axppmic.c revision 1.33.2.1 1 /* $NetBSD: axppmic.c,v 1.33.2.1 2021/03/21 21:09:11 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.33.2.1 2021/03/21 21:09:11 thorpej Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39 #include <sys/workqueue.h>
40
41 #include <dev/i2c/i2cvar.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44 #include <dev/sysmon/sysmon_taskq.h>
45
46 #include <dev/fdt/fdtvar.h>
47
48 #define AXP_POWER_SOURCE_REG 0x00
49 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
50 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
51 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52
53 #define AXP_POWER_MODE_REG 0x01
54 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
55 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
56 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
57
58 #define AXP_CHIP_ID_REG 0x03
59
60 #define AXP_POWER_DISABLE_REG 0x32
61 #define AXP_POWER_DISABLE_CTRL __BIT(7)
62
63 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
64 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
65 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
66 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
67 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
68 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
69
70 #define AXP_BATSENSE_HI_REG 0x78
71 #define AXP_BATSENSE_LO_REG 0x79
72
73 #define AXP_BATTCHG_HI_REG 0x7a
74 #define AXP_BATTCHG_LO_REG 0x7b
75
76 #define AXP_BATTDISCHG_HI_REG 0x7c
77 #define AXP_BATTDISCHG_LO_REG 0x7d
78
79 #define AXP_ADC_RAW(_hi, _lo) \
80 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
81
82 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
83 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
84
85 #define AXP_BATT_CAP_REG 0xb9
86 #define AXP_BATT_CAP_VALID __BIT(7)
87 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
88
89 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
90 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
91 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
92
93 #define AXP_BATT_COULOMB_HI_REG 0xe2
94 #define AXP_BATT_COULOMB_VALID __BIT(7)
95 #define AXP_BATT_COULOMB_LO_REG 0xe3
96
97 #define AXP_COULOMB_RAW(_hi, _lo) \
98 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
99
100 #define AXP_BATT_CAP_WARN_REG 0xe6
101 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
102 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
103
104 #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
105 #define AXP_ADDR_EXT_MASTER 0
106 #define AXP_ADDR_EXT_SLAVE __BIT(4)
107
108 struct axppmic_ctrl {
109 device_t c_dev;
110
111 const char * c_name;
112 u_int c_min;
113 u_int c_max;
114 u_int c_step1;
115 u_int c_step1cnt;
116 u_int c_step2;
117 u_int c_step2cnt;
118 u_int c_step2start;
119
120 uint8_t c_enable_reg;
121 uint8_t c_enable_mask;
122 uint8_t c_enable_val;
123 uint8_t c_disable_val;
124
125 uint8_t c_voltage_reg;
126 uint8_t c_voltage_mask;
127 };
128
129 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
130 { .c_name = (name), .c_min = (min), .c_max = (max), \
131 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
132 .c_step2 = 0, .c_step2cnt = 0, \
133 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
134 .c_enable_val = (emask), .c_disable_val = 0, \
135 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
136
137 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
138 { .c_name = (name), .c_min = (min), .c_max = (max), \
139 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
140 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
141 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
142 .c_enable_val = (emask), .c_disable_val = 0, \
143 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
144
145 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
146 { .c_name = (name), .c_min = (min), .c_max = (max), \
147 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
148 .c_step2start = (step2start), \
149 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
150 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
151 .c_enable_val = (emask), .c_disable_val = 0, \
152 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
153
154 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \
155 { .c_name = (name), .c_min = (min), .c_max = (max), \
156 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
157 .c_step2 = 0, .c_step2cnt = 0, \
158 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
159 .c_enable_val = (eval), .c_disable_val = (dval), \
160 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
161
162 #define AXP_CTRL_SW(name, ereg, emask) \
163 { .c_name = (name), \
164 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
165 .c_enable_val = (emask), .c_disable_val = 0 }
166
167 static const struct axppmic_ctrl axp803_ctrls[] = {
168 AXP_CTRL("dldo1", 700, 3300, 100,
169 0x12, __BIT(3), 0x15, __BITS(4,0)),
170 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
171 0x12, __BIT(4), 0x16, __BITS(4,0)),
172 AXP_CTRL("dldo3", 700, 3300, 100,
173 0x12, __BIT(5), 0x17, __BITS(4,0)),
174 AXP_CTRL("dldo4", 700, 3300, 100,
175 0x12, __BIT(6), 0x18, __BITS(4,0)),
176 AXP_CTRL("eldo1", 700, 1900, 50,
177 0x12, __BIT(0), 0x19, __BITS(4,0)),
178 AXP_CTRL("eldo2", 700, 1900, 50,
179 0x12, __BIT(1), 0x1a, __BITS(4,0)),
180 AXP_CTRL("eldo3", 700, 1900, 50,
181 0x12, __BIT(2), 0x1b, __BITS(4,0)),
182 AXP_CTRL("fldo1", 700, 1450, 50,
183 0x13, __BIT(2), 0x1c, __BITS(3,0)),
184 AXP_CTRL("fldo2", 700, 1450, 50,
185 0x13, __BIT(3), 0x1d, __BITS(3,0)),
186 AXP_CTRL("dcdc1", 1600, 3400, 100,
187 0x10, __BIT(0), 0x20, __BITS(4,0)),
188 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
189 0x10, __BIT(1), 0x21, __BITS(6,0)),
190 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
191 0x10, __BIT(2), 0x22, __BITS(6,0)),
192 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
193 0x10, __BIT(3), 0x23, __BITS(6,0)),
194 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
195 0x10, __BIT(4), 0x24, __BITS(6,0)),
196 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
197 0x10, __BIT(5), 0x25, __BITS(6,0)),
198 AXP_CTRL("aldo1", 700, 3300, 100,
199 0x13, __BIT(5), 0x28, __BITS(4,0)),
200 AXP_CTRL("aldo2", 700, 3300, 100,
201 0x13, __BIT(6), 0x29, __BITS(4,0)),
202 AXP_CTRL("aldo3", 700, 3300, 100,
203 0x13, __BIT(7), 0x2a, __BITS(4,0)),
204 };
205
206 static const struct axppmic_ctrl axp805_ctrls[] = {
207 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
208 0x10, __BIT(0), 0x12, __BITS(6,0)),
209 AXP_CTRL("dcdcb", 1000, 2550, 50,
210 0x10, __BIT(1), 0x13, __BITS(4,0)),
211 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
212 0x10, __BIT(2), 0x14, __BITS(6,0)),
213 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
214 0x10, __BIT(3), 0x15, __BITS(5,0)),
215 AXP_CTRL("dcdce", 1100, 3400, 100,
216 0x10, __BIT(4), 0x16, __BITS(4,0)),
217 AXP_CTRL("aldo1", 700, 3300, 100,
218 0x10, __BIT(5), 0x17, __BITS(4,0)),
219 AXP_CTRL("aldo2", 700, 3400, 100,
220 0x10, __BIT(6), 0x18, __BITS(4,0)),
221 AXP_CTRL("aldo3", 700, 3300, 100,
222 0x10, __BIT(7), 0x19, __BITS(4,0)),
223 AXP_CTRL("bldo1", 700, 1900, 100,
224 0x11, __BIT(0), 0x20, __BITS(3,0)),
225 AXP_CTRL("bldo2", 700, 1900, 100,
226 0x11, __BIT(1), 0x21, __BITS(3,0)),
227 AXP_CTRL("bldo3", 700, 1900, 100,
228 0x11, __BIT(2), 0x22, __BITS(3,0)),
229 AXP_CTRL("bldo4", 700, 1900, 100,
230 0x11, __BIT(3), 0x23, __BITS(3,0)),
231 AXP_CTRL("cldo1", 700, 3300, 100,
232 0x11, __BIT(4), 0x24, __BITS(4,0)),
233 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
234 0x11, __BIT(5), 0x25, __BITS(4,0)),
235 AXP_CTRL("cldo3", 700, 3300, 100,
236 0x11, __BIT(6), 0x26, __BITS(4,0)),
237 };
238
239 static const struct axppmic_ctrl axp809_ctrls[] = {
240 AXP_CTRL("dc5ldo", 700, 1400, 100,
241 0x10, __BIT(0), 0x1c, __BITS(2,0)),
242 AXP_CTRL("dcdc1", 1600, 3400, 100,
243 0x10, __BIT(1), 0x21, __BITS(4,0)),
244 AXP_CTRL("dcdc2", 600, 1540, 20,
245 0x10, __BIT(2), 0x22, __BITS(5,0)),
246 AXP_CTRL("dcdc3", 600, 1860, 20,
247 0x10, __BIT(3), 0x23, __BITS(5,0)),
248 AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
249 0x10, __BIT(4), 0x24, __BITS(5,0)),
250 AXP_CTRL("dcdc5", 1000, 2550, 50,
251 0x10, __BIT(5), 0x25, __BITS(4,0)),
252 AXP_CTRL("aldo1", 700, 3300, 100,
253 0x10, __BIT(6), 0x28, __BITS(4,0)),
254 AXP_CTRL("aldo2", 700, 3300, 100,
255 0x10, __BIT(7), 0x29, __BITS(4,0)),
256 AXP_CTRL("eldo1", 700, 3300, 100,
257 0x12, __BIT(0), 0x19, __BITS(4,0)),
258 AXP_CTRL("eldo2", 700, 3300, 100,
259 0x12, __BIT(1), 0x1a, __BITS(4,0)),
260 AXP_CTRL("eldo3", 700, 3300, 100,
261 0x12, __BIT(2), 0x1b, __BITS(4,0)),
262 AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
263 0x12, __BIT(3), 0x15, __BITS(4,0)),
264 AXP_CTRL("dldo2", 700, 3300, 100,
265 0x12, __BIT(4), 0x16, __BITS(4,0)),
266 AXP_CTRL("aldo3", 700, 3300, 100,
267 0x12, __BIT(5), 0x2a, __BITS(4,0)),
268 AXP_CTRL_SW("sw",
269 0x12, __BIT(6)),
270 /* dc1sw is another switch for dcdc1 */
271 AXP_CTRL("dc1sw", 1600, 3400, 100,
272 0x12, __BIT(7), 0x21, __BITS(4,0)),
273 AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
274 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
275 AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
276 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
277 };
278
279 static const struct axppmic_ctrl axp813_ctrls[] = {
280 AXP_CTRL("dldo1", 700, 3300, 100,
281 0x12, __BIT(3), 0x15, __BITS(4,0)),
282 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
283 0x12, __BIT(4), 0x16, __BITS(4,0)),
284 AXP_CTRL("dldo3", 700, 3300, 100,
285 0x12, __BIT(5), 0x17, __BITS(4,0)),
286 AXP_CTRL("dldo4", 700, 3300, 100,
287 0x12, __BIT(6), 0x18, __BITS(4,0)),
288 AXP_CTRL("eldo1", 700, 1900, 50,
289 0x12, __BIT(0), 0x19, __BITS(4,0)),
290 AXP_CTRL("eldo2", 700, 1900, 50,
291 0x12, __BIT(1), 0x1a, __BITS(4,0)),
292 AXP_CTRL("eldo3", 700, 1900, 50,
293 0x12, __BIT(2), 0x1b, __BITS(4,0)),
294 AXP_CTRL("fldo1", 700, 1450, 50,
295 0x13, __BIT(2), 0x1c, __BITS(3,0)),
296 AXP_CTRL("fldo2", 700, 1450, 50,
297 0x13, __BIT(3), 0x1d, __BITS(3,0)),
298 AXP_CTRL("dcdc1", 1600, 3400, 100,
299 0x10, __BIT(0), 0x20, __BITS(4,0)),
300 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
301 0x10, __BIT(1), 0x21, __BITS(6,0)),
302 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
303 0x10, __BIT(2), 0x22, __BITS(6,0)),
304 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
305 0x10, __BIT(3), 0x23, __BITS(6,0)),
306 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
307 0x10, __BIT(4), 0x24, __BITS(6,0)),
308 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
309 0x10, __BIT(5), 0x25, __BITS(6,0)),
310 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
311 0x10, __BIT(6), 0x26, __BITS(6,0)),
312 AXP_CTRL("aldo1", 700, 3300, 100,
313 0x13, __BIT(5), 0x28, __BITS(4,0)),
314 AXP_CTRL("aldo2", 700, 3300, 100,
315 0x13, __BIT(6), 0x29, __BITS(4,0)),
316 AXP_CTRL("aldo3", 700, 3300, 100,
317 0x13, __BIT(7), 0x2a, __BITS(4,0)),
318 };
319
320 struct axppmic_irq {
321 u_int reg;
322 uint8_t mask;
323 };
324
325 #define AXPPMIC_IRQ(_reg, _mask) \
326 { .reg = (_reg), .mask = (_mask) }
327
328 struct axppmic_config {
329 const char *name;
330 const struct axppmic_ctrl *controls;
331 u_int ncontrols;
332 u_int irq_regs;
333 bool has_battery;
334 bool has_fuel_gauge;
335 bool has_mode_set;
336 struct axppmic_irq poklirq;
337 struct axppmic_irq acinirq;
338 struct axppmic_irq vbusirq;
339 struct axppmic_irq battirq;
340 struct axppmic_irq chargeirq;
341 struct axppmic_irq chargestirq;
342 u_int batsense_step; /* uV */
343 u_int charge_step; /* uA */
344 u_int discharge_step; /* uA */
345 u_int maxcap_step; /* uAh */
346 u_int coulomb_step; /* uAh */
347 };
348
349 enum axppmic_sensor {
350 AXP_SENSOR_ACIN_PRESENT,
351 AXP_SENSOR_VBUS_PRESENT,
352 AXP_SENSOR_BATT_PRESENT,
353 AXP_SENSOR_BATT_CHARGING,
354 AXP_SENSOR_BATT_CHARGE_STATE,
355 AXP_SENSOR_BATT_VOLTAGE,
356 AXP_SENSOR_BATT_CHARGE_CURRENT,
357 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
358 AXP_SENSOR_BATT_CAPACITY_PERCENT,
359 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
360 AXP_SENSOR_BATT_CURRENT_CAPACITY,
361 AXP_NSENSORS
362 };
363
364 struct axppmic_softc {
365 device_t sc_dev;
366 i2c_tag_t sc_i2c;
367 i2c_addr_t sc_addr;
368 int sc_phandle;
369
370 void *sc_ih;
371 struct workqueue *sc_wq;
372
373 kmutex_t sc_intr_lock;
374 struct work sc_work;
375 bool sc_work_scheduled;
376
377 const struct axppmic_config *sc_conf;
378
379 struct sysmon_pswitch sc_smpsw;
380
381 struct sysmon_envsys *sc_sme;
382
383 envsys_data_t sc_sensor[AXP_NSENSORS];
384
385 u_int sc_warn_thres;
386 u_int sc_shut_thres;
387 };
388
389 struct axpreg_softc {
390 device_t sc_dev;
391 i2c_tag_t sc_i2c;
392 i2c_addr_t sc_addr;
393 const struct axppmic_ctrl *sc_ctrl;
394 };
395
396 struct axpreg_attach_args {
397 const struct axppmic_ctrl *reg_ctrl;
398 int reg_phandle;
399 i2c_tag_t reg_i2c;
400 i2c_addr_t reg_addr;
401 };
402
403 static const struct axppmic_config axp803_config = {
404 .name = "AXP803",
405 .controls = axp803_ctrls,
406 .ncontrols = __arraycount(axp803_ctrls),
407 .irq_regs = 6,
408 .has_battery = true,
409 .has_fuel_gauge = true,
410 .batsense_step = 1100,
411 .charge_step = 1000,
412 .discharge_step = 1000,
413 .maxcap_step = 1456,
414 .coulomb_step = 1456,
415 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
416 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
417 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
418 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
419 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
420 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
421 };
422
423 static const struct axppmic_config axp805_config = {
424 .name = "AXP805",
425 .controls = axp805_ctrls,
426 .ncontrols = __arraycount(axp805_ctrls),
427 .irq_regs = 2,
428 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
429 };
430
431 static const struct axppmic_config axp806_config = {
432 .name = "AXP806",
433 .controls = axp805_ctrls,
434 .ncontrols = __arraycount(axp805_ctrls),
435 #if notyet
436 .irq_regs = 2,
437 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
438 #endif
439 .has_mode_set = true,
440 };
441
442 static const struct axppmic_config axp809_config = {
443 .name = "AXP809",
444 .controls = axp809_ctrls,
445 .ncontrols = __arraycount(axp809_ctrls),
446 };
447
448 static const struct axppmic_config axp813_config = {
449 .name = "AXP813",
450 .controls = axp813_ctrls,
451 .ncontrols = __arraycount(axp813_ctrls),
452 .irq_regs = 6,
453 .has_battery = true,
454 .has_fuel_gauge = true,
455 .batsense_step = 1100,
456 .charge_step = 1000,
457 .discharge_step = 1000,
458 .maxcap_step = 1456,
459 .coulomb_step = 1456,
460 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
461 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
462 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
463 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
464 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
465 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
466 };
467
468 static const struct device_compatible_entry compat_data[] = {
469 { .compat = "x-powers,axp803", .data = &axp803_config },
470 { .compat = "x-powers,axp805", .data = &axp805_config },
471 { .compat = "x-powers,axp806", .data = &axp806_config },
472 { .compat = "x-powers,axp809", .data = &axp809_config },
473 { .compat = "x-powers,axp813", .data = &axp813_config },
474 DEVICE_COMPAT_EOL
475 };
476
477 static int
478 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
479 {
480 return iic_smbus_read_byte(tag, addr, reg, val, flags);
481 }
482
483 static int
484 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
485 {
486 return iic_smbus_write_byte(tag, addr, reg, val, flags);
487 }
488
489 static int
490 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
491 {
492 u_int vol, reg_val;
493 int nstep, error;
494 uint8_t val;
495
496 if (!c->c_voltage_mask)
497 return EINVAL;
498
499 if (min < c->c_min || min > c->c_max)
500 return EINVAL;
501
502 reg_val = 0;
503 nstep = 1;
504 vol = c->c_min;
505
506 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
507 ++reg_val;
508 vol += c->c_step1;
509 }
510
511 if (c->c_step2start)
512 vol = c->c_step2start;
513
514 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
515 ++reg_val;
516 vol += c->c_step2;
517 }
518
519 if (vol > max)
520 return EINVAL;
521
522 iic_acquire_bus(tag, 0);
523 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
524 val &= ~c->c_voltage_mask;
525 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
526 error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
527 }
528 iic_release_bus(tag, 0);
529
530 return error;
531 }
532
533 static int
534 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
535 {
536 int reg_val, error;
537 uint8_t val;
538
539 if (!c->c_voltage_mask)
540 return EINVAL;
541
542 iic_acquire_bus(tag, 0);
543 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
544 iic_release_bus(tag, 0);
545 if (error)
546 return error;
547
548 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
549 if (reg_val < c->c_step1cnt) {
550 *pvol = c->c_min + reg_val * c->c_step1;
551 } else if (c->c_step2start) {
552 *pvol = c->c_step2start +
553 ((reg_val - c->c_step1cnt) * c->c_step2);
554 } else {
555 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
556 ((reg_val - c->c_step1cnt) * c->c_step2);
557 }
558
559 return 0;
560 }
561
562 static void
563 axppmic_power_poweroff(device_t dev)
564 {
565 struct axppmic_softc *sc = device_private(dev);
566 int error;
567
568 delay(1000000);
569
570 error = iic_acquire_bus(sc->sc_i2c, 0);
571 if (error == 0) {
572 error = axppmic_write(sc->sc_i2c, sc->sc_addr,
573 AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
574 iic_release_bus(sc->sc_i2c, 0);
575 }
576 if (error) {
577 device_printf(dev, "WARNING: unable to power off, error %d\n",
578 error);
579 }
580 }
581
582 static struct fdtbus_power_controller_func axppmic_power_funcs = {
583 .poweroff = axppmic_power_poweroff,
584 };
585
586 static void
587 axppmic_task_shut(void *priv)
588 {
589 struct axppmic_softc *sc = priv;
590
591 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
592 }
593
594 static void
595 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
596 {
597 struct axppmic_softc *sc = sme->sme_cookie;
598 const struct axppmic_config *c = sc->sc_conf;
599 uint8_t val, lo, hi;
600
601 e->state = ENVSYS_SINVALID;
602
603 const bool battery_present =
604 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
605 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
606
607 switch (e->private) {
608 case AXP_SENSOR_ACIN_PRESENT:
609 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
610 e->state = ENVSYS_SVALID;
611 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
612 }
613 break;
614 case AXP_SENSOR_VBUS_PRESENT:
615 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
616 e->state = ENVSYS_SVALID;
617 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
618 }
619 break;
620 case AXP_SENSOR_BATT_PRESENT:
621 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
622 if (val & AXP_POWER_MODE_BATT_VALID) {
623 e->state = ENVSYS_SVALID;
624 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
625 }
626 }
627 break;
628 case AXP_SENSOR_BATT_CHARGING:
629 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
630 e->state = ENVSYS_SVALID;
631 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
632 }
633 break;
634 case AXP_SENSOR_BATT_CHARGE_STATE:
635 if (battery_present &&
636 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
637 (val & AXP_BATT_CAP_VALID) != 0) {
638 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
639 if (batt_val <= sc->sc_shut_thres) {
640 e->state = ENVSYS_SCRITICAL;
641 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
642 } else if (batt_val <= sc->sc_warn_thres) {
643 e->state = ENVSYS_SWARNUNDER;
644 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
645 } else {
646 e->state = ENVSYS_SVALID;
647 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
648 }
649 }
650 break;
651 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
652 if (battery_present &&
653 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
654 (val & AXP_BATT_CAP_VALID) != 0) {
655 e->state = ENVSYS_SVALID;
656 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
657 }
658 break;
659 case AXP_SENSOR_BATT_VOLTAGE:
660 if (battery_present &&
661 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
662 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
663 e->state = ENVSYS_SVALID;
664 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
665 }
666 break;
667 case AXP_SENSOR_BATT_CHARGE_CURRENT:
668 if (battery_present &&
669 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
670 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
671 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
672 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
673 e->state = ENVSYS_SVALID;
674 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
675 }
676 break;
677 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
678 if (battery_present &&
679 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
680 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
681 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
682 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
683 e->state = ENVSYS_SVALID;
684 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
685 }
686 break;
687 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
688 if (battery_present &&
689 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
690 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
691 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
692 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
693 }
694 break;
695 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
696 if (battery_present &&
697 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
698 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
699 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
700 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
701 }
702 break;
703 }
704 }
705
706 static void
707 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
708 {
709 struct axppmic_softc *sc = sme->sme_cookie;
710
711 switch (e->private) {
712 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
713 case AXP_SENSOR_BATT_VOLTAGE:
714 case AXP_SENSOR_BATT_CHARGE_CURRENT:
715 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
716 /* Always update battery capacity and ADCs */
717 iic_acquire_bus(sc->sc_i2c, 0);
718 axppmic_sensor_update(sme, e);
719 iic_release_bus(sc->sc_i2c, 0);
720 break;
721 default:
722 /* Refresh if the sensor is not in valid state */
723 if (e->state != ENVSYS_SVALID) {
724 iic_acquire_bus(sc->sc_i2c, 0);
725 axppmic_sensor_update(sme, e);
726 iic_release_bus(sc->sc_i2c, 0);
727 }
728 break;
729 }
730 }
731
732 static int
733 axppmic_intr(void *priv)
734 {
735 struct axppmic_softc * const sc = priv;
736
737 mutex_enter(&sc->sc_intr_lock);
738
739 fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
740
741 /* Interrupt is always masked when work is scheduled! */
742 KASSERT(!sc->sc_work_scheduled);
743 sc->sc_work_scheduled = true;
744 workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
745
746 mutex_exit(&sc->sc_intr_lock);
747
748 return 1;
749 }
750
751 static void
752 axppmic_work(struct work *work, void *arg)
753 {
754 struct axppmic_softc * const sc =
755 container_of(work, struct axppmic_softc, sc_work);
756 const struct axppmic_config * const c = sc->sc_conf;
757 const int flags = 0;
758 uint8_t stat;
759 u_int n;
760
761 KASSERT(sc->sc_work_scheduled);
762
763 iic_acquire_bus(sc->sc_i2c, flags);
764 for (n = 1; n <= c->irq_regs; n++) {
765 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
766 if (stat != 0) {
767 axppmic_write(sc->sc_i2c, sc->sc_addr,
768 AXP_IRQ_STATUS_REG(n), stat, flags);
769 }
770
771 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
772 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
773 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
774 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
775 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
776 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
777 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
778 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
779 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
780 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
781 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
782 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
783 }
784 }
785 iic_release_bus(sc->sc_i2c, flags);
786
787 mutex_enter(&sc->sc_intr_lock);
788 sc->sc_work_scheduled = false;
789 fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
790 mutex_exit(&sc->sc_intr_lock);
791 }
792
793 static void
794 axppmic_attach_acadapter(struct axppmic_softc *sc)
795 {
796 envsys_data_t *e;
797
798 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
799 e->private = AXP_SENSOR_ACIN_PRESENT;
800 e->units = ENVSYS_INDICATOR;
801 e->state = ENVSYS_SINVALID;
802 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
803 sysmon_envsys_sensor_attach(sc->sc_sme, e);
804
805 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
806 e->private = AXP_SENSOR_VBUS_PRESENT;
807 e->units = ENVSYS_INDICATOR;
808 e->state = ENVSYS_SINVALID;
809 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
810 sysmon_envsys_sensor_attach(sc->sc_sme, e);
811 }
812
813 static void
814 axppmic_attach_battery(struct axppmic_softc *sc)
815 {
816 const struct axppmic_config *c = sc->sc_conf;
817 envsys_data_t *e;
818 uint8_t val;
819
820 iic_acquire_bus(sc->sc_i2c, 0);
821 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
822 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
823 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
824 }
825 iic_release_bus(sc->sc_i2c, 0);
826
827 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
828 e->private = AXP_SENSOR_BATT_PRESENT;
829 e->units = ENVSYS_INDICATOR;
830 e->state = ENVSYS_SINVALID;
831 strlcpy(e->desc, "battery present", sizeof(e->desc));
832 sysmon_envsys_sensor_attach(sc->sc_sme, e);
833
834 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
835 e->private = AXP_SENSOR_BATT_CHARGING;
836 e->units = ENVSYS_BATTERY_CHARGE;
837 e->state = ENVSYS_SINVALID;
838 strlcpy(e->desc, "charging", sizeof(e->desc));
839 sysmon_envsys_sensor_attach(sc->sc_sme, e);
840
841 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
842 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
843 e->units = ENVSYS_BATTERY_CAPACITY;
844 e->flags = ENVSYS_FMONSTCHANGED;
845 e->state = ENVSYS_SINVALID;
846 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
847 strlcpy(e->desc, "charge state", sizeof(e->desc));
848 sysmon_envsys_sensor_attach(sc->sc_sme, e);
849
850 if (c->batsense_step) {
851 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
852 e->private = AXP_SENSOR_BATT_VOLTAGE;
853 e->units = ENVSYS_SVOLTS_DC;
854 e->state = ENVSYS_SINVALID;
855 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
856 sysmon_envsys_sensor_attach(sc->sc_sme, e);
857 }
858
859 if (c->charge_step) {
860 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
861 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
862 e->units = ENVSYS_SAMPS;
863 e->state = ENVSYS_SINVALID;
864 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
865 sysmon_envsys_sensor_attach(sc->sc_sme, e);
866 }
867
868 if (c->discharge_step) {
869 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
870 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
871 e->units = ENVSYS_SAMPS;
872 e->state = ENVSYS_SINVALID;
873 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
874 sysmon_envsys_sensor_attach(sc->sc_sme, e);
875 }
876
877 if (c->has_fuel_gauge) {
878 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
879 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
880 e->units = ENVSYS_INTEGER;
881 e->state = ENVSYS_SINVALID;
882 e->flags = ENVSYS_FPERCENT;
883 strlcpy(e->desc, "battery percent", sizeof(e->desc));
884 sysmon_envsys_sensor_attach(sc->sc_sme, e);
885 }
886
887 if (c->maxcap_step) {
888 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
889 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
890 e->units = ENVSYS_SAMPHOUR;
891 e->state = ENVSYS_SINVALID;
892 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
893 sysmon_envsys_sensor_attach(sc->sc_sme, e);
894 }
895
896 if (c->coulomb_step) {
897 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
898 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
899 e->units = ENVSYS_SAMPHOUR;
900 e->state = ENVSYS_SINVALID;
901 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
902 sysmon_envsys_sensor_attach(sc->sc_sme, e);
903 }
904 }
905
906 static void
907 axppmic_attach_sensors(struct axppmic_softc *sc)
908 {
909 if (sc->sc_conf->has_battery) {
910 sc->sc_sme = sysmon_envsys_create();
911 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
912 sc->sc_sme->sme_cookie = sc;
913 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
914 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
915 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
916
917 axppmic_attach_acadapter(sc);
918 axppmic_attach_battery(sc);
919
920 sysmon_envsys_register(sc->sc_sme);
921 }
922 }
923
924
925 static int
926 axppmic_match(device_t parent, cfdata_t match, void *aux)
927 {
928 struct i2c_attach_args *ia = aux;
929 int match_result;
930
931 if (iic_use_direct_match(ia, match, compat_data, &match_result))
932 return match_result;
933
934 /* This device is direct-config only. */
935
936 return 0;
937 }
938
939 static void
940 axppmic_attach(device_t parent, device_t self, void *aux)
941 {
942 struct axppmic_softc *sc = device_private(self);
943 const struct device_compatible_entry *dce = NULL;
944 const struct axppmic_config *c;
945 struct axpreg_attach_args aaa;
946 struct i2c_attach_args *ia = aux;
947 int phandle, child, i;
948 uint8_t irq_mask, val;
949 int error;
950
951 dce = iic_compatible_lookup(ia, compat_data);
952 KASSERT(dce != NULL);
953 c = dce->data;
954
955 sc->sc_dev = self;
956 sc->sc_i2c = ia->ia_tag;
957 sc->sc_addr = ia->ia_addr;
958 sc->sc_phandle = ia->ia_cookie;
959 sc->sc_conf = c;
960
961 aprint_naive("\n");
962 aprint_normal(": %s\n", c->name);
963
964 if (c->has_mode_set) {
965 const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
966 of_hasprop(sc->sc_phandle, "x-powers,master-mode");
967
968 iic_acquire_bus(sc->sc_i2c, 0);
969 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
970 master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
971 iic_release_bus(sc->sc_i2c, 0);
972 }
973
974 iic_acquire_bus(sc->sc_i2c, 0);
975 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
976 iic_release_bus(sc->sc_i2c, 0);
977 if (error != 0) {
978 aprint_error_dev(self, "couldn't read chipid\n");
979 return;
980 }
981 aprint_debug_dev(self, "chipid %#x\n", val);
982
983 sc->sc_smpsw.smpsw_name = device_xname(self);
984 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
985 sysmon_pswitch_register(&sc->sc_smpsw);
986
987 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
988
989 if (c->irq_regs > 0) {
990 char intrstr[128];
991
992 if (!fdtbus_intr_str(sc->sc_phandle, 0,
993 intrstr, sizeof(intrstr))) {
994 aprint_error_dev(self,
995 "WARNING: failed to decode interrupt\n");
996 }
997
998 sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
999 FDT_INTR_MPSAFE,
1000 axppmic_intr, sc);
1001 if (sc->sc_ih == NULL) {
1002 aprint_error_dev(self,
1003 "WARNING: couldn't establish interrupt handler\n");
1004 }
1005
1006 error = workqueue_create(&sc->sc_wq, device_xname(self),
1007 axppmic_work, NULL,
1008 PRI_SOFTSERIAL, IPL_VM,
1009 WQ_MPSAFE);
1010 if (error) {
1011 sc->sc_wq = NULL;
1012 aprint_error_dev(self,
1013 "WARNING: couldn't create work queue: error %d\n",
1014 error);
1015 }
1016
1017 if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1018 iic_acquire_bus(sc->sc_i2c, 0);
1019 for (i = 1; i <= c->irq_regs; i++) {
1020 irq_mask = 0;
1021 if (i == c->poklirq.reg)
1022 irq_mask |= c->poklirq.mask;
1023 if (i == c->acinirq.reg)
1024 irq_mask |= c->acinirq.mask;
1025 if (i == c->vbusirq.reg)
1026 irq_mask |= c->vbusirq.mask;
1027 if (i == c->battirq.reg)
1028 irq_mask |= c->battirq.mask;
1029 if (i == c->chargeirq.reg)
1030 irq_mask |= c->chargeirq.mask;
1031 if (i == c->chargestirq.reg)
1032 irq_mask |= c->chargestirq.mask;
1033 axppmic_write(sc->sc_i2c, sc->sc_addr,
1034 AXP_IRQ_ENABLE_REG(i),
1035 irq_mask, 0);
1036 }
1037 iic_release_bus(sc->sc_i2c, 0);
1038 }
1039 }
1040
1041 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1042 &axppmic_power_funcs);
1043
1044 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1045 if (phandle > 0) {
1046 aaa.reg_i2c = sc->sc_i2c;
1047 aaa.reg_addr = sc->sc_addr;
1048 for (i = 0; i < c->ncontrols; i++) {
1049 const struct axppmic_ctrl *ctrl = &c->controls[i];
1050 child = of_find_firstchild_byname(phandle, ctrl->c_name);
1051 if (child <= 0)
1052 continue;
1053 aaa.reg_ctrl = ctrl;
1054 aaa.reg_phandle = child;
1055 config_found(sc->sc_dev, &aaa, NULL, CFARG_EOL);
1056 }
1057 }
1058
1059 if (c->has_battery)
1060 axppmic_attach_sensors(sc);
1061 }
1062
1063 static int
1064 axpreg_acquire(device_t dev)
1065 {
1066 return 0;
1067 }
1068
1069 static void
1070 axpreg_release(device_t dev)
1071 {
1072 }
1073
1074 static int
1075 axpreg_enable(device_t dev, bool enable)
1076 {
1077 struct axpreg_softc *sc = device_private(dev);
1078 const struct axppmic_ctrl *c = sc->sc_ctrl;
1079 const int flags = 0;
1080 uint8_t val;
1081 int error;
1082
1083 if (!c->c_enable_mask)
1084 return EINVAL;
1085
1086 iic_acquire_bus(sc->sc_i2c, flags);
1087 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1088 val &= ~c->c_enable_mask;
1089 if (enable)
1090 val |= c->c_enable_val;
1091 else
1092 val |= c->c_disable_val;
1093 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1094 }
1095 iic_release_bus(sc->sc_i2c, flags);
1096
1097 return error;
1098 }
1099
1100 static int
1101 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1102 {
1103 struct axpreg_softc *sc = device_private(dev);
1104 const struct axppmic_ctrl *c = sc->sc_ctrl;
1105
1106 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1107 min_uvol / 1000, max_uvol / 1000);
1108 }
1109
1110 static int
1111 axpreg_get_voltage(device_t dev, u_int *puvol)
1112 {
1113 struct axpreg_softc *sc = device_private(dev);
1114 const struct axppmic_ctrl *c = sc->sc_ctrl;
1115 int error;
1116 u_int vol;
1117
1118 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1119 if (error)
1120 return error;
1121
1122 *puvol = vol * 1000;
1123 return 0;
1124 }
1125
1126 static struct fdtbus_regulator_controller_func axpreg_funcs = {
1127 .acquire = axpreg_acquire,
1128 .release = axpreg_release,
1129 .enable = axpreg_enable,
1130 .set_voltage = axpreg_set_voltage,
1131 .get_voltage = axpreg_get_voltage,
1132 };
1133
1134 static int
1135 axpreg_match(device_t parent, cfdata_t match, void *aux)
1136 {
1137 return 1;
1138 }
1139
1140 static void
1141 axpreg_attach(device_t parent, device_t self, void *aux)
1142 {
1143 struct axpreg_softc *sc = device_private(self);
1144 struct axpreg_attach_args *aaa = aux;
1145 const int phandle = aaa->reg_phandle;
1146 const char *name;
1147 u_int uvol, min_uvol, max_uvol;
1148
1149 sc->sc_dev = self;
1150 sc->sc_i2c = aaa->reg_i2c;
1151 sc->sc_addr = aaa->reg_addr;
1152 sc->sc_ctrl = aaa->reg_ctrl;
1153
1154 fdtbus_register_regulator_controller(self, phandle,
1155 &axpreg_funcs);
1156
1157 aprint_naive("\n");
1158 name = fdtbus_get_string(phandle, "regulator-name");
1159 if (name)
1160 aprint_normal(": %s\n", name);
1161 else
1162 aprint_normal("\n");
1163
1164 axpreg_get_voltage(self, &uvol);
1165 if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1166 of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1167 if (uvol < min_uvol || uvol > max_uvol) {
1168 aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1169 uvol, min_uvol, max_uvol);
1170 axpreg_set_voltage(self, min_uvol, max_uvol);
1171 }
1172 }
1173
1174 if (of_hasprop(phandle, "regulator-always-on") ||
1175 of_hasprop(phandle, "regulator-boot-on")) {
1176 axpreg_enable(self, true);
1177 }
1178 }
1179
1180 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1181 axppmic_match, axppmic_attach, NULL, NULL);
1182
1183 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1184 axpreg_match, axpreg_attach, NULL, NULL);
1185