Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.38
      1 /* $NetBSD: axppmic.c,v 1.38 2025/01/04 14:35:49 skrll Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.38 2025/01/04 14:35:49 skrll Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/conf.h>
     37 #include <sys/bus.h>
     38 #include <sys/kmem.h>
     39 #include <sys/workqueue.h>
     40 
     41 #include <dev/i2c/i2cvar.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 #include <dev/sysmon/sysmon_taskq.h>
     45 
     46 #include <dev/fdt/fdtvar.h>
     47 
     48 #define	AXP_POWER_SOURCE_REG	0x00
     49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52 
     53 #define	AXP_POWER_MODE_REG	0x01
     54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57 
     58 #define	AXP_CHIP_ID_REG		0x03
     59 
     60 #define AXP_POWER_DISABLE_REG	0x32
     61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     62 
     63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     69 
     70 #define	AXP_BATSENSE_HI_REG	0x78
     71 #define	AXP_BATSENSE_LO_REG	0x79
     72 
     73 #define	AXP_BATTCHG_HI_REG	0x7a
     74 #define	AXP_BATTCHG_LO_REG	0x7b
     75 
     76 #define	AXP_BATTDISCHG_HI_REG	0x7c
     77 #define	AXP_BATTDISCHG_LO_REG	0x7d
     78 
     79 #define	AXP_ADC_RAW(_hi, _lo)	\
     80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     81 
     82 #define	AXP_GPIO_CTRL_REG(pin)	(0x90 + (pin) * 2)
     83 #define	 AXP_GPIO_CTRL_FUNC_MASK 	__BITS(2,0)
     84 #define	 AXP_GPIO_CTRL_FUNC_LOW	 	0
     85 #define	 AXP_GPIO_CTRL_FUNC_HIGH	1
     86 #define	 AXP_GPIO_CTRL_FUNC_INPUT	2
     87 #define	AXP_GPIO_SIGNAL_REG	0x94
     88 
     89 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     90 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     91 
     92 #define	AXP_BATT_CAP_REG	0xb9
     93 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     94 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     95 
     96 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     97 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     98 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     99 
    100 #define	AXP_BATT_COULOMB_HI_REG	0xe2
    101 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
    102 #define	AXP_BATT_COULOMB_LO_REG	0xe3
    103 
    104 #define	AXP_COULOMB_RAW(_hi, _lo)	\
    105 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
    106 
    107 #define	AXP_BATT_CAP_WARN_REG	0xe6
    108 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    109 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    110 
    111 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    112 #define	 AXP_ADDR_EXT_MASTER	0
    113 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    114 
    115 struct axppmic_ctrl {
    116 	device_t	c_dev;
    117 
    118 	const char *	c_name;
    119 	u_int		c_min;
    120 	u_int		c_max;
    121 	u_int		c_step1;
    122 	u_int		c_step1cnt;
    123 	u_int		c_step2;
    124 	u_int		c_step2cnt;
    125 	u_int		c_step2start;
    126 
    127 	uint8_t		c_enable_reg;
    128 	uint8_t		c_enable_mask;
    129 	uint8_t		c_enable_val;
    130 	uint8_t		c_disable_val;
    131 
    132 	uint8_t		c_voltage_reg;
    133 	uint8_t		c_voltage_mask;
    134 };
    135 
    136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    138 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    139 	  .c_step2 = 0, .c_step2cnt = 0,				\
    140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    143 
    144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    147 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    148 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    149 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    150 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    151 
    152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
    153 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    154 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    155 	  .c_step2start = (step2start),					\
    156 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    158 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    160 
    161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
    162 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    163 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    164 	  .c_step2 = 0, .c_step2cnt = 0,				\
    165 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    166 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
    167 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    168 
    169 #define AXP_CTRL_SW(name, ereg, emask)					\
    170 	{ .c_name = (name), 						\
    171 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    172 	  .c_enable_val = (emask), .c_disable_val = 0 }
    173 
    174 static const struct axppmic_ctrl axp803_ctrls[] = {
    175 	AXP_CTRL("dldo1", 700, 3300, 100,
    176 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    177 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    178 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    179 	AXP_CTRL("dldo3", 700, 3300, 100,
    180 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    181 	AXP_CTRL("dldo4", 700, 3300, 100,
    182 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    183 	AXP_CTRL("eldo1", 700, 1900, 50,
    184 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    185 	AXP_CTRL("eldo2", 700, 1900, 50,
    186 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    187 	AXP_CTRL("eldo3", 700, 1900, 50,
    188 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    189 	AXP_CTRL("fldo1", 700, 1450, 50,
    190 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    191 	AXP_CTRL("fldo2", 700, 1450, 50,
    192 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    193 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    194 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    195 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    196 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    197 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    198 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    199 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    200 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    201 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    202 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    203 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    204 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    205 	AXP_CTRL("aldo1", 700, 3300, 100,
    206 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    207 	AXP_CTRL("aldo2", 700, 3300, 100,
    208 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    209 	AXP_CTRL("aldo3", 700, 3300, 100,
    210 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    211 };
    212 
    213 static const struct axppmic_ctrl axp805_ctrls[] = {
    214 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    215 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    216 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    217 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    218 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    219 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    220 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    221 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    222 	AXP_CTRL("dcdce", 1100, 3400, 100,
    223 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    224 	AXP_CTRL("aldo1", 700, 3300, 100,
    225 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    226 	AXP_CTRL("aldo2", 700, 3400, 100,
    227 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    228 	AXP_CTRL("aldo3", 700, 3300, 100,
    229 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    230 	AXP_CTRL("bldo1", 700, 1900, 100,
    231 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    232 	AXP_CTRL("bldo2", 700, 1900, 100,
    233 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    234 	AXP_CTRL("bldo3", 700, 1900, 100,
    235 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    236 	AXP_CTRL("bldo4", 700, 1900, 100,
    237 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    238 	AXP_CTRL("cldo1", 700, 3300, 100,
    239 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    240 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    241 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    242 	AXP_CTRL("cldo3", 700, 3300, 100,
    243 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    244 };
    245 
    246 static const struct axppmic_ctrl axp809_ctrls[] = {
    247 	AXP_CTRL("dc5ldo", 700, 1400, 100,
    248 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
    249 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    250 		0x10, __BIT(1), 0x21, __BITS(4,0)),
    251 	AXP_CTRL("dcdc2", 600, 1540, 20,
    252 		0x10, __BIT(2), 0x22, __BITS(5,0)),
    253 	AXP_CTRL("dcdc3", 600, 1860, 20,
    254 		0x10, __BIT(3), 0x23, __BITS(5,0)),
    255 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
    256 		0x10, __BIT(4), 0x24, __BITS(5,0)),
    257 	AXP_CTRL("dcdc5", 1000, 2550, 50,
    258 		0x10, __BIT(5), 0x25, __BITS(4,0)),
    259 	AXP_CTRL("aldo1", 700, 3300, 100,
    260 		0x10, __BIT(6), 0x28, __BITS(4,0)),
    261 	AXP_CTRL("aldo2", 700, 3300, 100,
    262 		0x10, __BIT(7), 0x29, __BITS(4,0)),
    263 	AXP_CTRL("eldo1", 700, 3300, 100,
    264 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    265 	AXP_CTRL("eldo2", 700, 3300, 100,
    266 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    267 	AXP_CTRL("eldo3", 700, 3300, 100,
    268 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    269 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
    270 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    271 	AXP_CTRL("dldo2", 700, 3300, 100,
    272 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    273 	AXP_CTRL("aldo3", 700, 3300, 100,
    274 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
    275 	AXP_CTRL_SW("sw",
    276 		0x12, __BIT(6)),
    277 	/* dc1sw is another switch for dcdc1 */
    278 	AXP_CTRL("dc1sw", 1600, 3400, 100,
    279 		0x12, __BIT(7), 0x21, __BITS(4,0)),
    280 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
    281 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
    282 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
    283 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
    284 };
    285 
    286 static const struct axppmic_ctrl axp813_ctrls[] = {
    287 	AXP_CTRL("dldo1", 700, 3300, 100,
    288 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    289 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    290 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    291 	AXP_CTRL("dldo3", 700, 3300, 100,
    292 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    293 	AXP_CTRL("dldo4", 700, 3300, 100,
    294 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    295 	AXP_CTRL("eldo1", 700, 1900, 50,
    296 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    297 	AXP_CTRL("eldo2", 700, 1900, 50,
    298 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    299 	AXP_CTRL("eldo3", 700, 1900, 50,
    300 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    301 	AXP_CTRL("fldo1", 700, 1450, 50,
    302 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    303 	AXP_CTRL("fldo2", 700, 1450, 50,
    304 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    305 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    306 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    307 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    308 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    309 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    310 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    311 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    312 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    313 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    314 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    315 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    316 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    317 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    318 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    319 	AXP_CTRL("aldo1", 700, 3300, 100,
    320 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    321 	AXP_CTRL("aldo2", 700, 3300, 100,
    322 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    323 	AXP_CTRL("aldo3", 700, 3300, 100,
    324 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    325 };
    326 
    327 struct axppmic_irq {
    328 	u_int reg;
    329 	uint8_t mask;
    330 };
    331 
    332 #define	AXPPMIC_IRQ(_reg, _mask)	\
    333 	{ .reg = (_reg), .mask = (_mask) }
    334 
    335 struct axppmic_config {
    336 	const char *name;
    337 	const char *gpio_compat;
    338 	u_int gpio_npins;
    339 	const struct axppmic_ctrl *controls;
    340 	u_int ncontrols;
    341 	u_int irq_regs;
    342 	bool has_battery;
    343 	bool has_fuel_gauge;
    344 	bool has_mode_set;
    345 	struct axppmic_irq poklirq;
    346 	struct axppmic_irq acinirq;
    347 	struct axppmic_irq vbusirq;
    348 	struct axppmic_irq battirq;
    349 	struct axppmic_irq chargeirq;
    350 	struct axppmic_irq chargestirq;
    351 	u_int batsense_step;	/* uV */
    352 	u_int charge_step;	/* uA */
    353 	u_int discharge_step;	/* uA */
    354 	u_int maxcap_step;	/* uAh */
    355 	u_int coulomb_step;	/* uAh */
    356 };
    357 
    358 enum axppmic_sensor {
    359 	AXP_SENSOR_ACIN_PRESENT,
    360 	AXP_SENSOR_VBUS_PRESENT,
    361 	AXP_SENSOR_BATT_PRESENT,
    362 	AXP_SENSOR_BATT_CHARGING,
    363 	AXP_SENSOR_BATT_CHARGE_STATE,
    364 	AXP_SENSOR_BATT_VOLTAGE,
    365 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    366 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    367 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    368 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    369 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    370 	AXP_NSENSORS
    371 };
    372 
    373 struct axppmic_softc {
    374 	device_t	sc_dev;
    375 	i2c_tag_t	sc_i2c;
    376 	i2c_addr_t	sc_addr;
    377 	int		sc_phandle;
    378 
    379 	void		*sc_ih;
    380 	struct workqueue *sc_wq;
    381 
    382 	kmutex_t	sc_intr_lock;
    383 	struct work	sc_work;
    384 	bool		sc_work_scheduled;
    385 
    386 	const struct axppmic_config *sc_conf;
    387 
    388 	struct sysmon_pswitch sc_smpsw;
    389 
    390 	struct sysmon_envsys *sc_sme;
    391 
    392 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    393 
    394 	u_int		sc_warn_thres;
    395 	u_int		sc_shut_thres;
    396 };
    397 
    398 struct axppmic_gpio_pin {
    399 	struct axppmic_softc *pin_sc;
    400 	u_int pin_nr;
    401 	int pin_flags;
    402 	bool pin_actlo;
    403 };
    404 
    405 struct axpreg_softc {
    406 	device_t	sc_dev;
    407 	i2c_tag_t	sc_i2c;
    408 	i2c_addr_t	sc_addr;
    409 	const struct axppmic_ctrl *sc_ctrl;
    410 };
    411 
    412 struct axpreg_attach_args {
    413 	const struct axppmic_ctrl *reg_ctrl;
    414 	int		reg_phandle;
    415 	i2c_tag_t	reg_i2c;
    416 	i2c_addr_t	reg_addr;
    417 };
    418 
    419 static const struct axppmic_config axp803_config = {
    420 	.name = "AXP803",
    421 	.gpio_compat = "x-powers,axp803-gpio",
    422 	.gpio_npins = 2,
    423 	.controls = axp803_ctrls,
    424 	.ncontrols = __arraycount(axp803_ctrls),
    425 	.irq_regs = 6,
    426 	.has_battery = true,
    427 	.has_fuel_gauge = true,
    428 	.batsense_step = 1100,
    429 	.charge_step = 1000,
    430 	.discharge_step = 1000,
    431 	.maxcap_step = 1456,
    432 	.coulomb_step = 1456,
    433 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    434 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    435 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    436 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    437 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    438 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    439 };
    440 
    441 static const struct axppmic_config axp805_config = {
    442 	.name = "AXP805",
    443 	.controls = axp805_ctrls,
    444 	.ncontrols = __arraycount(axp805_ctrls),
    445 	.irq_regs = 2,
    446 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    447 };
    448 
    449 static const struct axppmic_config axp806_config = {
    450 	.name = "AXP806",
    451 	.controls = axp805_ctrls,
    452 	.ncontrols = __arraycount(axp805_ctrls),
    453 #if notyet
    454 	.irq_regs = 2,
    455 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    456 #endif
    457 	.has_mode_set = true,
    458 };
    459 
    460 static const struct axppmic_config axp809_config = {
    461 	.name = "AXP809",
    462 	.controls = axp809_ctrls,
    463 	.ncontrols = __arraycount(axp809_ctrls),
    464 };
    465 
    466 static const struct axppmic_config axp813_config = {
    467 	.name = "AXP813",
    468 	.gpio_compat = "x-powers,axp813-gpio",
    469 	.gpio_npins = 2,
    470 	.controls = axp813_ctrls,
    471 	.ncontrols = __arraycount(axp813_ctrls),
    472 	.irq_regs = 6,
    473 	.has_battery = true,
    474 	.has_fuel_gauge = true,
    475 	.batsense_step = 1100,
    476 	.charge_step = 1000,
    477 	.discharge_step = 1000,
    478 	.maxcap_step = 1456,
    479 	.coulomb_step = 1456,
    480 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    481 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    482 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    483 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    484 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    485 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    486 };
    487 
    488 static const struct device_compatible_entry compat_data[] = {
    489 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
    490 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
    491 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
    492 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
    493 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
    494 	DEVICE_COMPAT_EOL
    495 };
    496 
    497 static int
    498 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    499 {
    500 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    501 }
    502 
    503 static int
    504 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    505 {
    506 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    507 }
    508 
    509 static int
    510 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    511 {
    512 	u_int vol, reg_val;
    513 	int nstep, error;
    514 	uint8_t val;
    515 
    516 	if (!c->c_voltage_mask)
    517 		return EINVAL;
    518 
    519 	if (min < c->c_min || min > c->c_max)
    520 		return EINVAL;
    521 
    522 	reg_val = 0;
    523 	nstep = 1;
    524 	vol = c->c_min;
    525 
    526 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    527 		++reg_val;
    528 		vol += c->c_step1;
    529 	}
    530 
    531 	if (c->c_step2start)
    532 		vol = c->c_step2start;
    533 
    534 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    535 		++reg_val;
    536 		vol += c->c_step2;
    537 	}
    538 
    539 	if (vol > max)
    540 		return EINVAL;
    541 
    542 	iic_acquire_bus(tag, 0);
    543 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
    544 		val &= ~c->c_voltage_mask;
    545 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    546 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
    547 	}
    548 	iic_release_bus(tag, 0);
    549 
    550 	return error;
    551 }
    552 
    553 static int
    554 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    555 {
    556 	int reg_val, error;
    557 	uint8_t val;
    558 
    559 	if (!c->c_voltage_mask)
    560 		return EINVAL;
    561 
    562 	iic_acquire_bus(tag, 0);
    563 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
    564 	iic_release_bus(tag, 0);
    565 	if (error)
    566 		return error;
    567 
    568 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    569 	if (reg_val < c->c_step1cnt) {
    570 		*pvol = c->c_min + reg_val * c->c_step1;
    571 	} else if (c->c_step2start) {
    572 		*pvol = c->c_step2start +
    573 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    574 	} else {
    575 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    576 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    577 	}
    578 
    579 	return 0;
    580 }
    581 
    582 static void
    583 axppmic_power_poweroff(device_t dev)
    584 {
    585 	struct axppmic_softc *sc = device_private(dev);
    586 	int error;
    587 
    588 	delay(1000000);
    589 
    590 	error = iic_acquire_bus(sc->sc_i2c, 0);
    591 	if (error == 0) {
    592 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    593 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
    594 		iic_release_bus(sc->sc_i2c, 0);
    595 	}
    596 	if (error) {
    597 		device_printf(dev, "WARNING: unable to power off, error %d\n",
    598 		    error);
    599 	}
    600 }
    601 
    602 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    603 	.poweroff = axppmic_power_poweroff,
    604 };
    605 
    606 static int
    607 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
    608 {
    609 	uint8_t val;
    610 	int error;
    611 
    612 	KASSERT(pin < sc->sc_conf->gpio_npins);
    613 	KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
    614 
    615 	iic_acquire_bus(sc->sc_i2c, 0);
    616 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
    617 	    &val, 0);
    618 	if (error == 0) {
    619 		val &= ~AXP_GPIO_CTRL_FUNC_MASK;
    620 		val |= func;
    621 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    622 		    AXP_GPIO_CTRL_REG(pin), val, 0);
    623 	}
    624 	iic_release_bus(sc->sc_i2c, 0);
    625 
    626 	return error;
    627 }
    628 
    629 static void *
    630 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
    631 {
    632 	struct axppmic_softc *sc = device_private(dev);
    633 	struct axppmic_gpio_pin *gpin;
    634 	const u_int *gpio = data;
    635 	int error;
    636 
    637 	if (len != 12) {
    638 		return NULL;
    639 	}
    640 
    641 	const uint8_t pin = be32toh(gpio[1]) & 0xff;
    642 	const bool actlo = be32toh(gpio[2]) & 1;
    643 
    644 	if (pin >= sc->sc_conf->gpio_npins) {
    645 		return NULL;
    646 	}
    647 
    648 	if ((flags & GPIO_PIN_INPUT) != 0) {
    649 		error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
    650 		if (error != 0) {
    651 			return NULL;
    652 		}
    653 	}
    654 
    655 	gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
    656 	gpin->pin_sc = sc;
    657 	gpin->pin_nr = pin;
    658 	gpin->pin_flags = flags;
    659 	gpin->pin_actlo = actlo;
    660 
    661 	return gpin;
    662 }
    663 
    664 static void
    665 axppmic_gpio_release(device_t dev, void *priv)
    666 {
    667 	struct axppmic_softc *sc = device_private(dev);
    668 	struct axppmic_gpio_pin *gpin = priv;
    669 
    670 	axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
    671 
    672 	kmem_free(gpin, sizeof(*gpin));
    673 }
    674 
    675 static int
    676 axppmic_gpio_read(device_t dev, void *priv, bool raw)
    677 {
    678 	struct axppmic_softc *sc = device_private(dev);
    679 	struct axppmic_gpio_pin *gpin = priv;
    680 	uint8_t data;
    681 	int error, val;
    682 
    683 	KASSERT(sc == gpin->pin_sc);
    684 
    685 	const uint8_t data_mask = __BIT(gpin->pin_nr);
    686 
    687 	iic_acquire_bus(sc->sc_i2c, 0);
    688 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
    689 	    &data, 0);
    690 	iic_release_bus(sc->sc_i2c, 0);
    691 
    692 	if (error != 0) {
    693 		device_printf(dev, "WARNING: failed to read pin %d: %d\n",
    694 		    gpin->pin_nr, error);
    695 		val = 0;
    696 	} else {
    697 		val = __SHIFTOUT(data, data_mask);
    698 	}
    699 	if (!raw && gpin->pin_actlo) {
    700 		val = !val;
    701 	}
    702 
    703 	return val;
    704 }
    705 
    706 static void
    707 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
    708 {
    709 	struct axppmic_softc *sc = device_private(dev);
    710 	struct axppmic_gpio_pin *gpin = priv;
    711 	int error;
    712 
    713 	if (!raw && gpin->pin_actlo) {
    714 		val = !val;
    715 	}
    716 
    717 	error = axppmic_gpio_ctl(sc, gpin->pin_nr,
    718 	    val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
    719 	if (error != 0) {
    720 		device_printf(dev, "WARNING: failed to write pin %d: %d\n",
    721 		    gpin->pin_nr, error);
    722 	}
    723 }
    724 
    725 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
    726 	.acquire = axppmic_gpio_acquire,
    727 	.release = axppmic_gpio_release,
    728 	.read = axppmic_gpio_read,
    729 	.write = axppmic_gpio_write,
    730 };
    731 
    732 static void
    733 axppmic_task_shut(void *priv)
    734 {
    735 	struct axppmic_softc *sc = priv;
    736 
    737 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    738 }
    739 
    740 static void
    741 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    742 {
    743 	struct axppmic_softc *sc = sme->sme_cookie;
    744 	const struct axppmic_config *c = sc->sc_conf;
    745 	uint8_t val, lo, hi;
    746 
    747 	e->state = ENVSYS_SINVALID;
    748 
    749 	const bool battery_present =
    750 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    751 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    752 
    753 	switch (e->private) {
    754 	case AXP_SENSOR_ACIN_PRESENT:
    755 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    756 			e->state = ENVSYS_SVALID;
    757 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    758 		}
    759 		break;
    760 	case AXP_SENSOR_VBUS_PRESENT:
    761 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    762 			e->state = ENVSYS_SVALID;
    763 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    764 		}
    765 		break;
    766 	case AXP_SENSOR_BATT_PRESENT:
    767 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    768 			if (val & AXP_POWER_MODE_BATT_VALID) {
    769 				e->state = ENVSYS_SVALID;
    770 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    771 			}
    772 		}
    773 		break;
    774 	case AXP_SENSOR_BATT_CHARGING:
    775 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    776 			e->state = ENVSYS_SVALID;
    777 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    778 		}
    779 		break;
    780 	case AXP_SENSOR_BATT_CHARGE_STATE:
    781 		if (battery_present &&
    782 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    783 		    (val & AXP_BATT_CAP_VALID) != 0) {
    784 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    785 			if (batt_val <= sc->sc_shut_thres) {
    786 				e->state = ENVSYS_SCRITICAL;
    787 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    788 			} else if (batt_val <= sc->sc_warn_thres) {
    789 				e->state = ENVSYS_SWARNUNDER;
    790 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    791 			} else {
    792 				e->state = ENVSYS_SVALID;
    793 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    794 			}
    795 		}
    796 		break;
    797 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    798 		if (battery_present &&
    799 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    800 		    (val & AXP_BATT_CAP_VALID) != 0) {
    801 			e->state = ENVSYS_SVALID;
    802 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    803 		}
    804 		break;
    805 	case AXP_SENSOR_BATT_VOLTAGE:
    806 		if (battery_present &&
    807 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
    808 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
    809 			e->state = ENVSYS_SVALID;
    810 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    811 		}
    812 		break;
    813 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    814 		if (battery_present &&
    815 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    816 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    817 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
    818 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
    819 			e->state = ENVSYS_SVALID;
    820 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    821 		}
    822 		break;
    823 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    824 		if (battery_present &&
    825 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    826 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    827 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
    828 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
    829 			e->state = ENVSYS_SVALID;
    830 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    831 		}
    832 		break;
    833 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    834 		if (battery_present &&
    835 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
    836 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
    837 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    838 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    839 		}
    840 		break;
    841 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    842 		if (battery_present &&
    843 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
    844 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
    845 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    846 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    847 		}
    848 		break;
    849 	}
    850 }
    851 
    852 static void
    853 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    854 {
    855 	struct axppmic_softc *sc = sme->sme_cookie;
    856 
    857 	switch (e->private) {
    858 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    859 	case AXP_SENSOR_BATT_VOLTAGE:
    860 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    861 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    862 		/* Always update battery capacity and ADCs */
    863 		iic_acquire_bus(sc->sc_i2c, 0);
    864 		axppmic_sensor_update(sme, e);
    865 		iic_release_bus(sc->sc_i2c, 0);
    866 		break;
    867 	default:
    868 		/* Refresh if the sensor is not in valid state */
    869 		if (e->state != ENVSYS_SVALID) {
    870 			iic_acquire_bus(sc->sc_i2c, 0);
    871 			axppmic_sensor_update(sme, e);
    872 			iic_release_bus(sc->sc_i2c, 0);
    873 		}
    874 		break;
    875 	}
    876 }
    877 
    878 static int
    879 axppmic_intr(void *priv)
    880 {
    881 	struct axppmic_softc * const sc = priv;
    882 
    883 	mutex_enter(&sc->sc_intr_lock);
    884 
    885 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
    886 
    887 	/* Interrupt is always masked when work is scheduled! */
    888 	KASSERT(!sc->sc_work_scheduled);
    889 	sc->sc_work_scheduled = true;
    890 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
    891 
    892 	mutex_exit(&sc->sc_intr_lock);
    893 
    894 	return 1;
    895 }
    896 
    897 static void
    898 axppmic_work(struct work *work, void *arg)
    899 {
    900 	struct axppmic_softc * const sc =
    901 	    container_of(work, struct axppmic_softc, sc_work);
    902 	const struct axppmic_config * const c = sc->sc_conf;
    903 	const int flags = 0;
    904 	uint8_t stat;
    905 	u_int n;
    906 
    907 	KASSERT(sc->sc_work_scheduled);
    908 
    909 	iic_acquire_bus(sc->sc_i2c, flags);
    910 	for (n = 1; n <= c->irq_regs; n++) {
    911 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    912 			if (stat != 0) {
    913 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    914 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    915 			}
    916 
    917 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    918 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    919 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    920 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    921 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    922 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    923 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    924 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    925 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    926 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    927 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    928 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    929 		}
    930 	}
    931 	iic_release_bus(sc->sc_i2c, flags);
    932 
    933 	mutex_enter(&sc->sc_intr_lock);
    934 	sc->sc_work_scheduled = false;
    935 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
    936 	mutex_exit(&sc->sc_intr_lock);
    937 }
    938 
    939 static void
    940 axppmic_attach_acadapter(struct axppmic_softc *sc)
    941 {
    942 	envsys_data_t *e;
    943 
    944 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    945 	e->private = AXP_SENSOR_ACIN_PRESENT;
    946 	e->units = ENVSYS_INDICATOR;
    947 	e->state = ENVSYS_SINVALID;
    948 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    949 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    950 
    951 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    952 	e->private = AXP_SENSOR_VBUS_PRESENT;
    953 	e->units = ENVSYS_INDICATOR;
    954 	e->state = ENVSYS_SINVALID;
    955 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    956 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    957 }
    958 
    959 static void
    960 axppmic_attach_battery(struct axppmic_softc *sc)
    961 {
    962 	const struct axppmic_config *c = sc->sc_conf;
    963 	envsys_data_t *e;
    964 	uint8_t val;
    965 
    966 	iic_acquire_bus(sc->sc_i2c, 0);
    967 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
    968 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    969 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    970 	}
    971 	iic_release_bus(sc->sc_i2c, 0);
    972 
    973 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    974 	e->private = AXP_SENSOR_BATT_PRESENT;
    975 	e->units = ENVSYS_INDICATOR;
    976 	e->state = ENVSYS_SINVALID;
    977 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    978 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    979 
    980 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    981 	e->private = AXP_SENSOR_BATT_CHARGING;
    982 	e->units = ENVSYS_BATTERY_CHARGE;
    983 	e->state = ENVSYS_SINVALID;
    984 	strlcpy(e->desc, "charging", sizeof(e->desc));
    985 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    986 
    987 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    988 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    989 	e->units = ENVSYS_BATTERY_CAPACITY;
    990 	e->flags = ENVSYS_FMONSTCHANGED;
    991 	e->state = ENVSYS_SINVALID;
    992 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    993 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    994 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    995 
    996 	if (c->batsense_step) {
    997 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    998 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    999 		e->units = ENVSYS_SVOLTS_DC;
   1000 		e->state = ENVSYS_SINVALID;
   1001 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
   1002 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1003 	}
   1004 
   1005 	if (c->charge_step) {
   1006 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
   1007 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
   1008 		e->units = ENVSYS_SAMPS;
   1009 		e->state = ENVSYS_SINVALID;
   1010 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
   1011 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1012 	}
   1013 
   1014 	if (c->discharge_step) {
   1015 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
   1016 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
   1017 		e->units = ENVSYS_SAMPS;
   1018 		e->state = ENVSYS_SINVALID;
   1019 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
   1020 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1021 	}
   1022 
   1023 	if (c->has_fuel_gauge) {
   1024 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
   1025 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
   1026 		e->units = ENVSYS_INTEGER;
   1027 		e->state = ENVSYS_SINVALID;
   1028 		e->flags = ENVSYS_FPERCENT;
   1029 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
   1030 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1031 	}
   1032 
   1033 	if (c->maxcap_step) {
   1034 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
   1035 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
   1036 		e->units = ENVSYS_SAMPHOUR;
   1037 		e->state = ENVSYS_SINVALID;
   1038 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
   1039 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1040 	}
   1041 
   1042 	if (c->coulomb_step) {
   1043 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
   1044 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
   1045 		e->units = ENVSYS_SAMPHOUR;
   1046 		e->state = ENVSYS_SINVALID;
   1047 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
   1048 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1049 	}
   1050 }
   1051 
   1052 static void
   1053 axppmic_attach_sensors(struct axppmic_softc *sc)
   1054 {
   1055 	if (sc->sc_conf->has_battery) {
   1056 		sc->sc_sme = sysmon_envsys_create();
   1057 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
   1058 		sc->sc_sme->sme_cookie = sc;
   1059 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
   1060 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
   1061 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
   1062 
   1063 		axppmic_attach_acadapter(sc);
   1064 		axppmic_attach_battery(sc);
   1065 
   1066 		sysmon_envsys_register(sc->sc_sme);
   1067 	}
   1068 }
   1069 
   1070 
   1071 static int
   1072 axppmic_match(device_t parent, cfdata_t match, void *aux)
   1073 {
   1074 	struct i2c_attach_args *ia = aux;
   1075 	int match_result;
   1076 
   1077 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
   1078 		return match_result;
   1079 
   1080 	/* This device is direct-config only. */
   1081 
   1082 	return 0;
   1083 }
   1084 
   1085 static void
   1086 axppmic_attach(device_t parent, device_t self, void *aux)
   1087 {
   1088 	struct axppmic_softc *sc = device_private(self);
   1089 	const struct device_compatible_entry *dce = NULL;
   1090 	const struct axppmic_config *c;
   1091 	struct axpreg_attach_args aaa;
   1092 	struct i2c_attach_args *ia = aux;
   1093 	int phandle, child, i;
   1094 	uint8_t irq_mask, val;
   1095 	int error;
   1096 
   1097 	dce = iic_compatible_lookup(ia, compat_data);
   1098 	KASSERT(dce != NULL);
   1099 	c = dce->data;
   1100 
   1101 	sc->sc_dev = self;
   1102 	sc->sc_i2c = ia->ia_tag;
   1103 	sc->sc_addr = ia->ia_addr;
   1104 	sc->sc_phandle = ia->ia_cookie;
   1105 	sc->sc_conf = c;
   1106 
   1107 	aprint_naive("\n");
   1108 	aprint_normal(": %s\n", c->name);
   1109 
   1110 	if (c->has_mode_set) {
   1111 		const bool master_mode = of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
   1112 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
   1113 
   1114 		iic_acquire_bus(sc->sc_i2c, 0);
   1115 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
   1116 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
   1117 		iic_release_bus(sc->sc_i2c, 0);
   1118 	}
   1119 
   1120 	iic_acquire_bus(sc->sc_i2c, 0);
   1121 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
   1122 	iic_release_bus(sc->sc_i2c, 0);
   1123 	if (error != 0) {
   1124 		aprint_error_dev(self, "couldn't read chipid\n");
   1125 		return;
   1126 	}
   1127 	aprint_debug_dev(self, "chipid %#x\n", val);
   1128 
   1129 	sc->sc_smpsw.smpsw_name = device_xname(self);
   1130 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
   1131 	sysmon_pswitch_register(&sc->sc_smpsw);
   1132 
   1133 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
   1134 
   1135 	if (c->irq_regs > 0) {
   1136 		char intrstr[128];
   1137 
   1138 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
   1139 				     intrstr, sizeof(intrstr))) {
   1140 			aprint_error_dev(self,
   1141 			    "WARNING: failed to decode interrupt\n");
   1142 		}
   1143 
   1144 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
   1145 						  FDT_INTR_MPSAFE,
   1146 						  axppmic_intr, sc);
   1147 		if (sc->sc_ih == NULL) {
   1148 			aprint_error_dev(self,
   1149 			    "WARNING: couldn't establish interrupt handler\n");
   1150 		}
   1151 
   1152 		error = workqueue_create(&sc->sc_wq, device_xname(self),
   1153 					 axppmic_work, NULL,
   1154 					 PRI_SOFTSERIAL, IPL_VM,
   1155 					 WQ_MPSAFE);
   1156 		if (error) {
   1157 			sc->sc_wq = NULL;
   1158 			aprint_error_dev(self,
   1159 			    "WARNING: couldn't create work queue: error %d\n",
   1160 			    error);
   1161 		}
   1162 
   1163 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
   1164 			iic_acquire_bus(sc->sc_i2c, 0);
   1165 			for (i = 1; i <= c->irq_regs; i++) {
   1166 				irq_mask = 0;
   1167 				if (i == c->poklirq.reg)
   1168 					irq_mask |= c->poklirq.mask;
   1169 				if (i == c->acinirq.reg)
   1170 					irq_mask |= c->acinirq.mask;
   1171 				if (i == c->vbusirq.reg)
   1172 					irq_mask |= c->vbusirq.mask;
   1173 				if (i == c->battirq.reg)
   1174 					irq_mask |= c->battirq.mask;
   1175 				if (i == c->chargeirq.reg)
   1176 					irq_mask |= c->chargeirq.mask;
   1177 				if (i == c->chargestirq.reg)
   1178 					irq_mask |= c->chargestirq.mask;
   1179 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1180 					      AXP_IRQ_ENABLE_REG(i),
   1181 					      irq_mask, 0);
   1182 			}
   1183 			iic_release_bus(sc->sc_i2c, 0);
   1184 		}
   1185 	}
   1186 
   1187 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
   1188 	    &axppmic_power_funcs);
   1189 
   1190 	if (c->gpio_compat != NULL) {
   1191 		phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
   1192 		if (phandle > 0) {
   1193 			fdtbus_register_gpio_controller(self, phandle,
   1194 			    &axppmic_gpio_funcs);
   1195 		}
   1196 	}
   1197 
   1198 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
   1199 	if (phandle > 0) {
   1200 		aaa.reg_i2c = sc->sc_i2c;
   1201 		aaa.reg_addr = sc->sc_addr;
   1202 		for (i = 0; i < c->ncontrols; i++) {
   1203 			const struct axppmic_ctrl *ctrl = &c->controls[i];
   1204 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
   1205 			if (child <= 0)
   1206 				continue;
   1207 			aaa.reg_ctrl = ctrl;
   1208 			aaa.reg_phandle = child;
   1209 			config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
   1210 		}
   1211 	}
   1212 
   1213 	if (c->has_battery)
   1214 		axppmic_attach_sensors(sc);
   1215 }
   1216 
   1217 static int
   1218 axpreg_acquire(device_t dev)
   1219 {
   1220 	return 0;
   1221 }
   1222 
   1223 static void
   1224 axpreg_release(device_t dev)
   1225 {
   1226 }
   1227 
   1228 static int
   1229 axpreg_enable(device_t dev, bool enable)
   1230 {
   1231 	struct axpreg_softc *sc = device_private(dev);
   1232 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1233 	const int flags = 0;
   1234 	uint8_t val;
   1235 	int error;
   1236 
   1237 	if (!c->c_enable_mask)
   1238 		return EINVAL;
   1239 
   1240 	iic_acquire_bus(sc->sc_i2c, flags);
   1241 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
   1242 		val &= ~c->c_enable_mask;
   1243 		if (enable)
   1244 			val |= c->c_enable_val;
   1245 		else
   1246 			val |= c->c_disable_val;
   1247 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
   1248 	}
   1249 	iic_release_bus(sc->sc_i2c, flags);
   1250 
   1251 	return error;
   1252 }
   1253 
   1254 static int
   1255 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
   1256 {
   1257 	struct axpreg_softc *sc = device_private(dev);
   1258 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1259 
   1260 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
   1261 	    min_uvol / 1000, max_uvol / 1000);
   1262 }
   1263 
   1264 static int
   1265 axpreg_get_voltage(device_t dev, u_int *puvol)
   1266 {
   1267 	struct axpreg_softc *sc = device_private(dev);
   1268 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1269 	int error;
   1270 	u_int vol;
   1271 
   1272 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
   1273 	if (error)
   1274 		return error;
   1275 
   1276 	*puvol = vol * 1000;
   1277 	return 0;
   1278 }
   1279 
   1280 static struct fdtbus_regulator_controller_func axpreg_funcs = {
   1281 	.acquire = axpreg_acquire,
   1282 	.release = axpreg_release,
   1283 	.enable = axpreg_enable,
   1284 	.set_voltage = axpreg_set_voltage,
   1285 	.get_voltage = axpreg_get_voltage,
   1286 };
   1287 
   1288 static int
   1289 axpreg_match(device_t parent, cfdata_t match, void *aux)
   1290 {
   1291 	return 1;
   1292 }
   1293 
   1294 static void
   1295 axpreg_attach(device_t parent, device_t self, void *aux)
   1296 {
   1297 	struct axpreg_softc *sc = device_private(self);
   1298 	struct axpreg_attach_args *aaa = aux;
   1299 	const int phandle = aaa->reg_phandle;
   1300 	const char *name;
   1301 	u_int uvol, min_uvol, max_uvol;
   1302 
   1303 	sc->sc_dev = self;
   1304 	sc->sc_i2c = aaa->reg_i2c;
   1305 	sc->sc_addr = aaa->reg_addr;
   1306 	sc->sc_ctrl = aaa->reg_ctrl;
   1307 
   1308 	fdtbus_register_regulator_controller(self, phandle,
   1309 	    &axpreg_funcs);
   1310 
   1311 	aprint_naive("\n");
   1312 	name = fdtbus_get_string(phandle, "regulator-name");
   1313 	if (name)
   1314 		aprint_normal(": %s\n", name);
   1315 	else
   1316 		aprint_normal("\n");
   1317 
   1318 	int error = axpreg_get_voltage(self, &uvol);
   1319 	if (error)
   1320 		return;
   1321 
   1322 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1323 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1324 		if (uvol < min_uvol || uvol > max_uvol) {
   1325 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
   1326 			    uvol, min_uvol, max_uvol);
   1327 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1328 		}
   1329 	}
   1330 
   1331 	if (of_hasprop(phandle, "regulator-always-on") ||
   1332 	    of_hasprop(phandle, "regulator-boot-on")) {
   1333 		axpreg_enable(self, true);
   1334 	}
   1335 }
   1336 
   1337 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1338     axppmic_match, axppmic_attach, NULL, NULL);
   1339 
   1340 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1341     axpreg_match, axpreg_attach, NULL, NULL);
   1342