Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.40
      1 /* $NetBSD: axppmic.c,v 1.40 2025/01/05 08:45:08 skrll Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.40 2025/01/05 08:45:08 skrll Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/conf.h>
     37 #include <sys/bus.h>
     38 #include <sys/kmem.h>
     39 #include <sys/workqueue.h>
     40 
     41 #include <dev/i2c/i2cvar.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 #include <dev/sysmon/sysmon_taskq.h>
     45 
     46 #include <dev/fdt/fdtvar.h>
     47 
     48 #define	AXP_POWER_SOURCE_REG	0x00
     49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52 
     53 #define	AXP_POWER_MODE_REG	0x01
     54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57 
     58 #define	AXP_CHIP_ID_REG		0x03
     59 
     60 #define AXP_POWER_DISABLE_REG	0x32
     61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     62 
     63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     69 
     70 #define	AXP_BATSENSE_HI_REG	0x78
     71 #define	AXP_BATSENSE_LO_REG	0x79
     72 
     73 #define	AXP_BATTCHG_HI_REG	0x7a
     74 #define	AXP_BATTCHG_LO_REG	0x7b
     75 
     76 #define	AXP_BATTDISCHG_HI_REG	0x7c
     77 #define	AXP_BATTDISCHG_LO_REG	0x7d
     78 
     79 #define	AXP_ADC_RAW(_hi, _lo)	\
     80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     81 
     82 #define	AXP_GPIO_CTRL_REG(pin)	(0x90 + (pin) * 2)
     83 #define	 AXP_GPIO_CTRL_FUNC_MASK 	__BITS(2,0)
     84 #define	 AXP_GPIO_CTRL_FUNC_LOW	 	0
     85 #define	 AXP_GPIO_CTRL_FUNC_HIGH	1
     86 #define	 AXP_GPIO_CTRL_FUNC_INPUT	2
     87 #define	AXP_GPIO_SIGNAL_REG	0x94
     88 
     89 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     90 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     91 
     92 #define	AXP_BATT_CAP_REG	0xb9
     93 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     94 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     95 
     96 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     97 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     98 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     99 
    100 #define	AXP_BATT_COULOMB_HI_REG	0xe2
    101 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
    102 #define	AXP_BATT_COULOMB_LO_REG	0xe3
    103 
    104 #define	AXP_COULOMB_RAW(_hi, _lo)	\
    105 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
    106 
    107 #define	AXP_BATT_CAP_WARN_REG	0xe6
    108 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    109 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    110 
    111 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    112 #define	 AXP_ADDR_EXT_MASTER	0
    113 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    114 
    115 struct axppmic_ctrl {
    116 	device_t	c_dev;
    117 
    118 	const char *	c_name;
    119 	u_int		c_min;
    120 	u_int		c_max;
    121 	u_int		c_step1;
    122 	u_int		c_step1cnt;
    123 	u_int		c_step2;
    124 	u_int		c_step2cnt;
    125 	u_int		c_step2start;
    126 
    127 	uint8_t		c_enable_reg;
    128 	uint8_t		c_enable_mask;
    129 	uint8_t		c_enable_val;
    130 	uint8_t		c_disable_val;
    131 
    132 	uint8_t		c_voltage_reg;
    133 	uint8_t		c_voltage_mask;
    134 };
    135 
    136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    138 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    139 	  .c_step2 = 0, .c_step2cnt = 0,				\
    140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    143 
    144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    147 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    148 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    149 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    150 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    151 
    152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
    153 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    154 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    155 	  .c_step2start = (step2start),					\
    156 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    158 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    160 
    161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
    162 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    163 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    164 	  .c_step2 = 0, .c_step2cnt = 0,				\
    165 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    166 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
    167 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    168 
    169 #define AXP_CTRL_SW(name, ereg, emask)					\
    170 	{ .c_name = (name), 						\
    171 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    172 	  .c_enable_val = (emask), .c_disable_val = 0 }
    173 
    174 static const struct axppmic_ctrl axp803_ctrls[] = {
    175 	AXP_CTRL("dldo1", 700, 3300, 100,
    176 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    177 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    178 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    179 	AXP_CTRL("dldo3", 700, 3300, 100,
    180 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    181 	AXP_CTRL("dldo4", 700, 3300, 100,
    182 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    183 	AXP_CTRL("eldo1", 700, 1900, 50,
    184 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    185 	AXP_CTRL("eldo2", 700, 1900, 50,
    186 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    187 	AXP_CTRL("eldo3", 700, 1900, 50,
    188 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    189 	AXP_CTRL("fldo1", 700, 1450, 50,
    190 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    191 	AXP_CTRL("fldo2", 700, 1450, 50,
    192 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    193 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    194 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    195 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    196 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    197 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    198 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    199 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    200 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    201 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    202 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    203 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    204 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    205 	AXP_CTRL("aldo1", 700, 3300, 100,
    206 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    207 	AXP_CTRL("aldo2", 700, 3300, 100,
    208 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    209 	AXP_CTRL("aldo3", 700, 3300, 100,
    210 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    211 };
    212 
    213 static const struct axppmic_ctrl axp805_ctrls[] = {
    214 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    215 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    216 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    217 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    218 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    219 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    220 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    221 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    222 	AXP_CTRL("dcdce", 1100, 3400, 100,
    223 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    224 	AXP_CTRL("aldo1", 700, 3300, 100,
    225 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    226 	AXP_CTRL("aldo2", 700, 3400, 100,
    227 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    228 	AXP_CTRL("aldo3", 700, 3300, 100,
    229 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    230 	AXP_CTRL("bldo1", 700, 1900, 100,
    231 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    232 	AXP_CTRL("bldo2", 700, 1900, 100,
    233 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    234 	AXP_CTRL("bldo3", 700, 1900, 100,
    235 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    236 	AXP_CTRL("bldo4", 700, 1900, 100,
    237 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    238 	AXP_CTRL("cldo1", 700, 3300, 100,
    239 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    240 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    241 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    242 	AXP_CTRL("cldo3", 700, 3300, 100,
    243 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    244 };
    245 
    246 static const struct axppmic_ctrl axp809_ctrls[] = {
    247 	AXP_CTRL("dc5ldo", 700, 1400, 100,
    248 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
    249 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    250 		0x10, __BIT(1), 0x21, __BITS(4,0)),
    251 	AXP_CTRL("dcdc2", 600, 1540, 20,
    252 		0x10, __BIT(2), 0x22, __BITS(5,0)),
    253 	AXP_CTRL("dcdc3", 600, 1860, 20,
    254 		0x10, __BIT(3), 0x23, __BITS(5,0)),
    255 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
    256 		0x10, __BIT(4), 0x24, __BITS(5,0)),
    257 	AXP_CTRL("dcdc5", 1000, 2550, 50,
    258 		0x10, __BIT(5), 0x25, __BITS(4,0)),
    259 	AXP_CTRL("aldo1", 700, 3300, 100,
    260 		0x10, __BIT(6), 0x28, __BITS(4,0)),
    261 	AXP_CTRL("aldo2", 700, 3300, 100,
    262 		0x10, __BIT(7), 0x29, __BITS(4,0)),
    263 	AXP_CTRL("eldo1", 700, 3300, 100,
    264 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    265 	AXP_CTRL("eldo2", 700, 3300, 100,
    266 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    267 	AXP_CTRL("eldo3", 700, 3300, 100,
    268 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    269 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
    270 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    271 	AXP_CTRL("dldo2", 700, 3300, 100,
    272 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    273 	AXP_CTRL("aldo3", 700, 3300, 100,
    274 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
    275 	AXP_CTRL_SW("sw",
    276 		0x12, __BIT(6)),
    277 	/* dc1sw is another switch for dcdc1 */
    278 	AXP_CTRL("dc1sw", 1600, 3400, 100,
    279 		0x12, __BIT(7), 0x21, __BITS(4,0)),
    280 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
    281 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
    282 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
    283 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
    284 };
    285 
    286 static const struct axppmic_ctrl axp813_ctrls[] = {
    287 	AXP_CTRL("dldo1", 700, 3300, 100,
    288 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    289 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    290 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    291 	AXP_CTRL("dldo3", 700, 3300, 100,
    292 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    293 	AXP_CTRL("dldo4", 700, 3300, 100,
    294 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    295 	AXP_CTRL("eldo1", 700, 1900, 50,
    296 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    297 	AXP_CTRL("eldo2", 700, 1900, 50,
    298 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    299 	AXP_CTRL("eldo3", 700, 1900, 50,
    300 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    301 	AXP_CTRL("fldo1", 700, 1450, 50,
    302 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    303 	AXP_CTRL("fldo2", 700, 1450, 50,
    304 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    305 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    306 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    307 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    308 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    309 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    310 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    311 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    312 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    313 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    314 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    315 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    316 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    317 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    318 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    319 	AXP_CTRL("aldo1", 700, 3300, 100,
    320 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    321 	AXP_CTRL("aldo2", 700, 3300, 100,
    322 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    323 	AXP_CTRL("aldo3", 700, 3300, 100,
    324 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    325 };
    326 
    327 static const struct axppmic_ctrl axp15060_ctrls[] = {
    328 	AXP_CTRL( "dcdc1",  1500, 3400, 100,
    329 		 0x13, __BITS(4, 0),
    330 		 0x10, __BIT(0)),
    331 	// DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    332 	AXP_CTRL2_RANGE("dcdc2",
    333 			500, 1540, 70, 10, 1220, 16 , 20,
    334 			0x14, __BITS(6, 0),
    335 			0x10, __BIT(1)),
    336 	// DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    337 	AXP_CTRL2_RANGE("dcdc3",
    338 			500, 1540, 70, 10, 1220, 16 , 20,
    339 			0x15, __BITS(6, 0),
    340 			0x10, __BIT(2)),
    341 	// DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    342 	AXP_CTRL2_RANGE("dcdc4",
    343 			500, 1540, 70, 10, 1220, 16 , 20,
    344 			0x16, __BITS(6, 0),
    345 			0x10, __BIT(3)),
    346 	// DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM
    347 	AXP_CTRL2_RANGE("dcdc5",
    348 			800, 1840,
    349 			32, 10,
    350 			1140, 35, 20,
    351 			0x17, __BITS(6, 0),
    352 			0x10, __BIT(4)),
    353 	AXP_CTRL("dcdc6", 500, 3400, 100,
    354 		 0x18, __BITS(4, 0),
    355 		 0x10, __BIT(5)),
    356 	AXP_CTRL("aldo1", 700, 3300, 100,
    357 		 0x19, __BITS(4, 0),
    358 		 0x11, __BIT(0)),
    359 	AXP_CTRL("aldo2", 700, 3300, 100,
    360 		 0x20, __BITS(4, 0),
    361 		 0x11, __BIT(1)),
    362 	AXP_CTRL("aldo3", 700, 3300, 100,
    363 		 0x21, __BITS(4, 0),
    364 		 0x11, __BIT(2)),
    365 	AXP_CTRL("aldo4", 700, 3300, 100,
    366 		 0x22, __BITS(4, 0),
    367 		 0x11, __BIT(3)),
    368 	AXP_CTRL("aldo5", 700, 3300, 100,
    369 		 0x23, __BITS(4, 0),
    370 		 0x11, __BIT(4)),
    371 	AXP_CTRL("bldo1", 700, 3300, 100,
    372 		 0x24, __BITS(4, 0),
    373 		 0x11, __BIT(5)),
    374 	AXP_CTRL("bldo2", 700, 3300, 100,
    375 		 0x25, __BITS(4, 0),
    376 		 0x11, __BIT(6)),
    377 	AXP_CTRL("bldo3", 700, 3300, 100,
    378 		 0x26, __BITS(4, 0),
    379 		 0x11, __BIT(7)),
    380 	AXP_CTRL("bldo4", 700, 3300, 100,
    381 		 0x27, __BITS(4, 0),
    382 		 0x12, __BIT(0)),
    383 	AXP_CTRL("bldo5", 700, 3300, 100,
    384 		 0x28, __BITS(4, 0),
    385 		 0x12, __BIT(1)),
    386 	AXP_CTRL("cldo1", 700, 3300, 100,
    387 		 0x29, __BITS(4, 0),
    388 		 0x12, __BIT(2)),
    389 	AXP_CTRL("cldo2", 700, 3300, 100,
    390 		 0x2a, __BITS(4, 0),
    391 		 0x12, __BIT(3)),
    392 	AXP_CTRL("cldo3", 700, 3300, 100,
    393 		 0x2b, __BITS(4, 0),
    394 		 0x12, __BIT(4)),
    395 	AXP_CTRL("cldo4", 700, 4200, 100,
    396 		 0x2d, __BITS(5, 0),
    397 		 0x12, __BIT(5)),
    398 	AXP_CTRL("cpusldo", 700, 1400, 50,
    399 		 0x2e, __BITS(3, 0),
    400 		 0x12, __BIT(6)),
    401 };
    402 
    403 
    404 struct axppmic_irq {
    405 	u_int reg;
    406 	uint8_t mask;
    407 };
    408 
    409 #define	AXPPMIC_IRQ(_reg, _mask)	\
    410 	{ .reg = (_reg), .mask = (_mask) }
    411 
    412 struct axppmic_config {
    413 	const char *name;
    414 	const char *gpio_compat;
    415 	u_int gpio_npins;
    416 	const struct axppmic_ctrl *controls;
    417 	u_int ncontrols;
    418 	u_int irq_regs;
    419 	bool has_battery;
    420 	bool has_fuel_gauge;
    421 	bool has_mode_set;
    422 	struct axppmic_irq poklirq;
    423 	struct axppmic_irq acinirq;
    424 	struct axppmic_irq vbusirq;
    425 	struct axppmic_irq battirq;
    426 	struct axppmic_irq chargeirq;
    427 	struct axppmic_irq chargestirq;
    428 	u_int batsense_step;	/* uV */
    429 	u_int charge_step;	/* uA */
    430 	u_int discharge_step;	/* uA */
    431 	u_int maxcap_step;	/* uAh */
    432 	u_int coulomb_step;	/* uAh */
    433 };
    434 
    435 enum axppmic_sensor {
    436 	AXP_SENSOR_ACIN_PRESENT,
    437 	AXP_SENSOR_VBUS_PRESENT,
    438 	AXP_SENSOR_BATT_PRESENT,
    439 	AXP_SENSOR_BATT_CHARGING,
    440 	AXP_SENSOR_BATT_CHARGE_STATE,
    441 	AXP_SENSOR_BATT_VOLTAGE,
    442 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    443 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    444 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    445 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    446 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    447 	AXP_NSENSORS
    448 };
    449 
    450 struct axppmic_softc {
    451 	device_t	sc_dev;
    452 	i2c_tag_t	sc_i2c;
    453 	i2c_addr_t	sc_addr;
    454 	int		sc_phandle;
    455 
    456 	void		*sc_ih;
    457 	struct workqueue *sc_wq;
    458 
    459 	kmutex_t	sc_intr_lock;
    460 	struct work	sc_work;
    461 	bool		sc_work_scheduled;
    462 
    463 	const struct axppmic_config *sc_conf;
    464 
    465 	struct sysmon_pswitch sc_smpsw;
    466 
    467 	struct sysmon_envsys *sc_sme;
    468 
    469 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    470 
    471 	u_int		sc_warn_thres;
    472 	u_int		sc_shut_thres;
    473 };
    474 
    475 struct axppmic_gpio_pin {
    476 	struct axppmic_softc *pin_sc;
    477 	u_int pin_nr;
    478 	int pin_flags;
    479 	bool pin_actlo;
    480 };
    481 
    482 struct axpreg_softc {
    483 	device_t	sc_dev;
    484 	i2c_tag_t	sc_i2c;
    485 	i2c_addr_t	sc_addr;
    486 	const struct axppmic_ctrl *sc_ctrl;
    487 };
    488 
    489 struct axpreg_attach_args {
    490 	const struct axppmic_ctrl *reg_ctrl;
    491 	int		reg_phandle;
    492 	i2c_tag_t	reg_i2c;
    493 	i2c_addr_t	reg_addr;
    494 };
    495 
    496 static const struct axppmic_config axp803_config = {
    497 	.name = "AXP803",
    498 	.gpio_compat = "x-powers,axp803-gpio",
    499 	.gpio_npins = 2,
    500 	.controls = axp803_ctrls,
    501 	.ncontrols = __arraycount(axp803_ctrls),
    502 	.irq_regs = 6,
    503 	.has_battery = true,
    504 	.has_fuel_gauge = true,
    505 	.batsense_step = 1100,
    506 	.charge_step = 1000,
    507 	.discharge_step = 1000,
    508 	.maxcap_step = 1456,
    509 	.coulomb_step = 1456,
    510 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    511 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    512 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    513 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    514 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    515 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    516 };
    517 
    518 static const struct axppmic_config axp805_config = {
    519 	.name = "AXP805",
    520 	.controls = axp805_ctrls,
    521 	.ncontrols = __arraycount(axp805_ctrls),
    522 	.irq_regs = 2,
    523 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    524 };
    525 
    526 static const struct axppmic_config axp806_config = {
    527 	.name = "AXP806",
    528 	.controls = axp805_ctrls,
    529 	.ncontrols = __arraycount(axp805_ctrls),
    530 #if notyet
    531 	.irq_regs = 2,
    532 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    533 #endif
    534 	.has_mode_set = true,
    535 };
    536 
    537 static const struct axppmic_config axp809_config = {
    538 	.name = "AXP809",
    539 	.controls = axp809_ctrls,
    540 	.ncontrols = __arraycount(axp809_ctrls),
    541 };
    542 
    543 static const struct axppmic_config axp813_config = {
    544 	.name = "AXP813",
    545 	.gpio_compat = "x-powers,axp813-gpio",
    546 	.gpio_npins = 2,
    547 	.controls = axp813_ctrls,
    548 	.ncontrols = __arraycount(axp813_ctrls),
    549 	.irq_regs = 6,
    550 	.has_battery = true,
    551 	.has_fuel_gauge = true,
    552 	.batsense_step = 1100,
    553 	.charge_step = 1000,
    554 	.discharge_step = 1000,
    555 	.maxcap_step = 1456,
    556 	.coulomb_step = 1456,
    557 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    558 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    559 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    560 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    561 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    562 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    563 };
    564 
    565 static const struct axppmic_config axp15060_config = {
    566 	.name = "AXP15060",
    567 	.controls = axp15060_ctrls,
    568 	.ncontrols = __arraycount(axp15060_ctrls),
    569 	.irq_regs = 2,
    570 	.poklirq = AXPPMIC_IRQ(2, __BIT(3)),
    571 };
    572 
    573 static const struct device_compatible_entry compat_data[] = {
    574 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
    575 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
    576 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
    577 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
    578 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
    579 	{ .compat = "x-powers,axp15060",	.data = &axp15060_config },
    580 	DEVICE_COMPAT_EOL
    581 };
    582 
    583 static int
    584 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    585 {
    586 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    587 }
    588 
    589 static int
    590 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    591 {
    592 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    593 }
    594 
    595 static int
    596 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    597 {
    598 	u_int vol, reg_val;
    599 	int nstep, error;
    600 	uint8_t val;
    601 
    602 	if (!c->c_voltage_mask)
    603 		return EINVAL;
    604 
    605 	if (min < c->c_min || min > c->c_max)
    606 		return EINVAL;
    607 
    608 	reg_val = 0;
    609 	nstep = 1;
    610 	vol = c->c_min;
    611 
    612 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    613 		++reg_val;
    614 		vol += c->c_step1;
    615 	}
    616 
    617 	if (c->c_step2start)
    618 		vol = c->c_step2start;
    619 
    620 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    621 		++reg_val;
    622 		vol += c->c_step2;
    623 	}
    624 
    625 	if (vol > max)
    626 		return EINVAL;
    627 
    628 	iic_acquire_bus(tag, 0);
    629 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
    630 		val &= ~c->c_voltage_mask;
    631 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    632 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
    633 	}
    634 	iic_release_bus(tag, 0);
    635 
    636 	return error;
    637 }
    638 
    639 static int
    640 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    641 {
    642 	int reg_val, error;
    643 	uint8_t val;
    644 
    645 	if (!c->c_voltage_mask)
    646 		return EINVAL;
    647 
    648 	iic_acquire_bus(tag, 0);
    649 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
    650 	iic_release_bus(tag, 0);
    651 	if (error)
    652 		return error;
    653 
    654 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    655 	if (reg_val < c->c_step1cnt) {
    656 		*pvol = c->c_min + reg_val * c->c_step1;
    657 	} else if (c->c_step2start) {
    658 		*pvol = c->c_step2start +
    659 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    660 	} else {
    661 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    662 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    663 	}
    664 
    665 	return 0;
    666 }
    667 
    668 static void
    669 axppmic_power_poweroff(device_t dev)
    670 {
    671 	struct axppmic_softc *sc = device_private(dev);
    672 	int error;
    673 
    674 	delay(1000000);
    675 
    676 	error = iic_acquire_bus(sc->sc_i2c, 0);
    677 	if (error == 0) {
    678 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    679 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
    680 		iic_release_bus(sc->sc_i2c, 0);
    681 	}
    682 	if (error) {
    683 		device_printf(dev, "WARNING: unable to power off, error %d\n",
    684 		    error);
    685 	}
    686 }
    687 
    688 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    689 	.poweroff = axppmic_power_poweroff,
    690 };
    691 
    692 static int
    693 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
    694 {
    695 	uint8_t val;
    696 	int error;
    697 
    698 	KASSERT(pin < sc->sc_conf->gpio_npins);
    699 	KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
    700 
    701 	iic_acquire_bus(sc->sc_i2c, 0);
    702 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
    703 	    &val, 0);
    704 	if (error == 0) {
    705 		val &= ~AXP_GPIO_CTRL_FUNC_MASK;
    706 		val |= func;
    707 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    708 		    AXP_GPIO_CTRL_REG(pin), val, 0);
    709 	}
    710 	iic_release_bus(sc->sc_i2c, 0);
    711 
    712 	return error;
    713 }
    714 
    715 static void *
    716 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
    717 {
    718 	struct axppmic_softc *sc = device_private(dev);
    719 	struct axppmic_gpio_pin *gpin;
    720 	const u_int *gpio = data;
    721 	int error;
    722 
    723 	if (len != 12) {
    724 		return NULL;
    725 	}
    726 
    727 	const uint8_t pin = be32toh(gpio[1]) & 0xff;
    728 	const bool actlo = be32toh(gpio[2]) & 1;
    729 
    730 	if (pin >= sc->sc_conf->gpio_npins) {
    731 		return NULL;
    732 	}
    733 
    734 	if ((flags & GPIO_PIN_INPUT) != 0) {
    735 		error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
    736 		if (error != 0) {
    737 			return NULL;
    738 		}
    739 	}
    740 
    741 	gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
    742 	gpin->pin_sc = sc;
    743 	gpin->pin_nr = pin;
    744 	gpin->pin_flags = flags;
    745 	gpin->pin_actlo = actlo;
    746 
    747 	return gpin;
    748 }
    749 
    750 static void
    751 axppmic_gpio_release(device_t dev, void *priv)
    752 {
    753 	struct axppmic_softc *sc = device_private(dev);
    754 	struct axppmic_gpio_pin *gpin = priv;
    755 
    756 	axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
    757 
    758 	kmem_free(gpin, sizeof(*gpin));
    759 }
    760 
    761 static int
    762 axppmic_gpio_read(device_t dev, void *priv, bool raw)
    763 {
    764 	struct axppmic_softc *sc = device_private(dev);
    765 	struct axppmic_gpio_pin *gpin = priv;
    766 	uint8_t data;
    767 	int error, val;
    768 
    769 	KASSERT(sc == gpin->pin_sc);
    770 
    771 	const uint8_t data_mask = __BIT(gpin->pin_nr);
    772 
    773 	iic_acquire_bus(sc->sc_i2c, 0);
    774 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
    775 	    &data, 0);
    776 	iic_release_bus(sc->sc_i2c, 0);
    777 
    778 	if (error != 0) {
    779 		device_printf(dev, "WARNING: failed to read pin %d: %d\n",
    780 		    gpin->pin_nr, error);
    781 		val = 0;
    782 	} else {
    783 		val = __SHIFTOUT(data, data_mask);
    784 	}
    785 	if (!raw && gpin->pin_actlo) {
    786 		val = !val;
    787 	}
    788 
    789 	return val;
    790 }
    791 
    792 static void
    793 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
    794 {
    795 	struct axppmic_softc *sc = device_private(dev);
    796 	struct axppmic_gpio_pin *gpin = priv;
    797 	int error;
    798 
    799 	if (!raw && gpin->pin_actlo) {
    800 		val = !val;
    801 	}
    802 
    803 	error = axppmic_gpio_ctl(sc, gpin->pin_nr,
    804 	    val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
    805 	if (error != 0) {
    806 		device_printf(dev, "WARNING: failed to write pin %d: %d\n",
    807 		    gpin->pin_nr, error);
    808 	}
    809 }
    810 
    811 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
    812 	.acquire = axppmic_gpio_acquire,
    813 	.release = axppmic_gpio_release,
    814 	.read = axppmic_gpio_read,
    815 	.write = axppmic_gpio_write,
    816 };
    817 
    818 static void
    819 axppmic_task_shut(void *priv)
    820 {
    821 	struct axppmic_softc *sc = priv;
    822 
    823 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    824 }
    825 
    826 static void
    827 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    828 {
    829 	struct axppmic_softc *sc = sme->sme_cookie;
    830 	const struct axppmic_config *c = sc->sc_conf;
    831 	uint8_t val, lo, hi;
    832 
    833 	e->state = ENVSYS_SINVALID;
    834 
    835 	const bool battery_present =
    836 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    837 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    838 
    839 	switch (e->private) {
    840 	case AXP_SENSOR_ACIN_PRESENT:
    841 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    842 			e->state = ENVSYS_SVALID;
    843 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    844 		}
    845 		break;
    846 	case AXP_SENSOR_VBUS_PRESENT:
    847 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    848 			e->state = ENVSYS_SVALID;
    849 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    850 		}
    851 		break;
    852 	case AXP_SENSOR_BATT_PRESENT:
    853 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    854 			if (val & AXP_POWER_MODE_BATT_VALID) {
    855 				e->state = ENVSYS_SVALID;
    856 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    857 			}
    858 		}
    859 		break;
    860 	case AXP_SENSOR_BATT_CHARGING:
    861 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    862 			e->state = ENVSYS_SVALID;
    863 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    864 		}
    865 		break;
    866 	case AXP_SENSOR_BATT_CHARGE_STATE:
    867 		if (battery_present &&
    868 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    869 		    (val & AXP_BATT_CAP_VALID) != 0) {
    870 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    871 			if (batt_val <= sc->sc_shut_thres) {
    872 				e->state = ENVSYS_SCRITICAL;
    873 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    874 			} else if (batt_val <= sc->sc_warn_thres) {
    875 				e->state = ENVSYS_SWARNUNDER;
    876 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    877 			} else {
    878 				e->state = ENVSYS_SVALID;
    879 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    880 			}
    881 		}
    882 		break;
    883 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    884 		if (battery_present &&
    885 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    886 		    (val & AXP_BATT_CAP_VALID) != 0) {
    887 			e->state = ENVSYS_SVALID;
    888 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    889 		}
    890 		break;
    891 	case AXP_SENSOR_BATT_VOLTAGE:
    892 		if (battery_present &&
    893 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
    894 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
    895 			e->state = ENVSYS_SVALID;
    896 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    897 		}
    898 		break;
    899 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    900 		if (battery_present &&
    901 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    902 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    903 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
    904 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
    905 			e->state = ENVSYS_SVALID;
    906 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    907 		}
    908 		break;
    909 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    910 		if (battery_present &&
    911 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    912 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    913 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
    914 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
    915 			e->state = ENVSYS_SVALID;
    916 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    917 		}
    918 		break;
    919 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    920 		if (battery_present &&
    921 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
    922 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
    923 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    924 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    925 		}
    926 		break;
    927 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    928 		if (battery_present &&
    929 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
    930 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
    931 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    932 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    933 		}
    934 		break;
    935 	}
    936 }
    937 
    938 static void
    939 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    940 {
    941 	struct axppmic_softc *sc = sme->sme_cookie;
    942 
    943 	switch (e->private) {
    944 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    945 	case AXP_SENSOR_BATT_VOLTAGE:
    946 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    947 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    948 		/* Always update battery capacity and ADCs */
    949 		iic_acquire_bus(sc->sc_i2c, 0);
    950 		axppmic_sensor_update(sme, e);
    951 		iic_release_bus(sc->sc_i2c, 0);
    952 		break;
    953 	default:
    954 		/* Refresh if the sensor is not in valid state */
    955 		if (e->state != ENVSYS_SVALID) {
    956 			iic_acquire_bus(sc->sc_i2c, 0);
    957 			axppmic_sensor_update(sme, e);
    958 			iic_release_bus(sc->sc_i2c, 0);
    959 		}
    960 		break;
    961 	}
    962 }
    963 
    964 static int
    965 axppmic_intr(void *priv)
    966 {
    967 	struct axppmic_softc * const sc = priv;
    968 
    969 	mutex_enter(&sc->sc_intr_lock);
    970 
    971 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
    972 
    973 	/* Interrupt is always masked when work is scheduled! */
    974 	KASSERT(!sc->sc_work_scheduled);
    975 	sc->sc_work_scheduled = true;
    976 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
    977 
    978 	mutex_exit(&sc->sc_intr_lock);
    979 
    980 	return 1;
    981 }
    982 
    983 static void
    984 axppmic_work(struct work *work, void *arg)
    985 {
    986 	struct axppmic_softc * const sc =
    987 	    container_of(work, struct axppmic_softc, sc_work);
    988 	const struct axppmic_config * const c = sc->sc_conf;
    989 	const int flags = 0;
    990 	uint8_t stat;
    991 	u_int n;
    992 
    993 	KASSERT(sc->sc_work_scheduled);
    994 
    995 	iic_acquire_bus(sc->sc_i2c, flags);
    996 	for (n = 1; n <= c->irq_regs; n++) {
    997 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    998 			if (stat != 0) {
    999 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1000 				    AXP_IRQ_STATUS_REG(n), stat, flags);
   1001 			}
   1002 
   1003 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
   1004 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
   1005 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
   1006 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
   1007 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
   1008 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
   1009 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
   1010 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
   1011 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
   1012 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
   1013 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
   1014 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
   1015 		}
   1016 	}
   1017 	iic_release_bus(sc->sc_i2c, flags);
   1018 
   1019 	mutex_enter(&sc->sc_intr_lock);
   1020 	sc->sc_work_scheduled = false;
   1021 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
   1022 	mutex_exit(&sc->sc_intr_lock);
   1023 }
   1024 
   1025 static void
   1026 axppmic_attach_acadapter(struct axppmic_softc *sc)
   1027 {
   1028 	envsys_data_t *e;
   1029 
   1030 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
   1031 	e->private = AXP_SENSOR_ACIN_PRESENT;
   1032 	e->units = ENVSYS_INDICATOR;
   1033 	e->state = ENVSYS_SINVALID;
   1034 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
   1035 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1036 
   1037 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
   1038 	e->private = AXP_SENSOR_VBUS_PRESENT;
   1039 	e->units = ENVSYS_INDICATOR;
   1040 	e->state = ENVSYS_SINVALID;
   1041 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
   1042 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1043 }
   1044 
   1045 static void
   1046 axppmic_attach_battery(struct axppmic_softc *sc)
   1047 {
   1048 	const struct axppmic_config *c = sc->sc_conf;
   1049 	envsys_data_t *e;
   1050 	uint8_t val;
   1051 
   1052 	iic_acquire_bus(sc->sc_i2c, 0);
   1053 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
   1054 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
   1055 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
   1056 	}
   1057 	iic_release_bus(sc->sc_i2c, 0);
   1058 
   1059 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
   1060 	e->private = AXP_SENSOR_BATT_PRESENT;
   1061 	e->units = ENVSYS_INDICATOR;
   1062 	e->state = ENVSYS_SINVALID;
   1063 	strlcpy(e->desc, "battery present", sizeof(e->desc));
   1064 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1065 
   1066 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
   1067 	e->private = AXP_SENSOR_BATT_CHARGING;
   1068 	e->units = ENVSYS_BATTERY_CHARGE;
   1069 	e->state = ENVSYS_SINVALID;
   1070 	strlcpy(e->desc, "charging", sizeof(e->desc));
   1071 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1072 
   1073 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
   1074 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
   1075 	e->units = ENVSYS_BATTERY_CAPACITY;
   1076 	e->flags = ENVSYS_FMONSTCHANGED;
   1077 	e->state = ENVSYS_SINVALID;
   1078 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
   1079 	strlcpy(e->desc, "charge state", sizeof(e->desc));
   1080 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1081 
   1082 	if (c->batsense_step) {
   1083 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
   1084 		e->private = AXP_SENSOR_BATT_VOLTAGE;
   1085 		e->units = ENVSYS_SVOLTS_DC;
   1086 		e->state = ENVSYS_SINVALID;
   1087 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
   1088 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1089 	}
   1090 
   1091 	if (c->charge_step) {
   1092 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
   1093 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
   1094 		e->units = ENVSYS_SAMPS;
   1095 		e->state = ENVSYS_SINVALID;
   1096 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
   1097 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1098 	}
   1099 
   1100 	if (c->discharge_step) {
   1101 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
   1102 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
   1103 		e->units = ENVSYS_SAMPS;
   1104 		e->state = ENVSYS_SINVALID;
   1105 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
   1106 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1107 	}
   1108 
   1109 	if (c->has_fuel_gauge) {
   1110 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
   1111 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
   1112 		e->units = ENVSYS_INTEGER;
   1113 		e->state = ENVSYS_SINVALID;
   1114 		e->flags = ENVSYS_FPERCENT;
   1115 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
   1116 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1117 	}
   1118 
   1119 	if (c->maxcap_step) {
   1120 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
   1121 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
   1122 		e->units = ENVSYS_SAMPHOUR;
   1123 		e->state = ENVSYS_SINVALID;
   1124 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
   1125 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1126 	}
   1127 
   1128 	if (c->coulomb_step) {
   1129 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
   1130 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
   1131 		e->units = ENVSYS_SAMPHOUR;
   1132 		e->state = ENVSYS_SINVALID;
   1133 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
   1134 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1135 	}
   1136 }
   1137 
   1138 static void
   1139 axppmic_attach_sensors(struct axppmic_softc *sc)
   1140 {
   1141 	if (sc->sc_conf->has_battery) {
   1142 		sc->sc_sme = sysmon_envsys_create();
   1143 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
   1144 		sc->sc_sme->sme_cookie = sc;
   1145 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
   1146 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
   1147 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
   1148 
   1149 		axppmic_attach_acadapter(sc);
   1150 		axppmic_attach_battery(sc);
   1151 
   1152 		sysmon_envsys_register(sc->sc_sme);
   1153 	}
   1154 }
   1155 
   1156 
   1157 static int
   1158 axppmic_match(device_t parent, cfdata_t match, void *aux)
   1159 {
   1160 	struct i2c_attach_args *ia = aux;
   1161 	int match_result;
   1162 
   1163 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
   1164 		return match_result;
   1165 
   1166 	/* This device is direct-config only. */
   1167 
   1168 	return 0;
   1169 }
   1170 
   1171 static void
   1172 axppmic_attach(device_t parent, device_t self, void *aux)
   1173 {
   1174 	struct axppmic_softc *sc = device_private(self);
   1175 	const struct device_compatible_entry *dce = NULL;
   1176 	const struct axppmic_config *c;
   1177 	struct axpreg_attach_args aaa;
   1178 	struct i2c_attach_args *ia = aux;
   1179 	int phandle, child, i;
   1180 	uint8_t irq_mask, val;
   1181 	int error;
   1182 
   1183 	dce = iic_compatible_lookup(ia, compat_data);
   1184 	KASSERT(dce != NULL);
   1185 	c = dce->data;
   1186 
   1187 	sc->sc_dev = self;
   1188 	sc->sc_i2c = ia->ia_tag;
   1189 	sc->sc_addr = ia->ia_addr;
   1190 	sc->sc_phandle = ia->ia_cookie;
   1191 	sc->sc_conf = c;
   1192 
   1193 	aprint_naive("\n");
   1194 	aprint_normal(": %s\n", c->name);
   1195 
   1196 	if (c->has_mode_set) {
   1197 		const bool master_mode =
   1198 		    of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
   1199 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
   1200 
   1201 		iic_acquire_bus(sc->sc_i2c, 0);
   1202 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
   1203 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
   1204 		iic_release_bus(sc->sc_i2c, 0);
   1205 	}
   1206 
   1207 	iic_acquire_bus(sc->sc_i2c, 0);
   1208 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
   1209 	iic_release_bus(sc->sc_i2c, 0);
   1210 	if (error != 0) {
   1211 		aprint_error_dev(self, "couldn't read chipid\n");
   1212 		return;
   1213 	}
   1214 	aprint_debug_dev(self, "chipid %#x\n", val);
   1215 
   1216 	sc->sc_smpsw.smpsw_name = device_xname(self);
   1217 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
   1218 	sysmon_pswitch_register(&sc->sc_smpsw);
   1219 
   1220 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
   1221 
   1222 	if (c->irq_regs > 0) {
   1223 		char intrstr[128];
   1224 
   1225 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
   1226 				     intrstr, sizeof(intrstr))) {
   1227 			aprint_error_dev(self,
   1228 			    "WARNING: failed to decode interrupt\n");
   1229 		}
   1230 
   1231 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
   1232 						  FDT_INTR_MPSAFE,
   1233 						  axppmic_intr, sc);
   1234 		if (sc->sc_ih == NULL) {
   1235 			aprint_error_dev(self,
   1236 			    "WARNING: couldn't establish interrupt handler\n");
   1237 		}
   1238 
   1239 		error = workqueue_create(&sc->sc_wq, device_xname(self),
   1240 					 axppmic_work, NULL,
   1241 					 PRI_SOFTSERIAL, IPL_VM,
   1242 					 WQ_MPSAFE);
   1243 		if (error) {
   1244 			sc->sc_wq = NULL;
   1245 			aprint_error_dev(self,
   1246 			    "WARNING: couldn't create work queue: error %d\n",
   1247 			    error);
   1248 		}
   1249 
   1250 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
   1251 			iic_acquire_bus(sc->sc_i2c, 0);
   1252 			for (i = 1; i <= c->irq_regs; i++) {
   1253 				irq_mask = 0;
   1254 				if (i == c->poklirq.reg)
   1255 					irq_mask |= c->poklirq.mask;
   1256 				if (i == c->acinirq.reg)
   1257 					irq_mask |= c->acinirq.mask;
   1258 				if (i == c->vbusirq.reg)
   1259 					irq_mask |= c->vbusirq.mask;
   1260 				if (i == c->battirq.reg)
   1261 					irq_mask |= c->battirq.mask;
   1262 				if (i == c->chargeirq.reg)
   1263 					irq_mask |= c->chargeirq.mask;
   1264 				if (i == c->chargestirq.reg)
   1265 					irq_mask |= c->chargestirq.mask;
   1266 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1267 					      AXP_IRQ_ENABLE_REG(i),
   1268 					      irq_mask, 0);
   1269 			}
   1270 			iic_release_bus(sc->sc_i2c, 0);
   1271 		}
   1272 	}
   1273 
   1274 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
   1275 	    &axppmic_power_funcs);
   1276 
   1277 	if (c->gpio_compat != NULL) {
   1278 		phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
   1279 		if (phandle > 0) {
   1280 			fdtbus_register_gpio_controller(self, phandle,
   1281 			    &axppmic_gpio_funcs);
   1282 		}
   1283 	}
   1284 
   1285 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
   1286 	if (phandle > 0) {
   1287 		aaa.reg_i2c = sc->sc_i2c;
   1288 		aaa.reg_addr = sc->sc_addr;
   1289 		for (i = 0; i < c->ncontrols; i++) {
   1290 			const struct axppmic_ctrl *ctrl = &c->controls[i];
   1291 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
   1292 			if (child <= 0)
   1293 				continue;
   1294 			aaa.reg_ctrl = ctrl;
   1295 			aaa.reg_phandle = child;
   1296 			config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
   1297 		}
   1298 	}
   1299 
   1300 	if (c->has_battery)
   1301 		axppmic_attach_sensors(sc);
   1302 }
   1303 
   1304 static int
   1305 axpreg_acquire(device_t dev)
   1306 {
   1307 	return 0;
   1308 }
   1309 
   1310 static void
   1311 axpreg_release(device_t dev)
   1312 {
   1313 }
   1314 
   1315 static int
   1316 axpreg_enable(device_t dev, bool enable)
   1317 {
   1318 	struct axpreg_softc *sc = device_private(dev);
   1319 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1320 	const int flags = 0;
   1321 	uint8_t val;
   1322 	int error;
   1323 
   1324 	if (!c->c_enable_mask)
   1325 		return EINVAL;
   1326 
   1327 	iic_acquire_bus(sc->sc_i2c, flags);
   1328 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
   1329 		val &= ~c->c_enable_mask;
   1330 		if (enable)
   1331 			val |= c->c_enable_val;
   1332 		else
   1333 			val |= c->c_disable_val;
   1334 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
   1335 	}
   1336 	iic_release_bus(sc->sc_i2c, flags);
   1337 
   1338 	return error;
   1339 }
   1340 
   1341 static int
   1342 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
   1343 {
   1344 	struct axpreg_softc *sc = device_private(dev);
   1345 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1346 
   1347 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
   1348 	    min_uvol / 1000, max_uvol / 1000);
   1349 }
   1350 
   1351 static int
   1352 axpreg_get_voltage(device_t dev, u_int *puvol)
   1353 {
   1354 	struct axpreg_softc *sc = device_private(dev);
   1355 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1356 	int error;
   1357 	u_int vol;
   1358 
   1359 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
   1360 	if (error)
   1361 		return error;
   1362 
   1363 	*puvol = vol * 1000;
   1364 	return 0;
   1365 }
   1366 
   1367 static struct fdtbus_regulator_controller_func axpreg_funcs = {
   1368 	.acquire = axpreg_acquire,
   1369 	.release = axpreg_release,
   1370 	.enable = axpreg_enable,
   1371 	.set_voltage = axpreg_set_voltage,
   1372 	.get_voltage = axpreg_get_voltage,
   1373 };
   1374 
   1375 static int
   1376 axpreg_match(device_t parent, cfdata_t match, void *aux)
   1377 {
   1378 	return 1;
   1379 }
   1380 
   1381 static void
   1382 axpreg_attach(device_t parent, device_t self, void *aux)
   1383 {
   1384 	struct axpreg_softc *sc = device_private(self);
   1385 	struct axpreg_attach_args *aaa = aux;
   1386 	const int phandle = aaa->reg_phandle;
   1387 	const char *name;
   1388 	u_int uvol, min_uvol, max_uvol;
   1389 
   1390 	sc->sc_dev = self;
   1391 	sc->sc_i2c = aaa->reg_i2c;
   1392 	sc->sc_addr = aaa->reg_addr;
   1393 	sc->sc_ctrl = aaa->reg_ctrl;
   1394 
   1395 	fdtbus_register_regulator_controller(self, phandle,
   1396 	    &axpreg_funcs);
   1397 
   1398 	aprint_naive("\n");
   1399 	name = fdtbus_get_string(phandle, "regulator-name");
   1400 	if (name)
   1401 		aprint_normal(": %s\n", name);
   1402 	else
   1403 		aprint_normal("\n");
   1404 
   1405 	int error = axpreg_get_voltage(self, &uvol);
   1406 	if (error)
   1407 		return;
   1408 
   1409 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1410 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1411 		if (uvol < min_uvol || uvol > max_uvol) {
   1412 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
   1413 			    uvol, min_uvol, max_uvol);
   1414 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1415 		}
   1416 	}
   1417 
   1418 	if (of_hasprop(phandle, "regulator-always-on") ||
   1419 	    of_hasprop(phandle, "regulator-boot-on")) {
   1420 		axpreg_enable(self, true);
   1421 	}
   1422 }
   1423 
   1424 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1425     axppmic_match, axppmic_attach, NULL, NULL);
   1426 
   1427 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1428     axpreg_match, axpreg_attach, NULL, NULL);
   1429