Home | History | Annotate | Line # | Download | only in i2c
axppmic.c revision 1.9.2.5
      1 /* $NetBSD: axppmic.c,v 1.9.2.5 2018/11/26 01:52:31 pgoyette Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.9.2.5 2018/11/26 01:52:31 pgoyette Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/conf.h>
     37 #include <sys/bus.h>
     38 #include <sys/kmem.h>
     39 
     40 #include <dev/i2c/i2cvar.h>
     41 
     42 #include <dev/sysmon/sysmonvar.h>
     43 #include <dev/sysmon/sysmon_taskq.h>
     44 
     45 #include <dev/fdt/fdtvar.h>
     46 
     47 #define	AXP_POWER_SOURCE_REG	0x00
     48 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     49 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     50 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     51 
     52 #define	AXP_POWER_MODE_REG	0x01
     53 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     54 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     55 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     56 
     57 #define AXP_POWER_DISABLE_REG	0x32
     58 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     59 
     60 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     61 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     62 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     63 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     64 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     65 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     66 
     67 #define	AXP_BATSENSE_HI_REG	0x78
     68 #define	AXP_BATSENSE_LO_REG	0x79
     69 
     70 #define	AXP_BATTCHG_HI_REG	0x7a
     71 #define	AXP_BATTCHG_LO_REG	0x7b
     72 
     73 #define	AXP_BATTDISCHG_HI_REG	0x7c
     74 #define	AXP_BATTDISCHG_LO_REG	0x7d
     75 
     76 #define	AXP_ADC_RAW(_hi, _lo)	\
     77 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     78 
     79 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     80 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     81 
     82 #define	AXP_BATT_CAP_REG	0xb9
     83 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     84 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     85 
     86 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     87 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     88 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     89 
     90 #define	AXP_BATT_COULOMB_HI_REG	0xe2
     91 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
     92 #define	AXP_BATT_COULOMB_LO_REG	0xe3
     93 
     94 #define	AXP_COULOMB_RAW(_hi, _lo)	\
     95 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
     96 
     97 #define	AXP_BATT_CAP_WARN_REG	0xe6
     98 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
     99 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    100 
    101 struct axppmic_ctrl {
    102 	device_t	c_dev;
    103 
    104 	const char *	c_name;
    105 	u_int		c_min;
    106 	u_int		c_max;
    107 	u_int		c_step1;
    108 	u_int		c_step1cnt;
    109 	u_int		c_step2;
    110 	u_int		c_step2cnt;
    111 
    112 	uint8_t		c_enable_reg;
    113 	uint8_t		c_enable_mask;
    114 
    115 	uint8_t		c_voltage_reg;
    116 	uint8_t		c_voltage_mask;
    117 };
    118 
    119 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    120 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    121 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    122 	  .c_step2 = 0, .c_step2cnt = 0,				\
    123 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    124 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    125 
    126 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    127 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    128 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    129 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    130 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    131 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    132 
    133 static const struct axppmic_ctrl axp803_ctrls[] = {
    134 	AXP_CTRL("dldo1", 700, 3300, 100,
    135 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    136 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    137 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    138 	AXP_CTRL("dldo3", 700, 3300, 100,
    139 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    140 	AXP_CTRL("dldo4", 700, 3300, 100,
    141 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    142 	AXP_CTRL("eldo1", 700, 1900, 50,
    143 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    144 	AXP_CTRL("eldo2", 700, 1900, 50,
    145 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    146 	AXP_CTRL("eldo3", 700, 1900, 50,
    147 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    148 	AXP_CTRL("fldo1", 700, 1450, 50,
    149 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    150 	AXP_CTRL("fldo2", 700, 1450, 50,
    151 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    152 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    153 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    154 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    155 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    156 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    157 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    158 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    159 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    160 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    161 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    162 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    163 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    164 	AXP_CTRL("aldo1", 700, 3300, 100,
    165 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    166 	AXP_CTRL("aldo2", 700, 3300, 100,
    167 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    168 	AXP_CTRL("aldo3", 700, 3300, 100,
    169 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    170 };
    171 
    172 static const struct axppmic_ctrl axp805_ctrls[] = {
    173 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    174 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    175 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    176 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    177 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    178 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    179 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    180 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    181 	AXP_CTRL("dcdce", 1100, 3400, 100,
    182 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    183 	AXP_CTRL("aldo1", 700, 3300, 100,
    184 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    185 	AXP_CTRL("aldo2", 700, 3400, 100,
    186 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    187 	AXP_CTRL("aldo3", 700, 3300, 100,
    188 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    189 	AXP_CTRL("bldo1", 700, 1900, 100,
    190 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    191 	AXP_CTRL("bldo2", 700, 1900, 100,
    192 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    193 	AXP_CTRL("bldo3", 700, 1900, 100,
    194 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    195 	AXP_CTRL("bldo4", 700, 1900, 100,
    196 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    197 	AXP_CTRL("cldo1", 700, 3300, 100,
    198 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    199 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    200 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    201 	AXP_CTRL("cldo3", 700, 3300, 100,
    202 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    203 };
    204 
    205 struct axppmic_irq {
    206 	u_int reg;
    207 	uint8_t mask;
    208 };
    209 
    210 #define	AXPPMIC_IRQ(_reg, _mask)	\
    211 	{ .reg = (_reg), .mask = (_mask) }
    212 
    213 struct axppmic_config {
    214 	const char *name;
    215 	const struct axppmic_ctrl *controls;
    216 	u_int ncontrols;
    217 	u_int irq_regs;
    218 	bool has_battery;
    219 	bool has_fuel_gauge;
    220 	struct axppmic_irq poklirq;
    221 	struct axppmic_irq acinirq;
    222 	struct axppmic_irq vbusirq;
    223 	struct axppmic_irq battirq;
    224 	struct axppmic_irq chargeirq;
    225 	struct axppmic_irq chargestirq;
    226 	u_int batsense_step;	/* uV */
    227 	u_int charge_step;	/* uA */
    228 	u_int discharge_step;	/* uA */
    229 	u_int maxcap_step;	/* uAh */
    230 	u_int coulomb_step;	/* uAh */
    231 };
    232 
    233 enum axppmic_sensor {
    234 	AXP_SENSOR_ACIN_PRESENT,
    235 	AXP_SENSOR_VBUS_PRESENT,
    236 	AXP_SENSOR_BATT_PRESENT,
    237 	AXP_SENSOR_BATT_CHARGING,
    238 	AXP_SENSOR_BATT_CHARGE_STATE,
    239 	AXP_SENSOR_BATT_VOLTAGE,
    240 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    241 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    242 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    243 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    244 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    245 	AXP_NSENSORS
    246 };
    247 
    248 struct axppmic_softc {
    249 	device_t	sc_dev;
    250 	i2c_tag_t	sc_i2c;
    251 	i2c_addr_t	sc_addr;
    252 	int		sc_phandle;
    253 
    254 	const struct axppmic_config *sc_conf;
    255 
    256 	struct sysmon_pswitch sc_smpsw;
    257 
    258 	struct sysmon_envsys *sc_sme;
    259 
    260 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    261 
    262 	u_int		sc_warn_thres;
    263 	u_int		sc_shut_thres;
    264 };
    265 
    266 struct axpreg_softc {
    267 	device_t	sc_dev;
    268 	i2c_tag_t	sc_i2c;
    269 	i2c_addr_t	sc_addr;
    270 	const struct axppmic_ctrl *sc_ctrl;
    271 };
    272 
    273 struct axpreg_attach_args {
    274 	const struct axppmic_ctrl *reg_ctrl;
    275 	int		reg_phandle;
    276 	i2c_tag_t	reg_i2c;
    277 	i2c_addr_t	reg_addr;
    278 };
    279 
    280 static const struct axppmic_config axp803_config = {
    281 	.name = "AXP803",
    282 	.controls = axp803_ctrls,
    283 	.ncontrols = __arraycount(axp803_ctrls),
    284 	.irq_regs = 6,
    285 	.has_battery = true,
    286 	.has_fuel_gauge = true,
    287 	.batsense_step = 1100,
    288 	.charge_step = 1000,
    289 	.discharge_step = 1000,
    290 	.maxcap_step = 1456,
    291 	.coulomb_step = 1456,
    292 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    293 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    294 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    295 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    296 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    297 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    298 };
    299 
    300 static const struct axppmic_config axp805_config = {
    301 	.name = "AXP805/806",
    302 	.controls = axp805_ctrls,
    303 	.ncontrols = __arraycount(axp805_ctrls),
    304 	.irq_regs = 2,
    305 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    306 };
    307 
    308 static const struct device_compatible_entry compat_data[] = {
    309 	{ "x-powers,axp803",		(uintptr_t)&axp803_config },
    310 	{ "x-powers,axp805",		(uintptr_t)&axp805_config },
    311 	{ "x-powers,axp806",		(uintptr_t)&axp805_config },
    312 	{ NULL,				0 }
    313 };
    314 
    315 static int
    316 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    317 {
    318 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    319 }
    320 
    321 static int
    322 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    323 {
    324 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    325 }
    326 
    327 static int
    328 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    329 {
    330 	const int flags = (cold ? I2C_F_POLL : 0);
    331 	u_int vol, reg_val;
    332 	int nstep, error;
    333 	uint8_t val;
    334 
    335 	if (!c->c_voltage_mask)
    336 		return EINVAL;
    337 
    338 	if (min < c->c_min || min > c->c_max)
    339 		return EINVAL;
    340 
    341 	reg_val = 0;
    342 	nstep = 1;
    343 	vol = c->c_min;
    344 
    345 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    346 		++reg_val;
    347 		vol += c->c_step1;
    348 	}
    349 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    350 		++reg_val;
    351 		vol += c->c_step2;
    352 	}
    353 
    354 	if (vol > max)
    355 		return EINVAL;
    356 
    357 	iic_acquire_bus(tag, flags);
    358 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
    359 		val &= ~c->c_voltage_mask;
    360 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    361 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
    362 	}
    363 	iic_release_bus(tag, flags);
    364 
    365 	return error;
    366 }
    367 
    368 static int
    369 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    370 {
    371 	const int flags = (cold ? I2C_F_POLL : 0);
    372 	int reg_val, error;
    373 	uint8_t val;
    374 
    375 	if (!c->c_voltage_mask)
    376 		return EINVAL;
    377 
    378 	iic_acquire_bus(tag, flags);
    379 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
    380 	iic_release_bus(tag, flags);
    381 	if (error)
    382 		return error;
    383 
    384 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    385 	if (reg_val < c->c_step1cnt) {
    386 		*pvol = c->c_min + reg_val * c->c_step1;
    387 	} else {
    388 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    389 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    390 	}
    391 
    392 	return 0;
    393 }
    394 
    395 static void
    396 axppmic_power_poweroff(device_t dev)
    397 {
    398 	struct axppmic_softc *sc = device_private(dev);
    399 
    400 	delay(1000000);
    401 
    402 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    403 	axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
    404 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    405 }
    406 
    407 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    408 	.poweroff = axppmic_power_poweroff,
    409 };
    410 
    411 static void
    412 axppmic_task_shut(void *priv)
    413 {
    414 	struct axppmic_softc *sc = priv;
    415 
    416 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    417 }
    418 
    419 static void
    420 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    421 {
    422 	struct axppmic_softc *sc = sme->sme_cookie;
    423 	const struct axppmic_config *c = sc->sc_conf;
    424 	const int flags = I2C_F_POLL;
    425 	uint8_t val, lo, hi;
    426 
    427 	e->state = ENVSYS_SINVALID;
    428 
    429 	const bool battery_present =
    430 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    431 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    432 
    433 	switch (e->private) {
    434 	case AXP_SENSOR_ACIN_PRESENT:
    435 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    436 			e->state = ENVSYS_SVALID;
    437 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    438 		}
    439 		break;
    440 	case AXP_SENSOR_VBUS_PRESENT:
    441 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
    442 			e->state = ENVSYS_SVALID;
    443 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    444 		}
    445 		break;
    446 	case AXP_SENSOR_BATT_PRESENT:
    447 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    448 			if (val & AXP_POWER_MODE_BATT_VALID) {
    449 				e->state = ENVSYS_SVALID;
    450 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    451 			}
    452 		}
    453 		break;
    454 	case AXP_SENSOR_BATT_CHARGING:
    455 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
    456 			e->state = ENVSYS_SVALID;
    457 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    458 		}
    459 		break;
    460 	case AXP_SENSOR_BATT_CHARGE_STATE:
    461 		if (battery_present &&
    462 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    463 		    (val & AXP_BATT_CAP_VALID) != 0) {
    464 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    465 			if (batt_val <= sc->sc_shut_thres) {
    466 				e->state = ENVSYS_SCRITICAL;
    467 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    468 			} else if (batt_val <= sc->sc_warn_thres) {
    469 				e->state = ENVSYS_SWARNUNDER;
    470 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    471 			} else {
    472 				e->state = ENVSYS_SVALID;
    473 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    474 			}
    475 		}
    476 		break;
    477 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    478 		if (battery_present &&
    479 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
    480 		    (val & AXP_BATT_CAP_VALID) != 0) {
    481 			e->state = ENVSYS_SVALID;
    482 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    483 		}
    484 		break;
    485 	case AXP_SENSOR_BATT_VOLTAGE:
    486 		if (battery_present &&
    487 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
    488 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
    489 			e->state = ENVSYS_SVALID;
    490 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    491 		}
    492 		break;
    493 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    494 		if (battery_present &&
    495 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    496 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    497 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
    498 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
    499 			e->state = ENVSYS_SVALID;
    500 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    501 		}
    502 		break;
    503 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    504 		if (battery_present &&
    505 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
    506 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    507 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
    508 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
    509 			e->state = ENVSYS_SVALID;
    510 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    511 		}
    512 		break;
    513 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    514 		if (battery_present &&
    515 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
    516 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
    517 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    518 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    519 		}
    520 		break;
    521 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    522 		if (battery_present &&
    523 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
    524 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
    525 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    526 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    527 		}
    528 		break;
    529 	}
    530 }
    531 
    532 static void
    533 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    534 {
    535 	struct axppmic_softc *sc = sme->sme_cookie;
    536 	const int flags = I2C_F_POLL;
    537 
    538 	switch (e->private) {
    539 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    540 	case AXP_SENSOR_BATT_VOLTAGE:
    541 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    542 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    543 		/* Always update battery capacity and ADCs */
    544 		iic_acquire_bus(sc->sc_i2c, flags);
    545 		axppmic_sensor_update(sme, e);
    546 		iic_release_bus(sc->sc_i2c, flags);
    547 		break;
    548 	default:
    549 		/* Refresh if the sensor is not in valid state */
    550 		if (e->state != ENVSYS_SVALID) {
    551 			iic_acquire_bus(sc->sc_i2c, flags);
    552 			axppmic_sensor_update(sme, e);
    553 			iic_release_bus(sc->sc_i2c, flags);
    554 		}
    555 		break;
    556 	}
    557 }
    558 
    559 static int
    560 axppmic_intr(void *priv)
    561 {
    562 	struct axppmic_softc *sc = priv;
    563 	const struct axppmic_config *c = sc->sc_conf;
    564 	const int flags = I2C_F_POLL;
    565 	uint8_t stat;
    566 	u_int n;
    567 
    568 	iic_acquire_bus(sc->sc_i2c, flags);
    569 	for (n = 1; n <= c->irq_regs; n++) {
    570 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    571 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
    572 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
    573 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
    574 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
    575 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
    576 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
    577 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
    578 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
    579 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
    580 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
    581 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
    582 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
    583 
    584 			if (stat != 0)
    585 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    586 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    587 		}
    588 	}
    589 	iic_release_bus(sc->sc_i2c, flags);
    590 
    591 	return 1;
    592 }
    593 
    594 static void
    595 axppmic_attach_acadapter(struct axppmic_softc *sc)
    596 {
    597 	envsys_data_t *e;
    598 
    599 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
    600 	e->private = AXP_SENSOR_ACIN_PRESENT;
    601 	e->units = ENVSYS_INDICATOR;
    602 	e->state = ENVSYS_SINVALID;
    603 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
    604 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    605 
    606 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
    607 	e->private = AXP_SENSOR_VBUS_PRESENT;
    608 	e->units = ENVSYS_INDICATOR;
    609 	e->state = ENVSYS_SINVALID;
    610 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
    611 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    612 }
    613 
    614 static void
    615 axppmic_attach_battery(struct axppmic_softc *sc)
    616 {
    617 	const struct axppmic_config *c = sc->sc_conf;
    618 	envsys_data_t *e;
    619 	uint8_t val;
    620 
    621 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    622 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
    623 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
    624 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
    625 	}
    626 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    627 
    628 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
    629 	e->private = AXP_SENSOR_BATT_PRESENT;
    630 	e->units = ENVSYS_INDICATOR;
    631 	e->state = ENVSYS_SINVALID;
    632 	strlcpy(e->desc, "battery present", sizeof(e->desc));
    633 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    634 
    635 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
    636 	e->private = AXP_SENSOR_BATT_CHARGING;
    637 	e->units = ENVSYS_BATTERY_CHARGE;
    638 	e->state = ENVSYS_SINVALID;
    639 	strlcpy(e->desc, "charging", sizeof(e->desc));
    640 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    641 
    642 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
    643 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
    644 	e->units = ENVSYS_BATTERY_CAPACITY;
    645 	e->flags = ENVSYS_FMONSTCHANGED;
    646 	e->state = ENVSYS_SINVALID;
    647 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    648 	strlcpy(e->desc, "charge state", sizeof(e->desc));
    649 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
    650 
    651 	if (c->batsense_step) {
    652 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
    653 		e->private = AXP_SENSOR_BATT_VOLTAGE;
    654 		e->units = ENVSYS_SVOLTS_DC;
    655 		e->state = ENVSYS_SINVALID;
    656 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
    657 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    658 	}
    659 
    660 	if (c->charge_step) {
    661 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
    662 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
    663 		e->units = ENVSYS_SAMPS;
    664 		e->state = ENVSYS_SINVALID;
    665 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
    666 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    667 	}
    668 
    669 	if (c->discharge_step) {
    670 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
    671 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
    672 		e->units = ENVSYS_SAMPS;
    673 		e->state = ENVSYS_SINVALID;
    674 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
    675 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    676 	}
    677 
    678 	if (c->has_fuel_gauge) {
    679 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
    680 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
    681 		e->units = ENVSYS_INTEGER;
    682 		e->state = ENVSYS_SINVALID;
    683 		e->flags = ENVSYS_FPERCENT;
    684 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
    685 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    686 	}
    687 
    688 	if (c->maxcap_step) {
    689 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
    690 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
    691 		e->units = ENVSYS_SAMPHOUR;
    692 		e->state = ENVSYS_SINVALID;
    693 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
    694 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    695 	}
    696 
    697 	if (c->coulomb_step) {
    698 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
    699 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
    700 		e->units = ENVSYS_SAMPHOUR;
    701 		e->state = ENVSYS_SINVALID;
    702 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
    703 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
    704 	}
    705 }
    706 
    707 static void
    708 axppmic_attach_sensors(struct axppmic_softc *sc)
    709 {
    710 	if (sc->sc_conf->has_battery) {
    711 		sc->sc_sme = sysmon_envsys_create();
    712 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
    713 		sc->sc_sme->sme_cookie = sc;
    714 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
    715 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
    716 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
    717 
    718 		axppmic_attach_acadapter(sc);
    719 		axppmic_attach_battery(sc);
    720 
    721 		sysmon_envsys_register(sc->sc_sme);
    722 	}
    723 }
    724 
    725 
    726 static int
    727 axppmic_match(device_t parent, cfdata_t match, void *aux)
    728 {
    729 	struct i2c_attach_args *ia = aux;
    730 	int match_result;
    731 
    732 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
    733 		return match_result;
    734 
    735 	/* This device is direct-config only. */
    736 
    737 	return 0;
    738 }
    739 
    740 static void
    741 axppmic_attach(device_t parent, device_t self, void *aux)
    742 {
    743 	struct axppmic_softc *sc = device_private(self);
    744 	const struct device_compatible_entry *dce = NULL;
    745 	const struct axppmic_config *c;
    746 	struct axpreg_attach_args aaa;
    747 	struct i2c_attach_args *ia = aux;
    748 	int phandle, child, i;
    749 	uint32_t irq_mask;
    750 	void *ih;
    751 
    752 	(void) iic_compatible_match(ia, compat_data, &dce);
    753 	KASSERT(dce != NULL);
    754 	c = (void *)dce->data;
    755 
    756 	sc->sc_dev = self;
    757 	sc->sc_i2c = ia->ia_tag;
    758 	sc->sc_addr = ia->ia_addr;
    759 	sc->sc_phandle = ia->ia_cookie;
    760 	sc->sc_conf = c;
    761 
    762 	aprint_naive("\n");
    763 	aprint_normal(": %s\n", c->name);
    764 
    765 	sc->sc_smpsw.smpsw_name = device_xname(self);
    766 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
    767 	sysmon_pswitch_register(&sc->sc_smpsw);
    768 
    769 	iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
    770 	for (i = 1; i <= c->irq_regs; i++) {
    771 		irq_mask = 0;
    772 		if (i == c->poklirq.reg)
    773 			irq_mask |= c->poklirq.mask;
    774 		if (i == c->acinirq.reg)
    775 			irq_mask |= c->acinirq.mask;
    776 		if (i == c->vbusirq.reg)
    777 			irq_mask |= c->vbusirq.mask;
    778 		if (i == c->battirq.reg)
    779 			irq_mask |= c->battirq.mask;
    780 		if (i == c->chargeirq.reg)
    781 			irq_mask |= c->chargeirq.mask;
    782 		if (i == c->chargestirq.reg)
    783 			irq_mask |= c->chargestirq.mask;
    784 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
    785 	}
    786 	iic_release_bus(sc->sc_i2c, I2C_F_POLL);
    787 
    788 	ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
    789 	    axppmic_intr, sc);
    790 	if (ih == NULL) {
    791 		aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
    792 	}
    793 
    794 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
    795 	    &axppmic_power_funcs);
    796 
    797 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
    798 	if (phandle > 0) {
    799 		aaa.reg_i2c = sc->sc_i2c;
    800 		aaa.reg_addr = sc->sc_addr;
    801 		for (i = 0; i < c->ncontrols; i++) {
    802 			const struct axppmic_ctrl *ctrl = &c->controls[i];
    803 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
    804 			if (child <= 0)
    805 				continue;
    806 			aaa.reg_ctrl = ctrl;
    807 			aaa.reg_phandle = child;
    808 			config_found(sc->sc_dev, &aaa, NULL);
    809 		}
    810 	}
    811 
    812 	if (c->has_battery)
    813 		axppmic_attach_sensors(sc);
    814 }
    815 
    816 static int
    817 axpreg_acquire(device_t dev)
    818 {
    819 	return 0;
    820 }
    821 
    822 static void
    823 axpreg_release(device_t dev)
    824 {
    825 }
    826 
    827 static int
    828 axpreg_enable(device_t dev, bool enable)
    829 {
    830 	struct axpreg_softc *sc = device_private(dev);
    831 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    832 	const int flags = (cold ? I2C_F_POLL : 0);
    833 	uint8_t val;
    834 	int error;
    835 
    836 	if (!c->c_enable_mask)
    837 		return EINVAL;
    838 
    839 	iic_acquire_bus(sc->sc_i2c, flags);
    840 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
    841 		if (enable)
    842 			val |= c->c_enable_mask;
    843 		else
    844 			val &= ~c->c_enable_mask;
    845 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
    846 	}
    847 	iic_release_bus(sc->sc_i2c, flags);
    848 
    849 	return error;
    850 }
    851 
    852 static int
    853 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
    854 {
    855 	struct axpreg_softc *sc = device_private(dev);
    856 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    857 
    858 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
    859 	    min_uvol / 1000, max_uvol / 1000);
    860 }
    861 
    862 static int
    863 axpreg_get_voltage(device_t dev, u_int *puvol)
    864 {
    865 	struct axpreg_softc *sc = device_private(dev);
    866 	const struct axppmic_ctrl *c = sc->sc_ctrl;
    867 	int error;
    868 	u_int vol;
    869 
    870 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
    871 	if (error)
    872 		return error;
    873 
    874 	*puvol = vol * 1000;
    875 	return 0;
    876 }
    877 
    878 static struct fdtbus_regulator_controller_func axpreg_funcs = {
    879 	.acquire = axpreg_acquire,
    880 	.release = axpreg_release,
    881 	.enable = axpreg_enable,
    882 	.set_voltage = axpreg_set_voltage,
    883 	.get_voltage = axpreg_get_voltage,
    884 };
    885 
    886 static int
    887 axpreg_match(device_t parent, cfdata_t match, void *aux)
    888 {
    889 	return 1;
    890 }
    891 
    892 static void
    893 axpreg_attach(device_t parent, device_t self, void *aux)
    894 {
    895 	struct axpreg_softc *sc = device_private(self);
    896 	struct axpreg_attach_args *aaa = aux;
    897 	const int phandle = aaa->reg_phandle;
    898 	const char *name;
    899 
    900 	sc->sc_dev = self;
    901 	sc->sc_i2c = aaa->reg_i2c;
    902 	sc->sc_addr = aaa->reg_addr;
    903 	sc->sc_ctrl = aaa->reg_ctrl;
    904 
    905 	fdtbus_register_regulator_controller(self, phandle,
    906 	    &axpreg_funcs);
    907 
    908 	aprint_naive("\n");
    909 	name = fdtbus_get_string(phandle, "regulator-name");
    910 	if (name)
    911 		aprint_normal(": %s\n", name);
    912 	else
    913 		aprint_normal("\n");
    914 }
    915 
    916 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
    917     axppmic_match, axppmic_attach, NULL, NULL);
    918 
    919 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
    920     axpreg_match, axpreg_attach, NULL, NULL);
    921