dbcool.c revision 1.66 1 /* $NetBSD: dbcool.c,v 1.66 2025/09/21 13:54:56 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Goyette
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * a driver for the dbCool(tm) family of environmental controllers
34 *
35 * Data sheets for the various supported chips are available at
36 *
37 * http://www.onsemi.com/pub/Collateral/ADM1027-D.PDF
38 * http://www.onsemi.com/pub/Collateral/ADM1030-D.PDF
39 * http://www.onsemi.com/pub/Collateral/ADT7463-D.PDF
40 * http://www.onsemi.com/pub/Collateral/ADT7466.PDF
41 * http://www.onsemi.com/pub/Collateral/ADT7467-D.PDF
42 * http://www.onsemi.com/pub/Collateral/ADT7468-D.PDF
43 * http://www.onsemi.com/pub/Collateral/ADT7473-D.PDF
44 * http://www.onsemi.com/pub/Collateral/ADT7475-D.PDF
45 * http://www.onsemi.com/pub/Collateral/ADT7476-D.PDF
46 * http://www.onsemi.com/pub/Collateral/ADT7490-D.PDF
47 * http://www.smsc.com/media/Downloads_Public/Data_Sheets/6d103s.pdf
48 *
49 * (URLs are correct as of October 5, 2008)
50 */
51
52 #include <sys/cdefs.h>
53 __KERNEL_RCSID(0, "$NetBSD: dbcool.c,v 1.66 2025/09/21 13:54:56 thorpej Exp $");
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/device.h>
59 #include <sys/sysctl.h>
60 #include <sys/module.h>
61
62 #include <dev/i2c/dbcool_var.h>
63 #include <dev/i2c/dbcool_reg.h>
64
65 /* Config interface */
66 static int dbcool_match(device_t, cfdata_t, void *);
67 static void dbcool_attach(device_t, device_t, void *);
68 static int dbcool_detach(device_t, int);
69
70 /* Device attributes */
71 static int dbcool_supply_voltage(struct dbcool_softc *);
72 static bool dbcool_islocked(struct dbcool_softc *);
73
74 /* Sensor read functions */
75 static void dbcool_refresh(struct sysmon_envsys *, envsys_data_t *);
76 static int dbcool_read_rpm(struct dbcool_softc *, uint8_t);
77 static int dbcool_read_temp(struct dbcool_softc *, uint8_t, bool);
78 static int dbcool_read_volt(struct dbcool_softc *, uint8_t, int, bool);
79
80 /* Sensor get/set limit functions */
81 static void dbcool_get_limits(struct sysmon_envsys *, envsys_data_t *,
82 sysmon_envsys_lim_t *, uint32_t *);
83 static void dbcool_get_temp_limits(struct dbcool_softc *, int,
84 sysmon_envsys_lim_t *, uint32_t *);
85 static void dbcool_get_volt_limits(struct dbcool_softc *, int,
86 sysmon_envsys_lim_t *, uint32_t *);
87 static void dbcool_get_fan_limits(struct dbcool_softc *, int,
88 sysmon_envsys_lim_t *, uint32_t *);
89
90 static void dbcool_set_limits(struct sysmon_envsys *, envsys_data_t *,
91 sysmon_envsys_lim_t *, uint32_t *);
92 static void dbcool_set_temp_limits(struct dbcool_softc *, int,
93 sysmon_envsys_lim_t *, uint32_t *);
94 static void dbcool_set_volt_limits(struct dbcool_softc *, int,
95 sysmon_envsys_lim_t *, uint32_t *);
96 static void dbcool_set_fan_limits(struct dbcool_softc *, int,
97 sysmon_envsys_lim_t *, uint32_t *);
98
99 /* SYSCTL Helpers */
100 SYSCTL_SETUP_PROTO(sysctl_dbcoolsetup);
101 static int sysctl_dbcool_temp(SYSCTLFN_PROTO);
102 static int sysctl_adm1030_temp(SYSCTLFN_PROTO);
103 static int sysctl_adm1030_trange(SYSCTLFN_PROTO);
104 static int sysctl_dbcool_duty(SYSCTLFN_PROTO);
105 static int sysctl_dbcool_behavior(SYSCTLFN_PROTO);
106 static int sysctl_dbcool_slope(SYSCTLFN_PROTO);
107 static int sysctl_dbcool_thyst(SYSCTLFN_PROTO);
108
109 /* Set-up subroutines */
110 static void dbcool_setup_controllers(struct dbcool_softc *);
111 static int dbcool_setup_sensors(struct dbcool_softc *);
112 static int dbcool_attach_sensor(struct dbcool_softc *, int);
113 static int dbcool_attach_temp_control(struct dbcool_softc *, int,
114 struct chip_id *);
115
116 #ifdef DBCOOL_DEBUG
117 static int sysctl_dbcool_reg_select(SYSCTLFN_PROTO);
118 static int sysctl_dbcool_reg_access(SYSCTLFN_PROTO);
119 #endif /* DBCOOL_DEBUG */
120
121 /*
122 * Descriptions for SYSCTL entries
123 */
124 struct dbc_sysctl_info {
125 const char *name;
126 const char *desc;
127 bool lockable;
128 int (*helper)(SYSCTLFN_PROTO);
129 };
130
131 static struct dbc_sysctl_info dbc_sysctl_table[] = {
132 /*
133 * The first several entries must remain in the same order as the
134 * corresponding entries in enum dbc_pwm_params
135 */
136 { "behavior", "operating behavior and temp selector",
137 true, sysctl_dbcool_behavior },
138 { "min_duty", "minimum fan controller PWM duty cycle",
139 true, sysctl_dbcool_duty },
140 { "max_duty", "maximum fan controller PWM duty cycle",
141 true, sysctl_dbcool_duty },
142 { "cur_duty", "current fan controller PWM duty cycle",
143 false, sysctl_dbcool_duty },
144
145 /*
146 * The rest of these should be in the order in which they
147 * are to be stored in the sysctl tree; the table index is
148 * used as the high-order bits of the sysctl_num to maintain
149 * the sequence.
150 *
151 * If you rearrange the order of these items, be sure to
152 * update the sysctl_index in the XXX_sensor_table[] for
153 * the various chips!
154 */
155 { "Trange", "temp slope/range to reach 100% duty cycle",
156 true, sysctl_dbcool_slope },
157 { "Tmin", "temp at which to start fan controller",
158 true, sysctl_dbcool_temp },
159 { "Ttherm", "temp at which THERM is asserted",
160 true, sysctl_dbcool_temp },
161 { "Thyst", "temp hysteresis for stopping fan controller",
162 true, sysctl_dbcool_thyst },
163 { "Tmin", "temp at which to start fan controller",
164 true, sysctl_adm1030_temp },
165 { "Trange", "temp slope/range to reach 100% duty cycle",
166 true, sysctl_adm1030_trange },
167 };
168
169 static const char *dbc_sensor_names[] = {
170 "l_temp", "r1_temp", "r2_temp", "Vccp", "Vcc", "fan1",
171 "fan2", "fan3", "fan4", "AIN1", "AIN2", "V2dot5",
172 "V5", "V12", "Vtt", "Imon", "VID"
173 };
174
175 /*
176 * Following table derived from product data-sheets
177 */
178 static int64_t nominal_voltages[] = {
179 -1, /* Vcc can be either 3.3 or 5.0V
180 at 3/4 scale */
181 2249939, /* Vccp 2.25V 3/4 scale */
182 2497436, /* 2.5VIN 2.5V 3/4 scale */
183 5002466, /* 5VIN 5V 3/4 scale */
184 12000000, /* 12VIN 12V 3/4 scale */
185 1690809, /* Vtt, Imon 2.25V full scale */
186 1689600, /* AIN1, AIN2 2.25V full scale */
187 0
188 };
189
190 /*
191 * Sensor-type, { val-reg, hilim-reg, lolim-reg}, name-idx, sysctl-table-idx,
192 * nom-voltage-index
193 */
194 struct dbcool_sensor ADT7490_sensor_table[] = {
195 { DBC_TEMP, { DBCOOL_LOCAL_TEMP,
196 DBCOOL_LOCAL_HIGHLIM,
197 DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
198 { DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
199 DBCOOL_REMOTE1_HIGHLIM,
200 DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
201 { DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
202 DBCOOL_REMOTE2_HIGHLIM,
203 DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
204 { DBC_VOLT, { DBCOOL_VCCP,
205 DBCOOL_VCCP_HIGHLIM,
206 DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
207 { DBC_VOLT, { DBCOOL_VCC,
208 DBCOOL_VCC_HIGHLIM,
209 DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
210 { DBC_VOLT, { DBCOOL_25VIN,
211 DBCOOL_25VIN_HIGHLIM,
212 DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
213 { DBC_VOLT, { DBCOOL_5VIN,
214 DBCOOL_5VIN_HIGHLIM,
215 DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
216 { DBC_VOLT, { DBCOOL_12VIN,
217 DBCOOL_12VIN_HIGHLIM,
218 DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
219 { DBC_VOLT, { DBCOOL_VTT,
220 DBCOOL_VTT_HIGHLIM,
221 DBCOOL_VTT_LOWLIM }, 14, 0, 5 },
222 { DBC_VOLT, { DBCOOL_IMON,
223 DBCOOL_IMON_HIGHLIM,
224 DBCOOL_IMON_LOWLIM }, 15, 0, 5 },
225 { DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
226 DBCOOL_NO_REG,
227 DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
228 { DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
229 DBCOOL_NO_REG,
230 DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
231 { DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
232 DBCOOL_NO_REG,
233 DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
234 { DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
235 DBCOOL_NO_REG,
236 DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
237 { DBC_VID, { DBCOOL_VID_REG,
238 DBCOOL_NO_REG,
239 DBCOOL_NO_REG }, 16, 0, 0 },
240 { DBC_CTL, { DBCOOL_LOCAL_TMIN,
241 DBCOOL_NO_REG,
242 DBCOOL_NO_REG }, 0, 5, 0 },
243 { DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
244 DBCOOL_NO_REG,
245 DBCOOL_NO_REG }, 0, 6, 0 },
246 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
247 DBCOOL_NO_REG,
248 DBCOOL_NO_REG }, 0, 7, 0 },
249 { DBC_CTL, { DBCOOL_REMOTE1_TMIN,
250 DBCOOL_NO_REG,
251 DBCOOL_NO_REG }, 1, 5, 0 },
252 { DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
253 DBCOOL_NO_REG,
254 DBCOOL_NO_REG }, 1, 6, 0 },
255 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
256 DBCOOL_NO_REG,
257 DBCOOL_NO_REG }, 1, 7, 0 },
258 { DBC_CTL, { DBCOOL_REMOTE2_TMIN,
259 DBCOOL_NO_REG,
260 DBCOOL_NO_REG }, 2, 5, 0 },
261 { DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
262 DBCOOL_NO_REG,
263 DBCOOL_NO_REG }, 2, 6, 0 },
264 { DBC_CTL, { DBCOOL_R2_TMIN_HYST,
265 DBCOOL_NO_REG,
266 DBCOOL_NO_REG }, 2, 7, 0 },
267 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
268 };
269
270 struct dbcool_sensor ADT7476_sensor_table[] = {
271 { DBC_TEMP, { DBCOOL_LOCAL_TEMP,
272 DBCOOL_LOCAL_HIGHLIM,
273 DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
274 { DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
275 DBCOOL_REMOTE1_HIGHLIM,
276 DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
277 { DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
278 DBCOOL_REMOTE2_HIGHLIM,
279 DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
280 { DBC_VOLT, { DBCOOL_VCCP,
281 DBCOOL_VCCP_HIGHLIM,
282 DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
283 { DBC_VOLT, { DBCOOL_VCC,
284 DBCOOL_VCC_HIGHLIM,
285 DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
286 { DBC_VOLT, { DBCOOL_25VIN,
287 DBCOOL_25VIN_HIGHLIM,
288 DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
289 { DBC_VOLT, { DBCOOL_5VIN,
290 DBCOOL_5VIN_HIGHLIM,
291 DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
292 { DBC_VOLT, { DBCOOL_12VIN,
293 DBCOOL_12VIN_HIGHLIM,
294 DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
295 { DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
296 DBCOOL_NO_REG,
297 DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
298 { DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
299 DBCOOL_NO_REG,
300 DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
301 { DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
302 DBCOOL_NO_REG,
303 DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
304 { DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
305 DBCOOL_NO_REG,
306 DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
307 { DBC_VID, { DBCOOL_VID_REG,
308 DBCOOL_NO_REG,
309 DBCOOL_NO_REG }, 16, 0, 0 },
310 { DBC_CTL, { DBCOOL_LOCAL_TMIN,
311 DBCOOL_NO_REG,
312 DBCOOL_NO_REG }, 0, 5, 0 },
313 { DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
314 DBCOOL_NO_REG,
315 DBCOOL_NO_REG }, 0, 6, 0 },
316 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
317 DBCOOL_NO_REG,
318 DBCOOL_NO_REG }, 0, 7, 0 },
319 { DBC_CTL, { DBCOOL_REMOTE1_TMIN,
320 DBCOOL_NO_REG,
321 DBCOOL_NO_REG }, 1, 5, 0 },
322 { DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
323 DBCOOL_NO_REG,
324 DBCOOL_NO_REG }, 1, 6, 0 },
325 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
326 DBCOOL_NO_REG,
327 DBCOOL_NO_REG }, 1, 7, 0 },
328 { DBC_CTL, { DBCOOL_REMOTE2_TMIN,
329 DBCOOL_NO_REG,
330 DBCOOL_NO_REG }, 2, 5, 0 },
331 { DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
332 DBCOOL_NO_REG,
333 DBCOOL_NO_REG }, 2, 6, 0 },
334 { DBC_CTL, { DBCOOL_R2_TMIN_HYST,
335 DBCOOL_NO_REG,
336 DBCOOL_NO_REG }, 2, 7, 0 },
337 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
338 };
339
340 struct dbcool_sensor ADT7475_sensor_table[] = {
341 { DBC_TEMP, { DBCOOL_LOCAL_TEMP,
342 DBCOOL_LOCAL_HIGHLIM,
343 DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
344 { DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
345 DBCOOL_REMOTE1_HIGHLIM,
346 DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
347 { DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
348 DBCOOL_REMOTE2_HIGHLIM,
349 DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
350 { DBC_VOLT, { DBCOOL_VCCP,
351 DBCOOL_VCCP_HIGHLIM,
352 DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
353 { DBC_VOLT, { DBCOOL_VCC,
354 DBCOOL_VCC_HIGHLIM,
355 DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
356 { DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
357 DBCOOL_NO_REG,
358 DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
359 { DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
360 DBCOOL_NO_REG,
361 DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
362 { DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
363 DBCOOL_NO_REG,
364 DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
365 { DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
366 DBCOOL_NO_REG,
367 DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
368 { DBC_CTL, { DBCOOL_LOCAL_TMIN,
369 DBCOOL_NO_REG,
370 DBCOOL_NO_REG }, 0, 5, 0 },
371 { DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
372 DBCOOL_NO_REG,
373 DBCOOL_NO_REG }, 0, 6, 0 },
374 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
375 DBCOOL_NO_REG,
376 DBCOOL_NO_REG }, 0, 7, 0 },
377 { DBC_CTL, { DBCOOL_REMOTE1_TMIN,
378 DBCOOL_NO_REG,
379 DBCOOL_NO_REG }, 1, 5, 0 },
380 { DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
381 DBCOOL_NO_REG,
382 DBCOOL_NO_REG }, 1, 6, 0 },
383 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
384 DBCOOL_NO_REG,
385 DBCOOL_NO_REG }, 1, 7, 0 },
386 { DBC_CTL, { DBCOOL_REMOTE2_TMIN,
387 DBCOOL_NO_REG,
388 DBCOOL_NO_REG }, 2, 5, 0 },
389 { DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
390 DBCOOL_NO_REG,
391 DBCOOL_NO_REG }, 2, 6, 0 },
392 { DBC_CTL, { DBCOOL_R2_TMIN_HYST,
393 DBCOOL_NO_REG,
394 DBCOOL_NO_REG }, 2, 7, 0 },
395 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
396 };
397
398 /*
399 * The registers of dbcool_power_control must be in the same order as
400 * in enum dbc_pwm_params
401 */
402 struct dbcool_power_control ADT7475_power_table[] = {
403 { { DBCOOL_PWM1_CTL, DBCOOL_PWM1_MINDUTY,
404 DBCOOL_PWM1_MAXDUTY, DBCOOL_PWM1_CURDUTY },
405 "fan_control_1" },
406 { { DBCOOL_PWM2_CTL, DBCOOL_PWM2_MINDUTY,
407 DBCOOL_PWM2_MAXDUTY, DBCOOL_PWM2_CURDUTY },
408 "fan_control_2" },
409 { { DBCOOL_PWM3_CTL, DBCOOL_PWM3_MINDUTY,
410 DBCOOL_PWM3_MAXDUTY, DBCOOL_PWM3_CURDUTY },
411 "fan_control_3" },
412 { { 0, 0, 0, 0 }, NULL }
413 };
414
415 struct dbcool_sensor ADT7466_sensor_table[] = {
416 { DBC_TEMP, { DBCOOL_ADT7466_LCL_TEMP_MSB,
417 DBCOOL_ADT7466_LCL_TEMP_HILIM,
418 DBCOOL_ADT7466_LCL_TEMP_LOLIM }, 0, 0, 0 },
419 { DBC_TEMP, { DBCOOL_ADT7466_REM_TEMP_MSB,
420 DBCOOL_ADT7466_REM_TEMP_HILIM,
421 DBCOOL_ADT7466_REM_TEMP_LOLIM }, 1, 0, 0 },
422 { DBC_VOLT, { DBCOOL_ADT7466_VCC,
423 DBCOOL_ADT7466_VCC_HILIM,
424 DBCOOL_ADT7466_VCC_LOLIM }, 4, 0, 0 },
425 { DBC_VOLT, { DBCOOL_ADT7466_AIN1,
426 DBCOOL_ADT7466_AIN1_HILIM,
427 DBCOOL_ADT7466_AIN1_LOLIM }, 9, 0, 6 },
428 { DBC_VOLT, { DBCOOL_ADT7466_AIN2,
429 DBCOOL_ADT7466_AIN2_HILIM,
430 DBCOOL_ADT7466_AIN2_LOLIM }, 10, 0, 6 },
431 { DBC_FAN, { DBCOOL_ADT7466_FANA_LSB,
432 DBCOOL_NO_REG,
433 DBCOOL_ADT7466_FANA_LOLIM_LSB }, 5, 0, 0 },
434 { DBC_FAN, { DBCOOL_ADT7466_FANB_LSB,
435 DBCOOL_NO_REG,
436 DBCOOL_ADT7466_FANB_LOLIM_LSB }, 6, 0, 0 },
437 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
438 };
439
440 struct dbcool_sensor ADM1027_sensor_table[] = {
441 { DBC_TEMP, { DBCOOL_LOCAL_TEMP,
442 DBCOOL_LOCAL_HIGHLIM,
443 DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
444 { DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
445 DBCOOL_REMOTE1_HIGHLIM,
446 DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
447 { DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
448 DBCOOL_REMOTE2_HIGHLIM,
449 DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
450 { DBC_VOLT, { DBCOOL_VCCP,
451 DBCOOL_VCCP_HIGHLIM,
452 DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
453 { DBC_VOLT, { DBCOOL_VCC,
454 DBCOOL_VCC_HIGHLIM,
455 DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
456 { DBC_VOLT, { DBCOOL_25VIN,
457 DBCOOL_25VIN_HIGHLIM,
458 DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
459 { DBC_VOLT, { DBCOOL_5VIN,
460 DBCOOL_5VIN_HIGHLIM,
461 DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
462 { DBC_VOLT, { DBCOOL_12VIN,
463 DBCOOL_12VIN_HIGHLIM,
464 DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
465 { DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
466 DBCOOL_NO_REG,
467 DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
468 { DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
469 DBCOOL_NO_REG,
470 DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
471 { DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
472 DBCOOL_NO_REG,
473 DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
474 { DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
475 DBCOOL_NO_REG,
476 DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
477 { DBC_VID, { DBCOOL_VID_REG,
478 DBCOOL_NO_REG,
479 DBCOOL_NO_REG }, 16, 0, 0 },
480 { DBC_CTL, { DBCOOL_LOCAL_TMIN,
481 DBCOOL_NO_REG,
482 DBCOOL_NO_REG }, 0, 5, 0 },
483 { DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
484 DBCOOL_NO_REG,
485 DBCOOL_NO_REG }, 0, 6, 0 },
486 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST | 0x80,
487 DBCOOL_NO_REG,
488 DBCOOL_NO_REG }, 0, 7, 0 },
489 { DBC_CTL, { DBCOOL_REMOTE1_TMIN,
490 DBCOOL_NO_REG,
491 DBCOOL_NO_REG }, 1, 5, 0 },
492 { DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
493 DBCOOL_NO_REG,
494 DBCOOL_NO_REG }, 1, 6, 0 },
495 { DBC_CTL, { DBCOOL_R1_LCL_TMIN_HYST,
496 DBCOOL_NO_REG,
497 DBCOOL_NO_REG }, 1, 7, 0 },
498 { DBC_CTL, { DBCOOL_REMOTE2_TMIN,
499 DBCOOL_NO_REG,
500 DBCOOL_NO_REG }, 2, 5, 0 },
501 { DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
502 DBCOOL_NO_REG,
503 DBCOOL_NO_REG }, 2, 6, 0 },
504 { DBC_CTL, { DBCOOL_R2_TMIN_HYST,
505 DBCOOL_NO_REG,
506 DBCOOL_NO_REG }, 2, 7, 0 },
507 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
508 };
509
510 struct dbcool_sensor ADM1030_sensor_table[] = {
511 { DBC_TEMP, { DBCOOL_ADM1030_L_TEMP,
512 DBCOOL_ADM1030_L_HI_LIM,
513 DBCOOL_ADM1030_L_LO_LIM }, 0, 0, 0 },
514 { DBC_TEMP, { DBCOOL_ADM1030_R_TEMP,
515 DBCOOL_ADM1030_R_HI_LIM,
516 DBCOOL_ADM1030_R_LO_LIM }, 1, 0, 0 },
517 { DBC_FAN, { DBCOOL_ADM1030_FAN_TACH,
518 DBCOOL_NO_REG,
519 DBCOOL_ADM1030_FAN_LO_LIM }, 5, 0, 0 },
520 { DBC_CTL, { DBCOOL_ADM1030_L_TMIN,
521 DBCOOL_NO_REG,
522 DBCOOL_NO_REG }, 0, 8, 0 },
523 { DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
524 DBCOOL_NO_REG,
525 DBCOOL_NO_REG }, 0, 9, 0 },
526 { DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
527 DBCOOL_NO_REG,
528 DBCOOL_NO_REG }, 0, 6, 0 },
529 { DBC_CTL, { DBCOOL_ADM1030_R_TMIN,
530 DBCOOL_NO_REG,
531 DBCOOL_NO_REG }, 1, 8, 0 },
532 { DBC_CTL, { DBCOOL_ADM1030_R_TTHRESH,
533 DBCOOL_NO_REG,
534 DBCOOL_NO_REG }, 1, 9, 0 },
535 { DBC_CTL, { DBCOOL_ADM1030_R_TTHRESH,
536 DBCOOL_NO_REG,
537 DBCOOL_NO_REG }, 1, 6, 0 },
538 { DBC_EOF, {0, 0, 0 }, 0, 0, 0 }
539 };
540
541 struct dbcool_power_control ADM1030_power_table[] = {
542 { { DBCOOL_ADM1030_CFG1, DBCOOL_NO_REG, DBCOOL_NO_REG,
543 DBCOOL_ADM1030_FAN_SPEED_CFG },
544 "fan_control_1" },
545 { { 0, 0, 0, 0 }, NULL }
546 };
547
548 struct dbcool_sensor ADM1031_sensor_table[] = {
549 { DBC_TEMP, { DBCOOL_ADM1030_L_TEMP,
550 DBCOOL_ADM1030_L_HI_LIM,
551 DBCOOL_ADM1030_L_LO_LIM }, 0, 0, 0 },
552 { DBC_TEMP, { DBCOOL_ADM1030_R_TEMP,
553 DBCOOL_ADM1030_R_HI_LIM,
554 DBCOOL_ADM1030_R_LO_LIM }, 1, 0, 0 },
555 { DBC_TEMP, { DBCOOL_ADM1031_R2_TEMP,
556 DBCOOL_ADM1031_R2_HI_LIM,
557 DBCOOL_ADM1031_R2_LO_LIM }, 2, 0, 0 },
558 { DBC_FAN, { DBCOOL_ADM1030_FAN_TACH,
559 DBCOOL_NO_REG,
560 DBCOOL_ADM1030_FAN_LO_LIM }, 5, 0, 0 },
561 { DBC_FAN, { DBCOOL_ADM1031_FAN2_TACH,
562 DBCOOL_NO_REG,
563 DBCOOL_ADM1031_FAN2_LO_LIM }, 6, 0, 0 },
564 { DBC_CTL, { DBCOOL_ADM1030_L_TMIN,
565 DBCOOL_NO_REG,
566 DBCOOL_NO_REG }, 0, 8, 0 },
567 { DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
568 DBCOOL_NO_REG,
569 DBCOOL_NO_REG }, 0, 9, 0 },
570 { DBC_CTL, { DBCOOL_ADM1030_L_TTHRESH,
571 DBCOOL_NO_REG,
572 DBCOOL_NO_REG }, 0, 6, 0 },
573 { DBC_CTL, { DBCOOL_ADM1030_R_TMIN,
574 DBCOOL_NO_REG,
575 DBCOOL_NO_REG }, 1, 8, 0 },
576 { DBC_CTL, { DBCOOL_ADM1030_R_TTHRESH,
577 DBCOOL_NO_REG,
578 DBCOOL_NO_REG }, 1, 9, 0 },
579 { DBC_CTL, { DBCOOL_ADM1030_R_TTHRESH,
580 DBCOOL_NO_REG,
581 DBCOOL_NO_REG }, 1, 6, 0 },
582 { DBC_CTL, { DBCOOL_ADM1031_R2_TMIN,
583 DBCOOL_NO_REG,
584 DBCOOL_NO_REG }, 2, 8, 0 },
585 { DBC_CTL, { DBCOOL_ADM1031_R2_TTHRESH,
586 DBCOOL_NO_REG,
587 DBCOOL_NO_REG }, 2, 9, 0 },
588 { DBC_CTL, { DBCOOL_ADM1031_R2_TTHRESH,
589 DBCOOL_NO_REG,
590 DBCOOL_NO_REG }, 2, 6, 0 },
591 { DBC_EOF, {0, 0, 0 }, 0, 0, 0 }
592 };
593
594 struct dbcool_power_control ADM1031_power_table[] = {
595 { { DBCOOL_ADM1030_CFG1, DBCOOL_NO_REG, DBCOOL_NO_REG,
596 DBCOOL_ADM1030_FAN_SPEED_CFG },
597 "fan_control_1" },
598 { { DBCOOL_ADM1030_CFG1, DBCOOL_NO_REG, DBCOOL_NO_REG,
599 DBCOOL_ADM1030_FAN_SPEED_CFG },
600 "fan_control_2" },
601 { { 0, 0, 0, 0 }, NULL }
602 };
603
604 struct dbcool_sensor EMC6D103S_sensor_table[] = {
605 { DBC_TEMP, { DBCOOL_LOCAL_TEMP,
606 DBCOOL_LOCAL_HIGHLIM,
607 DBCOOL_LOCAL_LOWLIM }, 0, 0, 0 },
608 { DBC_TEMP, { DBCOOL_REMOTE1_TEMP,
609 DBCOOL_REMOTE1_HIGHLIM,
610 DBCOOL_REMOTE1_LOWLIM }, 1, 0, 0 },
611 { DBC_TEMP, { DBCOOL_REMOTE2_TEMP,
612 DBCOOL_REMOTE2_HIGHLIM,
613 DBCOOL_REMOTE2_LOWLIM }, 2, 0, 0 },
614 { DBC_VOLT, { DBCOOL_VCCP,
615 DBCOOL_VCCP_HIGHLIM,
616 DBCOOL_VCCP_LOWLIM }, 3, 0, 1 },
617 { DBC_VOLT, { DBCOOL_VCC,
618 DBCOOL_VCC_HIGHLIM,
619 DBCOOL_VCC_LOWLIM }, 4, 0, 0 },
620 { DBC_VOLT, { DBCOOL_25VIN,
621 DBCOOL_25VIN_HIGHLIM,
622 DBCOOL_25VIN_LOWLIM }, 11, 0, 2 },
623 { DBC_VOLT, { DBCOOL_5VIN,
624 DBCOOL_5VIN_HIGHLIM,
625 DBCOOL_5VIN_LOWLIM }, 12, 0, 3 },
626 { DBC_VOLT, { DBCOOL_12VIN,
627 DBCOOL_12VIN_HIGHLIM,
628 DBCOOL_12VIN_LOWLIM }, 13, 0, 4 },
629 { DBC_FAN, { DBCOOL_FAN1_TACH_LSB,
630 DBCOOL_NO_REG,
631 DBCOOL_TACH1_MIN_LSB }, 5, 0, 0 },
632 { DBC_FAN, { DBCOOL_FAN2_TACH_LSB,
633 DBCOOL_NO_REG,
634 DBCOOL_TACH2_MIN_LSB }, 6, 0, 0 },
635 { DBC_FAN, { DBCOOL_FAN3_TACH_LSB,
636 DBCOOL_NO_REG,
637 DBCOOL_TACH3_MIN_LSB }, 7, 0, 0 },
638 { DBC_FAN, { DBCOOL_FAN4_TACH_LSB,
639 DBCOOL_NO_REG,
640 DBCOOL_TACH4_MIN_LSB }, 8, 0, 0 },
641 { DBC_VID, { DBCOOL_VID_REG,
642 DBCOOL_NO_REG,
643 DBCOOL_NO_REG }, 16, 0, 0 },
644 { DBC_CTL, { DBCOOL_LOCAL_TMIN,
645 DBCOOL_NO_REG,
646 DBCOOL_NO_REG }, 0, 5, 0 },
647 { DBC_CTL, { DBCOOL_LOCAL_TTHRESH,
648 DBCOOL_NO_REG,
649 DBCOOL_NO_REG }, 0, 6, 0 },
650 { DBC_CTL, { DBCOOL_REMOTE1_TMIN,
651 DBCOOL_NO_REG,
652 DBCOOL_NO_REG }, 1, 5, 0 },
653 { DBC_CTL, { DBCOOL_REMOTE1_TTHRESH,
654 DBCOOL_NO_REG,
655 DBCOOL_NO_REG }, 1, 6, 0 },
656 { DBC_CTL, { DBCOOL_REMOTE2_TMIN,
657 DBCOOL_NO_REG,
658 DBCOOL_NO_REG }, 2, 5, 0 },
659 { DBC_CTL, { DBCOOL_REMOTE2_TTHRESH,
660 DBCOOL_NO_REG,
661 DBCOOL_NO_REG }, 2, 6, 0 },
662 { DBC_EOF, { 0, 0, 0 }, 0, 0, 0 }
663 };
664
665 struct chip_id chip_table[] = {
666 { DBCOOL_COMPANYID, ADT7490_DEVICEID, ADT7490_REV_ID,
667 ADT7490_sensor_table, ADT7475_power_table,
668 DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_PECI,
669 90000 * 60, "ADT7490" },
670 { DBCOOL_COMPANYID, ADT7476_DEVICEID, 0xff,
671 ADT7476_sensor_table, ADT7475_power_table,
672 DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY,
673 90000 * 60, "ADT7476" },
674 { DBCOOL_COMPANYID, ADT7475_DEVICEID, 0xff,
675 ADT7475_sensor_table, ADT7475_power_table,
676 DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
677 90000 * 60, "ADT7475" },
678 { DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID1,
679 ADT7475_sensor_table, ADT7475_power_table,
680 DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
681 90000 * 60, "ADT7460/ADT7463" },
682 { DBCOOL_COMPANYID, ADT7473_DEVICEID, ADT7473_REV_ID2,
683 ADT7475_sensor_table, ADT7475_power_table,
684 DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_MAXDUTY | DBCFLAG_HAS_SHDN,
685 90000 * 60, "ADT7463-1" },
686 { DBCOOL_COMPANYID, ADT7468_DEVICEID, 0xff,
687 ADT7476_sensor_table, ADT7475_power_table,
688 DBCFLAG_TEMPOFFSET | DBCFLAG_MULTI_VCC | DBCFLAG_HAS_MAXDUTY |
689 DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN,
690 90000 * 60, "ADT7467/ADT7468" },
691 { DBCOOL_COMPANYID, ADT7466_DEVICEID, 0xff,
692 ADT7466_sensor_table, NULL,
693 DBCFLAG_ADT7466 | DBCFLAG_TEMPOFFSET | DBCFLAG_HAS_SHDN,
694 82000 * 60, "ADT7466" },
695 { DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID1,
696 ADM1027_sensor_table, ADT7475_power_table,
697 DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN,
698 90000 * 60, "ADT7463" },
699 { DBCOOL_COMPANYID, ADT7463_DEVICEID, ADT7463_REV_ID2,
700 ADM1027_sensor_table, ADT7475_power_table,
701 DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER | DBCFLAG_HAS_SHDN |
702 DBCFLAG_HAS_VID_SEL,
703 90000 * 60, "ADT7463" },
704 { DBCOOL_COMPANYID, ADM1027_DEVICEID, ADM1027_REV_ID,
705 ADM1027_sensor_table, ADT7475_power_table,
706 DBCFLAG_MULTI_VCC | DBCFLAG_4BIT_VER,
707 90000 * 60, "ADM1027" },
708 { DBCOOL_COMPANYID, ADM1030_DEVICEID, 0xff,
709 ADM1030_sensor_table, ADM1030_power_table,
710 DBCFLAG_ADM1030 | DBCFLAG_NO_READBYTE,
711 11250 * 60, "ADM1030" },
712 { DBCOOL_COMPANYID, ADM1031_DEVICEID, 0xff,
713 ADM1031_sensor_table, ADM1030_power_table,
714 DBCFLAG_ADM1030 | DBCFLAG_NO_READBYTE,
715 11250 * 60, "ADM1031" },
716 { SMSC_COMPANYID, EMC6D103S_DEVICEID, EMC6D103S_REV_ID,
717 EMC6D103S_sensor_table, ADT7475_power_table,
718 DBCFLAG_4BIT_VER,
719 90000 * 60, "EMC6D103S" },
720 { 0, 0, 0, NULL, NULL, 0, 0, NULL }
721 };
722
723 static const char *behavior[] = {
724 "remote1", "local", "remote2", "full-speed",
725 "disabled", "local+remote2","all-temps", "manual"
726 };
727
728 static char dbcool_cur_behav[16];
729
730 CFATTACH_DECL_NEW(dbcool, sizeof(struct dbcool_softc),
731 dbcool_match, dbcool_attach, dbcool_detach, NULL);
732
733 static const struct device_compatible_entry compat_data[] = {
734 { .compat = "i2c-adm1031" },
735 { .compat = "adt7467" },
736 { .compat = "adt7460" },
737 { .compat = "adm1030" },
738 DEVICE_COMPAT_EOL
739 };
740
741 int
742 dbcool_match(device_t parent, cfdata_t cf, void *aux)
743 {
744 struct i2c_attach_args *ia = aux;
745 struct dbcool_chipset dc;
746 dc.dc_tag = ia->ia_tag;
747 dc.dc_addr = ia->ia_addr;
748 dc.dc_chip = NULL;
749 dc.dc_readreg = dbcool_readreg;
750 dc.dc_writereg = dbcool_writereg;
751 int match_result;
752
753 if (iic_use_direct_match(ia, cf, compat_data, &match_result))
754 return match_result;
755
756 if ((ia->ia_addr & DBCOOL_ADDRMASK) != DBCOOL_ADDR)
757 return 0;
758 if (dbcool_chip_ident(&dc) >= 0)
759 return I2C_MATCH_ADDRESS_AND_PROBE;
760
761 return 0;
762 }
763
764 void
765 dbcool_attach(device_t parent, device_t self, void *aux)
766 {
767 struct dbcool_softc *sc = device_private(self);
768 struct i2c_attach_args *args = aux;
769 uint8_t ver;
770
771 sc->sc_dc.dc_addr = args->ia_addr;
772 sc->sc_dc.dc_tag = args->ia_tag;
773 sc->sc_dc.dc_chip = NULL;
774 sc->sc_dc.dc_readreg = dbcool_readreg;
775 sc->sc_dc.dc_writereg = dbcool_writereg;
776 sc->sc_dev = self;
777
778 if (dbcool_chip_ident(&sc->sc_dc) < 0 || sc->sc_dc.dc_chip == NULL)
779 panic("could not identify chip at addr %d", args->ia_addr);
780
781 aprint_naive("\n");
782 aprint_normal("\n");
783
784 ver = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REVISION_REG);
785 if (sc->sc_dc.dc_chip->flags & DBCFLAG_4BIT_VER)
786 if (sc->sc_dc.dc_chip->company == SMSC_COMPANYID)
787 {
788 aprint_normal_dev(self, "SMSC %s Controller "
789 "(rev 0x%02x, stepping 0x%02x)\n",
790 sc->sc_dc.dc_chip->name, ver >> 4, ver & 0x0f);
791 } else {
792 aprint_normal_dev(self, "%s dBCool(tm) Controller "
793 "(rev 0x%02x, stepping 0x%02x)\n",
794 sc->sc_dc.dc_chip->name, ver >> 4, ver & 0x0f);
795 }
796 else
797 aprint_normal_dev(self, "%s dBCool(tm) Controller "
798 "(rev 0x%04x)\n", sc->sc_dc.dc_chip->name, ver);
799
800 sc->sc_sysctl_log = NULL;
801
802 #ifdef _MODULE
803 sysctl_dbcoolsetup(&sc->sc_sysctl_log);
804 #endif
805
806 dbcool_setup(self);
807
808 if (!pmf_device_register(self, dbcool_pmf_suspend, dbcool_pmf_resume))
809 aprint_error_dev(self, "couldn't establish power handler\n");
810 }
811
812 static int
813 dbcool_detach(device_t self, int flags)
814 {
815 struct dbcool_softc *sc = device_private(self);
816
817 pmf_device_deregister(self);
818
819 if (sc->sc_sme != NULL)
820 sysmon_envsys_unregister(sc->sc_sme);
821
822 sysctl_teardown(&sc->sc_sysctl_log);
823
824 return 0;
825 }
826
827 /*
828 * On suspend, we save the state of the SHDN bit, then set it
829 * On resume, we restore the previous state of the SHDN bit (which
830 * we saved in sc_suspend)
831 */
832 static bool
833 dbcool_do_pmf(device_t dev, const pmf_qual_t *qual, bool suspend)
834 {
835 struct dbcool_softc *sc = device_private(dev);
836 uint8_t reg, bit, cfg;
837
838 if ((sc->sc_dc.dc_chip->flags & DBCFLAG_HAS_SHDN) == 0)
839 return true;
840
841 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
842 reg = DBCOOL_ADT7466_CONFIG2;
843 bit = DBCOOL_ADT7466_CFG2_SHDN;
844 } else {
845 reg = DBCOOL_CONFIG2_REG;
846 bit = DBCOOL_CFG2_SHDN;
847 }
848 cfg = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
849 if (suspend) {
850 sc->sc_suspend = (cfg & bit) != 0;
851 cfg |= bit;
852 } else {
853 cfg &= sc->sc_suspend ? bit : 0;
854 }
855 sc->sc_dc.dc_writereg(&sc->sc_dc, reg, cfg);
856
857 return true;
858 }
859
860 bool
861 dbcool_pmf_suspend(device_t dev, const pmf_qual_t *qual)
862 {
863
864 return dbcool_do_pmf(dev, qual, true);
865 }
866
867 bool
868 dbcool_pmf_resume(device_t dev, const pmf_qual_t *qual)
869 {
870
871 return dbcool_do_pmf(dev, qual, false);
872 }
873
874 uint8_t
875 dbcool_readreg(struct dbcool_chipset *dc, uint8_t reg)
876 {
877 uint8_t data = 0;
878
879 if (iic_acquire_bus(dc->dc_tag, 0) != 0)
880 return data;
881
882 if (dc->dc_chip == NULL || dc->dc_chip->flags & DBCFLAG_NO_READBYTE) {
883 /* ADM1027 doesn't support i2c read_byte protocol */
884 if (iic_smbus_send_byte(dc->dc_tag, dc->dc_addr, reg, 0) != 0)
885 goto bad;
886 (void)iic_smbus_receive_byte(dc->dc_tag, dc->dc_addr, &data, 0);
887 } else
888 (void)iic_smbus_read_byte(dc->dc_tag, dc->dc_addr, reg, &data,
889 0);
890
891 bad:
892 iic_release_bus(dc->dc_tag, 0);
893 return data;
894 }
895
896 void
897 dbcool_writereg(struct dbcool_chipset *dc, uint8_t reg, uint8_t val)
898 {
899 if (iic_acquire_bus(dc->dc_tag, 0) != 0)
900 return;
901
902 (void)iic_smbus_write_byte(dc->dc_tag, dc->dc_addr, reg, val, 0);
903
904 iic_release_bus(dc->dc_tag, 0);
905 }
906
907 static bool
908 dbcool_islocked(struct dbcool_softc *sc)
909 {
910 uint8_t cfg_reg;
911
912 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
913 return 0;
914
915 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
916 cfg_reg = DBCOOL_ADT7466_CONFIG1;
917 else
918 cfg_reg = DBCOOL_CONFIG1_REG;
919
920 if (sc->sc_dc.dc_readreg(&sc->sc_dc, cfg_reg) & DBCOOL_CFG1_LOCK)
921 return 1;
922 else
923 return 0;
924 }
925
926 static int
927 dbcool_read_temp(struct dbcool_softc *sc, uint8_t reg, bool extres)
928 {
929 uint8_t t1, t2, t3, val, ext = 0;
930 int temp;
931
932 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
933 /*
934 * ADT7466 temps are in strange location
935 */
936 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1);
937 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
938 if (extres)
939 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
940 } else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
941 /*
942 * ADM1030 temps are in their own special place, too
943 */
944 if (extres) {
945 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_TEMP_EXTRES);
946 if (reg == DBCOOL_ADM1030_L_TEMP)
947 ext >>= 6;
948 else if (reg == DBCOOL_ADM1031_R2_TEMP)
949 ext >>= 4;
950 else
951 ext >>= 1;
952 ext &= 0x03;
953 }
954 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
955 } else if (extres) {
956 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG);
957
958 /* Read all msb regs to unlatch them */
959 t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_12VIN);
960 t1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE1_TEMP);
961 t2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_REMOTE2_TEMP);
962 t3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_LOCAL_TEMP);
963 switch (reg) {
964 case DBCOOL_REMOTE1_TEMP:
965 val = t1;
966 ext >>= 2;
967 break;
968 case DBCOOL_LOCAL_TEMP:
969 val = t3;
970 ext >>= 4;
971 break;
972 case DBCOOL_REMOTE2_TEMP:
973 val = t2;
974 ext >>= 6;
975 break;
976 default:
977 val = 0;
978 break;
979 }
980 ext &= 0x03;
981 }
982 else
983 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
984
985 /* Check for invalid temp values */
986 if ((sc->sc_temp_offset == 0 && val == 0x80) ||
987 (sc->sc_temp_offset != 0 && val == 0))
988 return 0;
989
990 /* If using offset mode, adjust, else treat as signed */
991 if (sc->sc_temp_offset) {
992 temp = val;
993 temp -= sc->sc_temp_offset;
994 } else
995 temp = (int8_t)val;
996
997 /* Convert degC to uK and include extended precision bits */
998 temp *= 1000000;
999 temp += 250000 * (int)ext;
1000 temp += 273150000U;
1001
1002 return temp;
1003 }
1004
1005 static int
1006 dbcool_read_rpm(struct dbcool_softc *sc, uint8_t reg)
1007 {
1008 int rpm;
1009 uint8_t rpm_lo, rpm_hi;
1010
1011 rpm_lo = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
1012 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1013 rpm_hi = (rpm_lo == 0xff)?0xff:0x0;
1014 else
1015 rpm_hi = sc->sc_dc.dc_readreg(&sc->sc_dc, reg + 1);
1016
1017 rpm = (rpm_hi << 8) | rpm_lo;
1018 if (rpm == 0xffff)
1019 return 0; /* 0xffff indicates stalled/failed fan */
1020
1021 /* don't divide by zero */
1022 return (rpm == 0)? 0 : (sc->sc_dc.dc_chip->rpm_dividend / rpm);
1023 }
1024
1025 /* Provide chip's supply voltage, in microvolts */
1026 static int
1027 dbcool_supply_voltage(struct dbcool_softc *sc)
1028 {
1029 if (sc->sc_dc.dc_chip->flags & DBCFLAG_MULTI_VCC) {
1030 if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG) & DBCOOL_CFG1_Vcc)
1031 return 5002500;
1032 else
1033 return 3300000;
1034 } else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
1035 if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) &
1036 DBCOOL_ADT7466_CFG1_Vcc)
1037 return 5000000;
1038 else
1039 return 3300000;
1040 } else
1041 return 3300000;
1042 }
1043
1044 /*
1045 * Nominal voltages are calculated in microvolts
1046 */
1047 static int
1048 dbcool_read_volt(struct dbcool_softc *sc, uint8_t reg, int nom_idx, bool extres)
1049 {
1050 uint8_t ext = 0, v1, v2, v3, v4, val;
1051 int64_t ret;
1052 int64_t nom;
1053
1054 nom = nominal_voltages[nom_idx];
1055 if (nom < 0)
1056 nom = sc->sc_supply_voltage;
1057
1058 /* ADT7466 voltages are in strange locations with only 8-bits */
1059 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
1060 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
1061 else
1062 /*
1063 * It's a "normal" dbCool chip - check for regs that
1064 * share extended resolution bits since we have to
1065 * read all the MSB registers to unlatch them.
1066 */
1067 if (!extres)
1068 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
1069 else if (reg == DBCOOL_12VIN) {
1070 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES2_REG) & 0x03;
1071 val = sc->sc_dc.dc_readreg(&sc->sc_dc, reg);
1072 (void)dbcool_read_temp(sc, DBCOOL_LOCAL_TEMP, true);
1073 } else if (reg == DBCOOL_VTT || reg == DBCOOL_IMON) {
1074 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES_VTT_IMON);
1075 v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_IMON);
1076 v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VTT);
1077 if (reg == DBCOOL_IMON) {
1078 val = v1;
1079 ext >>= 6;
1080 } else {
1081 val = v2;
1082 ext >>= 4;
1083 }
1084 ext &= 0x0f;
1085 } else {
1086 ext = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_EXTRES1_REG);
1087 v1 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_25VIN);
1088 v2 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCCP);
1089 v3 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VCC);
1090 v4 = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_5VIN);
1091
1092 switch (reg) {
1093 case DBCOOL_25VIN:
1094 val = v1;
1095 break;
1096 case DBCOOL_VCCP:
1097 val = v2;
1098 ext >>= 2;
1099 break;
1100 case DBCOOL_VCC:
1101 val = v3;
1102 ext >>= 4;
1103 break;
1104 case DBCOOL_5VIN:
1105 val = v4;
1106 ext >>= 6;
1107 break;
1108 default:
1109 val = nom = 0;
1110 }
1111 ext &= 0x03;
1112 }
1113
1114 /*
1115 * Scale the nominal value by the 10-bit fraction
1116 *
1117 * Returned value is in microvolts.
1118 */
1119 ret = val;
1120 ret <<= 2;
1121 ret |= ext;
1122 ret = (ret * nom) / 0x300;
1123
1124 return ret;
1125 }
1126
1127 static int
1128 sysctl_dbcool_temp(SYSCTLFN_ARGS)
1129 {
1130 struct sysctlnode node;
1131 struct dbcool_softc *sc;
1132 int reg, error;
1133 uint8_t chipreg;
1134 uint8_t newreg;
1135
1136 node = *rnode;
1137 sc = (struct dbcool_softc *)node.sysctl_data;
1138 chipreg = node.sysctl_num & 0xff;
1139
1140 if (sc->sc_temp_offset) {
1141 reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1142 reg -= sc->sc_temp_offset;
1143 } else
1144 reg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1145
1146 node.sysctl_data = ®
1147 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1148
1149 if (error || newp == NULL)
1150 return error;
1151
1152 /* We were asked to update the value - sanity check before writing */
1153 if (*(int *)node.sysctl_data < -64 ||
1154 *(int *)node.sysctl_data > 127 + sc->sc_temp_offset)
1155 return EINVAL;
1156
1157 newreg = *(int *)node.sysctl_data;
1158 newreg += sc->sc_temp_offset;
1159 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1160 return 0;
1161 }
1162
1163 static int
1164 sysctl_adm1030_temp(SYSCTLFN_ARGS)
1165 {
1166 struct sysctlnode node;
1167 struct dbcool_softc *sc;
1168 int reg, error;
1169 uint8_t chipreg, oldreg, newreg;
1170
1171 node = *rnode;
1172 sc = (struct dbcool_softc *)node.sysctl_data;
1173 chipreg = node.sysctl_num & 0xff;
1174
1175 oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1176 reg = (oldreg >> 1) & ~0x03;
1177
1178 node.sysctl_data = ®
1179 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1180
1181 if (error || newp == NULL)
1182 return error;
1183
1184 /* We were asked to update the value - sanity check before writing */
1185 if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 127)
1186 return EINVAL;
1187
1188 newreg = *(int *)node.sysctl_data;
1189 newreg &= ~0x03;
1190 newreg <<= 1;
1191 newreg |= (oldreg & 0x07);
1192 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1193 return 0;
1194 }
1195
1196 static int
1197 sysctl_adm1030_trange(SYSCTLFN_ARGS)
1198 {
1199 struct sysctlnode node;
1200 struct dbcool_softc *sc;
1201 int reg, error, newval;
1202 uint8_t chipreg, oldreg, newreg;
1203
1204 node = *rnode;
1205 sc = (struct dbcool_softc *)node.sysctl_data;
1206 chipreg = node.sysctl_num & 0xff;
1207
1208 oldreg = (int8_t)sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1209 reg = oldreg & 0x07;
1210
1211 node.sysctl_data = ®
1212 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1213
1214 if (error || newp == NULL)
1215 return error;
1216
1217 /* We were asked to update the value - sanity check before writing */
1218 newval = *(int *)node.sysctl_data;
1219
1220 if (newval == 5)
1221 newreg = 0;
1222 else if (newval == 10)
1223 newreg = 1;
1224 else if (newval == 20)
1225 newreg = 2;
1226 else if (newval == 40)
1227 newreg = 3;
1228 else if (newval == 80)
1229 newreg = 4;
1230 else
1231 return EINVAL;
1232
1233 newreg |= (oldreg & ~0x07);
1234 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1235 return 0;
1236 }
1237
1238 static int
1239 sysctl_dbcool_duty(SYSCTLFN_ARGS)
1240 {
1241 struct sysctlnode node;
1242 struct dbcool_softc *sc;
1243 int reg, error;
1244 uint8_t chipreg, oldreg, newreg;
1245
1246 node = *rnode;
1247 sc = (struct dbcool_softc *)node.sysctl_data;
1248 chipreg = node.sysctl_num & 0xff;
1249
1250 oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1251 reg = (uint32_t)oldreg;
1252 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1253 reg = ((reg & 0x0f) * 100) / 15;
1254 else
1255 reg = (reg * 100) / 255;
1256 node.sysctl_data = ®
1257 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1258
1259 if (error || newp == NULL)
1260 return error;
1261
1262 /* We were asked to update the value - sanity check before writing */
1263 if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 100)
1264 return EINVAL;
1265
1266 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1267 newreg = *(uint8_t *)(node.sysctl_data) * 15 / 100;
1268 newreg |= oldreg & 0xf0;
1269 } else
1270 newreg = *(uint8_t *)(node.sysctl_data) * 255 / 100;
1271 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1272 return 0;
1273 }
1274
1275 static int
1276 sysctl_dbcool_behavior(SYSCTLFN_ARGS)
1277 {
1278 struct sysctlnode node;
1279 struct dbcool_softc *sc;
1280 int i, reg, error;
1281 uint8_t chipreg, oldreg, newreg;
1282
1283 node = *rnode;
1284 sc = (struct dbcool_softc *)node.sysctl_data;
1285 chipreg = node.sysctl_num & 0xff;
1286
1287 oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1288
1289 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1290 if ((sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) & 1) == 0)
1291 reg = 4;
1292 else if ((oldreg & 0x80) == 0)
1293 reg = 7;
1294 else if ((oldreg & 0x60) == 0)
1295 reg = 4;
1296 else
1297 reg = 6;
1298 } else
1299 reg = (oldreg >> 5) & 0x07;
1300
1301 strlcpy(dbcool_cur_behav, behavior[reg], sizeof(dbcool_cur_behav));
1302 node.sysctl_data = dbcool_cur_behav;
1303 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1304
1305 if (error || newp == NULL)
1306 return error;
1307
1308 /* We were asked to update the value - convert string to value */
1309 newreg = __arraycount(behavior);
1310 for (i = 0; i < __arraycount(behavior); i++)
1311 if (strcmp(node.sysctl_data, behavior[i]) == 0)
1312 break;
1313 if (i >= __arraycount(behavior))
1314 return EINVAL;
1315 newreg = i;
1316 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030) {
1317 /*
1318 * ADM1030 splits fan controller behavior across two
1319 * registers. We also do not support Auto-Filter mode
1320 * nor do we support Manual-RPM-feedback.
1321 */
1322 if (newreg == 4) {
1323 oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2);
1324 oldreg &= ~0x01;
1325 sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1326 } else {
1327 if (newreg == 0)
1328 newreg = 4;
1329 else if (newreg == 6)
1330 newreg = 7;
1331 else if (newreg == 7)
1332 newreg = 0;
1333 else
1334 return EINVAL;
1335 newreg <<= 5;
1336 newreg |= (oldreg & 0x1f);
1337 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1338 oldreg = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADM1030_CFG2) | 1;
1339 sc->sc_dc.dc_writereg(&sc->sc_dc, DBCOOL_ADM1030_CFG2, oldreg);
1340 }
1341 } else {
1342 newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x1f) | (i << 5);
1343 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1344 }
1345 return 0;
1346 }
1347
1348 static int
1349 sysctl_dbcool_slope(SYSCTLFN_ARGS)
1350 {
1351 struct sysctlnode node;
1352 struct dbcool_softc *sc;
1353 int reg, error;
1354 uint8_t chipreg;
1355 uint8_t newreg;
1356
1357 node = *rnode;
1358 sc = (struct dbcool_softc *)node.sysctl_data;
1359 chipreg = node.sysctl_num & 0xff;
1360
1361 reg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) >> 4) & 0x0f;
1362 node.sysctl_data = ®
1363 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1364
1365 if (error || newp == NULL)
1366 return error;
1367
1368 /* We were asked to update the value - sanity check before writing */
1369 if (*(int *)node.sysctl_data < 0 || *(int *)node.sysctl_data > 0x0f)
1370 return EINVAL;
1371
1372 newreg = (sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg) & 0x0f) |
1373 (*(int *)node.sysctl_data << 4);
1374 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1375 return 0;
1376 }
1377
1378 static int
1379 sysctl_dbcool_thyst(SYSCTLFN_ARGS)
1380 {
1381 struct sysctlnode node;
1382 struct dbcool_softc *sc;
1383 int reg, error;
1384 uint8_t chipreg;
1385 uint8_t newreg, newhyst;
1386
1387 node = *rnode;
1388 sc = (struct dbcool_softc *)node.sysctl_data;
1389 chipreg = node.sysctl_num & 0x7f;
1390
1391 /* retrieve 4-bit value */
1392 newreg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1393 if ((node.sysctl_num & 0x80) == 0)
1394 reg = newreg >> 4;
1395 else
1396 reg = newreg;
1397 reg = reg & 0x0f;
1398
1399 node.sysctl_data = ®
1400 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1401
1402 if (error || newp == NULL)
1403 return error;
1404
1405 /* We were asked to update the value - sanity check before writing */
1406 newhyst = *(int *)node.sysctl_data;
1407 if (newhyst > 0x0f)
1408 return EINVAL;
1409
1410 /* Insert new value into field and update register */
1411 if ((node.sysctl_num & 0x80) == 0) {
1412 newreg &= 0x0f;
1413 newreg |= (newhyst << 4);
1414 } else {
1415 newreg &= 0xf0;
1416 newreg |= newhyst;
1417 }
1418 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1419 return 0;
1420 }
1421
1422 #ifdef DBCOOL_DEBUG
1423
1424 /*
1425 * These routines can be used for debugging. reg_select is used to
1426 * select any arbitrary register in the device. reg_access is used
1427 * to read (and optionally update) the selected register.
1428 *
1429 * No attempt is made to validate the data passed. If you use these
1430 * routines, you are assumed to know what you're doing!
1431 *
1432 * Caveat user
1433 */
1434 static int
1435 sysctl_dbcool_reg_select(SYSCTLFN_ARGS)
1436 {
1437 struct sysctlnode node;
1438 struct dbcool_softc *sc;
1439 int reg, error;
1440
1441 node = *rnode;
1442 sc = (struct dbcool_softc *)node.sysctl_data;
1443
1444 reg = sc->sc_user_reg;
1445 node.sysctl_data = ®
1446 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1447
1448 if (error || newp == NULL)
1449 return error;
1450
1451 sc->sc_user_reg = *(int *)node.sysctl_data;
1452 return 0;
1453 }
1454
1455 static int
1456 sysctl_dbcool_reg_access(SYSCTLFN_ARGS)
1457 {
1458 struct sysctlnode node;
1459 struct dbcool_softc *sc;
1460 int reg, error;
1461 uint8_t chipreg;
1462 uint8_t newreg;
1463
1464 node = *rnode;
1465 sc = (struct dbcool_softc *)node.sysctl_data;
1466 chipreg = sc->sc_user_reg;
1467
1468 reg = sc->sc_dc.dc_readreg(&sc->sc_dc, chipreg);
1469 node.sysctl_data = ®
1470 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1471
1472 if (error || newp == NULL)
1473 return error;
1474
1475 newreg = *(int *)node.sysctl_data;
1476 sc->sc_dc.dc_writereg(&sc->sc_dc, chipreg, newreg);
1477 return 0;
1478 }
1479 #endif /* DBCOOL_DEBUG */
1480
1481 /*
1482 * Encode an index number and register number for use as a sysctl_num
1483 * so we can select the correct device register later.
1484 */
1485 #define DBC_PWM_SYSCTL(seq, reg) ((seq << 8) | reg)
1486
1487 void
1488 dbcool_setup(device_t self)
1489 {
1490 struct dbcool_softc *sc = device_private(self);
1491 const struct sysctlnode *me = NULL;
1492 #ifdef DBCOOL_DEBUG
1493 struct sysctlnode *node = NULL;
1494 #endif
1495 uint8_t cfg_val, cfg_reg;
1496 int ret, error;
1497
1498 /*
1499 * Some chips are capable of reporting an extended temperature range
1500 * by default. On these models, config register 5 bit 0 can be set
1501 * to 1 for compatibility with other chips that report 2s complement.
1502 */
1503 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466) {
1504 if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_ADT7466_CONFIG1) & 0x80)
1505 sc->sc_temp_offset = 64;
1506 else
1507 sc->sc_temp_offset = 0;
1508 } else if (sc->sc_dc.dc_chip->flags & DBCFLAG_TEMPOFFSET) {
1509 if (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG5_REG) &
1510 DBCOOL_CFG5_TWOSCOMP)
1511 sc->sc_temp_offset = 0;
1512 else
1513 sc->sc_temp_offset = 64;
1514 } else
1515 sc->sc_temp_offset = 0;
1516
1517 /* Determine Vcc for this chip */
1518 sc->sc_supply_voltage = dbcool_supply_voltage(sc);
1519
1520 ret = sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &me,
1521 CTLFLAG_READWRITE,
1522 CTLTYPE_NODE, device_xname(self), NULL,
1523 NULL, 0, NULL, 0,
1524 CTL_HW, CTL_CREATE, CTL_EOL);
1525 if (ret == 0)
1526 sc->sc_root_sysctl_num = me->sysctl_num;
1527 else
1528 sc->sc_root_sysctl_num = 0;
1529
1530 aprint_debug_dev(self,
1531 "Supply voltage %"PRId64".%06"PRId64"V, %s temp range\n",
1532 sc->sc_supply_voltage / 1000000,
1533 sc->sc_supply_voltage % 1000000,
1534 sc->sc_temp_offset ? "extended" : "normal");
1535
1536 /* Create the sensors for this device */
1537 sc->sc_sme = sysmon_envsys_create();
1538 if (dbcool_setup_sensors(sc))
1539 goto out;
1540
1541 if (sc->sc_root_sysctl_num != 0) {
1542 /* If supported, create sysctl tree for fan PWM controllers */
1543 if (sc->sc_dc.dc_chip->power != NULL)
1544 dbcool_setup_controllers(sc);
1545
1546 #ifdef DBCOOL_DEBUG
1547 ret = sysctl_createv(&sc->sc_sysctl_log, 0, NULL,
1548 (void *)&node,
1549 CTLFLAG_READWRITE, CTLTYPE_INT, "reg_select", NULL,
1550 sysctl_dbcool_reg_select,
1551 0, (void *)sc, sizeof(int),
1552 CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1553 if (node != NULL)
1554 node->sysctl_data = sc;
1555
1556 ret = sysctl_createv(&sc->sc_sysctl_log, 0, NULL,
1557 (void *)&node,
1558 CTLFLAG_READWRITE, CTLTYPE_INT, "reg_access", NULL,
1559 sysctl_dbcool_reg_access,
1560 0, (void *)sc, sizeof(int),
1561 CTL_HW, me->sysctl_num, CTL_CREATE, CTL_EOL);
1562 if (node != NULL)
1563 node->sysctl_data = sc;
1564 #endif /* DBCOOL_DEBUG */
1565 }
1566
1567 /*
1568 * Read and rewrite config register to activate device
1569 */
1570 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
1571 cfg_reg = DBCOOL_ADM1030_CFG1;
1572 else if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADT7466)
1573 cfg_reg = DBCOOL_ADT7466_CONFIG1;
1574 else
1575 cfg_reg = DBCOOL_CONFIG1_REG;
1576 cfg_val = sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_CONFIG1_REG);
1577 if ((cfg_val & DBCOOL_CFG1_START) == 0) {
1578 cfg_val |= DBCOOL_CFG1_START;
1579 sc->sc_dc.dc_writereg(&sc->sc_dc, cfg_reg, cfg_val);
1580 }
1581 if (dbcool_islocked(sc))
1582 aprint_normal_dev(self, "configuration locked\n");
1583
1584 sc->sc_sme->sme_name = device_xname(self);
1585 sc->sc_sme->sme_cookie = sc;
1586 sc->sc_sme->sme_refresh = dbcool_refresh;
1587 sc->sc_sme->sme_set_limits = dbcool_set_limits;
1588 sc->sc_sme->sme_get_limits = dbcool_get_limits;
1589
1590 if ((error = sysmon_envsys_register(sc->sc_sme)) != 0) {
1591 aprint_error_dev(self,
1592 "unable to register with sysmon (%d)\n", error);
1593 goto out;
1594 }
1595
1596 return;
1597
1598 out:
1599 sysmon_envsys_destroy(sc->sc_sme);
1600 sc->sc_sme = NULL;
1601 }
1602
1603 static int
1604 dbcool_setup_sensors(struct dbcool_softc *sc)
1605 {
1606 int i;
1607 int error = 0;
1608 uint8_t vid_reg, vid_val;
1609 struct chip_id *chip = sc->sc_dc.dc_chip;
1610
1611 for (i=0; chip->table[i].type != DBC_EOF; i++) {
1612 if (i < DBCOOL_MAXSENSORS)
1613 sc->sc_sysctl_num[i] = -1;
1614 else if (chip->table[i].type != DBC_CTL) {
1615 aprint_normal_dev(sc->sc_dev, "chip table too big!\n");
1616 break;
1617 }
1618 switch (chip->table[i].type) {
1619 case DBC_TEMP:
1620 sc->sc_sensor[i].units = ENVSYS_STEMP;
1621 sc->sc_sensor[i].state = ENVSYS_SINVALID;
1622 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1623 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
1624 error = dbcool_attach_sensor(sc, i);
1625 break;
1626 case DBC_VOLT:
1627 /*
1628 * If 12V-In pin has been reconfigured as 6th bit
1629 * of VID code, don't create a 12V-In sensor
1630 */
1631 if ((chip->flags & DBCFLAG_HAS_VID_SEL) &&
1632 (chip->table[i].reg.val_reg == DBCOOL_12VIN) &&
1633 (sc->sc_dc.dc_readreg(&sc->sc_dc, DBCOOL_VID_REG) &
1634 0x80))
1635 break;
1636
1637 sc->sc_sensor[i].units = ENVSYS_SVOLTS_DC;
1638 sc->sc_sensor[i].state = ENVSYS_SINVALID;
1639 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1640 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
1641 error = dbcool_attach_sensor(sc, i);
1642 break;
1643 case DBC_FAN:
1644 sc->sc_sensor[i].units = ENVSYS_SFANRPM;
1645 sc->sc_sensor[i].state = ENVSYS_SINVALID;
1646 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
1647 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
1648 error = dbcool_attach_sensor(sc, i);
1649 break;
1650 case DBC_VID:
1651 sc->sc_sensor[i].units = ENVSYS_INTEGER;
1652 sc->sc_sensor[i].state = ENVSYS_SINVALID;
1653 sc->sc_sensor[i].flags |= ENVSYS_FMONNOTSUPP;
1654
1655 /* retrieve 5- or 6-bit value */
1656 vid_reg = chip->table[i].reg.val_reg;
1657 vid_val = sc->sc_dc.dc_readreg(&sc->sc_dc, vid_reg);
1658 if (chip->flags & DBCFLAG_HAS_VID_SEL)
1659 vid_val &= 0x3f;
1660 else
1661 vid_val &= 0x1f;
1662 sc->sc_sensor[i].value_cur = vid_val;
1663
1664 error = dbcool_attach_sensor(sc, i);
1665 break;
1666 case DBC_CTL:
1667 error = dbcool_attach_temp_control(sc, i, chip);
1668 if (error) {
1669 aprint_error_dev(sc->sc_dev,
1670 "attach index %d failed %d\n",
1671 i, error);
1672 error = 0;
1673 }
1674 break;
1675 default:
1676 aprint_error_dev(sc->sc_dev,
1677 "sensor_table index %d has bad type %d\n",
1678 i, chip->table[i].type);
1679 break;
1680 }
1681 if (error)
1682 break;
1683 }
1684 return error;
1685 }
1686
1687 static int
1688 dbcool_attach_sensor(struct dbcool_softc *sc, int idx)
1689 {
1690 prop_dictionary_t props = device_properties(sc->sc_dev);
1691 int name_index;
1692 int error = 0;
1693 char name[8];
1694 const char *desc;
1695
1696 name_index = sc->sc_dc.dc_chip->table[idx].name_index;
1697 snprintf(name, 7, "s%02x", sc->sc_dc.dc_chip->table[idx].reg.val_reg);
1698 if (prop_dictionary_get_string(props, name, &desc)) {
1699 strlcpy(sc->sc_sensor[idx].desc, desc,
1700 sizeof(sc->sc_sensor[idx].desc));
1701 } else {
1702 strlcpy(sc->sc_sensor[idx].desc, dbc_sensor_names[name_index],
1703 sizeof(sc->sc_sensor[idx].desc));
1704 }
1705 sc->sc_regs[idx] = &sc->sc_dc.dc_chip->table[idx].reg;
1706 sc->sc_nom_volt[idx] = sc->sc_dc.dc_chip->table[idx].nom_volt_index;
1707
1708 error = sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[idx]);
1709 return error;
1710 }
1711
1712 static int
1713 dbcool_attach_temp_control(struct dbcool_softc *sc, int idx,
1714 struct chip_id *chip)
1715 {
1716 const struct sysctlnode *me2 = NULL, *node;
1717 int j, ret, sysctl_index, rw_flag;
1718 uint8_t sysctl_reg;
1719 char name[SYSCTL_NAMELEN];
1720
1721 /* Search for the corresponding temp sensor */
1722 for (j = 0; j < idx; j++) {
1723 if (j >= DBCOOL_MAXSENSORS || chip->table[j].type != DBC_TEMP)
1724 continue;
1725 if (chip->table[j].name_index == chip->table[idx].name_index)
1726 break;
1727 }
1728 if (j >= idx) /* Temp sensor not found */
1729 return ENOENT;
1730
1731 /* create sysctl node for the sensor if not one already there */
1732 if (sc->sc_sysctl_num[j] == -1) {
1733 int name_index = sc->sc_dc.dc_chip->table[idx].name_index;
1734
1735 ret = sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &me2,
1736 CTLFLAG_READWRITE,
1737 CTLTYPE_NODE, dbc_sensor_names[name_index],
1738 sc->sc_sensor[j].desc,
1739 NULL, 0, NULL, 0,
1740 CTL_HW, sc->sc_root_sysctl_num, CTL_CREATE,
1741 CTL_EOL);
1742 if (me2 != NULL)
1743 sc->sc_sysctl_num[j] = me2->sysctl_num;
1744 else
1745 return ret;
1746 }
1747 /* add sysctl leaf node for this control variable */
1748 sysctl_index = chip->table[idx].sysctl_index;
1749 sysctl_reg = chip->table[idx].reg.val_reg;
1750 strlcpy(name, dbc_sysctl_table[sysctl_index].name, sizeof(name));
1751 if (dbc_sysctl_table[sysctl_index].lockable && dbcool_islocked(sc))
1752 rw_flag = CTLFLAG_READONLY | CTLFLAG_OWNDESC;
1753 else
1754 rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
1755 ret = sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node, rw_flag,
1756 CTLTYPE_INT, name,
1757 SYSCTL_DESCR(dbc_sysctl_table[sysctl_index].desc),
1758 dbc_sysctl_table[sysctl_index].helper,
1759 0, (void *)sc, sizeof(int),
1760 CTL_HW, sc->sc_root_sysctl_num,
1761 sc->sc_sysctl_num[j],
1762 DBC_PWM_SYSCTL(idx, sysctl_reg), CTL_EOL);
1763
1764 return ret;
1765 }
1766
1767 static void
1768 dbcool_setup_controllers(struct dbcool_softc *sc)
1769 {
1770 int i, j, rw_flag;
1771 uint8_t sysctl_reg;
1772 struct chip_id *chip = sc->sc_dc.dc_chip;
1773 const struct sysctlnode *me2 = NULL;
1774 const struct sysctlnode *node = NULL;
1775 char name[SYSCTL_NAMELEN];
1776
1777 for (i = 0; chip->power[i].desc != NULL; i++) {
1778 snprintf(name, sizeof(name), "fan_ctl_%d", i);
1779 sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &me2,
1780 CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
1781 CTLTYPE_NODE, name, NULL,
1782 NULL, 0, NULL, 0,
1783 CTL_HW, sc->sc_root_sysctl_num, CTL_CREATE, CTL_EOL);
1784
1785 for (j = DBC_PWM_BEHAVIOR; j < DBC_PWM_LAST_PARAM; j++) {
1786 if (j == DBC_PWM_MAX_DUTY &&
1787 (chip->flags & DBCFLAG_HAS_MAXDUTY) == 0)
1788 continue;
1789 sysctl_reg = chip->power[i].power_regs[j];
1790 if (sysctl_reg == DBCOOL_NO_REG)
1791 continue;
1792 strlcpy(name, dbc_sysctl_table[j].name, sizeof(name));
1793 if (dbc_sysctl_table[j].lockable && dbcool_islocked(sc))
1794 rw_flag = CTLFLAG_READONLY | CTLFLAG_OWNDESC;
1795 else
1796 rw_flag = CTLFLAG_READWRITE | CTLFLAG_OWNDESC;
1797 (sysctl_createv)(&sc->sc_sysctl_log, 0, NULL,
1798 &node, rw_flag,
1799 (j == DBC_PWM_BEHAVIOR)?
1800 CTLTYPE_STRING:CTLTYPE_INT,
1801 name,
1802 SYSCTL_DESCR(dbc_sysctl_table[j].desc),
1803 dbc_sysctl_table[j].helper,
1804 0, sc,
1805 ( j == DBC_PWM_BEHAVIOR)?
1806 sizeof(dbcool_cur_behav): sizeof(int),
1807 CTL_HW, sc->sc_root_sysctl_num, me2->sysctl_num,
1808 DBC_PWM_SYSCTL(j, sysctl_reg), CTL_EOL);
1809 }
1810 }
1811 }
1812
1813 static void
1814 dbcool_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1815 {
1816 struct dbcool_softc *sc=sme->sme_cookie;
1817 int i, nom_volt_idx, cur;
1818 struct reg_list *reg;
1819
1820 i = edata->sensor;
1821 reg = sc->sc_regs[i];
1822
1823 edata->state = ENVSYS_SVALID;
1824 switch (edata->units)
1825 {
1826 case ENVSYS_STEMP:
1827 cur = dbcool_read_temp(sc, reg->val_reg, true);
1828 break;
1829 case ENVSYS_SVOLTS_DC:
1830 nom_volt_idx = sc->sc_nom_volt[i];
1831 cur = dbcool_read_volt(sc, reg->val_reg, nom_volt_idx,
1832 true);
1833 break;
1834 case ENVSYS_SFANRPM:
1835 cur = dbcool_read_rpm(sc, reg->val_reg);
1836 break;
1837 case ENVSYS_INTEGER:
1838 return;
1839 default:
1840 edata->state = ENVSYS_SINVALID;
1841 return;
1842 }
1843
1844 if (cur == 0 && (edata->units != ENVSYS_SFANRPM))
1845 edata->state = ENVSYS_SINVALID;
1846
1847 /*
1848 * If fan is "stalled" but has no low limit, treat
1849 * it as though the fan is not installed.
1850 */
1851 else if (edata->units == ENVSYS_SFANRPM && cur == 0 &&
1852 !(edata->upropset & (PROP_CRITMIN | PROP_WARNMIN)))
1853 edata->state = ENVSYS_SINVALID;
1854
1855 edata->value_cur = cur;
1856 }
1857
1858 int
1859 dbcool_chip_ident(struct dbcool_chipset *dc)
1860 {
1861 /* verify this is a supported dbCool chip */
1862 uint8_t c_id, d_id, r_id;
1863 int i;
1864
1865 c_id = dc->dc_readreg(dc, DBCOOL_COMPANYID_REG);
1866 d_id = dc->dc_readreg(dc, DBCOOL_DEVICEID_REG);
1867 r_id = dc->dc_readreg(dc, DBCOOL_REVISION_REG);
1868
1869 /* The EMC6D103S only supports read_byte and since dc->dc_chip is
1870 * NULL when we call dc->dc_readreg above we use
1871 * send_byte/receive_byte which doesn't work.
1872 *
1873 * So if we only get 0's back then try again with dc->dc_chip
1874 * set to the EMC6D103S_DEVICEID and which doesn't have
1875 * DBCFLAG_NO_READBYTE set so read_byte will be used
1876 */
1877 if ((c_id == 0) && (d_id == 0) && (r_id == 0)) {
1878 for (i = 0; chip_table[i].company != 0; i++)
1879 if ((SMSC_COMPANYID == chip_table[i].company) &&
1880 (EMC6D103S_DEVICEID == chip_table[i].device)) {
1881 dc->dc_chip = &chip_table[i];
1882 break;
1883 }
1884 c_id = dc->dc_readreg(dc, DBCOOL_COMPANYID_REG);
1885 d_id = dc->dc_readreg(dc, DBCOOL_DEVICEID_REG);
1886 r_id = dc->dc_readreg(dc, DBCOOL_REVISION_REG);
1887 }
1888
1889 for (i = 0; chip_table[i].company != 0; i++)
1890 if ((c_id == chip_table[i].company) &&
1891 (d_id == chip_table[i].device ||
1892 chip_table[i].device == 0xff) &&
1893 (r_id == chip_table[i].rev ||
1894 chip_table[i].rev == 0xff)) {
1895 dc->dc_chip = &chip_table[i];
1896 return i;
1897 }
1898
1899 aprint_debug("dbcool_chip_ident: addr 0x%02x c_id 0x%02x d_id 0x%02x"
1900 " r_id 0x%02x: No match.\n", dc->dc_addr, c_id, d_id,
1901 r_id);
1902
1903 return -1;
1904 }
1905
1906 /*
1907 * Retrieve sensor limits from the chip registers
1908 */
1909 static void
1910 dbcool_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1911 sysmon_envsys_lim_t *limits, uint32_t *props)
1912 {
1913 int index = edata->sensor;
1914 struct dbcool_softc *sc = sme->sme_cookie;
1915
1916 *props &= ~(PROP_CRITMIN | PROP_CRITMAX);
1917 switch (edata->units) {
1918 case ENVSYS_STEMP:
1919 dbcool_get_temp_limits(sc, index, limits, props);
1920 break;
1921 case ENVSYS_SVOLTS_DC:
1922 dbcool_get_volt_limits(sc, index, limits, props);
1923 break;
1924 case ENVSYS_SFANRPM:
1925 dbcool_get_fan_limits(sc, index, limits, props);
1926
1927 /* FALLTHROUGH */
1928 default:
1929 break;
1930 }
1931 *props &= ~PROP_DRIVER_LIMITS;
1932
1933 /* If both limits provided, make sure they're sane */
1934 if ((*props & PROP_CRITMIN) &&
1935 (*props & PROP_CRITMAX) &&
1936 (limits->sel_critmin >= limits->sel_critmax))
1937 *props &= ~(PROP_CRITMIN | PROP_CRITMAX);
1938
1939 /*
1940 * If this is the first time through, save these values
1941 * in case user overrides them and then requests a reset.
1942 */
1943 if (sc->sc_defprops[index] == 0) {
1944 sc->sc_defprops[index] = *props | PROP_DRIVER_LIMITS;
1945 sc->sc_deflims[index] = *limits;
1946 }
1947 }
1948
1949 static void
1950 dbcool_get_temp_limits(struct dbcool_softc *sc, int idx,
1951 sysmon_envsys_lim_t *lims, uint32_t *props)
1952 {
1953 struct reg_list *reg = sc->sc_regs[idx];
1954 uint8_t lo_lim, hi_lim;
1955
1956 lo_lim = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->lo_lim_reg);
1957 hi_lim = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->hi_lim_reg);
1958
1959 if (sc->sc_temp_offset) {
1960 if (lo_lim > 0x01) {
1961 lims->sel_critmin = lo_lim - sc->sc_temp_offset;
1962 *props |= PROP_CRITMIN;
1963 }
1964 if (hi_lim != 0xff) {
1965 lims->sel_critmax = hi_lim - sc->sc_temp_offset;
1966 *props |= PROP_CRITMAX;
1967 }
1968 } else {
1969 if (lo_lim != 0x80 && lo_lim != 0x81) {
1970 lims->sel_critmin = (int8_t)lo_lim;
1971 *props |= PROP_CRITMIN;
1972 }
1973
1974 if (hi_lim != 0x7f) {
1975 lims->sel_critmax = (int8_t)hi_lim;
1976 *props |= PROP_CRITMAX;
1977 }
1978 }
1979
1980 /* Convert temp limits to microKelvin */
1981 lims->sel_critmin *= 1000000;
1982 lims->sel_critmin += 273150000;
1983 lims->sel_critmax *= 1000000;
1984 lims->sel_critmax += 273150000;
1985 }
1986
1987 static void
1988 dbcool_get_volt_limits(struct dbcool_softc *sc, int idx,
1989 sysmon_envsys_lim_t *lims, uint32_t *props)
1990 {
1991 struct reg_list *reg = sc->sc_regs[idx];
1992 int64_t limit;
1993 int nom;
1994
1995 nom = nominal_voltages[sc->sc_dc.dc_chip->table[idx].nom_volt_index];
1996 if (nom < 0)
1997 nom = dbcool_supply_voltage(sc);
1998 nom *= 1000000; /* scale for microvolts */
1999
2000 limit = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->lo_lim_reg);
2001 if (limit != 0x00 && limit != 0xff) {
2002 limit *= nom;
2003 limit /= 0xc0;
2004 lims->sel_critmin = limit;
2005 *props |= PROP_CRITMIN;
2006 }
2007 limit = sc->sc_dc.dc_readreg(&sc->sc_dc, reg->hi_lim_reg);
2008 if (limit != 0x00 && limit != 0xff) {
2009 limit *= nom;
2010 limit /= 0xc0;
2011 lims->sel_critmax = limit;
2012 *props |= PROP_CRITMAX;
2013 }
2014 }
2015
2016 static void
2017 dbcool_get_fan_limits(struct dbcool_softc *sc, int idx,
2018 sysmon_envsys_lim_t *lims, uint32_t *props)
2019 {
2020 struct reg_list *reg = sc->sc_regs[idx];
2021 int32_t limit;
2022
2023 limit = dbcool_read_rpm(sc, reg->lo_lim_reg);
2024 if (limit) {
2025 lims->sel_critmin = limit;
2026 *props |= PROP_CRITMIN;
2027 }
2028 }
2029
2030 /*
2031 * Update sensor limits in the chip registers
2032 */
2033 static void
2034 dbcool_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
2035 sysmon_envsys_lim_t *limits, uint32_t *props)
2036 {
2037 int index = edata->sensor;
2038 struct dbcool_softc *sc = sme->sme_cookie;
2039
2040 if (limits == NULL) {
2041 limits = &sc->sc_deflims[index];
2042 props = &sc->sc_defprops[index];
2043 }
2044 switch (edata->units) {
2045 case ENVSYS_STEMP:
2046 dbcool_set_temp_limits(sc, index, limits, props);
2047 break;
2048 case ENVSYS_SVOLTS_DC:
2049 dbcool_set_volt_limits(sc, index, limits, props);
2050 break;
2051 case ENVSYS_SFANRPM:
2052 dbcool_set_fan_limits(sc, index, limits, props);
2053
2054 /* FALLTHROUGH */
2055 default:
2056 break;
2057 }
2058 *props &= ~PROP_DRIVER_LIMITS;
2059 }
2060
2061 static void
2062 dbcool_set_temp_limits(struct dbcool_softc *sc, int idx,
2063 sysmon_envsys_lim_t *lims, uint32_t *props)
2064 {
2065 struct reg_list *reg = sc->sc_regs[idx];
2066 int32_t limit;
2067
2068 if (*props & PROP_CRITMIN) {
2069 limit = lims->sel_critmin - 273150000;
2070 limit /= 1000000;
2071 if (sc->sc_temp_offset) {
2072 limit += sc->sc_temp_offset;
2073 if (limit < 0)
2074 limit = 0;
2075 else if (limit > 255)
2076 limit = 255;
2077 } else {
2078 if (limit < -127)
2079 limit = -127;
2080 else if (limit > 127)
2081 limit = 127;
2082 }
2083 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg,
2084 (uint8_t)limit);
2085 } else if (*props & PROP_DRIVER_LIMITS) {
2086 if (sc->sc_temp_offset)
2087 limit = 0x00;
2088 else
2089 limit = 0x80;
2090 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg,
2091 (uint8_t)limit);
2092 }
2093
2094 if (*props & PROP_CRITMAX) {
2095 limit = lims->sel_critmax - 273150000;
2096 limit /= 1000000;
2097 if (sc->sc_temp_offset) {
2098 limit += sc->sc_temp_offset;
2099 if (limit < 0)
2100 limit = 0;
2101 else if (limit > 255)
2102 limit = 255;
2103 } else {
2104 if (limit < -127)
2105 limit = -127;
2106 else if (limit > 127)
2107 limit = 127;
2108 }
2109 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg,
2110 (uint8_t)limit);
2111 } else if (*props & PROP_DRIVER_LIMITS) {
2112 if (sc->sc_temp_offset)
2113 limit = 0xff;
2114 else
2115 limit = 0x7f;
2116 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg,
2117 (uint8_t)limit);
2118 }
2119 }
2120
2121 static void
2122 dbcool_set_volt_limits(struct dbcool_softc *sc, int idx,
2123 sysmon_envsys_lim_t *lims, uint32_t *props)
2124 {
2125 struct reg_list *reg = sc->sc_regs[idx];
2126 int64_t limit;
2127 int nom;
2128
2129 nom = nominal_voltages[sc->sc_dc.dc_chip->table[idx].nom_volt_index];
2130 if (nom < 0)
2131 nom = dbcool_supply_voltage(sc);
2132 nom *= 1000000; /* scale for microvolts */
2133
2134 if (*props & PROP_CRITMIN) {
2135 limit = lims->sel_critmin;
2136 limit *= 0xc0;
2137 limit /= nom;
2138 if (limit > 0xff)
2139 limit = 0xff;
2140 else if (limit < 0)
2141 limit = 0;
2142 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, limit);
2143 } else if (*props & PROP_DRIVER_LIMITS)
2144 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, 0);
2145
2146 if (*props & PROP_CRITMAX) {
2147 limit = lims->sel_critmax;
2148 limit *= 0xc0;
2149 limit /= nom;
2150 if (limit > 0xff)
2151 limit = 0xff;
2152 else if (limit < 0)
2153 limit = 0;
2154 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg, limit);
2155 } else if (*props & PROP_DRIVER_LIMITS)
2156 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->hi_lim_reg, 0xff);
2157 }
2158
2159 static void
2160 dbcool_set_fan_limits(struct dbcool_softc *sc, int idx,
2161 sysmon_envsys_lim_t *lims, uint32_t *props)
2162 {
2163 struct reg_list *reg = sc->sc_regs[idx];
2164 int32_t limit, dividend;
2165
2166 if (*props & PROP_CRITMIN) {
2167 limit = lims->sel_critmin;
2168 if (limit == 0)
2169 limit = 0xffff;
2170 else {
2171 if (sc->sc_dc.dc_chip->flags & DBCFLAG_ADM1030)
2172 dividend = 11250 * 60;
2173 else
2174 dividend = 90000 * 60;
2175 limit = limit / dividend;
2176 if (limit > 0xffff)
2177 limit = 0xffff;
2178 }
2179 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg,
2180 limit & 0xff);
2181 limit >>= 8;
2182 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg + 1,
2183 limit & 0xff);
2184 } else if (*props & PROP_DRIVER_LIMITS) {
2185 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg, 0xff);
2186 sc->sc_dc.dc_writereg(&sc->sc_dc, reg->lo_lim_reg + 1, 0xff);
2187 }
2188 }
2189
2190 MODULE(MODULE_CLASS_DRIVER, dbcool, "iic,sysmon_envsys");
2191
2192 #ifdef _MODULE
2193 #include "ioconf.c"
2194 #endif
2195
2196 static int
2197 dbcool_modcmd(modcmd_t cmd, void *opaque)
2198 {
2199 int error = 0;
2200 #ifdef _MODULE
2201 static struct sysctllog *dbcool_sysctl_clog;
2202 #endif
2203
2204 switch (cmd) {
2205 case MODULE_CMD_INIT:
2206 #ifdef _MODULE
2207 error = config_init_component(cfdriver_ioconf_dbcool,
2208 cfattach_ioconf_dbcool, cfdata_ioconf_dbcool);
2209 sysctl_dbcoolsetup(&dbcool_sysctl_clog);
2210 #endif
2211 return error;
2212 case MODULE_CMD_FINI:
2213 #ifdef _MODULE
2214 error = config_fini_component(cfdriver_ioconf_dbcool,
2215 cfattach_ioconf_dbcool, cfdata_ioconf_dbcool);
2216 sysctl_teardown(&dbcool_sysctl_clog);
2217 #endif
2218 return error;
2219 default:
2220 return ENOTTY;
2221 }
2222 }
2223