ds1307.c revision 1.21.2.1 1 1.21.2.1 skrll /* $NetBSD: ds1307.c,v 1.21.2.1 2016/04/22 15:44:13 skrll Exp $ */
2 1.1 thorpej
3 1.1 thorpej /*
4 1.1 thorpej * Copyright (c) 2003 Wasabi Systems, Inc.
5 1.1 thorpej * All rights reserved.
6 1.1 thorpej *
7 1.1 thorpej * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 1.1 thorpej *
9 1.1 thorpej * Redistribution and use in source and binary forms, with or without
10 1.1 thorpej * modification, are permitted provided that the following conditions
11 1.1 thorpej * are met:
12 1.1 thorpej * 1. Redistributions of source code must retain the above copyright
13 1.1 thorpej * notice, this list of conditions and the following disclaimer.
14 1.1 thorpej * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 thorpej * notice, this list of conditions and the following disclaimer in the
16 1.1 thorpej * documentation and/or other materials provided with the distribution.
17 1.1 thorpej * 3. All advertising materials mentioning features or use of this software
18 1.1 thorpej * must display the following acknowledgement:
19 1.1 thorpej * This product includes software developed for the NetBSD Project by
20 1.1 thorpej * Wasabi Systems, Inc.
21 1.1 thorpej * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 thorpej * or promote products derived from this software without specific prior
23 1.1 thorpej * written permission.
24 1.1 thorpej *
25 1.1 thorpej * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 thorpej * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 thorpej * POSSIBILITY OF SUCH DAMAGE.
36 1.1 thorpej */
37 1.1 thorpej
38 1.9 lukem #include <sys/cdefs.h>
39 1.21.2.1 skrll __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.21.2.1 2016/04/22 15:44:13 skrll Exp $");
40 1.9 lukem
41 1.1 thorpej #include <sys/param.h>
42 1.1 thorpej #include <sys/systm.h>
43 1.1 thorpej #include <sys/device.h>
44 1.1 thorpej #include <sys/kernel.h>
45 1.1 thorpej #include <sys/fcntl.h>
46 1.1 thorpej #include <sys/uio.h>
47 1.1 thorpej #include <sys/conf.h>
48 1.1 thorpej #include <sys/event.h>
49 1.1 thorpej
50 1.1 thorpej #include <dev/clock_subr.h>
51 1.1 thorpej
52 1.1 thorpej #include <dev/i2c/i2cvar.h>
53 1.1 thorpej #include <dev/i2c/ds1307reg.h>
54 1.19 macallan #include <dev/sysmon/sysmonvar.h>
55 1.1 thorpej
56 1.15 matt struct dsrtc_model {
57 1.15 matt uint16_t dm_model;
58 1.15 matt uint8_t dm_ch_reg;
59 1.15 matt uint8_t dm_ch_value;
60 1.15 matt uint8_t dm_rtc_start;
61 1.15 matt uint8_t dm_rtc_size;
62 1.15 matt uint8_t dm_nvram_start;
63 1.15 matt uint8_t dm_nvram_size;
64 1.15 matt uint8_t dm_flags;
65 1.15 matt #define DSRTC_FLAG_CLOCK_HOLD 1
66 1.15 matt #define DSRTC_FLAG_BCD 2
67 1.19 macallan #define DSRTC_FLAG_TEMP 4
68 1.15 matt };
69 1.15 matt
70 1.15 matt static const struct dsrtc_model dsrtc_models[] = {
71 1.15 matt {
72 1.15 matt .dm_model = 1307,
73 1.15 matt .dm_ch_reg = DSXXXX_SECONDS,
74 1.15 matt .dm_ch_value = DS1307_SECONDS_CH,
75 1.15 matt .dm_rtc_start = DS1307_RTC_START,
76 1.15 matt .dm_rtc_size = DS1307_RTC_SIZE,
77 1.15 matt .dm_nvram_start = DS1307_NVRAM_START,
78 1.15 matt .dm_nvram_size = DS1307_NVRAM_SIZE,
79 1.15 matt .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
80 1.15 matt }, {
81 1.15 matt .dm_model = 1339,
82 1.15 matt .dm_rtc_start = DS1339_RTC_START,
83 1.15 matt .dm_rtc_size = DS1339_RTC_SIZE,
84 1.15 matt .dm_flags = DSRTC_FLAG_BCD,
85 1.15 matt }, {
86 1.15 matt .dm_model = 1672,
87 1.15 matt .dm_rtc_start = DS1672_RTC_START,
88 1.15 matt .dm_rtc_size = DS1672_RTC_SIZE,
89 1.21.2.1 skrll .dm_ch_reg = DS1672_CONTROL,
90 1.21.2.1 skrll .dm_ch_value = DS1672_CONTROL_CH,
91 1.15 matt .dm_flags = 0,
92 1.15 matt }, {
93 1.19 macallan .dm_model = 3231,
94 1.19 macallan .dm_rtc_start = DS3232_RTC_START,
95 1.19 macallan .dm_rtc_size = DS3232_RTC_SIZE,
96 1.19 macallan /*
97 1.19 macallan * XXX
98 1.19 macallan * the DS3232 likely has the temperature sensor too but I can't
99 1.19 macallan * easily verify or test that right now
100 1.19 macallan */
101 1.19 macallan .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
102 1.19 macallan }, {
103 1.15 matt .dm_model = 3232,
104 1.15 matt .dm_rtc_start = DS3232_RTC_START,
105 1.15 matt .dm_rtc_size = DS3232_RTC_SIZE,
106 1.15 matt .dm_nvram_start = DS3232_NVRAM_START,
107 1.15 matt .dm_nvram_size = DS3232_NVRAM_SIZE,
108 1.15 matt .dm_flags = DSRTC_FLAG_BCD,
109 1.15 matt },
110 1.15 matt };
111 1.15 matt
112 1.1 thorpej struct dsrtc_softc {
113 1.11 xtraeme device_t sc_dev;
114 1.1 thorpej i2c_tag_t sc_tag;
115 1.15 matt uint8_t sc_address;
116 1.15 matt bool sc_open;
117 1.15 matt struct dsrtc_model sc_model;
118 1.1 thorpej struct todr_chip_handle sc_todr;
119 1.19 macallan struct sysmon_envsys *sc_sme;
120 1.19 macallan envsys_data_t sc_sensor;
121 1.1 thorpej };
122 1.1 thorpej
123 1.11 xtraeme static void dsrtc_attach(device_t, device_t, void *);
124 1.11 xtraeme static int dsrtc_match(device_t, cfdata_t, void *);
125 1.1 thorpej
126 1.11 xtraeme CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
127 1.1 thorpej dsrtc_match, dsrtc_attach, NULL, NULL);
128 1.1 thorpej extern struct cfdriver dsrtc_cd;
129 1.1 thorpej
130 1.1 thorpej dev_type_open(dsrtc_open);
131 1.1 thorpej dev_type_close(dsrtc_close);
132 1.1 thorpej dev_type_read(dsrtc_read);
133 1.1 thorpej dev_type_write(dsrtc_write);
134 1.1 thorpej
135 1.1 thorpej const struct cdevsw dsrtc_cdevsw = {
136 1.17 dholland .d_open = dsrtc_open,
137 1.17 dholland .d_close = dsrtc_close,
138 1.17 dholland .d_read = dsrtc_read,
139 1.17 dholland .d_write = dsrtc_write,
140 1.17 dholland .d_ioctl = noioctl,
141 1.17 dholland .d_stop = nostop,
142 1.17 dholland .d_tty = notty,
143 1.17 dholland .d_poll = nopoll,
144 1.17 dholland .d_mmap = nommap,
145 1.17 dholland .d_kqfilter = nokqfilter,
146 1.18 dholland .d_discard = nodiscard,
147 1.17 dholland .d_flag = D_OTHER
148 1.1 thorpej };
149 1.1 thorpej
150 1.15 matt static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
151 1.15 matt static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
152 1.15 matt static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
153 1.15 matt static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
154 1.15 matt
155 1.15 matt static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
156 1.15 matt static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
157 1.15 matt static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
158 1.15 matt static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
159 1.15 matt
160 1.19 macallan static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
161 1.19 macallan static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
162 1.19 macallan
163 1.15 matt static const struct dsrtc_model *
164 1.15 matt dsrtc_model(u_int model)
165 1.15 matt {
166 1.15 matt /* no model given, assume it's a DS1307 (the first one) */
167 1.15 matt if (model == 0)
168 1.15 matt return &dsrtc_models[0];
169 1.15 matt
170 1.15 matt for (const struct dsrtc_model *dm = dsrtc_models;
171 1.15 matt dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
172 1.15 matt if (dm->dm_model == model)
173 1.15 matt return dm;
174 1.15 matt }
175 1.15 matt return NULL;
176 1.15 matt }
177 1.1 thorpej
178 1.1 thorpej static int
179 1.11 xtraeme dsrtc_match(device_t parent, cfdata_t cf, void *arg)
180 1.1 thorpej {
181 1.1 thorpej struct i2c_attach_args *ia = arg;
182 1.1 thorpej
183 1.13 phx if (ia->ia_name) {
184 1.13 phx /* direct config - check name */
185 1.13 phx if (strcmp(ia->ia_name, "dsrtc") == 0)
186 1.13 phx return 1;
187 1.13 phx } else {
188 1.13 phx /* indirect config - check typical address */
189 1.13 phx if (ia->ia_addr == DS1307_ADDR)
190 1.15 matt return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
191 1.13 phx }
192 1.13 phx return 0;
193 1.1 thorpej }
194 1.1 thorpej
195 1.1 thorpej static void
196 1.11 xtraeme dsrtc_attach(device_t parent, device_t self, void *arg)
197 1.1 thorpej {
198 1.5 thorpej struct dsrtc_softc *sc = device_private(self);
199 1.1 thorpej struct i2c_attach_args *ia = arg;
200 1.15 matt const struct dsrtc_model * const dm =
201 1.15 matt dsrtc_model(device_cfdata(self)->cf_flags);
202 1.1 thorpej
203 1.15 matt aprint_naive(": Real-time Clock%s\n",
204 1.15 matt dm->dm_nvram_size > 0 ? "/NVRAM" : "");
205 1.15 matt aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
206 1.15 matt dm->dm_nvram_size > 0 ? "/NVRAM" : "");
207 1.1 thorpej
208 1.1 thorpej sc->sc_tag = ia->ia_tag;
209 1.1 thorpej sc->sc_address = ia->ia_addr;
210 1.15 matt sc->sc_model = *dm;
211 1.11 xtraeme sc->sc_dev = self;
212 1.1 thorpej sc->sc_open = 0;
213 1.1 thorpej sc->sc_todr.cookie = sc;
214 1.15 matt if (dm->dm_flags & DSRTC_FLAG_BCD) {
215 1.15 matt sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
216 1.15 matt sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
217 1.15 matt } else {
218 1.15 matt sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
219 1.15 matt sc->sc_todr.todr_settime = dsrtc_settime_timeval;
220 1.15 matt }
221 1.1 thorpej sc->sc_todr.todr_setwen = NULL;
222 1.1 thorpej
223 1.1 thorpej todr_attach(&sc->sc_todr);
224 1.19 macallan if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
225 1.19 macallan int error;
226 1.19 macallan
227 1.19 macallan sc->sc_sme = sysmon_envsys_create();
228 1.19 macallan sc->sc_sme->sme_name = device_xname(self);
229 1.19 macallan sc->sc_sme->sme_cookie = sc;
230 1.19 macallan sc->sc_sme->sme_refresh = dsrtc_refresh;
231 1.19 macallan
232 1.19 macallan sc->sc_sensor.units = ENVSYS_STEMP;
233 1.19 macallan sc->sc_sensor.state = ENVSYS_SINVALID;
234 1.19 macallan sc->sc_sensor.flags = 0;
235 1.19 macallan (void)strlcpy(sc->sc_sensor.desc, "temperature",
236 1.19 macallan sizeof(sc->sc_sensor.desc));
237 1.19 macallan
238 1.19 macallan if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
239 1.19 macallan aprint_error_dev(self, "unable to attach sensor\n");
240 1.19 macallan goto bad;
241 1.19 macallan }
242 1.19 macallan
243 1.19 macallan error = sysmon_envsys_register(sc->sc_sme);
244 1.19 macallan if (error) {
245 1.19 macallan aprint_error_dev(self,
246 1.19 macallan "error %d registering with sysmon\n", error);
247 1.19 macallan goto bad;
248 1.19 macallan }
249 1.19 macallan }
250 1.19 macallan return;
251 1.19 macallan bad:
252 1.19 macallan sysmon_envsys_destroy(sc->sc_sme);
253 1.1 thorpej }
254 1.1 thorpej
255 1.1 thorpej /*ARGSUSED*/
256 1.1 thorpej int
257 1.4 abs dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
258 1.1 thorpej {
259 1.1 thorpej struct dsrtc_softc *sc;
260 1.1 thorpej
261 1.12 tsutsui if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
262 1.14 phx return ENXIO;
263 1.1 thorpej
264 1.1 thorpej /* XXX: Locking */
265 1.1 thorpej if (sc->sc_open)
266 1.14 phx return EBUSY;
267 1.1 thorpej
268 1.15 matt sc->sc_open = true;
269 1.14 phx return 0;
270 1.1 thorpej }
271 1.1 thorpej
272 1.1 thorpej /*ARGSUSED*/
273 1.1 thorpej int
274 1.4 abs dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
275 1.1 thorpej {
276 1.1 thorpej struct dsrtc_softc *sc;
277 1.1 thorpej
278 1.12 tsutsui if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
279 1.14 phx return ENXIO;
280 1.1 thorpej
281 1.15 matt sc->sc_open = false;
282 1.14 phx return 0;
283 1.1 thorpej }
284 1.1 thorpej
285 1.1 thorpej /*ARGSUSED*/
286 1.1 thorpej int
287 1.1 thorpej dsrtc_read(dev_t dev, struct uio *uio, int flags)
288 1.1 thorpej {
289 1.1 thorpej struct dsrtc_softc *sc;
290 1.15 matt int error;
291 1.1 thorpej
292 1.12 tsutsui if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
293 1.14 phx return ENXIO;
294 1.1 thorpej
295 1.15 matt const struct dsrtc_model * const dm = &sc->sc_model;
296 1.15 matt if (uio->uio_offset >= dm->dm_nvram_size)
297 1.14 phx return EINVAL;
298 1.1 thorpej
299 1.1 thorpej if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
300 1.14 phx return error;
301 1.1 thorpej
302 1.15 matt KASSERT(uio->uio_offset >= 0);
303 1.15 matt while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
304 1.15 matt uint8_t ch, cmd;
305 1.15 matt const u_int a = uio->uio_offset;
306 1.15 matt cmd = a + dm->dm_nvram_start;
307 1.15 matt if ((error = iic_exec(sc->sc_tag,
308 1.15 matt uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
309 1.15 matt sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
310 1.1 thorpej iic_release_bus(sc->sc_tag, 0);
311 1.11 xtraeme aprint_error_dev(sc->sc_dev,
312 1.16 matt "%s: read failed at 0x%x: %d\n",
313 1.16 matt __func__, a, error);
314 1.14 phx return error;
315 1.1 thorpej }
316 1.1 thorpej if ((error = uiomove(&ch, 1, uio)) != 0) {
317 1.1 thorpej iic_release_bus(sc->sc_tag, 0);
318 1.14 phx return error;
319 1.1 thorpej }
320 1.1 thorpej }
321 1.1 thorpej
322 1.1 thorpej iic_release_bus(sc->sc_tag, 0);
323 1.1 thorpej
324 1.14 phx return 0;
325 1.1 thorpej }
326 1.1 thorpej
327 1.1 thorpej /*ARGSUSED*/
328 1.1 thorpej int
329 1.1 thorpej dsrtc_write(dev_t dev, struct uio *uio, int flags)
330 1.1 thorpej {
331 1.1 thorpej struct dsrtc_softc *sc;
332 1.15 matt int error;
333 1.1 thorpej
334 1.12 tsutsui if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
335 1.14 phx return ENXIO;
336 1.1 thorpej
337 1.15 matt const struct dsrtc_model * const dm = &sc->sc_model;
338 1.15 matt if (uio->uio_offset >= dm->dm_nvram_size)
339 1.14 phx return EINVAL;
340 1.1 thorpej
341 1.1 thorpej if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
342 1.14 phx return error;
343 1.1 thorpej
344 1.15 matt while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
345 1.15 matt uint8_t cmdbuf[2];
346 1.15 matt const u_int a = (int)uio->uio_offset;
347 1.15 matt cmdbuf[0] = a + dm->dm_nvram_start;
348 1.1 thorpej if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
349 1.1 thorpej break;
350 1.1 thorpej
351 1.1 thorpej if ((error = iic_exec(sc->sc_tag,
352 1.1 thorpej uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
353 1.1 thorpej sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
354 1.11 xtraeme aprint_error_dev(sc->sc_dev,
355 1.16 matt "%s: write failed at 0x%x: %d\n",
356 1.16 matt __func__, a, error);
357 1.1 thorpej break;
358 1.1 thorpej }
359 1.1 thorpej }
360 1.1 thorpej
361 1.1 thorpej iic_release_bus(sc->sc_tag, 0);
362 1.1 thorpej
363 1.14 phx return error;
364 1.1 thorpej }
365 1.1 thorpej
366 1.1 thorpej static int
367 1.15 matt dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
368 1.1 thorpej {
369 1.1 thorpej struct dsrtc_softc *sc = ch->cookie;
370 1.7 gdamore struct clock_ymdhms check;
371 1.1 thorpej int retries;
372 1.1 thorpej
373 1.7 gdamore memset(dt, 0, sizeof(*dt));
374 1.1 thorpej memset(&check, 0, sizeof(check));
375 1.1 thorpej
376 1.1 thorpej /*
377 1.1 thorpej * Since we don't support Burst Read, we have to read the clock twice
378 1.1 thorpej * until we get two consecutive identical results.
379 1.1 thorpej */
380 1.1 thorpej retries = 5;
381 1.1 thorpej do {
382 1.15 matt dsrtc_clock_read_ymdhms(sc, dt);
383 1.15 matt dsrtc_clock_read_ymdhms(sc, &check);
384 1.7 gdamore } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
385 1.1 thorpej
386 1.14 phx return 0;
387 1.1 thorpej }
388 1.1 thorpej
389 1.1 thorpej static int
390 1.15 matt dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
391 1.1 thorpej {
392 1.1 thorpej struct dsrtc_softc *sc = ch->cookie;
393 1.1 thorpej
394 1.15 matt if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
395 1.14 phx return -1;
396 1.1 thorpej
397 1.14 phx return 0;
398 1.1 thorpej }
399 1.1 thorpej
400 1.1 thorpej static int
401 1.15 matt dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
402 1.1 thorpej {
403 1.15 matt struct dsrtc_model * const dm = &sc->sc_model;
404 1.15 matt uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
405 1.16 matt int error;
406 1.15 matt
407 1.15 matt KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
408 1.1 thorpej
409 1.16 matt if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
410 1.11 xtraeme aprint_error_dev(sc->sc_dev,
411 1.16 matt "%s: failed to acquire I2C bus: %d\n",
412 1.16 matt __func__, error);
413 1.14 phx return 0;
414 1.1 thorpej }
415 1.1 thorpej
416 1.1 thorpej /* Read each RTC register in order. */
417 1.16 matt for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
418 1.15 matt cmdbuf[0] = dm->dm_rtc_start + i;
419 1.1 thorpej
420 1.16 matt error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
421 1.16 matt sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
422 1.1 thorpej }
423 1.1 thorpej
424 1.1 thorpej /* Done with I2C */
425 1.1 thorpej iic_release_bus(sc->sc_tag, I2C_F_POLL);
426 1.1 thorpej
427 1.16 matt if (error != 0) {
428 1.16 matt aprint_error_dev(sc->sc_dev,
429 1.16 matt "%s: failed to read rtc at 0x%x: %d\n",
430 1.16 matt __func__, cmdbuf[0], error);
431 1.16 matt return 0;
432 1.16 matt }
433 1.16 matt
434 1.1 thorpej /*
435 1.15 matt * Convert the RTC's register values into something useable
436 1.1 thorpej */
437 1.21 christos dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
438 1.21 christos dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
439 1.1 thorpej
440 1.15 matt if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
441 1.21 christos dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
442 1.15 matt DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
443 1.15 matt if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
444 1.1 thorpej dt->dt_hour += 12;
445 1.14 phx } else
446 1.21 christos dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
447 1.15 matt DSXXXX_HOURS_24MASK);
448 1.1 thorpej
449 1.21 christos dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
450 1.21 christos dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
451 1.1 thorpej
452 1.1 thorpej /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
453 1.21 christos dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
454 1.15 matt if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
455 1.15 matt dt->dt_year += 100;
456 1.1 thorpej
457 1.14 phx return 1;
458 1.1 thorpej }
459 1.1 thorpej
460 1.1 thorpej static int
461 1.15 matt dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
462 1.1 thorpej {
463 1.15 matt struct dsrtc_model * const dm = &sc->sc_model;
464 1.15 matt uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
465 1.16 matt int error;
466 1.15 matt
467 1.15 matt KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
468 1.1 thorpej
469 1.1 thorpej /*
470 1.15 matt * Convert our time representation into something the DSXXXX
471 1.1 thorpej * can understand.
472 1.1 thorpej */
473 1.21 christos bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
474 1.21 christos bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
475 1.21 christos bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
476 1.21 christos bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
477 1.21 christos bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
478 1.21 christos bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
479 1.21 christos bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
480 1.15 matt if (dt->dt_year - POSIX_BASE_YEAR >= 100)
481 1.15 matt bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
482 1.1 thorpej
483 1.16 matt if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
484 1.11 xtraeme aprint_error_dev(sc->sc_dev,
485 1.16 matt "%s: failed to acquire I2C bus: %d\n",
486 1.16 matt __func__, error);
487 1.14 phx return 0;
488 1.1 thorpej }
489 1.1 thorpej
490 1.1 thorpej /* Stop the clock */
491 1.15 matt cmdbuf[0] = dm->dm_ch_reg;
492 1.15 matt
493 1.16 matt if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
494 1.16 matt cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
495 1.15 matt iic_release_bus(sc->sc_tag, I2C_F_POLL);
496 1.15 matt aprint_error_dev(sc->sc_dev,
497 1.16 matt "%s: failed to read Hold Clock: %d\n",
498 1.16 matt __func__, error);
499 1.15 matt return 0;
500 1.15 matt }
501 1.15 matt
502 1.15 matt cmdbuf[1] |= dm->dm_ch_value;
503 1.1 thorpej
504 1.16 matt if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
505 1.16 matt cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
506 1.1 thorpej iic_release_bus(sc->sc_tag, I2C_F_POLL);
507 1.11 xtraeme aprint_error_dev(sc->sc_dev,
508 1.16 matt "%s: failed to write Hold Clock: %d\n",
509 1.16 matt __func__, error);
510 1.14 phx return 0;
511 1.1 thorpej }
512 1.1 thorpej
513 1.1 thorpej /*
514 1.1 thorpej * Write registers in reverse order. The last write (to the Seconds
515 1.1 thorpej * register) will undo the Clock Hold, above.
516 1.1 thorpej */
517 1.15 matt uint8_t op = I2C_OP_WRITE;
518 1.15 matt for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
519 1.15 matt cmdbuf[0] = dm->dm_rtc_start + i;
520 1.15 matt if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
521 1.15 matt op = I2C_OP_WRITE_WITH_STOP;
522 1.15 matt }
523 1.16 matt if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
524 1.16 matt cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
525 1.1 thorpej iic_release_bus(sc->sc_tag, I2C_F_POLL);
526 1.11 xtraeme aprint_error_dev(sc->sc_dev,
527 1.16 matt "%s: failed to write rtc at 0x%x: %d\n",
528 1.16 matt __func__, i, error);
529 1.1 thorpej /* XXX: Clock Hold is likely still asserted! */
530 1.14 phx return 0;
531 1.1 thorpej }
532 1.1 thorpej }
533 1.15 matt /*
534 1.15 matt * If the clock hold register isn't the same register as seconds,
535 1.15 matt * we need to reeanble the clock.
536 1.15 matt */
537 1.15 matt if (op != I2C_OP_WRITE_WITH_STOP) {
538 1.15 matt cmdbuf[0] = dm->dm_ch_reg;
539 1.15 matt cmdbuf[1] &= ~dm->dm_ch_value;
540 1.15 matt
541 1.16 matt if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
542 1.16 matt sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
543 1.16 matt I2C_F_POLL)) != 0) {
544 1.15 matt iic_release_bus(sc->sc_tag, I2C_F_POLL);
545 1.15 matt aprint_error_dev(sc->sc_dev,
546 1.16 matt "%s: failed to Hold Clock: %d\n",
547 1.16 matt __func__, error);
548 1.15 matt return 0;
549 1.15 matt }
550 1.15 matt }
551 1.1 thorpej
552 1.1 thorpej iic_release_bus(sc->sc_tag, I2C_F_POLL);
553 1.1 thorpej
554 1.14 phx return 1;
555 1.1 thorpej }
556 1.15 matt
557 1.15 matt static int
558 1.15 matt dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
559 1.15 matt {
560 1.15 matt struct dsrtc_softc *sc = ch->cookie;
561 1.15 matt struct timeval check;
562 1.15 matt int retries;
563 1.15 matt
564 1.15 matt memset(tv, 0, sizeof(*tv));
565 1.15 matt memset(&check, 0, sizeof(check));
566 1.15 matt
567 1.15 matt /*
568 1.15 matt * Since we don't support Burst Read, we have to read the clock twice
569 1.15 matt * until we get two consecutive identical results.
570 1.15 matt */
571 1.15 matt retries = 5;
572 1.15 matt do {
573 1.15 matt dsrtc_clock_read_timeval(sc, &tv->tv_sec);
574 1.15 matt dsrtc_clock_read_timeval(sc, &check.tv_sec);
575 1.15 matt } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
576 1.15 matt
577 1.15 matt return 0;
578 1.15 matt }
579 1.15 matt
580 1.15 matt static int
581 1.15 matt dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
582 1.15 matt {
583 1.15 matt struct dsrtc_softc *sc = ch->cookie;
584 1.15 matt
585 1.15 matt if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
586 1.15 matt return -1;
587 1.15 matt
588 1.15 matt return 0;
589 1.15 matt }
590 1.15 matt
591 1.15 matt /*
592 1.15 matt * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
593 1.15 matt * it, since some I2C controllers don't support anything other than single-byte
594 1.15 matt * transfers.
595 1.15 matt */
596 1.15 matt static int
597 1.15 matt dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
598 1.15 matt {
599 1.15 matt const struct dsrtc_model * const dm = &sc->sc_model;
600 1.15 matt uint8_t buf[4];
601 1.16 matt int error;
602 1.15 matt
603 1.16 matt if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
604 1.16 matt aprint_error_dev(sc->sc_dev,
605 1.16 matt "%s: failed to acquire I2C bus: %d\n",
606 1.16 matt __func__, error);
607 1.16 matt return 0;
608 1.15 matt }
609 1.15 matt
610 1.15 matt /* read all registers: */
611 1.15 matt uint8_t reg = dm->dm_rtc_start;
612 1.16 matt error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
613 1.16 matt ®, 1, buf, 4, I2C_F_POLL);
614 1.15 matt
615 1.15 matt /* Done with I2C */
616 1.15 matt iic_release_bus(sc->sc_tag, I2C_F_POLL);
617 1.15 matt
618 1.16 matt if (error != 0) {
619 1.16 matt aprint_error_dev(sc->sc_dev,
620 1.16 matt "%s: failed to read rtc at 0x%x: %d\n",
621 1.16 matt __func__, reg, error);
622 1.16 matt return 0;
623 1.16 matt }
624 1.16 matt
625 1.15 matt uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
626 1.15 matt *tp = v;
627 1.15 matt
628 1.15 matt aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
629 1.15 matt __func__, v);
630 1.15 matt
631 1.16 matt return 1;
632 1.15 matt }
633 1.15 matt
634 1.15 matt static int
635 1.15 matt dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
636 1.15 matt {
637 1.15 matt const struct dsrtc_model * const dm = &sc->sc_model;
638 1.15 matt size_t buflen = dm->dm_rtc_size + 2;
639 1.15 matt uint8_t buf[buflen];
640 1.16 matt int error;
641 1.15 matt
642 1.15 matt KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
643 1.15 matt KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
644 1.15 matt
645 1.15 matt buf[0] = dm->dm_rtc_start;
646 1.15 matt buf[1] = (t >> 0) & 0xff;
647 1.15 matt buf[2] = (t >> 8) & 0xff;
648 1.15 matt buf[3] = (t >> 16) & 0xff;
649 1.15 matt buf[4] = (t >> 24) & 0xff;
650 1.15 matt buf[5] = 0;
651 1.15 matt
652 1.16 matt if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
653 1.16 matt aprint_error_dev(sc->sc_dev,
654 1.16 matt "%s: failed to acquire I2C bus: %d\n",
655 1.16 matt __func__, error);
656 1.16 matt return 0;
657 1.15 matt }
658 1.15 matt
659 1.16 matt error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
660 1.16 matt &buf, buflen, NULL, 0, I2C_F_POLL);
661 1.16 matt
662 1.16 matt /* Done with I2C */
663 1.16 matt iic_release_bus(sc->sc_tag, I2C_F_POLL);
664 1.16 matt
665 1.15 matt /* send data */
666 1.16 matt if (error != 0) {
667 1.16 matt aprint_error_dev(sc->sc_dev,
668 1.16 matt "%s: failed to set time: %d\n",
669 1.16 matt __func__, error);
670 1.16 matt return 0;
671 1.15 matt }
672 1.15 matt
673 1.16 matt return 1;
674 1.15 matt }
675 1.19 macallan
676 1.19 macallan static int
677 1.19 macallan dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
678 1.19 macallan {
679 1.19 macallan int error, tc;
680 1.19 macallan uint8_t reg = DS3232_TEMP_MSB;
681 1.19 macallan uint8_t buf[2];
682 1.19 macallan
683 1.19 macallan if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
684 1.19 macallan return ENOTSUP;
685 1.19 macallan
686 1.19 macallan if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
687 1.19 macallan aprint_error_dev(sc->sc_dev,
688 1.19 macallan "%s: failed to acquire I2C bus: %d\n",
689 1.19 macallan __func__, error);
690 1.19 macallan return 0;
691 1.19 macallan }
692 1.19 macallan
693 1.19 macallan /* read temperature registers: */
694 1.19 macallan error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
695 1.19 macallan ®, 1, buf, 2, I2C_F_POLL);
696 1.19 macallan
697 1.19 macallan /* Done with I2C */
698 1.19 macallan iic_release_bus(sc->sc_tag, I2C_F_POLL);
699 1.19 macallan
700 1.19 macallan if (error != 0) {
701 1.19 macallan aprint_error_dev(sc->sc_dev,
702 1.19 macallan "%s: failed to read temperature: %d\n",
703 1.19 macallan __func__, error);
704 1.19 macallan return 0;
705 1.19 macallan }
706 1.19 macallan
707 1.19 macallan /* convert to microkelvin */
708 1.19 macallan tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
709 1.19 macallan *temp = tc + 273150000;
710 1.19 macallan return 1;
711 1.19 macallan }
712 1.19 macallan
713 1.19 macallan static void
714 1.19 macallan dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
715 1.19 macallan {
716 1.19 macallan struct dsrtc_softc *sc = sme->sme_cookie;
717 1.20 martin uint32_t temp = 0; /* XXX gcc */
718 1.19 macallan
719 1.19 macallan if (dsrtc_read_temp(sc, &temp) == 0) {
720 1.19 macallan edata->state = ENVSYS_SINVALID;
721 1.19 macallan return;
722 1.19 macallan }
723 1.19 macallan
724 1.19 macallan edata->value_cur = temp;
725 1.19 macallan
726 1.19 macallan edata->state = ENVSYS_SVALID;
727 1.19 macallan }
728