axppmic.c revision 1.9.2.6 1 /* $NetBSD: axppmic.c,v 1.9.2.6 2019/01/18 08:50:26 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.9.2.6 2019/01/18 08:50:26 pgoyette Exp $");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/device.h>
36 #include <sys/conf.h>
37 #include <sys/bus.h>
38 #include <sys/kmem.h>
39
40 #include <dev/i2c/i2cvar.h>
41
42 #include <dev/sysmon/sysmonvar.h>
43 #include <dev/sysmon/sysmon_taskq.h>
44
45 #include <dev/fdt/fdtvar.h>
46
47 #define AXP_POWER_SOURCE_REG 0x00
48 #define AXP_POWER_SOURCE_ACIN_PRESENT __BIT(7)
49 #define AXP_POWER_SOURCE_VBUS_PRESENT __BIT(5)
50 #define AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
51
52 #define AXP_POWER_MODE_REG 0x01
53 #define AXP_POWER_MODE_BATT_VALID __BIT(4)
54 #define AXP_POWER_MODE_BATT_PRESENT __BIT(5)
55 #define AXP_POWER_MODE_BATT_CHARGING __BIT(6)
56
57 #define AXP_POWER_DISABLE_REG 0x32
58 #define AXP_POWER_DISABLE_CTRL __BIT(7)
59
60 #define AXP_IRQ_ENABLE_REG(n) (0x40 + (n) - 1)
61 #define AXP_IRQ1_ACIN_RAISE __BIT(6)
62 #define AXP_IRQ1_ACIN_LOWER __BIT(5)
63 #define AXP_IRQ1_VBUS_RAISE __BIT(3)
64 #define AXP_IRQ1_VBUS_LOWER __BIT(2)
65 #define AXP_IRQ_STATUS_REG(n) (0x48 + (n) - 1)
66
67 #define AXP_BATSENSE_HI_REG 0x78
68 #define AXP_BATSENSE_LO_REG 0x79
69
70 #define AXP_BATTCHG_HI_REG 0x7a
71 #define AXP_BATTCHG_LO_REG 0x7b
72
73 #define AXP_BATTDISCHG_HI_REG 0x7c
74 #define AXP_BATTDISCHG_LO_REG 0x7d
75
76 #define AXP_ADC_RAW(_hi, _lo) \
77 (((u_int)(_hi) << 4) | ((_lo) & 0xf))
78
79 #define AXP_FUEL_GAUGE_CTRL_REG 0xb8
80 #define AXP_FUEL_GAUGE_CTRL_EN __BIT(7)
81
82 #define AXP_BATT_CAP_REG 0xb9
83 #define AXP_BATT_CAP_VALID __BIT(7)
84 #define AXP_BATT_CAP_PERCENT __BITS(6,0)
85
86 #define AXP_BATT_MAX_CAP_HI_REG 0xe0
87 #define AXP_BATT_MAX_CAP_VALID __BIT(7)
88 #define AXP_BATT_MAX_CAP_LO_REG 0xe1
89
90 #define AXP_BATT_COULOMB_HI_REG 0xe2
91 #define AXP_BATT_COULOMB_VALID __BIT(7)
92 #define AXP_BATT_COULOMB_LO_REG 0xe3
93
94 #define AXP_COULOMB_RAW(_hi, _lo) \
95 (((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
96
97 #define AXP_BATT_CAP_WARN_REG 0xe6
98 #define AXP_BATT_CAP_WARN_LV1 __BITS(7,4)
99 #define AXP_BATT_CAP_WARN_LV2 __BITS(3,0)
100
101 struct axppmic_ctrl {
102 device_t c_dev;
103
104 const char * c_name;
105 u_int c_min;
106 u_int c_max;
107 u_int c_step1;
108 u_int c_step1cnt;
109 u_int c_step2;
110 u_int c_step2cnt;
111
112 uint8_t c_enable_reg;
113 uint8_t c_enable_mask;
114
115 uint8_t c_voltage_reg;
116 uint8_t c_voltage_mask;
117 };
118
119 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask) \
120 { .c_name = (name), .c_min = (min), .c_max = (max), \
121 .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
122 .c_step2 = 0, .c_step2cnt = 0, \
123 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
124 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
125
126 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
127 { .c_name = (name), .c_min = (min), .c_max = (max), \
128 .c_step1 = (step1), .c_step1cnt = (step1cnt), \
129 .c_step2 = (step2), .c_step2cnt = (step2cnt), \
130 .c_enable_reg = (ereg), .c_enable_mask = (emask), \
131 .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
132
133 static const struct axppmic_ctrl axp803_ctrls[] = {
134 AXP_CTRL("dldo1", 700, 3300, 100,
135 0x12, __BIT(3), 0x15, __BITS(4,0)),
136 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
137 0x12, __BIT(4), 0x16, __BITS(4,0)),
138 AXP_CTRL("dldo3", 700, 3300, 100,
139 0x12, __BIT(5), 0x17, __BITS(4,0)),
140 AXP_CTRL("dldo4", 700, 3300, 100,
141 0x12, __BIT(6), 0x18, __BITS(4,0)),
142 AXP_CTRL("eldo1", 700, 1900, 50,
143 0x12, __BIT(0), 0x19, __BITS(4,0)),
144 AXP_CTRL("eldo2", 700, 1900, 50,
145 0x12, __BIT(1), 0x1a, __BITS(4,0)),
146 AXP_CTRL("eldo3", 700, 1900, 50,
147 0x12, __BIT(2), 0x1b, __BITS(4,0)),
148 AXP_CTRL("fldo1", 700, 1450, 50,
149 0x13, __BIT(2), 0x1c, __BITS(3,0)),
150 AXP_CTRL("fldo2", 700, 1450, 50,
151 0x13, __BIT(3), 0x1d, __BITS(3,0)),
152 AXP_CTRL("dcdc1", 1600, 3400, 100,
153 0x10, __BIT(0), 0x20, __BITS(4,0)),
154 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
155 0x10, __BIT(1), 0x21, __BITS(6,0)),
156 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
157 0x10, __BIT(2), 0x22, __BITS(6,0)),
158 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
159 0x10, __BIT(3), 0x23, __BITS(6,0)),
160 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
161 0x10, __BIT(4), 0x24, __BITS(6,0)),
162 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
163 0x10, __BIT(5), 0x25, __BITS(6,0)),
164 AXP_CTRL("aldo1", 700, 3300, 100,
165 0x13, __BIT(5), 0x28, __BITS(4,0)),
166 AXP_CTRL("aldo2", 700, 3300, 100,
167 0x13, __BIT(6), 0x29, __BITS(4,0)),
168 AXP_CTRL("aldo3", 700, 3300, 100,
169 0x13, __BIT(7), 0x2a, __BITS(4,0)),
170 };
171
172 static const struct axppmic_ctrl axp805_ctrls[] = {
173 AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
174 0x10, __BIT(0), 0x12, __BITS(6,0)),
175 AXP_CTRL("dcdcb", 1000, 2550, 50,
176 0x10, __BIT(1), 0x13, __BITS(4,0)),
177 AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
178 0x10, __BIT(2), 0x14, __BITS(6,0)),
179 AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
180 0x10, __BIT(3), 0x15, __BITS(5,0)),
181 AXP_CTRL("dcdce", 1100, 3400, 100,
182 0x10, __BIT(4), 0x16, __BITS(4,0)),
183 AXP_CTRL("aldo1", 700, 3300, 100,
184 0x10, __BIT(5), 0x17, __BITS(4,0)),
185 AXP_CTRL("aldo2", 700, 3400, 100,
186 0x10, __BIT(6), 0x18, __BITS(4,0)),
187 AXP_CTRL("aldo3", 700, 3300, 100,
188 0x10, __BIT(7), 0x19, __BITS(4,0)),
189 AXP_CTRL("bldo1", 700, 1900, 100,
190 0x11, __BIT(0), 0x20, __BITS(3,0)),
191 AXP_CTRL("bldo2", 700, 1900, 100,
192 0x11, __BIT(1), 0x21, __BITS(3,0)),
193 AXP_CTRL("bldo3", 700, 1900, 100,
194 0x11, __BIT(2), 0x22, __BITS(3,0)),
195 AXP_CTRL("bldo4", 700, 1900, 100,
196 0x11, __BIT(3), 0x23, __BITS(3,0)),
197 AXP_CTRL("cldo1", 700, 3300, 100,
198 0x11, __BIT(4), 0x24, __BITS(4,0)),
199 AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
200 0x11, __BIT(5), 0x25, __BITS(4,0)),
201 AXP_CTRL("cldo3", 700, 3300, 100,
202 0x11, __BIT(6), 0x26, __BITS(4,0)),
203 };
204
205 static const struct axppmic_ctrl axp813_ctrls[] = {
206 AXP_CTRL("dldo1", 700, 3300, 100,
207 0x12, __BIT(3), 0x15, __BITS(4,0)),
208 AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
209 0x12, __BIT(4), 0x16, __BITS(4,0)),
210 AXP_CTRL("dldo3", 700, 3300, 100,
211 0x12, __BIT(5), 0x17, __BITS(4,0)),
212 AXP_CTRL("dldo4", 700, 3300, 100,
213 0x12, __BIT(6), 0x18, __BITS(4,0)),
214 AXP_CTRL("eldo1", 700, 1900, 50,
215 0x12, __BIT(0), 0x19, __BITS(4,0)),
216 AXP_CTRL("eldo2", 700, 1900, 50,
217 0x12, __BIT(1), 0x1a, __BITS(4,0)),
218 AXP_CTRL("eldo3", 700, 1900, 50,
219 0x12, __BIT(2), 0x1b, __BITS(4,0)),
220 AXP_CTRL("fldo1", 700, 1450, 50,
221 0x13, __BIT(2), 0x1c, __BITS(3,0)),
222 AXP_CTRL("fldo2", 700, 1450, 50,
223 0x13, __BIT(3), 0x1d, __BITS(3,0)),
224 AXP_CTRL("dcdc1", 1600, 3400, 100,
225 0x10, __BIT(0), 0x20, __BITS(4,0)),
226 AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
227 0x10, __BIT(1), 0x21, __BITS(6,0)),
228 AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
229 0x10, __BIT(2), 0x22, __BITS(6,0)),
230 AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
231 0x10, __BIT(3), 0x23, __BITS(6,0)),
232 AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
233 0x10, __BIT(4), 0x24, __BITS(6,0)),
234 AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
235 0x10, __BIT(5), 0x25, __BITS(6,0)),
236 AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
237 0x10, __BIT(6), 0x26, __BITS(6,0)),
238 AXP_CTRL("aldo1", 700, 3300, 100,
239 0x13, __BIT(5), 0x28, __BITS(4,0)),
240 AXP_CTRL("aldo2", 700, 3300, 100,
241 0x13, __BIT(6), 0x29, __BITS(4,0)),
242 AXP_CTRL("aldo3", 700, 3300, 100,
243 0x13, __BIT(7), 0x2a, __BITS(4,0)),
244 };
245
246 struct axppmic_irq {
247 u_int reg;
248 uint8_t mask;
249 };
250
251 #define AXPPMIC_IRQ(_reg, _mask) \
252 { .reg = (_reg), .mask = (_mask) }
253
254 struct axppmic_config {
255 const char *name;
256 const struct axppmic_ctrl *controls;
257 u_int ncontrols;
258 u_int irq_regs;
259 bool has_battery;
260 bool has_fuel_gauge;
261 struct axppmic_irq poklirq;
262 struct axppmic_irq acinirq;
263 struct axppmic_irq vbusirq;
264 struct axppmic_irq battirq;
265 struct axppmic_irq chargeirq;
266 struct axppmic_irq chargestirq;
267 u_int batsense_step; /* uV */
268 u_int charge_step; /* uA */
269 u_int discharge_step; /* uA */
270 u_int maxcap_step; /* uAh */
271 u_int coulomb_step; /* uAh */
272 };
273
274 enum axppmic_sensor {
275 AXP_SENSOR_ACIN_PRESENT,
276 AXP_SENSOR_VBUS_PRESENT,
277 AXP_SENSOR_BATT_PRESENT,
278 AXP_SENSOR_BATT_CHARGING,
279 AXP_SENSOR_BATT_CHARGE_STATE,
280 AXP_SENSOR_BATT_VOLTAGE,
281 AXP_SENSOR_BATT_CHARGE_CURRENT,
282 AXP_SENSOR_BATT_DISCHARGE_CURRENT,
283 AXP_SENSOR_BATT_CAPACITY_PERCENT,
284 AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
285 AXP_SENSOR_BATT_CURRENT_CAPACITY,
286 AXP_NSENSORS
287 };
288
289 struct axppmic_softc {
290 device_t sc_dev;
291 i2c_tag_t sc_i2c;
292 i2c_addr_t sc_addr;
293 int sc_phandle;
294
295 const struct axppmic_config *sc_conf;
296
297 struct sysmon_pswitch sc_smpsw;
298
299 struct sysmon_envsys *sc_sme;
300
301 envsys_data_t sc_sensor[AXP_NSENSORS];
302
303 u_int sc_warn_thres;
304 u_int sc_shut_thres;
305 };
306
307 struct axpreg_softc {
308 device_t sc_dev;
309 i2c_tag_t sc_i2c;
310 i2c_addr_t sc_addr;
311 const struct axppmic_ctrl *sc_ctrl;
312 };
313
314 struct axpreg_attach_args {
315 const struct axppmic_ctrl *reg_ctrl;
316 int reg_phandle;
317 i2c_tag_t reg_i2c;
318 i2c_addr_t reg_addr;
319 };
320
321 static const struct axppmic_config axp803_config = {
322 .name = "AXP803",
323 .controls = axp803_ctrls,
324 .ncontrols = __arraycount(axp803_ctrls),
325 .irq_regs = 6,
326 .has_battery = true,
327 .has_fuel_gauge = true,
328 .batsense_step = 1100,
329 .charge_step = 1000,
330 .discharge_step = 1000,
331 .maxcap_step = 1456,
332 .coulomb_step = 1456,
333 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
334 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
335 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
336 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
337 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
338 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
339 };
340
341 static const struct axppmic_config axp805_config = {
342 .name = "AXP805/806",
343 .controls = axp805_ctrls,
344 .ncontrols = __arraycount(axp805_ctrls),
345 .irq_regs = 2,
346 .poklirq = AXPPMIC_IRQ(2, __BIT(0)),
347 };
348
349 static const struct axppmic_config axp813_config = {
350 .name = "AXP813",
351 .controls = axp813_ctrls,
352 .ncontrols = __arraycount(axp813_ctrls),
353 .irq_regs = 6,
354 .has_battery = true,
355 .has_fuel_gauge = true,
356 .batsense_step = 1100,
357 .charge_step = 1000,
358 .discharge_step = 1000,
359 .maxcap_step = 1456,
360 .coulomb_step = 1456,
361 .poklirq = AXPPMIC_IRQ(5, __BIT(3)),
362 .acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
363 .vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
364 .battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
365 .chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
366 .chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
367 };
368
369 static const struct device_compatible_entry compat_data[] = {
370 { "x-powers,axp803", (uintptr_t)&axp803_config },
371 { "x-powers,axp805", (uintptr_t)&axp805_config },
372 { "x-powers,axp806", (uintptr_t)&axp805_config },
373 { "x-powers,axp813", (uintptr_t)&axp813_config },
374 { NULL, 0 }
375 };
376
377 static int
378 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
379 {
380 return iic_smbus_read_byte(tag, addr, reg, val, flags);
381 }
382
383 static int
384 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
385 {
386 return iic_smbus_write_byte(tag, addr, reg, val, flags);
387 }
388
389 static int
390 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
391 {
392 const int flags = (cold ? I2C_F_POLL : 0);
393 u_int vol, reg_val;
394 int nstep, error;
395 uint8_t val;
396
397 if (!c->c_voltage_mask)
398 return EINVAL;
399
400 if (min < c->c_min || min > c->c_max)
401 return EINVAL;
402
403 reg_val = 0;
404 nstep = 1;
405 vol = c->c_min;
406
407 for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
408 ++reg_val;
409 vol += c->c_step1;
410 }
411 for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
412 ++reg_val;
413 vol += c->c_step2;
414 }
415
416 if (vol > max)
417 return EINVAL;
418
419 iic_acquire_bus(tag, flags);
420 if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags)) == 0) {
421 val &= ~c->c_voltage_mask;
422 val |= __SHIFTIN(reg_val, c->c_voltage_mask);
423 error = axppmic_write(tag, addr, c->c_voltage_reg, val, flags);
424 }
425 iic_release_bus(tag, flags);
426
427 return error;
428 }
429
430 static int
431 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
432 {
433 const int flags = (cold ? I2C_F_POLL : 0);
434 int reg_val, error;
435 uint8_t val;
436
437 if (!c->c_voltage_mask)
438 return EINVAL;
439
440 iic_acquire_bus(tag, flags);
441 error = axppmic_read(tag, addr, c->c_voltage_reg, &val, flags);
442 iic_release_bus(tag, flags);
443 if (error)
444 return error;
445
446 reg_val = __SHIFTOUT(val, c->c_voltage_mask);
447 if (reg_val < c->c_step1cnt) {
448 *pvol = c->c_min + reg_val * c->c_step1;
449 } else {
450 *pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
451 ((reg_val - c->c_step1cnt) * c->c_step2);
452 }
453
454 return 0;
455 }
456
457 static void
458 axppmic_power_poweroff(device_t dev)
459 {
460 struct axppmic_softc *sc = device_private(dev);
461
462 delay(1000000);
463
464 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
465 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, I2C_F_POLL);
466 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
467 }
468
469 static struct fdtbus_power_controller_func axppmic_power_funcs = {
470 .poweroff = axppmic_power_poweroff,
471 };
472
473 static void
474 axppmic_task_shut(void *priv)
475 {
476 struct axppmic_softc *sc = priv;
477
478 sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
479 }
480
481 static void
482 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
483 {
484 struct axppmic_softc *sc = sme->sme_cookie;
485 const struct axppmic_config *c = sc->sc_conf;
486 const int flags = I2C_F_POLL;
487 uint8_t val, lo, hi;
488
489 e->state = ENVSYS_SINVALID;
490
491 const bool battery_present =
492 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
493 sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
494
495 switch (e->private) {
496 case AXP_SENSOR_ACIN_PRESENT:
497 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
498 e->state = ENVSYS_SVALID;
499 e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
500 }
501 break;
502 case AXP_SENSOR_VBUS_PRESENT:
503 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0) {
504 e->state = ENVSYS_SVALID;
505 e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
506 }
507 break;
508 case AXP_SENSOR_BATT_PRESENT:
509 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
510 if (val & AXP_POWER_MODE_BATT_VALID) {
511 e->state = ENVSYS_SVALID;
512 e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
513 }
514 }
515 break;
516 case AXP_SENSOR_BATT_CHARGING:
517 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, flags) == 0) {
518 e->state = ENVSYS_SVALID;
519 e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
520 }
521 break;
522 case AXP_SENSOR_BATT_CHARGE_STATE:
523 if (battery_present &&
524 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
525 (val & AXP_BATT_CAP_VALID) != 0) {
526 const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
527 if (batt_val <= sc->sc_shut_thres) {
528 e->state = ENVSYS_SCRITICAL;
529 e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
530 } else if (batt_val <= sc->sc_warn_thres) {
531 e->state = ENVSYS_SWARNUNDER;
532 e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
533 } else {
534 e->state = ENVSYS_SVALID;
535 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
536 }
537 }
538 break;
539 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
540 if (battery_present &&
541 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, flags) == 0 &&
542 (val & AXP_BATT_CAP_VALID) != 0) {
543 e->state = ENVSYS_SVALID;
544 e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
545 }
546 break;
547 case AXP_SENSOR_BATT_VOLTAGE:
548 if (battery_present &&
549 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, flags) == 0 &&
550 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, flags) == 0) {
551 e->state = ENVSYS_SVALID;
552 e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
553 }
554 break;
555 case AXP_SENSOR_BATT_CHARGE_CURRENT:
556 if (battery_present &&
557 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
558 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
559 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, flags) == 0 &&
560 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, flags) == 0) {
561 e->state = ENVSYS_SVALID;
562 e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
563 }
564 break;
565 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
566 if (battery_present &&
567 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, flags) == 0 &&
568 (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
569 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, flags) == 0 &&
570 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, flags) == 0) {
571 e->state = ENVSYS_SVALID;
572 e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
573 }
574 break;
575 case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
576 if (battery_present &&
577 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, flags) == 0 &&
578 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, flags) == 0) {
579 e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
580 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
581 }
582 break;
583 case AXP_SENSOR_BATT_CURRENT_CAPACITY:
584 if (battery_present &&
585 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, flags) == 0 &&
586 axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, flags) == 0) {
587 e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
588 e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
589 }
590 break;
591 }
592 }
593
594 static void
595 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
596 {
597 struct axppmic_softc *sc = sme->sme_cookie;
598 const int flags = I2C_F_POLL;
599
600 switch (e->private) {
601 case AXP_SENSOR_BATT_CAPACITY_PERCENT:
602 case AXP_SENSOR_BATT_VOLTAGE:
603 case AXP_SENSOR_BATT_CHARGE_CURRENT:
604 case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
605 /* Always update battery capacity and ADCs */
606 iic_acquire_bus(sc->sc_i2c, flags);
607 axppmic_sensor_update(sme, e);
608 iic_release_bus(sc->sc_i2c, flags);
609 break;
610 default:
611 /* Refresh if the sensor is not in valid state */
612 if (e->state != ENVSYS_SVALID) {
613 iic_acquire_bus(sc->sc_i2c, flags);
614 axppmic_sensor_update(sme, e);
615 iic_release_bus(sc->sc_i2c, flags);
616 }
617 break;
618 }
619 }
620
621 static int
622 axppmic_intr(void *priv)
623 {
624 struct axppmic_softc *sc = priv;
625 const struct axppmic_config *c = sc->sc_conf;
626 const int flags = I2C_F_POLL;
627 uint8_t stat;
628 u_int n;
629
630 iic_acquire_bus(sc->sc_i2c, flags);
631 for (n = 1; n <= c->irq_regs; n++) {
632 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
633 if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
634 sysmon_task_queue_sched(0, axppmic_task_shut, sc);
635 if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
636 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
637 if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
638 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
639 if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
640 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
641 if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
642 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
643 if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
644 axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
645
646 if (stat != 0)
647 axppmic_write(sc->sc_i2c, sc->sc_addr,
648 AXP_IRQ_STATUS_REG(n), stat, flags);
649 }
650 }
651 iic_release_bus(sc->sc_i2c, flags);
652
653 return 1;
654 }
655
656 static void
657 axppmic_attach_acadapter(struct axppmic_softc *sc)
658 {
659 envsys_data_t *e;
660
661 e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
662 e->private = AXP_SENSOR_ACIN_PRESENT;
663 e->units = ENVSYS_INDICATOR;
664 e->state = ENVSYS_SINVALID;
665 strlcpy(e->desc, "ACIN present", sizeof(e->desc));
666 sysmon_envsys_sensor_attach(sc->sc_sme, e);
667
668 e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
669 e->private = AXP_SENSOR_VBUS_PRESENT;
670 e->units = ENVSYS_INDICATOR;
671 e->state = ENVSYS_SINVALID;
672 strlcpy(e->desc, "VBUS present", sizeof(e->desc));
673 sysmon_envsys_sensor_attach(sc->sc_sme, e);
674 }
675
676 static void
677 axppmic_attach_battery(struct axppmic_softc *sc)
678 {
679 const struct axppmic_config *c = sc->sc_conf;
680 envsys_data_t *e;
681 uint8_t val;
682
683 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
684 if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, I2C_F_POLL) == 0) {
685 sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
686 sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
687 }
688 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
689
690 e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
691 e->private = AXP_SENSOR_BATT_PRESENT;
692 e->units = ENVSYS_INDICATOR;
693 e->state = ENVSYS_SINVALID;
694 strlcpy(e->desc, "battery present", sizeof(e->desc));
695 sysmon_envsys_sensor_attach(sc->sc_sme, e);
696
697 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
698 e->private = AXP_SENSOR_BATT_CHARGING;
699 e->units = ENVSYS_BATTERY_CHARGE;
700 e->state = ENVSYS_SINVALID;
701 strlcpy(e->desc, "charging", sizeof(e->desc));
702 sysmon_envsys_sensor_attach(sc->sc_sme, e);
703
704 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
705 e->private = AXP_SENSOR_BATT_CHARGE_STATE;
706 e->units = ENVSYS_BATTERY_CAPACITY;
707 e->flags = ENVSYS_FMONSTCHANGED;
708 e->state = ENVSYS_SINVALID;
709 e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
710 strlcpy(e->desc, "charge state", sizeof(e->desc));
711 sysmon_envsys_sensor_attach(sc->sc_sme, e);
712
713 if (c->batsense_step) {
714 e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
715 e->private = AXP_SENSOR_BATT_VOLTAGE;
716 e->units = ENVSYS_SVOLTS_DC;
717 e->state = ENVSYS_SINVALID;
718 strlcpy(e->desc, "battery voltage", sizeof(e->desc));
719 sysmon_envsys_sensor_attach(sc->sc_sme, e);
720 }
721
722 if (c->charge_step) {
723 e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
724 e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
725 e->units = ENVSYS_SAMPS;
726 e->state = ENVSYS_SINVALID;
727 strlcpy(e->desc, "battery charge current", sizeof(e->desc));
728 sysmon_envsys_sensor_attach(sc->sc_sme, e);
729 }
730
731 if (c->discharge_step) {
732 e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
733 e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
734 e->units = ENVSYS_SAMPS;
735 e->state = ENVSYS_SINVALID;
736 strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
737 sysmon_envsys_sensor_attach(sc->sc_sme, e);
738 }
739
740 if (c->has_fuel_gauge) {
741 e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
742 e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
743 e->units = ENVSYS_INTEGER;
744 e->state = ENVSYS_SINVALID;
745 e->flags = ENVSYS_FPERCENT;
746 strlcpy(e->desc, "battery percent", sizeof(e->desc));
747 sysmon_envsys_sensor_attach(sc->sc_sme, e);
748 }
749
750 if (c->maxcap_step) {
751 e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
752 e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
753 e->units = ENVSYS_SAMPHOUR;
754 e->state = ENVSYS_SINVALID;
755 strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
756 sysmon_envsys_sensor_attach(sc->sc_sme, e);
757 }
758
759 if (c->coulomb_step) {
760 e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
761 e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
762 e->units = ENVSYS_SAMPHOUR;
763 e->state = ENVSYS_SINVALID;
764 strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
765 sysmon_envsys_sensor_attach(sc->sc_sme, e);
766 }
767 }
768
769 static void
770 axppmic_attach_sensors(struct axppmic_softc *sc)
771 {
772 if (sc->sc_conf->has_battery) {
773 sc->sc_sme = sysmon_envsys_create();
774 sc->sc_sme->sme_name = device_xname(sc->sc_dev);
775 sc->sc_sme->sme_cookie = sc;
776 sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
777 sc->sc_sme->sme_class = SME_CLASS_BATTERY;
778 sc->sc_sme->sme_flags = SME_INIT_REFRESH;
779
780 axppmic_attach_acadapter(sc);
781 axppmic_attach_battery(sc);
782
783 sysmon_envsys_register(sc->sc_sme);
784 }
785 }
786
787
788 static int
789 axppmic_match(device_t parent, cfdata_t match, void *aux)
790 {
791 struct i2c_attach_args *ia = aux;
792 int match_result;
793
794 if (iic_use_direct_match(ia, match, compat_data, &match_result))
795 return match_result;
796
797 /* This device is direct-config only. */
798
799 return 0;
800 }
801
802 static void
803 axppmic_attach(device_t parent, device_t self, void *aux)
804 {
805 struct axppmic_softc *sc = device_private(self);
806 const struct device_compatible_entry *dce = NULL;
807 const struct axppmic_config *c;
808 struct axpreg_attach_args aaa;
809 struct i2c_attach_args *ia = aux;
810 int phandle, child, i;
811 uint32_t irq_mask;
812 void *ih;
813
814 (void) iic_compatible_match(ia, compat_data, &dce);
815 KASSERT(dce != NULL);
816 c = (void *)dce->data;
817
818 sc->sc_dev = self;
819 sc->sc_i2c = ia->ia_tag;
820 sc->sc_addr = ia->ia_addr;
821 sc->sc_phandle = ia->ia_cookie;
822 sc->sc_conf = c;
823
824 aprint_naive("\n");
825 aprint_normal(": %s\n", c->name);
826
827 sc->sc_smpsw.smpsw_name = device_xname(self);
828 sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
829 sysmon_pswitch_register(&sc->sc_smpsw);
830
831 iic_acquire_bus(sc->sc_i2c, I2C_F_POLL);
832 for (i = 1; i <= c->irq_regs; i++) {
833 irq_mask = 0;
834 if (i == c->poklirq.reg)
835 irq_mask |= c->poklirq.mask;
836 if (i == c->acinirq.reg)
837 irq_mask |= c->acinirq.mask;
838 if (i == c->vbusirq.reg)
839 irq_mask |= c->vbusirq.mask;
840 if (i == c->battirq.reg)
841 irq_mask |= c->battirq.mask;
842 if (i == c->chargeirq.reg)
843 irq_mask |= c->chargeirq.mask;
844 if (i == c->chargestirq.reg)
845 irq_mask |= c->chargestirq.mask;
846 axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_IRQ_ENABLE_REG(i), irq_mask, I2C_F_POLL);
847 }
848 iic_release_bus(sc->sc_i2c, I2C_F_POLL);
849
850 ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM, FDT_INTR_MPSAFE,
851 axppmic_intr, sc);
852 if (ih == NULL) {
853 aprint_error_dev(self, "WARNING: couldn't establish interrupt handler\n");
854 }
855
856 fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
857 &axppmic_power_funcs);
858
859 phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
860 if (phandle > 0) {
861 aaa.reg_i2c = sc->sc_i2c;
862 aaa.reg_addr = sc->sc_addr;
863 for (i = 0; i < c->ncontrols; i++) {
864 const struct axppmic_ctrl *ctrl = &c->controls[i];
865 child = of_find_firstchild_byname(phandle, ctrl->c_name);
866 if (child <= 0)
867 continue;
868 aaa.reg_ctrl = ctrl;
869 aaa.reg_phandle = child;
870 config_found(sc->sc_dev, &aaa, NULL);
871 }
872 }
873
874 if (c->has_battery)
875 axppmic_attach_sensors(sc);
876 }
877
878 static int
879 axpreg_acquire(device_t dev)
880 {
881 return 0;
882 }
883
884 static void
885 axpreg_release(device_t dev)
886 {
887 }
888
889 static int
890 axpreg_enable(device_t dev, bool enable)
891 {
892 struct axpreg_softc *sc = device_private(dev);
893 const struct axppmic_ctrl *c = sc->sc_ctrl;
894 const int flags = (cold ? I2C_F_POLL : 0);
895 uint8_t val;
896 int error;
897
898 if (!c->c_enable_mask)
899 return EINVAL;
900
901 iic_acquire_bus(sc->sc_i2c, flags);
902 if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
903 if (enable)
904 val |= c->c_enable_mask;
905 else
906 val &= ~c->c_enable_mask;
907 error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
908 }
909 iic_release_bus(sc->sc_i2c, flags);
910
911 return error;
912 }
913
914 static int
915 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
916 {
917 struct axpreg_softc *sc = device_private(dev);
918 const struct axppmic_ctrl *c = sc->sc_ctrl;
919
920 return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
921 min_uvol / 1000, max_uvol / 1000);
922 }
923
924 static int
925 axpreg_get_voltage(device_t dev, u_int *puvol)
926 {
927 struct axpreg_softc *sc = device_private(dev);
928 const struct axppmic_ctrl *c = sc->sc_ctrl;
929 int error;
930 u_int vol;
931
932 error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
933 if (error)
934 return error;
935
936 *puvol = vol * 1000;
937 return 0;
938 }
939
940 static struct fdtbus_regulator_controller_func axpreg_funcs = {
941 .acquire = axpreg_acquire,
942 .release = axpreg_release,
943 .enable = axpreg_enable,
944 .set_voltage = axpreg_set_voltage,
945 .get_voltage = axpreg_get_voltage,
946 };
947
948 static int
949 axpreg_match(device_t parent, cfdata_t match, void *aux)
950 {
951 return 1;
952 }
953
954 static void
955 axpreg_attach(device_t parent, device_t self, void *aux)
956 {
957 struct axpreg_softc *sc = device_private(self);
958 struct axpreg_attach_args *aaa = aux;
959 const int phandle = aaa->reg_phandle;
960 const char *name;
961
962 sc->sc_dev = self;
963 sc->sc_i2c = aaa->reg_i2c;
964 sc->sc_addr = aaa->reg_addr;
965 sc->sc_ctrl = aaa->reg_ctrl;
966
967 fdtbus_register_regulator_controller(self, phandle,
968 &axpreg_funcs);
969
970 aprint_naive("\n");
971 name = fdtbus_get_string(phandle, "regulator-name");
972 if (name)
973 aprint_normal(": %s\n", name);
974 else
975 aprint_normal("\n");
976 }
977
978 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
979 axppmic_match, axppmic_attach, NULL, NULL);
980
981 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
982 axpreg_match, axpreg_attach, NULL, NULL);
983