Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.33.2.1
      1 /* $NetBSD: axppmic.c,v 1.33.2.1 2021/03/21 21:09:11 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.33.2.1 2021/03/21 21:09:11 thorpej Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/conf.h>
     37 #include <sys/bus.h>
     38 #include <sys/kmem.h>
     39 #include <sys/workqueue.h>
     40 
     41 #include <dev/i2c/i2cvar.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 #include <dev/sysmon/sysmon_taskq.h>
     45 
     46 #include <dev/fdt/fdtvar.h>
     47 
     48 #define	AXP_POWER_SOURCE_REG	0x00
     49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52 
     53 #define	AXP_POWER_MODE_REG	0x01
     54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57 
     58 #define	AXP_CHIP_ID_REG		0x03
     59 
     60 #define AXP_POWER_DISABLE_REG	0x32
     61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     62 
     63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     69 
     70 #define	AXP_BATSENSE_HI_REG	0x78
     71 #define	AXP_BATSENSE_LO_REG	0x79
     72 
     73 #define	AXP_BATTCHG_HI_REG	0x7a
     74 #define	AXP_BATTCHG_LO_REG	0x7b
     75 
     76 #define	AXP_BATTDISCHG_HI_REG	0x7c
     77 #define	AXP_BATTDISCHG_LO_REG	0x7d
     78 
     79 #define	AXP_ADC_RAW(_hi, _lo)	\
     80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     81 
     82 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     83 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     84 
     85 #define	AXP_BATT_CAP_REG	0xb9
     86 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     87 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     88 
     89 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     90 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     91 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     92 
     93 #define	AXP_BATT_COULOMB_HI_REG	0xe2
     94 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
     95 #define	AXP_BATT_COULOMB_LO_REG	0xe3
     96 
     97 #define	AXP_COULOMB_RAW(_hi, _lo)	\
     98 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
     99 
    100 #define	AXP_BATT_CAP_WARN_REG	0xe6
    101 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    102 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    103 
    104 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    105 #define	 AXP_ADDR_EXT_MASTER	0
    106 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    107 
    108 struct axppmic_ctrl {
    109 	device_t	c_dev;
    110 
    111 	const char *	c_name;
    112 	u_int		c_min;
    113 	u_int		c_max;
    114 	u_int		c_step1;
    115 	u_int		c_step1cnt;
    116 	u_int		c_step2;
    117 	u_int		c_step2cnt;
    118 	u_int		c_step2start;
    119 
    120 	uint8_t		c_enable_reg;
    121 	uint8_t		c_enable_mask;
    122 	uint8_t		c_enable_val;
    123 	uint8_t		c_disable_val;
    124 
    125 	uint8_t		c_voltage_reg;
    126 	uint8_t		c_voltage_mask;
    127 };
    128 
    129 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    130 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    131 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    132 	  .c_step2 = 0, .c_step2cnt = 0,				\
    133 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    134 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    135 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    136 
    137 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    138 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    139 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    140 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    141 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    142 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    143 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    144 
    145 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
    146 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    147 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    148 	  .c_step2start = (step2start),					\
    149 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    150 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    151 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    152 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    153 
    154 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
    155 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    156 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    157 	  .c_step2 = 0, .c_step2cnt = 0,				\
    158 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    159 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
    160 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    161 
    162 #define AXP_CTRL_SW(name, ereg, emask)					\
    163 	{ .c_name = (name), 						\
    164 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    165 	  .c_enable_val = (emask), .c_disable_val = 0 }
    166 
    167 static const struct axppmic_ctrl axp803_ctrls[] = {
    168 	AXP_CTRL("dldo1", 700, 3300, 100,
    169 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    170 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    171 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    172 	AXP_CTRL("dldo3", 700, 3300, 100,
    173 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    174 	AXP_CTRL("dldo4", 700, 3300, 100,
    175 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    176 	AXP_CTRL("eldo1", 700, 1900, 50,
    177 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    178 	AXP_CTRL("eldo2", 700, 1900, 50,
    179 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    180 	AXP_CTRL("eldo3", 700, 1900, 50,
    181 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    182 	AXP_CTRL("fldo1", 700, 1450, 50,
    183 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    184 	AXP_CTRL("fldo2", 700, 1450, 50,
    185 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    186 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    187 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    188 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    189 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    190 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    191 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    192 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    193 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    194 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    195 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    196 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    197 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    198 	AXP_CTRL("aldo1", 700, 3300, 100,
    199 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    200 	AXP_CTRL("aldo2", 700, 3300, 100,
    201 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    202 	AXP_CTRL("aldo3", 700, 3300, 100,
    203 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    204 };
    205 
    206 static const struct axppmic_ctrl axp805_ctrls[] = {
    207 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    208 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    209 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    210 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    211 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    212 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    213 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    214 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    215 	AXP_CTRL("dcdce", 1100, 3400, 100,
    216 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    217 	AXP_CTRL("aldo1", 700, 3300, 100,
    218 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    219 	AXP_CTRL("aldo2", 700, 3400, 100,
    220 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    221 	AXP_CTRL("aldo3", 700, 3300, 100,
    222 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    223 	AXP_CTRL("bldo1", 700, 1900, 100,
    224 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    225 	AXP_CTRL("bldo2", 700, 1900, 100,
    226 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    227 	AXP_CTRL("bldo3", 700, 1900, 100,
    228 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    229 	AXP_CTRL("bldo4", 700, 1900, 100,
    230 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    231 	AXP_CTRL("cldo1", 700, 3300, 100,
    232 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    233 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    234 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    235 	AXP_CTRL("cldo3", 700, 3300, 100,
    236 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    237 };
    238 
    239 static const struct axppmic_ctrl axp809_ctrls[] = {
    240 	AXP_CTRL("dc5ldo", 700, 1400, 100,
    241 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
    242 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    243 		0x10, __BIT(1), 0x21, __BITS(4,0)),
    244 	AXP_CTRL("dcdc2", 600, 1540, 20,
    245 		0x10, __BIT(2), 0x22, __BITS(5,0)),
    246 	AXP_CTRL("dcdc3", 600, 1860, 20,
    247 		0x10, __BIT(3), 0x23, __BITS(5,0)),
    248 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
    249 		0x10, __BIT(4), 0x24, __BITS(5,0)),
    250 	AXP_CTRL("dcdc5", 1000, 2550, 50,
    251 		0x10, __BIT(5), 0x25, __BITS(4,0)),
    252 	AXP_CTRL("aldo1", 700, 3300, 100,
    253 		0x10, __BIT(6), 0x28, __BITS(4,0)),
    254 	AXP_CTRL("aldo2", 700, 3300, 100,
    255 		0x10, __BIT(7), 0x29, __BITS(4,0)),
    256 	AXP_CTRL("eldo1", 700, 3300, 100,
    257 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    258 	AXP_CTRL("eldo2", 700, 3300, 100,
    259 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    260 	AXP_CTRL("eldo3", 700, 3300, 100,
    261 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    262 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
    263 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    264 	AXP_CTRL("dldo2", 700, 3300, 100,
    265 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    266 	AXP_CTRL("aldo3", 700, 3300, 100,
    267 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
    268 	AXP_CTRL_SW("sw",
    269 		0x12, __BIT(6)),
    270 	/* dc1sw is another switch for dcdc1 */
    271 	AXP_CTRL("dc1sw", 1600, 3400, 100,
    272 		0x12, __BIT(7), 0x21, __BITS(4,0)),
    273 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
    274 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
    275 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
    276 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
    277 };
    278 
    279 static const struct axppmic_ctrl axp813_ctrls[] = {
    280 	AXP_CTRL("dldo1", 700, 3300, 100,
    281 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    282 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    283 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    284 	AXP_CTRL("dldo3", 700, 3300, 100,
    285 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    286 	AXP_CTRL("dldo4", 700, 3300, 100,
    287 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    288 	AXP_CTRL("eldo1", 700, 1900, 50,
    289 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    290 	AXP_CTRL("eldo2", 700, 1900, 50,
    291 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    292 	AXP_CTRL("eldo3", 700, 1900, 50,
    293 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    294 	AXP_CTRL("fldo1", 700, 1450, 50,
    295 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    296 	AXP_CTRL("fldo2", 700, 1450, 50,
    297 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    298 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    299 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    300 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    301 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    302 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    303 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    304 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    305 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    306 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    307 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    308 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    309 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    310 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    311 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    312 	AXP_CTRL("aldo1", 700, 3300, 100,
    313 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    314 	AXP_CTRL("aldo2", 700, 3300, 100,
    315 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    316 	AXP_CTRL("aldo3", 700, 3300, 100,
    317 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    318 };
    319 
    320 struct axppmic_irq {
    321 	u_int reg;
    322 	uint8_t mask;
    323 };
    324 
    325 #define	AXPPMIC_IRQ(_reg, _mask)	\
    326 	{ .reg = (_reg), .mask = (_mask) }
    327 
    328 struct axppmic_config {
    329 	const char *name;
    330 	const struct axppmic_ctrl *controls;
    331 	u_int ncontrols;
    332 	u_int irq_regs;
    333 	bool has_battery;
    334 	bool has_fuel_gauge;
    335 	bool has_mode_set;
    336 	struct axppmic_irq poklirq;
    337 	struct axppmic_irq acinirq;
    338 	struct axppmic_irq vbusirq;
    339 	struct axppmic_irq battirq;
    340 	struct axppmic_irq chargeirq;
    341 	struct axppmic_irq chargestirq;
    342 	u_int batsense_step;	/* uV */
    343 	u_int charge_step;	/* uA */
    344 	u_int discharge_step;	/* uA */
    345 	u_int maxcap_step;	/* uAh */
    346 	u_int coulomb_step;	/* uAh */
    347 };
    348 
    349 enum axppmic_sensor {
    350 	AXP_SENSOR_ACIN_PRESENT,
    351 	AXP_SENSOR_VBUS_PRESENT,
    352 	AXP_SENSOR_BATT_PRESENT,
    353 	AXP_SENSOR_BATT_CHARGING,
    354 	AXP_SENSOR_BATT_CHARGE_STATE,
    355 	AXP_SENSOR_BATT_VOLTAGE,
    356 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    357 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    358 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    359 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    360 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    361 	AXP_NSENSORS
    362 };
    363 
    364 struct axppmic_softc {
    365 	device_t	sc_dev;
    366 	i2c_tag_t	sc_i2c;
    367 	i2c_addr_t	sc_addr;
    368 	int		sc_phandle;
    369 
    370 	void		*sc_ih;
    371 	struct workqueue *sc_wq;
    372 
    373 	kmutex_t	sc_intr_lock;
    374 	struct work	sc_work;
    375 	bool		sc_work_scheduled;
    376 
    377 	const struct axppmic_config *sc_conf;
    378 
    379 	struct sysmon_pswitch sc_smpsw;
    380 
    381 	struct sysmon_envsys *sc_sme;
    382 
    383 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    384 
    385 	u_int		sc_warn_thres;
    386 	u_int		sc_shut_thres;
    387 };
    388 
    389 struct axpreg_softc {
    390 	device_t	sc_dev;
    391 	i2c_tag_t	sc_i2c;
    392 	i2c_addr_t	sc_addr;
    393 	const struct axppmic_ctrl *sc_ctrl;
    394 };
    395 
    396 struct axpreg_attach_args {
    397 	const struct axppmic_ctrl *reg_ctrl;
    398 	int		reg_phandle;
    399 	i2c_tag_t	reg_i2c;
    400 	i2c_addr_t	reg_addr;
    401 };
    402 
    403 static const struct axppmic_config axp803_config = {
    404 	.name = "AXP803",
    405 	.controls = axp803_ctrls,
    406 	.ncontrols = __arraycount(axp803_ctrls),
    407 	.irq_regs = 6,
    408 	.has_battery = true,
    409 	.has_fuel_gauge = true,
    410 	.batsense_step = 1100,
    411 	.charge_step = 1000,
    412 	.discharge_step = 1000,
    413 	.maxcap_step = 1456,
    414 	.coulomb_step = 1456,
    415 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    416 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    417 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    418 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    419 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    420 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    421 };
    422 
    423 static const struct axppmic_config axp805_config = {
    424 	.name = "AXP805",
    425 	.controls = axp805_ctrls,
    426 	.ncontrols = __arraycount(axp805_ctrls),
    427 	.irq_regs = 2,
    428 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    429 };
    430 
    431 static const struct axppmic_config axp806_config = {
    432 	.name = "AXP806",
    433 	.controls = axp805_ctrls,
    434 	.ncontrols = __arraycount(axp805_ctrls),
    435 #if notyet
    436 	.irq_regs = 2,
    437 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    438 #endif
    439 	.has_mode_set = true,
    440 };
    441 
    442 static const struct axppmic_config axp809_config = {
    443 	.name = "AXP809",
    444 	.controls = axp809_ctrls,
    445 	.ncontrols = __arraycount(axp809_ctrls),
    446 };
    447 
    448 static const struct axppmic_config axp813_config = {
    449 	.name = "AXP813",
    450 	.controls = axp813_ctrls,
    451 	.ncontrols = __arraycount(axp813_ctrls),
    452 	.irq_regs = 6,
    453 	.has_battery = true,
    454 	.has_fuel_gauge = true,
    455 	.batsense_step = 1100,
    456 	.charge_step = 1000,
    457 	.discharge_step = 1000,
    458 	.maxcap_step = 1456,
    459 	.coulomb_step = 1456,
    460 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    461 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    462 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    463 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    464 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    465 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    466 };
    467 
    468 static const struct device_compatible_entry compat_data[] = {
    469 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
    470 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
    471 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
    472 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
    473 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
    474 	DEVICE_COMPAT_EOL
    475 };
    476 
    477 static int
    478 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    479 {
    480 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    481 }
    482 
    483 static int
    484 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    485 {
    486 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    487 }
    488 
    489 static int
    490 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    491 {
    492 	u_int vol, reg_val;
    493 	int nstep, error;
    494 	uint8_t val;
    495 
    496 	if (!c->c_voltage_mask)
    497 		return EINVAL;
    498 
    499 	if (min < c->c_min || min > c->c_max)
    500 		return EINVAL;
    501 
    502 	reg_val = 0;
    503 	nstep = 1;
    504 	vol = c->c_min;
    505 
    506 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    507 		++reg_val;
    508 		vol += c->c_step1;
    509 	}
    510 
    511 	if (c->c_step2start)
    512 		vol = c->c_step2start;
    513 
    514 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    515 		++reg_val;
    516 		vol += c->c_step2;
    517 	}
    518 
    519 	if (vol > max)
    520 		return EINVAL;
    521 
    522 	iic_acquire_bus(tag, 0);
    523 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
    524 		val &= ~c->c_voltage_mask;
    525 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    526 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
    527 	}
    528 	iic_release_bus(tag, 0);
    529 
    530 	return error;
    531 }
    532 
    533 static int
    534 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    535 {
    536 	int reg_val, error;
    537 	uint8_t val;
    538 
    539 	if (!c->c_voltage_mask)
    540 		return EINVAL;
    541 
    542 	iic_acquire_bus(tag, 0);
    543 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
    544 	iic_release_bus(tag, 0);
    545 	if (error)
    546 		return error;
    547 
    548 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    549 	if (reg_val < c->c_step1cnt) {
    550 		*pvol = c->c_min + reg_val * c->c_step1;
    551 	} else if (c->c_step2start) {
    552 		*pvol = c->c_step2start +
    553 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    554 	} else {
    555 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    556 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    557 	}
    558 
    559 	return 0;
    560 }
    561 
    562 static void
    563 axppmic_power_poweroff(device_t dev)
    564 {
    565 	struct axppmic_softc *sc = device_private(dev);
    566 	int error;
    567 
    568 	delay(1000000);
    569 
    570 	error = iic_acquire_bus(sc->sc_i2c, 0);
    571 	if (error == 0) {
    572 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    573 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
    574 		iic_release_bus(sc->sc_i2c, 0);
    575 	}
    576 	if (error) {
    577 		device_printf(dev, "WARNING: unable to power off, error %d\n",
    578 		    error);
    579 	}
    580 }
    581 
    582 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    583 	.poweroff = axppmic_power_poweroff,
    584 };
    585 
    586 static void
    587 axppmic_task_shut(void *priv)
    588 {
    589 	struct axppmic_softc *sc = priv;
    590 
    591 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    592 }
    593 
    594 static void
    595 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    596 {
    597 	struct axppmic_softc *sc = sme->sme_cookie;
    598 	const struct axppmic_config *c = sc->sc_conf;
    599 	uint8_t val, lo, hi;
    600 
    601 	e->state = ENVSYS_SINVALID;
    602 
    603 	const bool battery_present =
    604 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    605 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    606 
    607 	switch (e->private) {
    608 	case AXP_SENSOR_ACIN_PRESENT:
    609 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    610 			e->state = ENVSYS_SVALID;
    611 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    612 		}
    613 		break;
    614 	case AXP_SENSOR_VBUS_PRESENT:
    615 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    616 			e->state = ENVSYS_SVALID;
    617 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    618 		}
    619 		break;
    620 	case AXP_SENSOR_BATT_PRESENT:
    621 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    622 			if (val & AXP_POWER_MODE_BATT_VALID) {
    623 				e->state = ENVSYS_SVALID;
    624 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    625 			}
    626 		}
    627 		break;
    628 	case AXP_SENSOR_BATT_CHARGING:
    629 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    630 			e->state = ENVSYS_SVALID;
    631 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    632 		}
    633 		break;
    634 	case AXP_SENSOR_BATT_CHARGE_STATE:
    635 		if (battery_present &&
    636 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    637 		    (val & AXP_BATT_CAP_VALID) != 0) {
    638 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    639 			if (batt_val <= sc->sc_shut_thres) {
    640 				e->state = ENVSYS_SCRITICAL;
    641 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    642 			} else if (batt_val <= sc->sc_warn_thres) {
    643 				e->state = ENVSYS_SWARNUNDER;
    644 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    645 			} else {
    646 				e->state = ENVSYS_SVALID;
    647 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    648 			}
    649 		}
    650 		break;
    651 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    652 		if (battery_present &&
    653 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    654 		    (val & AXP_BATT_CAP_VALID) != 0) {
    655 			e->state = ENVSYS_SVALID;
    656 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    657 		}
    658 		break;
    659 	case AXP_SENSOR_BATT_VOLTAGE:
    660 		if (battery_present &&
    661 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
    662 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
    663 			e->state = ENVSYS_SVALID;
    664 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    665 		}
    666 		break;
    667 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    668 		if (battery_present &&
    669 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    670 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    671 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
    672 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
    673 			e->state = ENVSYS_SVALID;
    674 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    675 		}
    676 		break;
    677 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    678 		if (battery_present &&
    679 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    680 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    681 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
    682 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
    683 			e->state = ENVSYS_SVALID;
    684 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    685 		}
    686 		break;
    687 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    688 		if (battery_present &&
    689 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
    690 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
    691 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    692 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    693 		}
    694 		break;
    695 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    696 		if (battery_present &&
    697 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
    698 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
    699 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    700 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    701 		}
    702 		break;
    703 	}
    704 }
    705 
    706 static void
    707 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    708 {
    709 	struct axppmic_softc *sc = sme->sme_cookie;
    710 
    711 	switch (e->private) {
    712 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    713 	case AXP_SENSOR_BATT_VOLTAGE:
    714 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    715 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    716 		/* Always update battery capacity and ADCs */
    717 		iic_acquire_bus(sc->sc_i2c, 0);
    718 		axppmic_sensor_update(sme, e);
    719 		iic_release_bus(sc->sc_i2c, 0);
    720 		break;
    721 	default:
    722 		/* Refresh if the sensor is not in valid state */
    723 		if (e->state != ENVSYS_SVALID) {
    724 			iic_acquire_bus(sc->sc_i2c, 0);
    725 			axppmic_sensor_update(sme, e);
    726 			iic_release_bus(sc->sc_i2c, 0);
    727 		}
    728 		break;
    729 	}
    730 }
    731 
    732 static int
    733 axppmic_intr(void *priv)
    734 {
    735 	struct axppmic_softc * const sc = priv;
    736 
    737 	mutex_enter(&sc->sc_intr_lock);
    738 
    739 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
    740 
    741 	/* Interrupt is always masked when work is scheduled! */
    742 	KASSERT(!sc->sc_work_scheduled);
    743 	sc->sc_work_scheduled = true;
    744 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
    745 
    746 	mutex_exit(&sc->sc_intr_lock);
    747 
    748 	return 1;
    749 }
    750 
    751 static void
    752 axppmic_work(struct work *work, void *arg)
    753 {
    754 	struct axppmic_softc * const sc =
    755 	    container_of(work, struct axppmic_softc, sc_work);
    756 	const struct axppmic_config * const c = sc->sc_conf;
    757 	const int flags = 0;
    758 	uint8_t stat;
    759 	u_int n;
    760 
    761 	KASSERT(sc->sc_work_scheduled);
    762 
    763 	iic_acquire_bus(sc->sc_i2c, flags);
    764 	for (n = 1; n <= c->irq_regs; n++) {
    765 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    766 			if (stat != 0) {
    767 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    768 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    769 			}
    770 
    771 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    772 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    773 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    774 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    775 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    776 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    777 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    778 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    779 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    780 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    781 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    782 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    783 		}
    784 	}
    785 	iic_release_bus(sc->sc_i2c, flags);
    786 
    787 	mutex_enter(&sc->sc_intr_lock);
    788 	sc->sc_work_scheduled = false;
    789 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
    790 	mutex_exit(&sc->sc_intr_lock);
    791 }
    792 
    793 static void
    794 axppmic_attach_acadapter(struct axppmic_softc *sc)
    795 {
    796 	envsys_data_t *e;
    797 
    798 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    799 	e->private = AXP_SENSOR_ACIN_PRESENT;
    800 	e->units = ENVSYS_INDICATOR;
    801 	e->state = ENVSYS_SINVALID;
    802 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    803 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    804 
    805 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    806 	e->private = AXP_SENSOR_VBUS_PRESENT;
    807 	e->units = ENVSYS_INDICATOR;
    808 	e->state = ENVSYS_SINVALID;
    809 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    810 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    811 }
    812 
    813 static void
    814 axppmic_attach_battery(struct axppmic_softc *sc)
    815 {
    816 	const struct axppmic_config *c = sc->sc_conf;
    817 	envsys_data_t *e;
    818 	uint8_t val;
    819 
    820 	iic_acquire_bus(sc->sc_i2c, 0);
    821 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
    822 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    823 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    824 	}
    825 	iic_release_bus(sc->sc_i2c, 0);
    826 
    827 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    828 	e->private = AXP_SENSOR_BATT_PRESENT;
    829 	e->units = ENVSYS_INDICATOR;
    830 	e->state = ENVSYS_SINVALID;
    831 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    832 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    833 
    834 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    835 	e->private = AXP_SENSOR_BATT_CHARGING;
    836 	e->units = ENVSYS_BATTERY_CHARGE;
    837 	e->state = ENVSYS_SINVALID;
    838 	strlcpy(e->desc, "charging", sizeof(e->desc));
    839 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    840 
    841 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    842 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    843 	e->units = ENVSYS_BATTERY_CAPACITY;
    844 	e->flags = ENVSYS_FMONSTCHANGED;
    845 	e->state = ENVSYS_SINVALID;
    846 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    847 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    848 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    849 
    850 	if (c->batsense_step) {
    851 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    852 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    853 		e->units = ENVSYS_SVOLTS_DC;
    854 		e->state = ENVSYS_SINVALID;
    855 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
    856 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    857 	}
    858 
    859 	if (c->charge_step) {
    860 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
    861 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
    862 		e->units = ENVSYS_SAMPS;
    863 		e->state = ENVSYS_SINVALID;
    864 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
    865 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    866 	}
    867 
    868 	if (c->discharge_step) {
    869 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
    870 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
    871 		e->units = ENVSYS_SAMPS;
    872 		e->state = ENVSYS_SINVALID;
    873 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
    874 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    875 	}
    876 
    877 	if (c->has_fuel_gauge) {
    878 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
    879 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
    880 		e->units = ENVSYS_INTEGER;
    881 		e->state = ENVSYS_SINVALID;
    882 		e->flags = ENVSYS_FPERCENT;
    883 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
    884 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    885 	}
    886 
    887 	if (c->maxcap_step) {
    888 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
    889 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
    890 		e->units = ENVSYS_SAMPHOUR;
    891 		e->state = ENVSYS_SINVALID;
    892 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
    893 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    894 	}
    895 
    896 	if (c->coulomb_step) {
    897 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
    898 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
    899 		e->units = ENVSYS_SAMPHOUR;
    900 		e->state = ENVSYS_SINVALID;
    901 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
    902 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    903 	}
    904 }
    905 
    906 static void
    907 axppmic_attach_sensors(struct axppmic_softc *sc)
    908 {
    909 	if (sc->sc_conf->has_battery) {
    910 		sc->sc_sme = sysmon_envsys_create();
    911 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    912 		sc->sc_sme->sme_cookie = sc;
    913 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
    914 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
    915 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
    916 
    917 		axppmic_attach_acadapter(sc);
    918 		axppmic_attach_battery(sc);
    919 
    920 		sysmon_envsys_register(sc->sc_sme);
    921 	}
    922 }
    923 
    924 
    925 static int
    926 axppmic_match(device_t parent, cfdata_t match, void *aux)
    927 {
    928 	struct i2c_attach_args *ia = aux;
    929 	int match_result;
    930 
    931 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
    932 		return match_result;
    933 
    934 	/* This device is direct-config only. */
    935 
    936 	return 0;
    937 }
    938 
    939 static void
    940 axppmic_attach(device_t parent, device_t self, void *aux)
    941 {
    942 	struct axppmic_softc *sc = device_private(self);
    943 	const struct device_compatible_entry *dce = NULL;
    944 	const struct axppmic_config *c;
    945 	struct axpreg_attach_args aaa;
    946 	struct i2c_attach_args *ia = aux;
    947 	int phandle, child, i;
    948 	uint8_t irq_mask, val;
    949 	int error;
    950 
    951 	dce = iic_compatible_lookup(ia, compat_data);
    952 	KASSERT(dce != NULL);
    953 	c = dce->data;
    954 
    955 	sc->sc_dev = self;
    956 	sc->sc_i2c = ia->ia_tag;
    957 	sc->sc_addr = ia->ia_addr;
    958 	sc->sc_phandle = ia->ia_cookie;
    959 	sc->sc_conf = c;
    960 
    961 	aprint_naive("\n");
    962 	aprint_normal(": %s\n", c->name);
    963 
    964 	if (c->has_mode_set) {
    965 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
    966 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
    967 
    968 		iic_acquire_bus(sc->sc_i2c, 0);
    969 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
    970 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
    971 		iic_release_bus(sc->sc_i2c, 0);
    972 	}
    973 
    974 	iic_acquire_bus(sc->sc_i2c, 0);
    975 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
    976 	iic_release_bus(sc->sc_i2c, 0);
    977 	if (error != 0) {
    978 		aprint_error_dev(self, "couldn't read chipid\n");
    979 		return;
    980 	}
    981 	aprint_debug_dev(self, "chipid %#x\n", val);
    982 
    983 	sc->sc_smpsw.smpsw_name = device_xname(self);
    984 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
    985 	sysmon_pswitch_register(&sc->sc_smpsw);
    986 
    987 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
    988 
    989 	if (c->irq_regs > 0) {
    990 		char intrstr[128];
    991 
    992 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
    993 				     intrstr, sizeof(intrstr))) {
    994 			aprint_error_dev(self,
    995 			    "WARNING: failed to decode interrupt\n");
    996 		}
    997 
    998 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
    999 						  FDT_INTR_MPSAFE,
   1000 						  axppmic_intr, sc);
   1001 		if (sc->sc_ih == NULL) {
   1002 			aprint_error_dev(self,
   1003 			    "WARNING: couldn't establish interrupt handler\n");
   1004 		}
   1005 
   1006 		error = workqueue_create(&sc->sc_wq, device_xname(self),
   1007 					 axppmic_work, NULL,
   1008 					 PRI_SOFTSERIAL, IPL_VM,
   1009 					 WQ_MPSAFE);
   1010 		if (error) {
   1011 			sc->sc_wq = NULL;
   1012 			aprint_error_dev(self,
   1013 			    "WARNING: couldn't create work queue: error %d\n",
   1014 			    error);
   1015 		}
   1016 
   1017 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
   1018 			iic_acquire_bus(sc->sc_i2c, 0);
   1019 			for (i = 1; i <= c->irq_regs; i++) {
   1020 				irq_mask = 0;
   1021 				if (i == c->poklirq.reg)
   1022 					irq_mask |= c->poklirq.mask;
   1023 				if (i == c->acinirq.reg)
   1024 					irq_mask |= c->acinirq.mask;
   1025 				if (i == c->vbusirq.reg)
   1026 					irq_mask |= c->vbusirq.mask;
   1027 				if (i == c->battirq.reg)
   1028 					irq_mask |= c->battirq.mask;
   1029 				if (i == c->chargeirq.reg)
   1030 					irq_mask |= c->chargeirq.mask;
   1031 				if (i == c->chargestirq.reg)
   1032 					irq_mask |= c->chargestirq.mask;
   1033 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1034 					      AXP_IRQ_ENABLE_REG(i),
   1035 					      irq_mask, 0);
   1036 			}
   1037 			iic_release_bus(sc->sc_i2c, 0);
   1038 		}
   1039 	}
   1040 
   1041 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
   1042 	    &axppmic_power_funcs);
   1043 
   1044 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
   1045 	if (phandle > 0) {
   1046 		aaa.reg_i2c = sc->sc_i2c;
   1047 		aaa.reg_addr = sc->sc_addr;
   1048 		for (i = 0; i < c->ncontrols; i++) {
   1049 			const struct axppmic_ctrl *ctrl = &c->controls[i];
   1050 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
   1051 			if (child <= 0)
   1052 				continue;
   1053 			aaa.reg_ctrl = ctrl;
   1054 			aaa.reg_phandle = child;
   1055 			config_found(sc->sc_dev, &aaa, NULL, CFARG_EOL);
   1056 		}
   1057 	}
   1058 
   1059 	if (c->has_battery)
   1060 		axppmic_attach_sensors(sc);
   1061 }
   1062 
   1063 static int
   1064 axpreg_acquire(device_t dev)
   1065 {
   1066 	return 0;
   1067 }
   1068 
   1069 static void
   1070 axpreg_release(device_t dev)
   1071 {
   1072 }
   1073 
   1074 static int
   1075 axpreg_enable(device_t dev, bool enable)
   1076 {
   1077 	struct axpreg_softc *sc = device_private(dev);
   1078 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1079 	const int flags = 0;
   1080 	uint8_t val;
   1081 	int error;
   1082 
   1083 	if (!c->c_enable_mask)
   1084 		return EINVAL;
   1085 
   1086 	iic_acquire_bus(sc->sc_i2c, flags);
   1087 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
   1088 		val &= ~c->c_enable_mask;
   1089 		if (enable)
   1090 			val |= c->c_enable_val;
   1091 		else
   1092 			val |= c->c_disable_val;
   1093 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
   1094 	}
   1095 	iic_release_bus(sc->sc_i2c, flags);
   1096 
   1097 	return error;
   1098 }
   1099 
   1100 static int
   1101 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
   1102 {
   1103 	struct axpreg_softc *sc = device_private(dev);
   1104 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1105 
   1106 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
   1107 	    min_uvol / 1000, max_uvol / 1000);
   1108 }
   1109 
   1110 static int
   1111 axpreg_get_voltage(device_t dev, u_int *puvol)
   1112 {
   1113 	struct axpreg_softc *sc = device_private(dev);
   1114 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1115 	int error;
   1116 	u_int vol;
   1117 
   1118 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
   1119 	if (error)
   1120 		return error;
   1121 
   1122 	*puvol = vol * 1000;
   1123 	return 0;
   1124 }
   1125 
   1126 static struct fdtbus_regulator_controller_func axpreg_funcs = {
   1127 	.acquire = axpreg_acquire,
   1128 	.release = axpreg_release,
   1129 	.enable = axpreg_enable,
   1130 	.set_voltage = axpreg_set_voltage,
   1131 	.get_voltage = axpreg_get_voltage,
   1132 };
   1133 
   1134 static int
   1135 axpreg_match(device_t parent, cfdata_t match, void *aux)
   1136 {
   1137 	return 1;
   1138 }
   1139 
   1140 static void
   1141 axpreg_attach(device_t parent, device_t self, void *aux)
   1142 {
   1143 	struct axpreg_softc *sc = device_private(self);
   1144 	struct axpreg_attach_args *aaa = aux;
   1145 	const int phandle = aaa->reg_phandle;
   1146 	const char *name;
   1147 	u_int uvol, min_uvol, max_uvol;
   1148 
   1149 	sc->sc_dev = self;
   1150 	sc->sc_i2c = aaa->reg_i2c;
   1151 	sc->sc_addr = aaa->reg_addr;
   1152 	sc->sc_ctrl = aaa->reg_ctrl;
   1153 
   1154 	fdtbus_register_regulator_controller(self, phandle,
   1155 	    &axpreg_funcs);
   1156 
   1157 	aprint_naive("\n");
   1158 	name = fdtbus_get_string(phandle, "regulator-name");
   1159 	if (name)
   1160 		aprint_normal(": %s\n", name);
   1161 	else
   1162 		aprint_normal("\n");
   1163 
   1164 	axpreg_get_voltage(self, &uvol);
   1165 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1166 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1167 		if (uvol < min_uvol || uvol > max_uvol) {
   1168 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
   1169 			    uvol, min_uvol, max_uvol);
   1170 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1171 		}
   1172 	}
   1173 
   1174 	if (of_hasprop(phandle, "regulator-always-on") ||
   1175 	    of_hasprop(phandle, "regulator-boot-on")) {
   1176 		axpreg_enable(self, true);
   1177 	}
   1178 }
   1179 
   1180 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1181     axppmic_match, axppmic_attach, NULL, NULL);
   1182 
   1183 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1184     axpreg_match, axpreg_attach, NULL, NULL);
   1185