axppmic.c revision 1.9.2.2 1 /* $NetBSD: axppmic.c,v 1.9.2.2 2018/05/21 04:36:05 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.9.2.2 2018/05/21 04:36:05 pgoyette Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50
51 #define AXP_POWER_MODE_REG 0x01
52 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
53 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
54 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
55
56 #define AXP_POWER_DISABLE_REG 0x32
57 #define AXP_POWER_DISABLE_CTRL __BIT(7)
58
59 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
60 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
61 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
62 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
63 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
64 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
65
66 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
67 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
68 #define AXP_BATT_CAP_REG 0xb9
69 #define AXP_BATT_CAP_VALID __BIT(7)
70 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
71
72 #define AXP_BATT_CAP_WARN_REG 0xe6
73 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
74 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
75
76 struct axppmic_ctrl {
77 device_t c_dev;
78
79 const char * c_name;
80 u_int c_min;
81 u_int c_max;
82 u_int c_step1;
83 u_int c_step1cnt;
84 u_int c_step2;
85 u_int c_step2cnt;
86
87 uint8_t c_enable_reg;
88 uint8_t c_enable_mask;
89
90 uint8_t c_voltage_reg;
91 uint8_t c_voltage_mask;
92 };
93
94 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
95 { .c_name = (name), .c_min = (min), .c_max = (max), \
96 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
97 .c_step2 = 0, .c_step2cnt = 0, \
98 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
99 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
100
101 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
102 { .c_name = (name), .c_min = (min), .c_max = (max), \
103 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
104 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
105 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
106 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
107
108 static const struct axppmic_ctrl axp803_ctrls[] = {
109 AXP_CTRL("dldo1", 700, 3300, 100,
110 0x12, __BIT(3), 0x15, __BITS(4,0)),
111 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
112 0x12, __BIT(4), 0x16, __BITS(4,0)),
113 AXP_CTRL("dldo3", 700, 3300, 100,
114 0x12, __BIT(5), 0x17, __BITS(4,0)),
115 AXP_CTRL("dldo4", 700, 3300, 100,
116 0x12, __BIT(6), 0x18, __BITS(4,0)),
117 AXP_CTRL("eldo1", 700, 1900, 50,
118 0x12, __BIT(0), 0x19, __BITS(4,0)),
119 AXP_CTRL("eldo2", 700, 1900, 50,
120 0x12, __BIT(1), 0x1a, __BITS(4,0)),
121 AXP_CTRL("eldo3", 700, 1900, 50,
122 0x12, __BIT(2), 0x1b, __BITS(4,0)),
123 AXP_CTRL("fldo1", 700, 1450, 50,
124 0x13, __BIT(2), 0x1c, __BITS(3,0)),
125 AXP_CTRL("fldo2", 700, 1450, 50,
126 0x13, __BIT(3), 0x1d, __BITS(3,0)),
127 AXP_CTRL("dcdc1", 1600, 3400, 100,
128 0x10, __BIT(0), 0x20, __BITS(4,0)),
129 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
130 0x10, __BIT(1), 0x21, __BITS(6,0)),
131 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
132 0x10, __BIT(2), 0x22, __BITS(6,0)),
133 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
134 0x10, __BIT(3), 0x23, __BITS(6,0)),
135 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
136 0x10, __BIT(4), 0x24, __BITS(6,0)),
137 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
138 0x10, __BIT(5), 0x25, __BITS(6,0)),
139 AXP_CTRL("aldo1", 700, 3300, 100,
140 0x13, __BIT(5), 0x28, __BITS(4,0)),
141 AXP_CTRL("aldo2", 700, 3300, 100,
142 0x13, __BIT(6), 0x29, __BITS(4,0)),
143 AXP_CTRL("aldo3", 700, 3300, 100,
144 0x13, __BIT(7), 0x2a, __BITS(4,0)),
145 };
146
147 static const struct axppmic_ctrl axp805_ctrls[] = {
148 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
149 0x10, __BIT(0), 0x12, __BITS(6,0)),
150 AXP_CTRL("dcdcb", 1000, 2550, 50,
151 0x10, __BIT(1), 0x13, __BITS(4,0)),
152 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
153 0x10, __BIT(2), 0x14, __BITS(6,0)),
154 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
155 0x10, __BIT(3), 0x15, __BITS(5,0)),
156 AXP_CTRL("dcdce", 1100, 3400, 100,
157 0x10, __BIT(4), 0x16, __BITS(4,0)),
158 AXP_CTRL("aldo1", 700, 3300, 100,
159 0x10, __BIT(5), 0x17, __BITS(4,0)),
160 AXP_CTRL("aldo2", 700, 3400, 100,
161 0x10, __BIT(6), 0x18, __BITS(4,0)),
162 AXP_CTRL("aldo3", 700, 3300, 100,
163 0x10, __BIT(7), 0x19, __BITS(4,0)),
164 AXP_CTRL("bldo1", 700, 1900, 100,
165 0x11, __BIT(0), 0x20, __BITS(3,0)),
166 AXP_CTRL("bldo2", 700, 1900, 100,
167 0x11, __BIT(1), 0x21, __BITS(3,0)),
168 AXP_CTRL("bldo3", 700, 1900, 100,
169 0x11, __BIT(2), 0x22, __BITS(3,0)),
170 AXP_CTRL("bldo4", 700, 1900, 100,
171 0x11, __BIT(3), 0x23, __BITS(3,0)),
172 AXP_CTRL("cldo1", 700, 3300, 100,
173 0x11, __BIT(4), 0x24, __BITS(4,0)),
174 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
175 0x11, __BIT(5), 0x25, __BITS(4,0)),
176 AXP_CTRL("cldo3", 700, 3300, 100,
177 0x11, __BIT(6), 0x26, __BITS(4,0)),
178 };
179
180 struct axppmic_irq {
181 u_int reg;
182 uint8_t mask;
183 };
184
185 #define AXPPMIC_IRQ(_reg, _mask) \
186 { .reg = (_reg), .mask = (_mask) }
187
188 struct axppmic_config {
189 const char *name;
190 const struct axppmic_ctrl *controls;
191 u_int ncontrols;
192 u_int irq_regs;
193 bool has_battery;
194 bool has_fuel_gauge;
195 struct axppmic_irq poklirq;
196 struct axppmic_irq acinirq;
197 struct axppmic_irq vbusirq;
198 struct axppmic_irq battirq;
199 struct axppmic_irq chargeirq;
200 struct axppmic_irq chargestirq;
201 };
202
203 enum axppmic_sensor {
204 AXP_SENSOR_ACIN_PRESENT,
205 AXP_SENSOR_VBUS_PRESENT,
206 AXP_SENSOR_BATT_PRESENT,
207 AXP_SENSOR_BATT_CHARGING,
208 AXP_SENSOR_BATT_CHARGE_STATE,
209 AXP_SENSOR_BATT_CAPACITY,
210 AXP_NSENSORS
211 };
212
213 struct axppmic_softc {
214 device_t sc_dev;
215 i2c_tag_t sc_i2c;
216 i2c_addr_t sc_addr;
217 int sc_phandle;
218
219 const struct axppmic_config *sc_conf;
220
221 struct sysmon_pswitch sc_smpsw;
222
223 struct sysmon_envsys *sc_sme;
224
225 envsys_data_t sc_sensor[AXP_NSENSORS];
226
227 u_int sc_warn_thres;
228 u_int sc_shut_thres;
229 };
230
231 struct axpreg_softc {
232 device_t sc_dev;
233 i2c_tag_t sc_i2c;
234 i2c_addr_t sc_addr;
235 const struct axppmic_ctrl *sc_ctrl;
236 };
237
238 struct axpreg_attach_args {
239 const struct axppmic_ctrl *reg_ctrl;
240 int reg_phandle;
241 i2c_tag_t reg_i2c;
242 i2c_addr_t reg_addr;
243 };
244
245 static const struct axppmic_config axp803_config = {
246 .name = "AXP803",
247 .controls = axp803_ctrls,
248 .ncontrols = __arraycount(axp803_ctrls),
249 .irq_regs = 6,
250 .has_battery = true,
251 .has_fuel_gauge = true,
252 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
253 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
254 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
255 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
256 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
257 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
258 };
259
260 static const struct axppmic_config axp805_config = {
261 .name = "AXP805/806",
262 .controls = axp805_ctrls,
263 .ncontrols = __arraycount(axp805_ctrls),
264 .irq_regs = 2,
265 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
266 };
267
268 static const struct of_compat_data compat_data[] = {
269 { "x-powers,axp803", (uintptr_t)&axp803_config },
270 { "x-powers,axp805", (uintptr_t)&axp805_config },
271 { "x-powers,axp806", (uintptr_t)&axp805_config },
272 { NULL }
273 };
274
275 static int
276 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
277 {
278 return iic_smbus_read_byte(tag, addr, reg, val, flags);
279 }
280
281 static int
282 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
283 {
284 return iic_smbus_write_byte(tag, addr, reg, val, flags);
285 }
286
287 static int
288 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
289 {
290 const int flags = (cold ? I2C_F_POLL : 0);
291 u_int vol, reg_val;
292 int nstep, error;
293 uint8_t val;
294
295 if (!c->c_voltage_mask)
296 return EINVAL;
297
298 if (min < c->c_min || min > c->c_max)
299 return EINVAL;
300
301 reg_val = 0;
302 nstep = 1;
303 vol = c->c_min;
304
305 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
306 ++reg_val;
307 vol += c->c_step1;
308 }
309 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
310 ++reg_val;
311 vol += c->c_step2;
312 }
313
314 if (vol > max)
315 return EINVAL;
316
317 iic_acquire_bus(tag, flags);
318 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
319 val &= ~c->c_voltage_mask;
320 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
321 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
322 }
323 iic_release_bus(tag, flags);
324
325 return error;
326 }
327
328 static int
329 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
330 {
331 const int flags = (cold ? I2C_F_POLL : 0);
332 int reg_val, error;
333 uint8_t val;
334
335 if (!c->c_voltage_mask)
336 return EINVAL;
337
338 iic_acquire_bus(tag, flags);
339 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
340 iic_release_bus(tag, flags);
341 if (error)
342 return error;
343
344 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
345 if (reg_val < c->c_step1cnt) {
346 *pvol = c->c_min + reg_val * c->c_step1;
347 } else {
348 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
349 ((reg_val - c->c_step1cnt) * c->c_step2);
350 }
351
352 return 0;
353 }
354
355 static void
356 axppmic_power_poweroff(device_t dev)
357 {
358 struct axppmic_softc *sc = device_private(dev);
359
360 delay(1000000);
361
362 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
363 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
364 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
365 }
366
367 static struct fdtbus_power_controller_func axppmic_power_funcs = {
368 .poweroff = axppmic_power_poweroff,
369 };
370
371 static void
372 axppmic_task_shut(void *priv)
373 {
374 struct axppmic_softc *sc = priv;
375
376 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
377 }
378
379 static void
380 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
381 {
382 struct axppmic_softc *sc = sme->sme_cookie;
383 const int flags = I2C_F_POLL;
384 uint8_t val;
385
386 e->state = ENVSYS_SINVALID;
387
388 switch (e->private) {
389 case AXP_SENSOR_ACIN_PRESENT:
390 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
391 e->state = ENVSYS_SVALID;
392 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
393 }
394 break;
395 case AXP_SENSOR_VBUS_PRESENT:
396 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
397 e->state = ENVSYS_SVALID;
398 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
399 }
400 break;
401 case AXP_SENSOR_BATT_PRESENT:
402 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
403 if (val & AXP_POWER_MODE_BATT_VALID) {
404 e->state = ENVSYS_SVALID;
405 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
406 }
407 }
408 break;
409 case AXP_SENSOR_BATT_CHARGING:
410 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
411 e->state = ENVSYS_SVALID;
412 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
413 }
414 break;
415 case AXP_SENSOR_BATT_CHARGE_STATE:
416 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0 &&
417 (val & AXP_POWER_MODE_BATT_VALID) != 0 &&
418 (val & AXP_POWER_MODE_BATT_PRESENT) != 0 &&
419 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
420 (val & AXP_BATT_CAP_VALID) != 0) {
421 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
422 if (batt_val <= sc->sc_shut_thres) {
423 e->state = ENVSYS_SCRITICAL;
424 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
425 } else if (batt_val <= sc->sc_warn_thres) {
426 e->state = ENVSYS_SWARNUNDER;
427 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
428 } else {
429 e->state = ENVSYS_SVALID;
430 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
431 }
432 }
433 break;
434 case AXP_SENSOR_BATT_CAPACITY:
435 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0 &&
436 (val & AXP_POWER_MODE_BATT_VALID) != 0 &&
437 (val & AXP_POWER_MODE_BATT_PRESENT) != 0 &&
438 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
439 (val & AXP_BATT_CAP_VALID) != 0) {
440 e->state = ENVSYS_SVALID;
441 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
442 }
443 break;
444 }
445 }
446
447 static void
448 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
449 {
450 struct axppmic_softc *sc = sme->sme_cookie;
451 const int flags = I2C_F_POLL;
452
453 switch (e->private) {
454 case AXP_SENSOR_BATT_CAPACITY:
455 /* Always update battery capacity (fuel gauge) */
456 iic_acquire_bus(sc->sc_i2c, flags);
457 axppmic_sensor_update(sme, e);
458 iic_release_bus(sc->sc_i2c, flags);
459 break;
460 default:
461 /* Refresh if the sensor is not in valid state */
462 if (e->state != ENVSYS_SVALID) {
463 iic_acquire_bus(sc->sc_i2c, flags);
464 axppmic_sensor_update(sme, e);
465 iic_release_bus(sc->sc_i2c, flags);
466 }
467 break;
468 }
469 }
470
471 static int
472 axppmic_intr(void *priv)
473 {
474 struct axppmic_softc *sc = priv;
475 const struct axppmic_config *c = sc->sc_conf;
476 const int flags = I2C_F_POLL;
477 uint8_t stat;
478 u_int n;
479
480 iic_acquire_bus(sc->sc_i2c, flags);
481 for (n = 1; n <= c->irq_regs; n++) {
482 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
483 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
484 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
485 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
486 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
487 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
488 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
489 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
490 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
491 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
492 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
493 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
494 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
495
496 if (stat != 0)
497 axppmic_write(sc->sc_i2c, sc->sc_addr,
498 AXP_IRQ_STATUS_REG(n), stat, flags);
499 }
500 }
501 iic_release_bus(sc->sc_i2c, flags);
502
503 return 1;
504 }
505
506 static void
507 axppmic_attach_acadapter(struct axppmic_softc *sc)
508 {
509 envsys_data_t *e;
510
511 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
512 e->private = AXP_SENSOR_ACIN_PRESENT;
513 e->units = ENVSYS_INDICATOR;
514 e->state = ENVSYS_SINVALID;
515 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
516 sysmon_envsys_sensor_attach(sc->sc_sme, e);
517
518 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
519 e->private = AXP_SENSOR_VBUS_PRESENT;
520 e->units = ENVSYS_INDICATOR;
521 e->state = ENVSYS_SINVALID;
522 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
523 sysmon_envsys_sensor_attach(sc->sc_sme, e);
524 }
525
526 static void
527 axppmic_attach_battery(struct axppmic_softc *sc)
528 {
529 envsys_data_t *e;
530 uint8_t val;
531
532 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
533 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
534 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
535 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
536 }
537 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
538
539 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
540 e->private = AXP_SENSOR_BATT_PRESENT;
541 e->units = ENVSYS_INDICATOR;
542 e->state = ENVSYS_SINVALID;
543 strlcpy(e->desc, "battery present", sizeof(e->desc));
544 sysmon_envsys_sensor_attach(sc->sc_sme, e);
545
546 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
547 e->private = AXP_SENSOR_BATT_CHARGING;
548 e->units = ENVSYS_BATTERY_CHARGE;
549 e->state = ENVSYS_SINVALID;
550 strlcpy(e->desc, "charging", sizeof(e->desc));
551 sysmon_envsys_sensor_attach(sc->sc_sme, e);
552
553 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
554 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
555 e->units = ENVSYS_BATTERY_CAPACITY;
556 e->flags = ENVSYS_FMONSTCHANGED;
557 e->state = ENVSYS_SINVALID;
558 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
559 strlcpy(e->desc, "charge state", sizeof(e->desc));
560 sysmon_envsys_sensor_attach(sc->sc_sme, e);
561
562 if (sc->sc_conf->has_fuel_gauge) {
563 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY];
564 e->private = AXP_SENSOR_BATT_CAPACITY;
565 e->units = ENVSYS_INTEGER;
566 e->state = ENVSYS_SINVALID;
567 e->flags = ENVSYS_FPERCENT;
568 strlcpy(e->desc, "battery percent", sizeof(e->desc));
569 sysmon_envsys_sensor_attach(sc->sc_sme, e);
570 }
571 }
572
573 static void
574 axppmic_attach_sensors(struct axppmic_softc *sc)
575 {
576 if (sc->sc_conf->has_battery) {
577 sc->sc_sme = sysmon_envsys_create();
578 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
579 sc->sc_sme->sme_cookie = sc;
580 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
581 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
582 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
583
584 axppmic_attach_acadapter(sc);
585 axppmic_attach_battery(sc);
586
587 sysmon_envsys_register(sc->sc_sme);
588 }
589 }
590
591
592 static int
593 axppmic_match(device_t parent, cfdata_t match, void *aux)
594 {
595 struct i2c_attach_args *ia = aux;
596
597 if (ia->ia_name != NULL) {
598 if (ia->ia_cookie)
599 return of_match_compat_data(ia->ia_cookie, compat_data);
600 else
601 return 0;
602 }
603
604 return 1;
605 }
606
607 static void
608 axppmic_attach(device_t parent, device_t self, void *aux)
609 {
610 struct axppmic_softc *sc = device_private(self);
611 const struct axppmic_config *c;
612 struct axpreg_attach_args aaa;
613 struct i2c_attach_args *ia = aux;
614 int phandle, child, i;
615 uint32_t irq_mask;
616 void *ih;
617
618 c = (void *)of_search_compatible(ia->ia_cookie, compat_data)->data;
619
620 sc->sc_dev = self;
621 sc->sc_i2c = ia->ia_tag;
622 sc->sc_addr = ia->ia_addr;
623 sc->sc_phandle = ia->ia_cookie;
624 sc->sc_conf = c;
625
626 aprint_naive("\n");
627 aprint_normal(": %s\n", c->name);
628
629 sc->sc_smpsw.smpsw_name = device_xname(self);
630 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
631 sysmon_pswitch_register(&sc->sc_smpsw);
632
633 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
634 for (i = 1; i <= c->irq_regs; i++) {
635 irq_mask = 0;
636 if (i == c->poklirq.reg)
637 irq_mask |= c->poklirq.mask;
638 if (i == c->acinirq.reg)
639 irq_mask |= c->acinirq.mask;
640 if (i == c->vbusirq.reg)
641 irq_mask |= c->vbusirq.mask;
642 if (i == c->battirq.reg)
643 irq_mask |= c->battirq.mask;
644 if (i == c->chargeirq.reg)
645 irq_mask |= c->chargeirq.mask;
646 if (i == c->chargestirq.reg)
647 irq_mask |= c->chargestirq.mask;
648 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
649 }
650 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
651
652 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
653 axppmic_intr, sc);
654 if (ih == NULL) {
655 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
656 }
657
658 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
659 &axppmic_power_funcs);
660
661 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
662 if (phandle > 0) {
663 aaa.reg_i2c = sc->sc_i2c;
664 aaa.reg_addr = sc->sc_addr;
665 for (i = 0; i < c->ncontrols; i++) {
666 const struct axppmic_ctrl *ctrl = &c->controls[i];
667 child = of_find_firstchild_byname(phandle, ctrl->c_name);
668 if (child <= 0)
669 continue;
670 aaa.reg_ctrl = ctrl;
671 aaa.reg_phandle = child;
672 config_found(sc->sc_dev, &aaa, NULL);
673 }
674 }
675
676 if (c->has_battery)
677 axppmic_attach_sensors(sc);
678 }
679
680 static int
681 axpreg_acquire(device_t dev)
682 {
683 return 0;
684 }
685
686 static void
687 axpreg_release(device_t dev)
688 {
689 }
690
691 static int
692 axpreg_enable(device_t dev, bool enable)
693 {
694 struct axpreg_softc *sc = device_private(dev);
695 const struct axppmic_ctrl *c = sc->sc_ctrl;
696 const int flags = (cold ? I2C_F_POLL : 0);
697 uint8_t val;
698 int error;
699
700 if (!c->c_enable_mask)
701 return EINVAL;
702
703 iic_acquire_bus(sc->sc_i2c, flags);
704 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
705 if (enable)
706 val |= c->c_enable_mask;
707 else
708 val &= ~c->c_enable_mask;
709 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
710 }
711 iic_release_bus(sc->sc_i2c, flags);
712
713 return error;
714 }
715
716 static int
717 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
718 {
719 struct axpreg_softc *sc = device_private(dev);
720 const struct axppmic_ctrl *c = sc->sc_ctrl;
721
722 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
723 min_uvol / 1000, max_uvol / 1000);
724 }
725
726 static int
727 axpreg_get_voltage(device_t dev, u_int *puvol)
728 {
729 struct axpreg_softc *sc = device_private(dev);
730 const struct axppmic_ctrl *c = sc->sc_ctrl;
731 int error;
732 u_int vol;
733
734 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
735 if (error)
736 return error;
737
738 *puvol = vol * 1000;
739 return 0;
740 }
741
742 static struct fdtbus_regulator_controller_func axpreg_funcs = {
743 .acquire = axpreg_acquire,
744 .release = axpreg_release,
745 .enable = axpreg_enable,
746 .set_voltage = axpreg_set_voltage,
747 .get_voltage = axpreg_get_voltage,
748 };
749
750 static int
751 axpreg_match(device_t parent, cfdata_t match, void *aux)
752 {
753 return 1;
754 }
755
756 static void
757 axpreg_attach(device_t parent, device_t self, void *aux)
758 {
759 struct axpreg_softc *sc = device_private(self);
760 struct axpreg_attach_args *aaa = aux;
761 const int phandle = aaa->reg_phandle;
762 const char *name;
763
764 sc->sc_dev = self;
765 sc->sc_i2c = aaa->reg_i2c;
766 sc->sc_addr = aaa->reg_addr;
767 sc->sc_ctrl = aaa->reg_ctrl;
768
769 fdtbus_register_regulator_controller(self, phandle,
770 &axpreg_funcs);
771
772 aprint_naive("\n");
773 name = fdtbus_get_string(phandle, "regulator-name");
774 if (name)
775 aprint_normal(": %s\n", name);
776 else
777 aprint_normal("\n");
778 }
779
780 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
781 axppmic_match, axppmic_attach, NULL, NULL);
782
783 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
784 axpreg_match, axpreg_attach, NULL, NULL);
785