axppmic.c revision 1.40 1 /* $NetBSD: axppmic.c,v 1.40 2025/01/05 08:45:08 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.40 2025/01/05 08:45:08 skrll Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39 #include <sys/workqueue.h>
40
41 #include <dev/i2c/i2cvar.h>
42
43 #include <dev/sysmon/sysmonvar.h>
44 #include <dev/sysmon/sysmon_taskq.h>
45
46 #include <dev/fdt/fdtvar.h>
47
48 #define AXP_POWER_SOURCE_REG 0x00
49 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
50 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
51 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
52
53 #define AXP_POWER_MODE_REG 0x01
54 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
55 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
56 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
57
58 #define AXP_CHIP_ID_REG 0x03
59
60 #define AXP_POWER_DISABLE_REG 0x32
61 #define AXP_POWER_DISABLE_CTRL __BIT(7)
62
63 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
64 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
65 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
66 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
67 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
68 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
69
70 #define AXP_BATSENSE_HI_REG 0x78
71 #define AXP_BATSENSE_LO_REG 0x79
72
73 #define AXP_BATTCHG_HI_REG 0x7a
74 #define AXP_BATTCHG_LO_REG 0x7b
75
76 #define AXP_BATTDISCHG_HI_REG 0x7c
77 #define AXP_BATTDISCHG_LO_REG 0x7d
78
79 #define AXP_ADC_RAW(_hi, _lo) \
80 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
81
82 #define AXP_GPIO_CTRL_REG(pin) (0x90 + (pin) * 2)
83 #define AXP_GPIO_CTRL_FUNC_MASK __BITS(2,0)
84 #define AXP_GPIO_CTRL_FUNC_LOW 0
85 #define AXP_GPIO_CTRL_FUNC_HIGH 1
86 #define AXP_GPIO_CTRL_FUNC_INPUT 2
87 #define AXP_GPIO_SIGNAL_REG 0x94
88
89 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
90 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
91
92 #define AXP_BATT_CAP_REG 0xb9
93 #define AXP_BATT_CAP_VALID __BIT(7)
94 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
95
96 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
97 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
98 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
99
100 #define AXP_BATT_COULOMB_HI_REG 0xe2
101 #define AXP_BATT_COULOMB_VALID __BIT(7)
102 #define AXP_BATT_COULOMB_LO_REG 0xe3
103
104 #define AXP_COULOMB_RAW(_hi, _lo) \
105 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
106
107 #define AXP_BATT_CAP_WARN_REG 0xe6
108 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
109 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
110
111 #define AXP_ADDR_EXT_REG 0xff /* AXP806 */
112 #define AXP_ADDR_EXT_MASTER 0
113 #define AXP_ADDR_EXT_SLAVE __BIT(4)
114
115 struct axppmic_ctrl {
116 device_t c_dev;
117
118 const char * c_name;
119 u_int c_min;
120 u_int c_max;
121 u_int c_step1;
122 u_int c_step1cnt;
123 u_int c_step2;
124 u_int c_step2cnt;
125 u_int c_step2start;
126
127 uint8_t c_enable_reg;
128 uint8_t c_enable_mask;
129 uint8_t c_enable_val;
130 uint8_t c_disable_val;
131
132 uint8_t c_voltage_reg;
133 uint8_t c_voltage_mask;
134 };
135
136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
137 { .c_name = (name), .c_min = (min), .c_max = (max), \
138 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
139 .c_step2 = 0, .c_step2cnt = 0, \
140 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
141 .c_enable_val = (emask), .c_disable_val = 0, \
142 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
143
144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
145 { .c_name = (name), .c_min = (min), .c_max = (max), \
146 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
147 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
148 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
149 .c_enable_val = (emask), .c_disable_val = 0, \
150 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
151
152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
153 { .c_name = (name), .c_min = (min), .c_max = (max), \
154 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
155 .c_step2start = (step2start), \
156 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
157 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
158 .c_enable_val = (emask), .c_disable_val = 0, \
159 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
160
161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask) \
162 { .c_name = (name), .c_min = (min), .c_max = (max), \
163 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
164 .c_step2 = 0, .c_step2cnt = 0, \
165 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
166 .c_enable_val = (eval), .c_disable_val = (dval), \
167 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
168
169 #define AXP_CTRL_SW(name, ereg, emask) \
170 { .c_name = (name), \
171 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
172 .c_enable_val = (emask), .c_disable_val = 0 }
173
174 static const struct axppmic_ctrl axp803_ctrls[] = {
175 AXP_CTRL("dldo1", 700, 3300, 100,
176 0x12, __BIT(3), 0x15, __BITS(4,0)),
177 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
178 0x12, __BIT(4), 0x16, __BITS(4,0)),
179 AXP_CTRL("dldo3", 700, 3300, 100,
180 0x12, __BIT(5), 0x17, __BITS(4,0)),
181 AXP_CTRL("dldo4", 700, 3300, 100,
182 0x12, __BIT(6), 0x18, __BITS(4,0)),
183 AXP_CTRL("eldo1", 700, 1900, 50,
184 0x12, __BIT(0), 0x19, __BITS(4,0)),
185 AXP_CTRL("eldo2", 700, 1900, 50,
186 0x12, __BIT(1), 0x1a, __BITS(4,0)),
187 AXP_CTRL("eldo3", 700, 1900, 50,
188 0x12, __BIT(2), 0x1b, __BITS(4,0)),
189 AXP_CTRL("fldo1", 700, 1450, 50,
190 0x13, __BIT(2), 0x1c, __BITS(3,0)),
191 AXP_CTRL("fldo2", 700, 1450, 50,
192 0x13, __BIT(3), 0x1d, __BITS(3,0)),
193 AXP_CTRL("dcdc1", 1600, 3400, 100,
194 0x10, __BIT(0), 0x20, __BITS(4,0)),
195 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
196 0x10, __BIT(1), 0x21, __BITS(6,0)),
197 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
198 0x10, __BIT(2), 0x22, __BITS(6,0)),
199 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
200 0x10, __BIT(3), 0x23, __BITS(6,0)),
201 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
202 0x10, __BIT(4), 0x24, __BITS(6,0)),
203 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
204 0x10, __BIT(5), 0x25, __BITS(6,0)),
205 AXP_CTRL("aldo1", 700, 3300, 100,
206 0x13, __BIT(5), 0x28, __BITS(4,0)),
207 AXP_CTRL("aldo2", 700, 3300, 100,
208 0x13, __BIT(6), 0x29, __BITS(4,0)),
209 AXP_CTRL("aldo3", 700, 3300, 100,
210 0x13, __BIT(7), 0x2a, __BITS(4,0)),
211 };
212
213 static const struct axppmic_ctrl axp805_ctrls[] = {
214 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
215 0x10, __BIT(0), 0x12, __BITS(6,0)),
216 AXP_CTRL("dcdcb", 1000, 2550, 50,
217 0x10, __BIT(1), 0x13, __BITS(4,0)),
218 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
219 0x10, __BIT(2), 0x14, __BITS(6,0)),
220 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
221 0x10, __BIT(3), 0x15, __BITS(5,0)),
222 AXP_CTRL("dcdce", 1100, 3400, 100,
223 0x10, __BIT(4), 0x16, __BITS(4,0)),
224 AXP_CTRL("aldo1", 700, 3300, 100,
225 0x10, __BIT(5), 0x17, __BITS(4,0)),
226 AXP_CTRL("aldo2", 700, 3400, 100,
227 0x10, __BIT(6), 0x18, __BITS(4,0)),
228 AXP_CTRL("aldo3", 700, 3300, 100,
229 0x10, __BIT(7), 0x19, __BITS(4,0)),
230 AXP_CTRL("bldo1", 700, 1900, 100,
231 0x11, __BIT(0), 0x20, __BITS(3,0)),
232 AXP_CTRL("bldo2", 700, 1900, 100,
233 0x11, __BIT(1), 0x21, __BITS(3,0)),
234 AXP_CTRL("bldo3", 700, 1900, 100,
235 0x11, __BIT(2), 0x22, __BITS(3,0)),
236 AXP_CTRL("bldo4", 700, 1900, 100,
237 0x11, __BIT(3), 0x23, __BITS(3,0)),
238 AXP_CTRL("cldo1", 700, 3300, 100,
239 0x11, __BIT(4), 0x24, __BITS(4,0)),
240 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
241 0x11, __BIT(5), 0x25, __BITS(4,0)),
242 AXP_CTRL("cldo3", 700, 3300, 100,
243 0x11, __BIT(6), 0x26, __BITS(4,0)),
244 };
245
246 static const struct axppmic_ctrl axp809_ctrls[] = {
247 AXP_CTRL("dc5ldo", 700, 1400, 100,
248 0x10, __BIT(0), 0x1c, __BITS(2,0)),
249 AXP_CTRL("dcdc1", 1600, 3400, 100,
250 0x10, __BIT(1), 0x21, __BITS(4,0)),
251 AXP_CTRL("dcdc2", 600, 1540, 20,
252 0x10, __BIT(2), 0x22, __BITS(5,0)),
253 AXP_CTRL("dcdc3", 600, 1860, 20,
254 0x10, __BIT(3), 0x23, __BITS(5,0)),
255 AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
256 0x10, __BIT(4), 0x24, __BITS(5,0)),
257 AXP_CTRL("dcdc5", 1000, 2550, 50,
258 0x10, __BIT(5), 0x25, __BITS(4,0)),
259 AXP_CTRL("aldo1", 700, 3300, 100,
260 0x10, __BIT(6), 0x28, __BITS(4,0)),
261 AXP_CTRL("aldo2", 700, 3300, 100,
262 0x10, __BIT(7), 0x29, __BITS(4,0)),
263 AXP_CTRL("eldo1", 700, 3300, 100,
264 0x12, __BIT(0), 0x19, __BITS(4,0)),
265 AXP_CTRL("eldo2", 700, 3300, 100,
266 0x12, __BIT(1), 0x1a, __BITS(4,0)),
267 AXP_CTRL("eldo3", 700, 3300, 100,
268 0x12, __BIT(2), 0x1b, __BITS(4,0)),
269 AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
270 0x12, __BIT(3), 0x15, __BITS(4,0)),
271 AXP_CTRL("dldo2", 700, 3300, 100,
272 0x12, __BIT(4), 0x16, __BITS(4,0)),
273 AXP_CTRL("aldo3", 700, 3300, 100,
274 0x12, __BIT(5), 0x2a, __BITS(4,0)),
275 AXP_CTRL_SW("sw",
276 0x12, __BIT(6)),
277 /* dc1sw is another switch for dcdc1 */
278 AXP_CTRL("dc1sw", 1600, 3400, 100,
279 0x12, __BIT(7), 0x21, __BITS(4,0)),
280 AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
281 0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
282 AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
283 0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
284 };
285
286 static const struct axppmic_ctrl axp813_ctrls[] = {
287 AXP_CTRL("dldo1", 700, 3300, 100,
288 0x12, __BIT(3), 0x15, __BITS(4,0)),
289 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
290 0x12, __BIT(4), 0x16, __BITS(4,0)),
291 AXP_CTRL("dldo3", 700, 3300, 100,
292 0x12, __BIT(5), 0x17, __BITS(4,0)),
293 AXP_CTRL("dldo4", 700, 3300, 100,
294 0x12, __BIT(6), 0x18, __BITS(4,0)),
295 AXP_CTRL("eldo1", 700, 1900, 50,
296 0x12, __BIT(0), 0x19, __BITS(4,0)),
297 AXP_CTRL("eldo2", 700, 1900, 50,
298 0x12, __BIT(1), 0x1a, __BITS(4,0)),
299 AXP_CTRL("eldo3", 700, 1900, 50,
300 0x12, __BIT(2), 0x1b, __BITS(4,0)),
301 AXP_CTRL("fldo1", 700, 1450, 50,
302 0x13, __BIT(2), 0x1c, __BITS(3,0)),
303 AXP_CTRL("fldo2", 700, 1450, 50,
304 0x13, __BIT(3), 0x1d, __BITS(3,0)),
305 AXP_CTRL("dcdc1", 1600, 3400, 100,
306 0x10, __BIT(0), 0x20, __BITS(4,0)),
307 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
308 0x10, __BIT(1), 0x21, __BITS(6,0)),
309 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
310 0x10, __BIT(2), 0x22, __BITS(6,0)),
311 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
312 0x10, __BIT(3), 0x23, __BITS(6,0)),
313 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
314 0x10, __BIT(4), 0x24, __BITS(6,0)),
315 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
316 0x10, __BIT(5), 0x25, __BITS(6,0)),
317 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
318 0x10, __BIT(6), 0x26, __BITS(6,0)),
319 AXP_CTRL("aldo1", 700, 3300, 100,
320 0x13, __BIT(5), 0x28, __BITS(4,0)),
321 AXP_CTRL("aldo2", 700, 3300, 100,
322 0x13, __BIT(6), 0x29, __BITS(4,0)),
323 AXP_CTRL("aldo3", 700, 3300, 100,
324 0x13, __BIT(7), 0x2a, __BITS(4,0)),
325 };
326
327 static const struct axppmic_ctrl axp15060_ctrls[] = {
328 AXP_CTRL( "dcdc1", 1500, 3400, 100,
329 0x13, __BITS(4, 0),
330 0x10, __BIT(0)),
331 // DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
332 AXP_CTRL2_RANGE("dcdc2",
333 500, 1540, 70, 10, 1220, 16 , 20,
334 0x14, __BITS(6, 0),
335 0x10, __BIT(1)),
336 // DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
337 AXP_CTRL2_RANGE("dcdc3",
338 500, 1540, 70, 10, 1220, 16 , 20,
339 0x15, __BITS(6, 0),
340 0x10, __BIT(2)),
341 // DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
342 AXP_CTRL2_RANGE("dcdc4",
343 500, 1540, 70, 10, 1220, 16 , 20,
344 0x16, __BITS(6, 0),
345 0x10, __BIT(3)),
346 // DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM
347 AXP_CTRL2_RANGE("dcdc5",
348 800, 1840,
349 32, 10,
350 1140, 35, 20,
351 0x17, __BITS(6, 0),
352 0x10, __BIT(4)),
353 AXP_CTRL("dcdc6", 500, 3400, 100,
354 0x18, __BITS(4, 0),
355 0x10, __BIT(5)),
356 AXP_CTRL("aldo1", 700, 3300, 100,
357 0x19, __BITS(4, 0),
358 0x11, __BIT(0)),
359 AXP_CTRL("aldo2", 700, 3300, 100,
360 0x20, __BITS(4, 0),
361 0x11, __BIT(1)),
362 AXP_CTRL("aldo3", 700, 3300, 100,
363 0x21, __BITS(4, 0),
364 0x11, __BIT(2)),
365 AXP_CTRL("aldo4", 700, 3300, 100,
366 0x22, __BITS(4, 0),
367 0x11, __BIT(3)),
368 AXP_CTRL("aldo5", 700, 3300, 100,
369 0x23, __BITS(4, 0),
370 0x11, __BIT(4)),
371 AXP_CTRL("bldo1", 700, 3300, 100,
372 0x24, __BITS(4, 0),
373 0x11, __BIT(5)),
374 AXP_CTRL("bldo2", 700, 3300, 100,
375 0x25, __BITS(4, 0),
376 0x11, __BIT(6)),
377 AXP_CTRL("bldo3", 700, 3300, 100,
378 0x26, __BITS(4, 0),
379 0x11, __BIT(7)),
380 AXP_CTRL("bldo4", 700, 3300, 100,
381 0x27, __BITS(4, 0),
382 0x12, __BIT(0)),
383 AXP_CTRL("bldo5", 700, 3300, 100,
384 0x28, __BITS(4, 0),
385 0x12, __BIT(1)),
386 AXP_CTRL("cldo1", 700, 3300, 100,
387 0x29, __BITS(4, 0),
388 0x12, __BIT(2)),
389 AXP_CTRL("cldo2", 700, 3300, 100,
390 0x2a, __BITS(4, 0),
391 0x12, __BIT(3)),
392 AXP_CTRL("cldo3", 700, 3300, 100,
393 0x2b, __BITS(4, 0),
394 0x12, __BIT(4)),
395 AXP_CTRL("cldo4", 700, 4200, 100,
396 0x2d, __BITS(5, 0),
397 0x12, __BIT(5)),
398 AXP_CTRL("cpusldo", 700, 1400, 50,
399 0x2e, __BITS(3, 0),
400 0x12, __BIT(6)),
401 };
402
403
404 struct axppmic_irq {
405 u_int reg;
406 uint8_t mask;
407 };
408
409 #define AXPPMIC_IRQ(_reg, _mask) \
410 { .reg = (_reg), .mask = (_mask) }
411
412 struct axppmic_config {
413 const char *name;
414 const char *gpio_compat;
415 u_int gpio_npins;
416 const struct axppmic_ctrl *controls;
417 u_int ncontrols;
418 u_int irq_regs;
419 bool has_battery;
420 bool has_fuel_gauge;
421 bool has_mode_set;
422 struct axppmic_irq poklirq;
423 struct axppmic_irq acinirq;
424 struct axppmic_irq vbusirq;
425 struct axppmic_irq battirq;
426 struct axppmic_irq chargeirq;
427 struct axppmic_irq chargestirq;
428 u_int batsense_step; /* uV */
429 u_int charge_step; /* uA */
430 u_int discharge_step; /* uA */
431 u_int maxcap_step; /* uAh */
432 u_int coulomb_step; /* uAh */
433 };
434
435 enum axppmic_sensor {
436 AXP_SENSOR_ACIN_PRESENT,
437 AXP_SENSOR_VBUS_PRESENT,
438 AXP_SENSOR_BATT_PRESENT,
439 AXP_SENSOR_BATT_CHARGING,
440 AXP_SENSOR_BATT_CHARGE_STATE,
441 AXP_SENSOR_BATT_VOLTAGE,
442 AXP_SENSOR_BATT_CHARGE_CURRENT,
443 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
444 AXP_SENSOR_BATT_CAPACITY_PERCENT,
445 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
446 AXP_SENSOR_BATT_CURRENT_CAPACITY,
447 AXP_NSENSORS
448 };
449
450 struct axppmic_softc {
451 device_t sc_dev;
452 i2c_tag_t sc_i2c;
453 i2c_addr_t sc_addr;
454 int sc_phandle;
455
456 void *sc_ih;
457 struct workqueue *sc_wq;
458
459 kmutex_t sc_intr_lock;
460 struct work sc_work;
461 bool sc_work_scheduled;
462
463 const struct axppmic_config *sc_conf;
464
465 struct sysmon_pswitch sc_smpsw;
466
467 struct sysmon_envsys *sc_sme;
468
469 envsys_data_t sc_sensor[AXP_NSENSORS];
470
471 u_int sc_warn_thres;
472 u_int sc_shut_thres;
473 };
474
475 struct axppmic_gpio_pin {
476 struct axppmic_softc *pin_sc;
477 u_int pin_nr;
478 int pin_flags;
479 bool pin_actlo;
480 };
481
482 struct axpreg_softc {
483 device_t sc_dev;
484 i2c_tag_t sc_i2c;
485 i2c_addr_t sc_addr;
486 const struct axppmic_ctrl *sc_ctrl;
487 };
488
489 struct axpreg_attach_args {
490 const struct axppmic_ctrl *reg_ctrl;
491 int reg_phandle;
492 i2c_tag_t reg_i2c;
493 i2c_addr_t reg_addr;
494 };
495
496 static const struct axppmic_config axp803_config = {
497 .name = "AXP803",
498 .gpio_compat = "x-powers,axp803-gpio",
499 .gpio_npins = 2,
500 .controls = axp803_ctrls,
501 .ncontrols = __arraycount(axp803_ctrls),
502 .irq_regs = 6,
503 .has_battery = true,
504 .has_fuel_gauge = true,
505 .batsense_step = 1100,
506 .charge_step = 1000,
507 .discharge_step = 1000,
508 .maxcap_step = 1456,
509 .coulomb_step = 1456,
510 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
511 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
512 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
513 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
514 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
515 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
516 };
517
518 static const struct axppmic_config axp805_config = {
519 .name = "AXP805",
520 .controls = axp805_ctrls,
521 .ncontrols = __arraycount(axp805_ctrls),
522 .irq_regs = 2,
523 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
524 };
525
526 static const struct axppmic_config axp806_config = {
527 .name = "AXP806",
528 .controls = axp805_ctrls,
529 .ncontrols = __arraycount(axp805_ctrls),
530 #if notyet
531 .irq_regs = 2,
532 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
533 #endif
534 .has_mode_set = true,
535 };
536
537 static const struct axppmic_config axp809_config = {
538 .name = "AXP809",
539 .controls = axp809_ctrls,
540 .ncontrols = __arraycount(axp809_ctrls),
541 };
542
543 static const struct axppmic_config axp813_config = {
544 .name = "AXP813",
545 .gpio_compat = "x-powers,axp813-gpio",
546 .gpio_npins = 2,
547 .controls = axp813_ctrls,
548 .ncontrols = __arraycount(axp813_ctrls),
549 .irq_regs = 6,
550 .has_battery = true,
551 .has_fuel_gauge = true,
552 .batsense_step = 1100,
553 .charge_step = 1000,
554 .discharge_step = 1000,
555 .maxcap_step = 1456,
556 .coulomb_step = 1456,
557 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
558 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
559 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
560 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
561 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
562 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
563 };
564
565 static const struct axppmic_config axp15060_config = {
566 .name = "AXP15060",
567 .controls = axp15060_ctrls,
568 .ncontrols = __arraycount(axp15060_ctrls),
569 .irq_regs = 2,
570 .poklirq = AXPPMIC_IRQ(2, __BIT(3)),
571 };
572
573 static const struct device_compatible_entry compat_data[] = {
574 { .compat = "x-powers,axp803", .data = &axp803_config },
575 { .compat = "x-powers,axp805", .data = &axp805_config },
576 { .compat = "x-powers,axp806", .data = &axp806_config },
577 { .compat = "x-powers,axp809", .data = &axp809_config },
578 { .compat = "x-powers,axp813", .data = &axp813_config },
579 { .compat = "x-powers,axp15060", .data = &axp15060_config },
580 DEVICE_COMPAT_EOL
581 };
582
583 static int
584 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
585 {
586 return iic_smbus_read_byte(tag, addr, reg, val, flags);
587 }
588
589 static int
590 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
591 {
592 return iic_smbus_write_byte(tag, addr, reg, val, flags);
593 }
594
595 static int
596 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
597 {
598 u_int vol, reg_val;
599 int nstep, error;
600 uint8_t val;
601
602 if (!c->c_voltage_mask)
603 return EINVAL;
604
605 if (min < c->c_min || min > c->c_max)
606 return EINVAL;
607
608 reg_val = 0;
609 nstep = 1;
610 vol = c->c_min;
611
612 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
613 ++reg_val;
614 vol += c->c_step1;
615 }
616
617 if (c->c_step2start)
618 vol = c->c_step2start;
619
620 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
621 ++reg_val;
622 vol += c->c_step2;
623 }
624
625 if (vol > max)
626 return EINVAL;
627
628 iic_acquire_bus(tag, 0);
629 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
630 val &= ~c->c_voltage_mask;
631 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
632 error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
633 }
634 iic_release_bus(tag, 0);
635
636 return error;
637 }
638
639 static int
640 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
641 {
642 int reg_val, error;
643 uint8_t val;
644
645 if (!c->c_voltage_mask)
646 return EINVAL;
647
648 iic_acquire_bus(tag, 0);
649 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
650 iic_release_bus(tag, 0);
651 if (error)
652 return error;
653
654 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
655 if (reg_val < c->c_step1cnt) {
656 *pvol = c->c_min + reg_val * c->c_step1;
657 } else if (c->c_step2start) {
658 *pvol = c->c_step2start +
659 ((reg_val - c->c_step1cnt) * c->c_step2);
660 } else {
661 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
662 ((reg_val - c->c_step1cnt) * c->c_step2);
663 }
664
665 return 0;
666 }
667
668 static void
669 axppmic_power_poweroff(device_t dev)
670 {
671 struct axppmic_softc *sc = device_private(dev);
672 int error;
673
674 delay(1000000);
675
676 error = iic_acquire_bus(sc->sc_i2c, 0);
677 if (error == 0) {
678 error = axppmic_write(sc->sc_i2c, sc->sc_addr,
679 AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
680 iic_release_bus(sc->sc_i2c, 0);
681 }
682 if (error) {
683 device_printf(dev, "WARNING: unable to power off, error %d\n",
684 error);
685 }
686 }
687
688 static struct fdtbus_power_controller_func axppmic_power_funcs = {
689 .poweroff = axppmic_power_poweroff,
690 };
691
692 static int
693 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
694 {
695 uint8_t val;
696 int error;
697
698 KASSERT(pin < sc->sc_conf->gpio_npins);
699 KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
700
701 iic_acquire_bus(sc->sc_i2c, 0);
702 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
703 &val, 0);
704 if (error == 0) {
705 val &= ~AXP_GPIO_CTRL_FUNC_MASK;
706 val |= func;
707 error = axppmic_write(sc->sc_i2c, sc->sc_addr,
708 AXP_GPIO_CTRL_REG(pin), val, 0);
709 }
710 iic_release_bus(sc->sc_i2c, 0);
711
712 return error;
713 }
714
715 static void *
716 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
717 {
718 struct axppmic_softc *sc = device_private(dev);
719 struct axppmic_gpio_pin *gpin;
720 const u_int *gpio = data;
721 int error;
722
723 if (len != 12) {
724 return NULL;
725 }
726
727 const uint8_t pin = be32toh(gpio[1]) & 0xff;
728 const bool actlo = be32toh(gpio[2]) & 1;
729
730 if (pin >= sc->sc_conf->gpio_npins) {
731 return NULL;
732 }
733
734 if ((flags & GPIO_PIN_INPUT) != 0) {
735 error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
736 if (error != 0) {
737 return NULL;
738 }
739 }
740
741 gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
742 gpin->pin_sc = sc;
743 gpin->pin_nr = pin;
744 gpin->pin_flags = flags;
745 gpin->pin_actlo = actlo;
746
747 return gpin;
748 }
749
750 static void
751 axppmic_gpio_release(device_t dev, void *priv)
752 {
753 struct axppmic_softc *sc = device_private(dev);
754 struct axppmic_gpio_pin *gpin = priv;
755
756 axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
757
758 kmem_free(gpin, sizeof(*gpin));
759 }
760
761 static int
762 axppmic_gpio_read(device_t dev, void *priv, bool raw)
763 {
764 struct axppmic_softc *sc = device_private(dev);
765 struct axppmic_gpio_pin *gpin = priv;
766 uint8_t data;
767 int error, val;
768
769 KASSERT(sc == gpin->pin_sc);
770
771 const uint8_t data_mask = __BIT(gpin->pin_nr);
772
773 iic_acquire_bus(sc->sc_i2c, 0);
774 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
775 &data, 0);
776 iic_release_bus(sc->sc_i2c, 0);
777
778 if (error != 0) {
779 device_printf(dev, "WARNING: failed to read pin %d: %d\n",
780 gpin->pin_nr, error);
781 val = 0;
782 } else {
783 val = __SHIFTOUT(data, data_mask);
784 }
785 if (!raw && gpin->pin_actlo) {
786 val = !val;
787 }
788
789 return val;
790 }
791
792 static void
793 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
794 {
795 struct axppmic_softc *sc = device_private(dev);
796 struct axppmic_gpio_pin *gpin = priv;
797 int error;
798
799 if (!raw && gpin->pin_actlo) {
800 val = !val;
801 }
802
803 error = axppmic_gpio_ctl(sc, gpin->pin_nr,
804 val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
805 if (error != 0) {
806 device_printf(dev, "WARNING: failed to write pin %d: %d\n",
807 gpin->pin_nr, error);
808 }
809 }
810
811 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
812 .acquire = axppmic_gpio_acquire,
813 .release = axppmic_gpio_release,
814 .read = axppmic_gpio_read,
815 .write = axppmic_gpio_write,
816 };
817
818 static void
819 axppmic_task_shut(void *priv)
820 {
821 struct axppmic_softc *sc = priv;
822
823 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
824 }
825
826 static void
827 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
828 {
829 struct axppmic_softc *sc = sme->sme_cookie;
830 const struct axppmic_config *c = sc->sc_conf;
831 uint8_t val, lo, hi;
832
833 e->state = ENVSYS_SINVALID;
834
835 const bool battery_present =
836 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
837 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
838
839 switch (e->private) {
840 case AXP_SENSOR_ACIN_PRESENT:
841 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
842 e->state = ENVSYS_SVALID;
843 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
844 }
845 break;
846 case AXP_SENSOR_VBUS_PRESENT:
847 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
848 e->state = ENVSYS_SVALID;
849 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
850 }
851 break;
852 case AXP_SENSOR_BATT_PRESENT:
853 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
854 if (val & AXP_POWER_MODE_BATT_VALID) {
855 e->state = ENVSYS_SVALID;
856 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
857 }
858 }
859 break;
860 case AXP_SENSOR_BATT_CHARGING:
861 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
862 e->state = ENVSYS_SVALID;
863 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
864 }
865 break;
866 case AXP_SENSOR_BATT_CHARGE_STATE:
867 if (battery_present &&
868 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
869 (val & AXP_BATT_CAP_VALID) != 0) {
870 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
871 if (batt_val <= sc->sc_shut_thres) {
872 e->state = ENVSYS_SCRITICAL;
873 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
874 } else if (batt_val <= sc->sc_warn_thres) {
875 e->state = ENVSYS_SWARNUNDER;
876 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
877 } else {
878 e->state = ENVSYS_SVALID;
879 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
880 }
881 }
882 break;
883 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
884 if (battery_present &&
885 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
886 (val & AXP_BATT_CAP_VALID) != 0) {
887 e->state = ENVSYS_SVALID;
888 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
889 }
890 break;
891 case AXP_SENSOR_BATT_VOLTAGE:
892 if (battery_present &&
893 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
894 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
895 e->state = ENVSYS_SVALID;
896 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
897 }
898 break;
899 case AXP_SENSOR_BATT_CHARGE_CURRENT:
900 if (battery_present &&
901 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
902 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
903 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
904 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
905 e->state = ENVSYS_SVALID;
906 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
907 }
908 break;
909 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
910 if (battery_present &&
911 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
912 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
913 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
914 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
915 e->state = ENVSYS_SVALID;
916 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
917 }
918 break;
919 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
920 if (battery_present &&
921 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
922 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
923 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
924 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
925 }
926 break;
927 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
928 if (battery_present &&
929 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
930 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
931 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
932 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
933 }
934 break;
935 }
936 }
937
938 static void
939 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
940 {
941 struct axppmic_softc *sc = sme->sme_cookie;
942
943 switch (e->private) {
944 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
945 case AXP_SENSOR_BATT_VOLTAGE:
946 case AXP_SENSOR_BATT_CHARGE_CURRENT:
947 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
948 /* Always update battery capacity and ADCs */
949 iic_acquire_bus(sc->sc_i2c, 0);
950 axppmic_sensor_update(sme, e);
951 iic_release_bus(sc->sc_i2c, 0);
952 break;
953 default:
954 /* Refresh if the sensor is not in valid state */
955 if (e->state != ENVSYS_SVALID) {
956 iic_acquire_bus(sc->sc_i2c, 0);
957 axppmic_sensor_update(sme, e);
958 iic_release_bus(sc->sc_i2c, 0);
959 }
960 break;
961 }
962 }
963
964 static int
965 axppmic_intr(void *priv)
966 {
967 struct axppmic_softc * const sc = priv;
968
969 mutex_enter(&sc->sc_intr_lock);
970
971 fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
972
973 /* Interrupt is always masked when work is scheduled! */
974 KASSERT(!sc->sc_work_scheduled);
975 sc->sc_work_scheduled = true;
976 workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
977
978 mutex_exit(&sc->sc_intr_lock);
979
980 return 1;
981 }
982
983 static void
984 axppmic_work(struct work *work, void *arg)
985 {
986 struct axppmic_softc * const sc =
987 container_of(work, struct axppmic_softc, sc_work);
988 const struct axppmic_config * const c = sc->sc_conf;
989 const int flags = 0;
990 uint8_t stat;
991 u_int n;
992
993 KASSERT(sc->sc_work_scheduled);
994
995 iic_acquire_bus(sc->sc_i2c, flags);
996 for (n = 1; n <= c->irq_regs; n++) {
997 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
998 if (stat != 0) {
999 axppmic_write(sc->sc_i2c, sc->sc_addr,
1000 AXP_IRQ_STATUS_REG(n), stat, flags);
1001 }
1002
1003 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
1004 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
1005 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
1006 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
1007 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
1008 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
1009 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
1010 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
1011 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
1012 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
1013 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
1014 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
1015 }
1016 }
1017 iic_release_bus(sc->sc_i2c, flags);
1018
1019 mutex_enter(&sc->sc_intr_lock);
1020 sc->sc_work_scheduled = false;
1021 fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
1022 mutex_exit(&sc->sc_intr_lock);
1023 }
1024
1025 static void
1026 axppmic_attach_acadapter(struct axppmic_softc *sc)
1027 {
1028 envsys_data_t *e;
1029
1030 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
1031 e->private = AXP_SENSOR_ACIN_PRESENT;
1032 e->units = ENVSYS_INDICATOR;
1033 e->state = ENVSYS_SINVALID;
1034 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
1035 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1036
1037 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
1038 e->private = AXP_SENSOR_VBUS_PRESENT;
1039 e->units = ENVSYS_INDICATOR;
1040 e->state = ENVSYS_SINVALID;
1041 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
1042 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1043 }
1044
1045 static void
1046 axppmic_attach_battery(struct axppmic_softc *sc)
1047 {
1048 const struct axppmic_config *c = sc->sc_conf;
1049 envsys_data_t *e;
1050 uint8_t val;
1051
1052 iic_acquire_bus(sc->sc_i2c, 0);
1053 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
1054 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
1055 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
1056 }
1057 iic_release_bus(sc->sc_i2c, 0);
1058
1059 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
1060 e->private = AXP_SENSOR_BATT_PRESENT;
1061 e->units = ENVSYS_INDICATOR;
1062 e->state = ENVSYS_SINVALID;
1063 strlcpy(e->desc, "battery present", sizeof(e->desc));
1064 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1065
1066 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
1067 e->private = AXP_SENSOR_BATT_CHARGING;
1068 e->units = ENVSYS_BATTERY_CHARGE;
1069 e->state = ENVSYS_SINVALID;
1070 strlcpy(e->desc, "charging", sizeof(e->desc));
1071 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1072
1073 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
1074 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
1075 e->units = ENVSYS_BATTERY_CAPACITY;
1076 e->flags = ENVSYS_FMONSTCHANGED;
1077 e->state = ENVSYS_SINVALID;
1078 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
1079 strlcpy(e->desc, "charge state", sizeof(e->desc));
1080 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1081
1082 if (c->batsense_step) {
1083 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
1084 e->private = AXP_SENSOR_BATT_VOLTAGE;
1085 e->units = ENVSYS_SVOLTS_DC;
1086 e->state = ENVSYS_SINVALID;
1087 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
1088 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1089 }
1090
1091 if (c->charge_step) {
1092 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
1093 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
1094 e->units = ENVSYS_SAMPS;
1095 e->state = ENVSYS_SINVALID;
1096 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
1097 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1098 }
1099
1100 if (c->discharge_step) {
1101 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
1102 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
1103 e->units = ENVSYS_SAMPS;
1104 e->state = ENVSYS_SINVALID;
1105 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
1106 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1107 }
1108
1109 if (c->has_fuel_gauge) {
1110 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
1111 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
1112 e->units = ENVSYS_INTEGER;
1113 e->state = ENVSYS_SINVALID;
1114 e->flags = ENVSYS_FPERCENT;
1115 strlcpy(e->desc, "battery percent", sizeof(e->desc));
1116 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1117 }
1118
1119 if (c->maxcap_step) {
1120 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
1121 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
1122 e->units = ENVSYS_SAMPHOUR;
1123 e->state = ENVSYS_SINVALID;
1124 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
1125 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1126 }
1127
1128 if (c->coulomb_step) {
1129 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
1130 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
1131 e->units = ENVSYS_SAMPHOUR;
1132 e->state = ENVSYS_SINVALID;
1133 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
1134 sysmon_envsys_sensor_attach(sc->sc_sme, e);
1135 }
1136 }
1137
1138 static void
1139 axppmic_attach_sensors(struct axppmic_softc *sc)
1140 {
1141 if (sc->sc_conf->has_battery) {
1142 sc->sc_sme = sysmon_envsys_create();
1143 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
1144 sc->sc_sme->sme_cookie = sc;
1145 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
1146 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
1147 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
1148
1149 axppmic_attach_acadapter(sc);
1150 axppmic_attach_battery(sc);
1151
1152 sysmon_envsys_register(sc->sc_sme);
1153 }
1154 }
1155
1156
1157 static int
1158 axppmic_match(device_t parent, cfdata_t match, void *aux)
1159 {
1160 struct i2c_attach_args *ia = aux;
1161 int match_result;
1162
1163 if (iic_use_direct_match(ia, match, compat_data, &match_result))
1164 return match_result;
1165
1166 /* This device is direct-config only. */
1167
1168 return 0;
1169 }
1170
1171 static void
1172 axppmic_attach(device_t parent, device_t self, void *aux)
1173 {
1174 struct axppmic_softc *sc = device_private(self);
1175 const struct device_compatible_entry *dce = NULL;
1176 const struct axppmic_config *c;
1177 struct axpreg_attach_args aaa;
1178 struct i2c_attach_args *ia = aux;
1179 int phandle, child, i;
1180 uint8_t irq_mask, val;
1181 int error;
1182
1183 dce = iic_compatible_lookup(ia, compat_data);
1184 KASSERT(dce != NULL);
1185 c = dce->data;
1186
1187 sc->sc_dev = self;
1188 sc->sc_i2c = ia->ia_tag;
1189 sc->sc_addr = ia->ia_addr;
1190 sc->sc_phandle = ia->ia_cookie;
1191 sc->sc_conf = c;
1192
1193 aprint_naive("\n");
1194 aprint_normal(": %s\n", c->name);
1195
1196 if (c->has_mode_set) {
1197 const bool master_mode =
1198 of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
1199 of_hasprop(sc->sc_phandle, "x-powers,master-mode");
1200
1201 iic_acquire_bus(sc->sc_i2c, 0);
1202 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
1203 master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
1204 iic_release_bus(sc->sc_i2c, 0);
1205 }
1206
1207 iic_acquire_bus(sc->sc_i2c, 0);
1208 error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
1209 iic_release_bus(sc->sc_i2c, 0);
1210 if (error != 0) {
1211 aprint_error_dev(self, "couldn't read chipid\n");
1212 return;
1213 }
1214 aprint_debug_dev(self, "chipid %#x\n", val);
1215
1216 sc->sc_smpsw.smpsw_name = device_xname(self);
1217 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
1218 sysmon_pswitch_register(&sc->sc_smpsw);
1219
1220 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
1221
1222 if (c->irq_regs > 0) {
1223 char intrstr[128];
1224
1225 if (!fdtbus_intr_str(sc->sc_phandle, 0,
1226 intrstr, sizeof(intrstr))) {
1227 aprint_error_dev(self,
1228 "WARNING: failed to decode interrupt\n");
1229 }
1230
1231 sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
1232 FDT_INTR_MPSAFE,
1233 axppmic_intr, sc);
1234 if (sc->sc_ih == NULL) {
1235 aprint_error_dev(self,
1236 "WARNING: couldn't establish interrupt handler\n");
1237 }
1238
1239 error = workqueue_create(&sc->sc_wq, device_xname(self),
1240 axppmic_work, NULL,
1241 PRI_SOFTSERIAL, IPL_VM,
1242 WQ_MPSAFE);
1243 if (error) {
1244 sc->sc_wq = NULL;
1245 aprint_error_dev(self,
1246 "WARNING: couldn't create work queue: error %d\n",
1247 error);
1248 }
1249
1250 if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
1251 iic_acquire_bus(sc->sc_i2c, 0);
1252 for (i = 1; i <= c->irq_regs; i++) {
1253 irq_mask = 0;
1254 if (i == c->poklirq.reg)
1255 irq_mask |= c->poklirq.mask;
1256 if (i == c->acinirq.reg)
1257 irq_mask |= c->acinirq.mask;
1258 if (i == c->vbusirq.reg)
1259 irq_mask |= c->vbusirq.mask;
1260 if (i == c->battirq.reg)
1261 irq_mask |= c->battirq.mask;
1262 if (i == c->chargeirq.reg)
1263 irq_mask |= c->chargeirq.mask;
1264 if (i == c->chargestirq.reg)
1265 irq_mask |= c->chargestirq.mask;
1266 axppmic_write(sc->sc_i2c, sc->sc_addr,
1267 AXP_IRQ_ENABLE_REG(i),
1268 irq_mask, 0);
1269 }
1270 iic_release_bus(sc->sc_i2c, 0);
1271 }
1272 }
1273
1274 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
1275 &axppmic_power_funcs);
1276
1277 if (c->gpio_compat != NULL) {
1278 phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
1279 if (phandle > 0) {
1280 fdtbus_register_gpio_controller(self, phandle,
1281 &axppmic_gpio_funcs);
1282 }
1283 }
1284
1285 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
1286 if (phandle > 0) {
1287 aaa.reg_i2c = sc->sc_i2c;
1288 aaa.reg_addr = sc->sc_addr;
1289 for (i = 0; i < c->ncontrols; i++) {
1290 const struct axppmic_ctrl *ctrl = &c->controls[i];
1291 child = of_find_firstchild_byname(phandle, ctrl->c_name);
1292 if (child <= 0)
1293 continue;
1294 aaa.reg_ctrl = ctrl;
1295 aaa.reg_phandle = child;
1296 config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
1297 }
1298 }
1299
1300 if (c->has_battery)
1301 axppmic_attach_sensors(sc);
1302 }
1303
1304 static int
1305 axpreg_acquire(device_t dev)
1306 {
1307 return 0;
1308 }
1309
1310 static void
1311 axpreg_release(device_t dev)
1312 {
1313 }
1314
1315 static int
1316 axpreg_enable(device_t dev, bool enable)
1317 {
1318 struct axpreg_softc *sc = device_private(dev);
1319 const struct axppmic_ctrl *c = sc->sc_ctrl;
1320 const int flags = 0;
1321 uint8_t val;
1322 int error;
1323
1324 if (!c->c_enable_mask)
1325 return EINVAL;
1326
1327 iic_acquire_bus(sc->sc_i2c, flags);
1328 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
1329 val &= ~c->c_enable_mask;
1330 if (enable)
1331 val |= c->c_enable_val;
1332 else
1333 val |= c->c_disable_val;
1334 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
1335 }
1336 iic_release_bus(sc->sc_i2c, flags);
1337
1338 return error;
1339 }
1340
1341 static int
1342 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
1343 {
1344 struct axpreg_softc *sc = device_private(dev);
1345 const struct axppmic_ctrl *c = sc->sc_ctrl;
1346
1347 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
1348 min_uvol / 1000, max_uvol / 1000);
1349 }
1350
1351 static int
1352 axpreg_get_voltage(device_t dev, u_int *puvol)
1353 {
1354 struct axpreg_softc *sc = device_private(dev);
1355 const struct axppmic_ctrl *c = sc->sc_ctrl;
1356 int error;
1357 u_int vol;
1358
1359 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
1360 if (error)
1361 return error;
1362
1363 *puvol = vol * 1000;
1364 return 0;
1365 }
1366
1367 static struct fdtbus_regulator_controller_func axpreg_funcs = {
1368 .acquire = axpreg_acquire,
1369 .release = axpreg_release,
1370 .enable = axpreg_enable,
1371 .set_voltage = axpreg_set_voltage,
1372 .get_voltage = axpreg_get_voltage,
1373 };
1374
1375 static int
1376 axpreg_match(device_t parent, cfdata_t match, void *aux)
1377 {
1378 return 1;
1379 }
1380
1381 static void
1382 axpreg_attach(device_t parent, device_t self, void *aux)
1383 {
1384 struct axpreg_softc *sc = device_private(self);
1385 struct axpreg_attach_args *aaa = aux;
1386 const int phandle = aaa->reg_phandle;
1387 const char *name;
1388 u_int uvol, min_uvol, max_uvol;
1389
1390 sc->sc_dev = self;
1391 sc->sc_i2c = aaa->reg_i2c;
1392 sc->sc_addr = aaa->reg_addr;
1393 sc->sc_ctrl = aaa->reg_ctrl;
1394
1395 fdtbus_register_regulator_controller(self, phandle,
1396 &axpreg_funcs);
1397
1398 aprint_naive("\n");
1399 name = fdtbus_get_string(phandle, "regulator-name");
1400 if (name)
1401 aprint_normal(": %s\n", name);
1402 else
1403 aprint_normal("\n");
1404
1405 int error = axpreg_get_voltage(self, &uvol);
1406 if (error)
1407 return;
1408
1409 if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
1410 of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
1411 if (uvol < min_uvol || uvol > max_uvol) {
1412 aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
1413 uvol, min_uvol, max_uvol);
1414 axpreg_set_voltage(self, min_uvol, max_uvol);
1415 }
1416 }
1417
1418 if (of_hasprop(phandle, "regulator-always-on") ||
1419 of_hasprop(phandle, "regulator-boot-on")) {
1420 axpreg_enable(self, true);
1421 }
1422 }
1423
1424 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
1425 axppmic_match, axppmic_attach, NULL, NULL);
1426
1427 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
1428 axpreg_match, axpreg_attach, NULL, NULL);
1429