENSOR_BATT_CHARGE_STATE:
556 if (battery_present &&
557 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
558 (val & AXP_BATT_CAP_VALID) != 0) {
559 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
560 if (batt_val <= sc->sc_shut_thres) {
561 e->state = ENVSYS_SCRITICAL;
562 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
563 } else if (batt_val <= sc->sc_warn_thres) {
564 e->state = ENVSYS_SWARNUNDER;
565 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
566 } else {
567 e->state = ENVSYS_SVALID;
568 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
569 }
570 }
571 break;
572 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
573 if (battery_present &&
574 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
575 (val & AXP_BATT_CAP_VALID) != 0) {
576 e->state = ENVSYS_SVALID;
577 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
578 }
579 break;
580 case AXP_SENSOR_BATT_VOLTAGE:
581 if (battery_present &&
582 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
583 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
584 e->state = ENVSYS_SVALID;
585 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
586 }
587 break;
588 case AXP_SENSOR_BATT_CHARGE_CURRENT:
589 if (battery_present &&
590 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
591 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
592 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
593 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
594 e->state = ENVSYS_SVALID;
595 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
596 }
597 break;
598 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
599 if (battery_present &&
600 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
601 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
602 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
603 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
604 e->state = ENVSYS_SVALID;
605 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
606 }
607 break;
608 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
609 if (battery_present &&
610 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
611 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
612 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
613 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
614 }
615 break;
616 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
617 if (battery_present &&
618 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
619 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
620 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
621 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
622 }
623 break;
624 }
625 }
626
627 static void
628 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
629 {
630 struct axppmic_softc *sc = sme->sme_cookie;
631 const int flags = I2C_F_POLL;
632
633 switch (e->private) {
634 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
635 case AXP_SENSOR_BATT_VOLTAGE:
636 case AXP_SENSOR_BATT_CHARGE_CURRENT:
637 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
638 /* Always update battery capacity and ADCs */
639 iic_acquire_bus(sc->sc_i2c, flags);
640 axppmic_sensor_update(sme, e);
641 iic_release_bus(sc->sc_i2c, flags);
642 break;
643 default:
644 /* Refresh if the sensor is not in valid state */
645 if (e->state != ENVSYS_SVALID) {
646 iic_acquire_bus(sc->sc_i2c, flags);
647 axppmic_sensor_update(sme, e);
648 iic_release_bus(sc->sc_i2c, flags);
649 }
650 break;
651 }
652 }
653
654 static int
655 axppmic_intr(void *priv)
656 {
657 struct axppmic_softc *sc = priv;
658 const struct axppmic_config *c = sc->sc_conf;
659 const int flags = I2C_F_POLL;
660 uint8_t stat;
661 u_int n;
662
663 iic_acquire_bus(sc->sc_i2c, flags);
664 for (n = 1; n <= c->irq_regs; n++) {
665 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
666 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
667 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
668 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
669 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
670 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
671 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
672 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
673 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
674 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
675 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
676 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
677 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
678
679 if (stat != 0)
680 axppmic_write(sc->sc_i2c, sc->sc_addr,
681 AXP_IRQ_STATUS_REG(n), stat, flags);
682 }
683 }
684 iic_release_bus(sc->sc_i2c, flags);
685
686 return 1;
687 }
688
689 static void
690 axppmic_attach_acadapter(struct axppmic_softc *sc)
691 {
692 envsys_data_t *e;
693
694 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
695 e->private = AXP_SENSOR_ACIN_PRESENT;
696 e->units = ENVSYS_INDICATOR;
697 e->state = ENVSYS_SINVALID;
698 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
699 sysmon_envsys_sensor_attach(sc->sc_sme, e);
700
701 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
702 e->private = AXP_SENSOR_VBUS_PRESENT;
703 e->units = ENVSYS_INDICATOR;
704 e->state = ENVSYS_SINVALID;
705 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
706 sysmon_envsys_sensor_attach(sc->sc_sme, e);
707 }
708
709 static void
710 axppmic_attach_battery(struct axppmic_softc *sc)
711 {
712 const struct axppmic_config *c = sc->sc_conf;
713 envsys_data_t *e;
714 uint8_t val;
715
716 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
717 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
718 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
719 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
720 }
721 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
722
723 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
724 e->private = AXP_SENSOR_BATT_PRESENT;
725 e->units = ENVSYS_INDICATOR;
726 e->state = ENVSYS_SINVALID;
727 strlcpy(e->desc, "battery present", sizeof(e->desc));
728 sysmon_envsys_sensor_attach(sc->sc_sme, e);
729
730 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
731 e->private = AXP_SENSOR_BATT_CHARGING;
732 e->units = ENVSYS_BATTERY_CHARGE;
733 e->state = ENVSYS_SINVALID;
734 strlcpy(e->desc, "charging", sizeof(e->desc));
735 sysmon_envsys_sensor_attach(sc->sc_sme, e);
736
737 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
738 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
739 e->units = ENVSYS_BATTERY_CAPACITY;
740 e->flags = ENVSYS_FMONSTCHANGED;
741 e->state = ENVSYS_SINVALID;
742 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
743 strlcpy(e->desc, "charge state", sizeof(e->desc));
744 sysmon_envsys_sensor_attach(sc->sc_sme, e);
745
746 if (c->batsense_step) {
747 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
748 e->private = AXP_SENSOR_BATT_VOLTAGE;
749 e->units = ENVSYS_SVOLTS_DC;
750 e->state = ENVSYS_SINVALID;
751 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
752 sysmon_envsys_sensor_attach(sc->sc_sme, e);
753 }
754
755 if (c->charge_step) {
756 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
757 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
758 e->units = ENVSYS_SAMPS;
759 e->state = ENVSYS_SINVALID;
760 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
761 sysmon_envsys_sensor_attach(sc->sc_sme, e);
762 }
763
764 if (c->discharge_step) {
765 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
766 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
767 e->units = ENVSYS_SAMPS;
768 e->state = ENVSYS_SINVALID;
769 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
770 sysmon_envsys_sensor_attach(sc->sc_sme, e);
771 }
772
773 if (c->has_fuel_gauge) {
774 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
775 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
776 e->units = ENVSYS_INTEGER;
777 e->state = ENVSYS_SINVALID;
778 e->flags = ENVSYS_FPERCENT;
779 strlcpy(e->desc, "battery percent", sizeof(e->desc));
780 sysmon_envsys_sensor_attach(sc->sc_sme, e);
781 }
782
783 if (c->maxcap_step) {
784 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
785 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
786 e->units = ENVSYS_SAMPHOUR;
787 e->state = ENVSYS_SINVALID;
788 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
789 sysmon_envsys_sensor_attach(sc->sc_sme, e);
790 }
791
792 if (c->coulomb_step) {
793 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
794 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
795 e->units = ENVSYS_SAMPHOUR;
796 e->state = ENVSYS_SINVALID;
797 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
798 sysmon_envsys_sensor_attach(sc->sc_sme, e);
799 }
800 }
801
802 static void
803 axppmic_attach_sensors(struct axppmic_softc *sc)
804 {
805 if (sc->sc_conf->has_battery) {
806 sc->sc_sme = sysmon_envsys_create();
807 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
808 sc->sc_sme->sme_cookie = sc;
809 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
810 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
811 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
812
813 axppmic_attach_acadapter(sc);
814 axppmic_attach_battery(sc);
815
816 sysmon_envsys_register(sc->sc_sme);
817 }
818 }
819
820
821 static int
822 axppmic_match(device_t parent, cfdata_t match, void *aux)
823 {
824 struct i2c_attach_args *ia = aux;
825 int match_result;
826
827 if (iic_use_direct_match(ia, match, compat_data, &match_result))
828 return match_result;
829
830 /* This device is direct-config only. */
831
832 return 0;
833 }
834
835 static void
836 axppmic_attach(device_t parent, device_t self, void *aux)
837 {
838 struct axppmic_softc *sc = device_private(self);
839 const struct device_compatible_entry *dce = NULL;
840 const struct axppmic_config *c;
841 struct axpreg_attach_args aaa;
842 struct i2c_attach_args *ia = aux;
843 int phandle, child, i;
844 uint8_t irq_mask, val;
845 int error;
846 void *ih;
847
848 (void) iic_compatible_match(ia, compat_data, &dce);
849 KASSERT(dce != NULL);
850 c = (void *)dce->data;
851
852 sc->sc_dev = self;
853 sc->sc_i2c = ia->ia_tag;
854 sc->sc_addr = ia->ia_addr;
855 sc->sc_phandle = ia->ia_cookie;
856 sc->sc_conf = c;
857
858 aprint_naive("\n");
859 aprint_normal(": %s\n", c->name);
860
861 if (c->has_mode_set) {
862 const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
863 of_hasprop(sc->sc_phandle, "x-powers,master-mode");
864
865 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
866 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
867 master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, I2C_F_POLL);
868 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
869 }
870
871 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
872 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, I2C_F_POLL);
873 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
874 if (error != 0) {
875 aprint_error_dev(self, "couldn't read chipid\n");
876 return;
877 }
878 aprint_debug_dev(self, "chipid %#x\n", val);
879
880 sc->sc_smpsw.smpsw_name = device_xname(self);
881 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
882 sysmon_pswitch_register(&sc->sc_smpsw);
883
884 if (c->irq_regs > 0) {
885 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
886 for (i = 1; i <= c->irq_regs; i++) {
887 irq_mask = 0;
888 if (i == c->poklirq.reg)
889 irq_mask |= c->poklirq.mask;
890 if (i == c->acinirq.reg)
891 irq_mask |= c->acinirq.mask;
892 if (i == c->vbusirq.reg)
893 irq_mask |= c->vbusirq.mask;
894 if (i == c->battirq.reg)
895 irq_mask |= c->battirq.mask;
896 if (i == c->chargeirq.reg)
897 irq_mask |= c->chargeirq.mask;
898 if (i == c->chargestirq.reg)
899 irq_mask |= c->chargestirq.mask;
900 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
901 }
902 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
903
904 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
905 axppmic_intr, sc);
906 if (ih == NULL) {
907 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
908 }
909 }
910
911 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
912 &axppmic_power_funcs);
913
914 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
915 if (phandle > 0) {
916 aaa.reg_i2c = sc->sc_i2c;
917 aaa.reg_addr = sc->sc_addr;
918 for (i = 0; i < c->ncontrols; i++) {
919 const struct axppmic_ctrl *ctrl = &c->controls[i];
920 child = of_find_firstchild_byname(phandle, ctrl->c_name);
921 if (child <= 0)
922 continue;
923 aaa.reg_ctrl = ctrl;
924 aaa.reg_phandle = child;
925 config_found(sc->sc_dev, &aaa, NULL);
926 }
927 }
928
929 /* Notify pinctrl drivers that regulators are available. */
930 fdtbus_pinctrl_configure();
931
932 if (c->has_battery)
933 axppmic_attach_sensors(sc);
934 }
935
936 static int
937 axpreg_acquire(device_t dev)
938 {
939 return 0;
940 }
941
942 static void
943 axpreg_release(device_t dev)
944 {
945 }
946
947 static int
948 axpreg_enable(device_t dev, bool enable)
949 {
950 struct axpreg_softc *sc = device_private(dev);
951 const struct axppmic_ctrl *c = sc->sc_ctrl;
952 const int flags = (cold ? I2C_F_POLL : 0);
953 uint8_t val;
954 int error;
955
956 if (!c->c_enable_mask)
957 return EINVAL;
958
959 iic_acquire_bus(sc->sc_i2c, flags);
960 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
961 if (enable)
962 val |= c->c_enable_mask;
963 else
964 val &= ~c->c_enable_mask;
965 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
966 }
967 iic_release_bus(sc->sc_i2c, flags);
968
969 return error;
970 }
971
972 static int
973 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
974 {
975 struct axpreg_softc *sc = device_private(dev);
976 const struct axppmic_ctrl *c = sc->sc_ctrl;
977
978 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
979 min_uvol / 1000, max_uvol / 1000);
980 }
981
982 static int
983 axpreg_get_voltage(device_t dev, u_int *puvol)
984 {
985 struct axpreg_softc *sc = device_private(dev);
986 const struct axppmic_ctrl *c = sc->sc_ctrl;
987 int error;
988 u_int vol;
989
990 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
991 if (error)
992 return error;
993
994 *puvol = vol * 1000;
995 return 0;
996 }
997
998 static struct fdtbus_regulator_controller_func axpreg_funcs = {
999 .acquire = axpreg_acquire,
1000 .release = axpreg_release,
1001 .enable = axpreg_enable,
1002 .set_voltage = axpreg_set_voltage,
1003 .get_voltage = axpreg_get_voltage,
1004 };
1005
1006 static int
1007 axpreg_match(device_t parent, cfdata_t match, void *aux)
1008 {
1009 return 1;
1010 }
1011
1012 static void
1013 axpreg_attach(device_t parent, device_t self, void *aux)
1014 {
1015 struct axpreg_softc *sc = device_private(self);
1016 struct axpreg_attach_args *aaa = aux;
1017 const int phandle = aaa->reg_phandle;
1018 const char *name;
1019 u_int uvol, min_uvol, max_uvol;
1020
1021 sc->sc_dev = self;
1022 sc->sc_i2c = aaa->reg_i2c;
1023 sc->sc_addr = aaa->reg_addr;
1024 sc->sc_ctrl = aaa->reg_ctrl;
1025
1026 fdtbus_register_regulator_controller(self, phandle,
1027 &axpreg_funcs);
1028
1029 aprint_naive("\n");
1030 name = fdtbus_get_string(phandle, "regulator-name");
1031 if (name)
1032 aprint_normal(": %s\n", name);
1033 else
1034 aprint_normal("\n");
1035
1036 axpreg_get_voltage(self, &uvol);
1037 if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1038 of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1039 if (uvol < min_uvol || uvol > max_uvol) {
1040 aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1041 uvol, min_uvol, max_uvol);
1042 axpreg_set_voltage(self, min_uvol, max_uvol);
1043 }
1044 }
1045
1046 if (of_hasprop(phandle, "regulator-always-on") ||
1047 of_hasprop(phandle, "regulator-boot-on")) {
1048 axpreg_enable(self, true);
1049 }
1050 }
1051
1052 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1053 axppmic_match, axppmic_attach, NULL, NULL);
1054
1055 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1056 axpreg_match, axpreg_attach, NULL, NULL);
1057