Home | History | Annotate | Line # | Download | only in i2c
ds1307.c revision 1.25.2.2
      1  1.25.2.2  pgoyette /*	$NetBSD: ds1307.c,v 1.25.2.2 2018/07/28 04:37:44 pgoyette Exp $	*/
      2       1.1   thorpej 
      3       1.1   thorpej /*
      4       1.1   thorpej  * Copyright (c) 2003 Wasabi Systems, Inc.
      5       1.1   thorpej  * All rights reserved.
      6       1.1   thorpej  *
      7       1.1   thorpej  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8       1.1   thorpej  *
      9       1.1   thorpej  * Redistribution and use in source and binary forms, with or without
     10       1.1   thorpej  * modification, are permitted provided that the following conditions
     11       1.1   thorpej  * are met:
     12       1.1   thorpej  * 1. Redistributions of source code must retain the above copyright
     13       1.1   thorpej  *    notice, this list of conditions and the following disclaimer.
     14       1.1   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1   thorpej  *    notice, this list of conditions and the following disclaimer in the
     16       1.1   thorpej  *    documentation and/or other materials provided with the distribution.
     17       1.1   thorpej  * 3. All advertising materials mentioning features or use of this software
     18       1.1   thorpej  *    must display the following acknowledgement:
     19       1.1   thorpej  *      This product includes software developed for the NetBSD Project by
     20       1.1   thorpej  *      Wasabi Systems, Inc.
     21       1.1   thorpej  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22       1.1   thorpej  *    or promote products derived from this software without specific prior
     23       1.1   thorpej  *    written permission.
     24       1.1   thorpej  *
     25       1.1   thorpej  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26       1.1   thorpej  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27       1.1   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28       1.1   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29       1.1   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30       1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31       1.1   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32       1.1   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33       1.1   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34       1.1   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35       1.1   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     36       1.1   thorpej  */
     37       1.1   thorpej 
     38       1.9     lukem #include <sys/cdefs.h>
     39  1.25.2.2  pgoyette __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.25.2.2 2018/07/28 04:37:44 pgoyette Exp $");
     40       1.9     lukem 
     41       1.1   thorpej #include <sys/param.h>
     42       1.1   thorpej #include <sys/systm.h>
     43       1.1   thorpej #include <sys/device.h>
     44       1.1   thorpej #include <sys/kernel.h>
     45       1.1   thorpej #include <sys/fcntl.h>
     46       1.1   thorpej #include <sys/uio.h>
     47       1.1   thorpej #include <sys/conf.h>
     48       1.1   thorpej #include <sys/event.h>
     49       1.1   thorpej 
     50       1.1   thorpej #include <dev/clock_subr.h>
     51       1.1   thorpej 
     52       1.1   thorpej #include <dev/i2c/i2cvar.h>
     53       1.1   thorpej #include <dev/i2c/ds1307reg.h>
     54      1.19  macallan #include <dev/sysmon/sysmonvar.h>
     55       1.1   thorpej 
     56      1.25  riastrad #include "ioconf.h"
     57      1.25  riastrad 
     58      1.15      matt struct dsrtc_model {
     59  1.25.2.1  pgoyette 	const i2c_addr_t *dm_valid_addrs;
     60      1.15      matt 	uint16_t dm_model;
     61      1.15      matt 	uint8_t dm_ch_reg;
     62      1.15      matt 	uint8_t dm_ch_value;
     63      1.24   aymeric 	uint8_t dm_vbaten_reg;
     64      1.24   aymeric 	uint8_t dm_vbaten_value;
     65      1.15      matt 	uint8_t dm_rtc_start;
     66      1.15      matt 	uint8_t dm_rtc_size;
     67      1.15      matt 	uint8_t dm_nvram_start;
     68      1.15      matt 	uint8_t dm_nvram_size;
     69      1.15      matt 	uint8_t dm_flags;
     70      1.24   aymeric #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     71      1.24   aymeric #define	DSRTC_FLAG_BCD			0x02
     72      1.24   aymeric #define	DSRTC_FLAG_TEMP			0x04
     73      1.24   aymeric #define DSRTC_FLAG_VBATEN		0x08
     74      1.24   aymeric #define	DSRTC_FLAG_YEAR_START_2K	0x10
     75      1.24   aymeric #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     76      1.15      matt };
     77      1.15      matt 
     78  1.25.2.1  pgoyette static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     79  1.25.2.1  pgoyette static const struct dsrtc_model ds1307_model = {
     80  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
     81  1.25.2.1  pgoyette 	.dm_model = 1307,
     82  1.25.2.1  pgoyette 	.dm_ch_reg = DSXXXX_SECONDS,
     83  1.25.2.1  pgoyette 	.dm_ch_value = DS1307_SECONDS_CH,
     84  1.25.2.1  pgoyette 	.dm_rtc_start = DS1307_RTC_START,
     85  1.25.2.1  pgoyette 	.dm_rtc_size = DS1307_RTC_SIZE,
     86  1.25.2.1  pgoyette 	.dm_nvram_start = DS1307_NVRAM_START,
     87  1.25.2.1  pgoyette 	.dm_nvram_size = DS1307_NVRAM_SIZE,
     88  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     89  1.25.2.1  pgoyette };
     90  1.25.2.1  pgoyette 
     91  1.25.2.1  pgoyette static const struct dsrtc_model ds1339_model = {
     92  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
     93  1.25.2.1  pgoyette 	.dm_model = 1339,
     94  1.25.2.1  pgoyette 	.dm_rtc_start = DS1339_RTC_START,
     95  1.25.2.1  pgoyette 	.dm_rtc_size = DS1339_RTC_SIZE,
     96  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD,
     97  1.25.2.1  pgoyette };
     98  1.25.2.1  pgoyette 
     99  1.25.2.1  pgoyette static const struct dsrtc_model ds1340_model = {
    100  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
    101  1.25.2.1  pgoyette 	.dm_model = 1340,
    102  1.25.2.1  pgoyette 	.dm_ch_reg = DSXXXX_SECONDS,
    103  1.25.2.1  pgoyette 	.dm_ch_value = DS1340_SECONDS_EOSC,
    104  1.25.2.1  pgoyette 	.dm_rtc_start = DS1340_RTC_START,
    105  1.25.2.1  pgoyette 	.dm_rtc_size = DS1340_RTC_SIZE,
    106  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD,
    107  1.25.2.1  pgoyette };
    108  1.25.2.1  pgoyette 
    109  1.25.2.1  pgoyette static const struct dsrtc_model ds1672_model = {
    110  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
    111  1.25.2.1  pgoyette 	.dm_model = 1672,
    112  1.25.2.1  pgoyette 	.dm_rtc_start = DS1672_RTC_START,
    113  1.25.2.1  pgoyette 	.dm_rtc_size = DS1672_RTC_SIZE,
    114  1.25.2.1  pgoyette 	.dm_ch_reg = DS1672_CONTROL,
    115  1.25.2.1  pgoyette 	.dm_ch_value = DS1672_CONTROL_CH,
    116  1.25.2.1  pgoyette 	.dm_flags = 0,
    117  1.25.2.1  pgoyette };
    118  1.25.2.1  pgoyette 
    119  1.25.2.1  pgoyette static const struct dsrtc_model ds3231_model = {
    120  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
    121  1.25.2.1  pgoyette 	.dm_model = 3231,
    122  1.25.2.1  pgoyette 	.dm_rtc_start = DS3232_RTC_START,
    123  1.25.2.1  pgoyette 	.dm_rtc_size = DS3232_RTC_SIZE,
    124  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    125  1.25.2.1  pgoyette };
    126  1.25.2.1  pgoyette 
    127  1.25.2.1  pgoyette static const struct dsrtc_model ds3232_model = {
    128  1.25.2.1  pgoyette 	.dm_valid_addrs = ds1307_valid_addrs,
    129  1.25.2.1  pgoyette 	.dm_model = 3232,
    130  1.25.2.1  pgoyette 	.dm_rtc_start = DS3232_RTC_START,
    131  1.25.2.1  pgoyette 	.dm_rtc_size = DS3232_RTC_SIZE,
    132  1.25.2.1  pgoyette 	.dm_nvram_start = DS3232_NVRAM_START,
    133  1.25.2.1  pgoyette 	.dm_nvram_size = DS3232_NVRAM_SIZE,
    134  1.25.2.1  pgoyette 	/*
    135  1.25.2.1  pgoyette 	 * XXX
    136  1.25.2.1  pgoyette 	 * the DS3232 likely has the temperature sensor too but I can't
    137  1.25.2.1  pgoyette 	 * easily verify or test that right now
    138  1.25.2.1  pgoyette 	 */
    139  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD,
    140  1.25.2.1  pgoyette };
    141  1.25.2.1  pgoyette 
    142  1.25.2.1  pgoyette static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
    143  1.25.2.1  pgoyette static const struct dsrtc_model mcp7940_model = {
    144  1.25.2.1  pgoyette 	.dm_valid_addrs = mcp7940_valid_addrs,
    145  1.25.2.1  pgoyette 	.dm_model = 7940,
    146  1.25.2.1  pgoyette 	.dm_rtc_start = DS1307_RTC_START,
    147  1.25.2.1  pgoyette 	.dm_rtc_size = DS1307_RTC_SIZE,
    148  1.25.2.1  pgoyette 	.dm_ch_reg = DSXXXX_SECONDS,
    149  1.25.2.1  pgoyette 	.dm_ch_value = DS1307_SECONDS_CH,
    150  1.25.2.1  pgoyette 	.dm_vbaten_reg = DSXXXX_DAY,
    151  1.25.2.1  pgoyette 	.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    152  1.25.2.1  pgoyette 	.dm_nvram_start = MCP7940_NVRAM_START,
    153  1.25.2.1  pgoyette 	.dm_nvram_size = MCP7940_NVRAM_SIZE,
    154  1.25.2.1  pgoyette 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    155  1.25.2.1  pgoyette 		DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    156  1.25.2.1  pgoyette };
    157  1.25.2.1  pgoyette 
    158  1.25.2.2  pgoyette static const struct device_compatible_entry compat_data[] = {
    159  1.25.2.2  pgoyette 	{ "dallas,ds1307",		(uintptr_t)&ds1307_model },
    160  1.25.2.2  pgoyette 	{ "maxim,ds1307",		(uintptr_t)&ds1307_model },
    161  1.25.2.2  pgoyette 
    162  1.25.2.2  pgoyette 	{ "dallas,ds1339",		(uintptr_t)&ds1339_model },
    163  1.25.2.2  pgoyette 	{ "maxim,ds1339",		(uintptr_t)&ds1339_model },
    164  1.25.2.2  pgoyette 
    165  1.25.2.2  pgoyette 	{ "dallas,ds1340",		(uintptr_t)&ds1340_model },
    166  1.25.2.2  pgoyette 	{ "maxim,ds1340",		(uintptr_t)&ds1340_model },
    167  1.25.2.2  pgoyette 
    168  1.25.2.2  pgoyette 	{ "dallas,ds1672",		(uintptr_t)&ds1672_model },
    169  1.25.2.2  pgoyette 	{ "maxim,ds1672",		(uintptr_t)&ds1672_model },
    170  1.25.2.2  pgoyette 
    171  1.25.2.2  pgoyette 	{ "dallas,ds3231",		(uintptr_t)&ds3231_model },
    172  1.25.2.2  pgoyette 	{ "maxim,ds3231",		(uintptr_t)&ds3231_model },
    173  1.25.2.2  pgoyette 
    174  1.25.2.2  pgoyette 	{ "dallas,ds3232",		(uintptr_t)&ds3232_model },
    175  1.25.2.2  pgoyette 	{ "maxim,ds3232",		(uintptr_t)&ds3232_model },
    176  1.25.2.2  pgoyette 
    177  1.25.2.2  pgoyette 	{ "microchip,mcp7940",		(uintptr_t)&mcp7940_model },
    178  1.25.2.2  pgoyette 
    179  1.25.2.2  pgoyette 	{ NULL,				0 }
    180      1.15      matt };
    181      1.15      matt 
    182       1.1   thorpej struct dsrtc_softc {
    183      1.11   xtraeme 	device_t sc_dev;
    184       1.1   thorpej 	i2c_tag_t sc_tag;
    185      1.15      matt 	uint8_t sc_address;
    186      1.15      matt 	bool sc_open;
    187      1.15      matt 	struct dsrtc_model sc_model;
    188       1.1   thorpej 	struct todr_chip_handle sc_todr;
    189      1.19  macallan 	struct sysmon_envsys *sc_sme;
    190      1.19  macallan 	envsys_data_t sc_sensor;
    191       1.1   thorpej };
    192       1.1   thorpej 
    193      1.11   xtraeme static void	dsrtc_attach(device_t, device_t, void *);
    194      1.11   xtraeme static int	dsrtc_match(device_t, cfdata_t, void *);
    195       1.1   thorpej 
    196      1.11   xtraeme CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    197       1.1   thorpej     dsrtc_match, dsrtc_attach, NULL, NULL);
    198       1.1   thorpej 
    199       1.1   thorpej dev_type_open(dsrtc_open);
    200       1.1   thorpej dev_type_close(dsrtc_close);
    201       1.1   thorpej dev_type_read(dsrtc_read);
    202       1.1   thorpej dev_type_write(dsrtc_write);
    203       1.1   thorpej 
    204       1.1   thorpej const struct cdevsw dsrtc_cdevsw = {
    205      1.17  dholland 	.d_open = dsrtc_open,
    206      1.17  dholland 	.d_close = dsrtc_close,
    207      1.17  dholland 	.d_read = dsrtc_read,
    208      1.17  dholland 	.d_write = dsrtc_write,
    209      1.17  dholland 	.d_ioctl = noioctl,
    210      1.17  dholland 	.d_stop = nostop,
    211      1.17  dholland 	.d_tty = notty,
    212      1.17  dholland 	.d_poll = nopoll,
    213      1.17  dholland 	.d_mmap = nommap,
    214      1.17  dholland 	.d_kqfilter = nokqfilter,
    215      1.18  dholland 	.d_discard = nodiscard,
    216      1.17  dholland 	.d_flag = D_OTHER
    217       1.1   thorpej };
    218       1.1   thorpej 
    219      1.15      matt static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    220      1.15      matt static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    221      1.15      matt static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    222      1.15      matt static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    223      1.15      matt 
    224      1.15      matt static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    225      1.15      matt static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    226      1.15      matt static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    227      1.15      matt static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    228      1.15      matt 
    229      1.19  macallan static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    230      1.19  macallan static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    231      1.19  macallan 
    232      1.15      matt static const struct dsrtc_model *
    233  1.25.2.1  pgoyette dsrtc_model_by_number(u_int model)
    234      1.15      matt {
    235  1.25.2.1  pgoyette 	const struct device_compatible_entry *dce;
    236  1.25.2.1  pgoyette 	const struct dsrtc_model *dm;
    237  1.25.2.1  pgoyette 
    238  1.25.2.1  pgoyette 	/* no model given, assume it's a DS1307 */
    239      1.15      matt 	if (model == 0)
    240  1.25.2.1  pgoyette 		return &ds1307_model;
    241      1.15      matt 
    242  1.25.2.2  pgoyette 	for (dce = compat_data; dce->compat != NULL; dce++) {
    243  1.25.2.2  pgoyette 		dm = (void *)dce->data;
    244      1.15      matt 		if (dm->dm_model == model)
    245      1.15      matt 			return dm;
    246      1.15      matt 	}
    247      1.15      matt 	return NULL;
    248      1.15      matt }
    249       1.1   thorpej 
    250  1.25.2.1  pgoyette static const struct dsrtc_model *
    251  1.25.2.1  pgoyette dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    252  1.25.2.1  pgoyette {
    253  1.25.2.1  pgoyette 	const struct dsrtc_model *dm = NULL;
    254  1.25.2.1  pgoyette 	const struct device_compatible_entry *dce;
    255  1.25.2.1  pgoyette 
    256  1.25.2.2  pgoyette 	if (iic_compatible_match(ia, compat_data, &dce))
    257  1.25.2.2  pgoyette 		dm = (void *)dce->data;
    258  1.25.2.1  pgoyette 
    259  1.25.2.1  pgoyette 	return dm;
    260  1.25.2.1  pgoyette }
    261  1.25.2.1  pgoyette 
    262  1.25.2.1  pgoyette static bool
    263  1.25.2.1  pgoyette dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    264  1.25.2.1  pgoyette {
    265  1.25.2.1  pgoyette 
    266  1.25.2.1  pgoyette 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    267  1.25.2.1  pgoyette 		if (addr == dm->dm_valid_addrs[i])
    268  1.25.2.1  pgoyette 			return true;
    269  1.25.2.1  pgoyette 	}
    270  1.25.2.1  pgoyette 	return false;
    271  1.25.2.1  pgoyette }
    272  1.25.2.1  pgoyette 
    273       1.1   thorpej static int
    274      1.11   xtraeme dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    275       1.1   thorpej {
    276       1.1   thorpej 	struct i2c_attach_args *ia = arg;
    277  1.25.2.1  pgoyette 	const struct dsrtc_model *dm;
    278  1.25.2.1  pgoyette 	int match_result;
    279  1.25.2.1  pgoyette 
    280  1.25.2.2  pgoyette 	if (iic_use_direct_match(ia, cf, compat_data, &match_result))
    281  1.25.2.1  pgoyette 		return match_result;
    282  1.25.2.1  pgoyette 
    283  1.25.2.1  pgoyette 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    284  1.25.2.1  pgoyette 	if (dm == NULL)
    285  1.25.2.1  pgoyette 		return 0;
    286  1.25.2.1  pgoyette 
    287  1.25.2.1  pgoyette 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    288  1.25.2.1  pgoyette 		return I2C_MATCH_ADDRESS_ONLY;
    289       1.1   thorpej 
    290      1.13       phx 	return 0;
    291       1.1   thorpej }
    292       1.1   thorpej 
    293       1.1   thorpej static void
    294      1.11   xtraeme dsrtc_attach(device_t parent, device_t self, void *arg)
    295       1.1   thorpej {
    296       1.5   thorpej 	struct dsrtc_softc *sc = device_private(self);
    297       1.1   thorpej 	struct i2c_attach_args *ia = arg;
    298  1.25.2.1  pgoyette 	const struct dsrtc_model *dm;
    299  1.25.2.1  pgoyette 
    300  1.25.2.1  pgoyette 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    301  1.25.2.1  pgoyette 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    302  1.25.2.1  pgoyette 
    303  1.25.2.1  pgoyette 	if (dm == NULL) {
    304  1.25.2.1  pgoyette 		aprint_error(": unable to determine model!\n");
    305  1.25.2.1  pgoyette 		return;
    306  1.25.2.1  pgoyette 	}
    307       1.1   thorpej 
    308      1.15      matt 	aprint_naive(": Real-time Clock%s\n",
    309      1.15      matt 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    310      1.15      matt 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    311      1.15      matt 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    312       1.1   thorpej 
    313       1.1   thorpej 	sc->sc_tag = ia->ia_tag;
    314       1.1   thorpej 	sc->sc_address = ia->ia_addr;
    315      1.15      matt 	sc->sc_model = *dm;
    316      1.11   xtraeme 	sc->sc_dev = self;
    317       1.1   thorpej 	sc->sc_open = 0;
    318       1.1   thorpej 	sc->sc_todr.cookie = sc;
    319      1.15      matt 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    320      1.15      matt 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    321      1.15      matt 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    322      1.15      matt 	} else {
    323      1.15      matt 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    324      1.15      matt 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    325      1.15      matt 	}
    326       1.1   thorpej 	sc->sc_todr.todr_setwen = NULL;
    327       1.1   thorpej 
    328       1.1   thorpej 	todr_attach(&sc->sc_todr);
    329      1.19  macallan 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    330      1.19  macallan 		int error;
    331      1.19  macallan 
    332      1.19  macallan 		sc->sc_sme = sysmon_envsys_create();
    333      1.19  macallan 		sc->sc_sme->sme_name = device_xname(self);
    334      1.19  macallan 		sc->sc_sme->sme_cookie = sc;
    335      1.19  macallan 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    336      1.19  macallan 
    337      1.19  macallan 		sc->sc_sensor.units =  ENVSYS_STEMP;
    338      1.19  macallan 		sc->sc_sensor.state = ENVSYS_SINVALID;
    339      1.19  macallan 		sc->sc_sensor.flags = 0;
    340      1.19  macallan 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    341      1.19  macallan 		    sizeof(sc->sc_sensor.desc));
    342      1.19  macallan 
    343      1.19  macallan 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    344      1.19  macallan 			aprint_error_dev(self, "unable to attach sensor\n");
    345      1.19  macallan 			goto bad;
    346      1.19  macallan 		}
    347      1.19  macallan 
    348      1.19  macallan 		error = sysmon_envsys_register(sc->sc_sme);
    349      1.19  macallan 		if (error) {
    350      1.19  macallan 			aprint_error_dev(self,
    351      1.19  macallan 			    "error %d registering with sysmon\n", error);
    352      1.19  macallan 			goto bad;
    353      1.19  macallan 		}
    354      1.19  macallan 	}
    355      1.19  macallan 	return;
    356      1.19  macallan bad:
    357      1.19  macallan 	sysmon_envsys_destroy(sc->sc_sme);
    358       1.1   thorpej }
    359       1.1   thorpej 
    360       1.1   thorpej /*ARGSUSED*/
    361       1.1   thorpej int
    362       1.4       abs dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    363       1.1   thorpej {
    364       1.1   thorpej 	struct dsrtc_softc *sc;
    365       1.1   thorpej 
    366      1.12   tsutsui 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    367      1.14       phx 		return ENXIO;
    368       1.1   thorpej 
    369       1.1   thorpej 	/* XXX: Locking */
    370       1.1   thorpej 	if (sc->sc_open)
    371      1.14       phx 		return EBUSY;
    372       1.1   thorpej 
    373      1.15      matt 	sc->sc_open = true;
    374      1.14       phx 	return 0;
    375       1.1   thorpej }
    376       1.1   thorpej 
    377       1.1   thorpej /*ARGSUSED*/
    378       1.1   thorpej int
    379       1.4       abs dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    380       1.1   thorpej {
    381       1.1   thorpej 	struct dsrtc_softc *sc;
    382       1.1   thorpej 
    383      1.12   tsutsui 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    384      1.14       phx 		return ENXIO;
    385       1.1   thorpej 
    386      1.15      matt 	sc->sc_open = false;
    387      1.14       phx 	return 0;
    388       1.1   thorpej }
    389       1.1   thorpej 
    390       1.1   thorpej /*ARGSUSED*/
    391       1.1   thorpej int
    392       1.1   thorpej dsrtc_read(dev_t dev, struct uio *uio, int flags)
    393       1.1   thorpej {
    394       1.1   thorpej 	struct dsrtc_softc *sc;
    395      1.15      matt 	int error;
    396       1.1   thorpej 
    397      1.12   tsutsui 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    398      1.14       phx 		return ENXIO;
    399       1.1   thorpej 
    400      1.15      matt 	const struct dsrtc_model * const dm = &sc->sc_model;
    401      1.15      matt 	if (uio->uio_offset >= dm->dm_nvram_size)
    402      1.14       phx 		return EINVAL;
    403       1.1   thorpej 
    404       1.1   thorpej 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    405      1.14       phx 		return error;
    406       1.1   thorpej 
    407      1.15      matt 	KASSERT(uio->uio_offset >= 0);
    408      1.15      matt 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    409      1.15      matt 		uint8_t ch, cmd;
    410      1.15      matt 		const u_int a = uio->uio_offset;
    411      1.15      matt 		cmd = a + dm->dm_nvram_start;
    412      1.15      matt 		if ((error = iic_exec(sc->sc_tag,
    413      1.15      matt 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    414      1.15      matt 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    415       1.1   thorpej 			iic_release_bus(sc->sc_tag, 0);
    416      1.11   xtraeme 			aprint_error_dev(sc->sc_dev,
    417      1.16      matt 			    "%s: read failed at 0x%x: %d\n",
    418      1.16      matt 			    __func__, a, error);
    419      1.14       phx 			return error;
    420       1.1   thorpej 		}
    421       1.1   thorpej 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    422       1.1   thorpej 			iic_release_bus(sc->sc_tag, 0);
    423      1.14       phx 			return error;
    424       1.1   thorpej 		}
    425       1.1   thorpej 	}
    426       1.1   thorpej 
    427       1.1   thorpej 	iic_release_bus(sc->sc_tag, 0);
    428       1.1   thorpej 
    429      1.14       phx 	return 0;
    430       1.1   thorpej }
    431       1.1   thorpej 
    432       1.1   thorpej /*ARGSUSED*/
    433       1.1   thorpej int
    434       1.1   thorpej dsrtc_write(dev_t dev, struct uio *uio, int flags)
    435       1.1   thorpej {
    436       1.1   thorpej 	struct dsrtc_softc *sc;
    437      1.15      matt 	int error;
    438       1.1   thorpej 
    439      1.12   tsutsui 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    440      1.14       phx 		return ENXIO;
    441       1.1   thorpej 
    442      1.15      matt 	const struct dsrtc_model * const dm = &sc->sc_model;
    443      1.15      matt 	if (uio->uio_offset >= dm->dm_nvram_size)
    444      1.14       phx 		return EINVAL;
    445       1.1   thorpej 
    446       1.1   thorpej 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    447      1.14       phx 		return error;
    448       1.1   thorpej 
    449      1.15      matt 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    450      1.15      matt 		uint8_t cmdbuf[2];
    451      1.15      matt 		const u_int a = (int)uio->uio_offset;
    452      1.15      matt 		cmdbuf[0] = a + dm->dm_nvram_start;
    453       1.1   thorpej 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    454       1.1   thorpej 			break;
    455       1.1   thorpej 
    456       1.1   thorpej 		if ((error = iic_exec(sc->sc_tag,
    457       1.1   thorpej 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    458       1.1   thorpej 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    459      1.11   xtraeme 			aprint_error_dev(sc->sc_dev,
    460      1.16      matt 			    "%s: write failed at 0x%x: %d\n",
    461      1.16      matt 			    __func__, a, error);
    462       1.1   thorpej 			break;
    463       1.1   thorpej 		}
    464       1.1   thorpej 	}
    465       1.1   thorpej 
    466       1.1   thorpej 	iic_release_bus(sc->sc_tag, 0);
    467       1.1   thorpej 
    468      1.14       phx 	return error;
    469       1.1   thorpej }
    470       1.1   thorpej 
    471       1.1   thorpej static int
    472      1.15      matt dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    473       1.1   thorpej {
    474       1.1   thorpej 	struct dsrtc_softc *sc = ch->cookie;
    475       1.7   gdamore 	struct clock_ymdhms check;
    476       1.1   thorpej 	int retries;
    477       1.1   thorpej 
    478       1.7   gdamore 	memset(dt, 0, sizeof(*dt));
    479       1.1   thorpej 	memset(&check, 0, sizeof(check));
    480       1.1   thorpej 
    481       1.1   thorpej 	/*
    482       1.1   thorpej 	 * Since we don't support Burst Read, we have to read the clock twice
    483       1.1   thorpej 	 * until we get two consecutive identical results.
    484       1.1   thorpej 	 */
    485       1.1   thorpej 	retries = 5;
    486       1.1   thorpej 	do {
    487      1.15      matt 		dsrtc_clock_read_ymdhms(sc, dt);
    488      1.15      matt 		dsrtc_clock_read_ymdhms(sc, &check);
    489       1.7   gdamore 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    490       1.1   thorpej 
    491      1.14       phx 	return 0;
    492       1.1   thorpej }
    493       1.1   thorpej 
    494       1.1   thorpej static int
    495      1.15      matt dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    496       1.1   thorpej {
    497       1.1   thorpej 	struct dsrtc_softc *sc = ch->cookie;
    498       1.1   thorpej 
    499      1.15      matt 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    500      1.14       phx 		return -1;
    501       1.1   thorpej 
    502      1.14       phx 	return 0;
    503       1.1   thorpej }
    504       1.1   thorpej 
    505       1.1   thorpej static int
    506      1.15      matt dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    507       1.1   thorpej {
    508      1.15      matt 	struct dsrtc_model * const dm = &sc->sc_model;
    509      1.15      matt 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    510      1.16      matt 	int error;
    511      1.15      matt 
    512      1.15      matt 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    513       1.1   thorpej 
    514      1.16      matt 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    515      1.11   xtraeme 		aprint_error_dev(sc->sc_dev,
    516      1.16      matt 		    "%s: failed to acquire I2C bus: %d\n",
    517      1.16      matt 		    __func__, error);
    518      1.14       phx 		return 0;
    519       1.1   thorpej 	}
    520       1.1   thorpej 
    521       1.1   thorpej 	/* Read each RTC register in order. */
    522      1.16      matt 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    523      1.15      matt 		cmdbuf[0] = dm->dm_rtc_start + i;
    524       1.1   thorpej 
    525      1.16      matt 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    526      1.16      matt 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
    527       1.1   thorpej 	}
    528       1.1   thorpej 
    529       1.1   thorpej 	/* Done with I2C */
    530       1.1   thorpej 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    531       1.1   thorpej 
    532      1.16      matt 	if (error != 0) {
    533      1.16      matt 		aprint_error_dev(sc->sc_dev,
    534      1.16      matt 		    "%s: failed to read rtc at 0x%x: %d\n",
    535      1.16      matt 		    __func__, cmdbuf[0], error);
    536      1.16      matt 		return 0;
    537      1.16      matt 	}
    538      1.16      matt 
    539       1.1   thorpej 	/*
    540      1.15      matt 	 * Convert the RTC's register values into something useable
    541       1.1   thorpej 	 */
    542      1.21  christos 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    543      1.21  christos 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    544       1.1   thorpej 
    545      1.15      matt 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    546      1.21  christos 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    547      1.15      matt 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    548      1.15      matt 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    549       1.1   thorpej 			dt->dt_hour += 12;
    550      1.14       phx 	} else
    551      1.21  christos 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    552      1.15      matt 		    DSXXXX_HOURS_24MASK);
    553       1.1   thorpej 
    554      1.21  christos 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    555      1.21  christos 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    556       1.1   thorpej 
    557       1.1   thorpej 	/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
    558      1.24   aymeric 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
    559      1.24   aymeric 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
    560      1.24   aymeric 	else {
    561      1.24   aymeric 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
    562      1.24   aymeric 		if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
    563      1.24   aymeric 			dt->dt_year += 100;
    564      1.24   aymeric 	}
    565       1.1   thorpej 
    566      1.14       phx 	return 1;
    567       1.1   thorpej }
    568       1.1   thorpej 
    569       1.1   thorpej static int
    570      1.15      matt dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    571       1.1   thorpej {
    572      1.15      matt 	struct dsrtc_model * const dm = &sc->sc_model;
    573      1.15      matt 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    574      1.16      matt 	int error;
    575      1.15      matt 
    576      1.15      matt 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    577       1.1   thorpej 
    578       1.1   thorpej 	/*
    579      1.15      matt 	 * Convert our time representation into something the DSXXXX
    580       1.1   thorpej 	 * can understand.
    581       1.1   thorpej 	 */
    582      1.21  christos 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    583      1.21  christos 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    584      1.21  christos 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    585      1.21  christos 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    586      1.21  christos 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    587      1.21  christos 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    588      1.21  christos 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
    589      1.15      matt 	if (dt->dt_year - POSIX_BASE_YEAR >= 100)
    590      1.15      matt 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    591       1.1   thorpej 
    592      1.16      matt 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    593      1.11   xtraeme 		aprint_error_dev(sc->sc_dev,
    594      1.16      matt 		    "%s: failed to acquire I2C bus: %d\n",
    595      1.16      matt 		    __func__, error);
    596      1.14       phx 		return 0;
    597       1.1   thorpej 	}
    598       1.1   thorpej 
    599       1.1   thorpej 	/* Stop the clock */
    600      1.15      matt 	cmdbuf[0] = dm->dm_ch_reg;
    601      1.15      matt 
    602      1.16      matt 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    603      1.16      matt 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    604      1.15      matt 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    605      1.15      matt 		aprint_error_dev(sc->sc_dev,
    606      1.16      matt 		    "%s: failed to read Hold Clock: %d\n",
    607      1.16      matt 		    __func__, error);
    608      1.15      matt 		return 0;
    609      1.15      matt 	}
    610      1.15      matt 
    611      1.24   aymeric 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    612      1.24   aymeric 		cmdbuf[1] &= ~dm->dm_ch_value;
    613      1.24   aymeric 	else
    614      1.24   aymeric 		cmdbuf[1] |= dm->dm_ch_value;
    615       1.1   thorpej 
    616      1.16      matt 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    617      1.16      matt 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    618       1.1   thorpej 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    619      1.11   xtraeme 		aprint_error_dev(sc->sc_dev,
    620      1.16      matt 		    "%s: failed to write Hold Clock: %d\n",
    621      1.16      matt 		    __func__, error);
    622      1.14       phx 		return 0;
    623       1.1   thorpej 	}
    624       1.1   thorpej 
    625       1.1   thorpej 	/*
    626       1.1   thorpej 	 * Write registers in reverse order. The last write (to the Seconds
    627       1.1   thorpej 	 * register) will undo the Clock Hold, above.
    628       1.1   thorpej 	 */
    629      1.15      matt 	uint8_t op = I2C_OP_WRITE;
    630      1.15      matt 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    631      1.15      matt 		cmdbuf[0] = dm->dm_rtc_start + i;
    632      1.24   aymeric 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    633      1.24   aymeric 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    634      1.24   aymeric 			bcd[i] |= dm->dm_vbaten_value;
    635      1.15      matt 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    636      1.15      matt 			op = I2C_OP_WRITE_WITH_STOP;
    637      1.24   aymeric 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    638      1.24   aymeric 				bcd[i] |= dm->dm_ch_value;
    639      1.15      matt 		}
    640      1.16      matt 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    641      1.16      matt 		    cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
    642       1.1   thorpej 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    643      1.11   xtraeme 			aprint_error_dev(sc->sc_dev,
    644      1.16      matt 			    "%s: failed to write rtc at 0x%x: %d\n",
    645      1.16      matt 			    __func__, i, error);
    646       1.1   thorpej 			/* XXX: Clock Hold is likely still asserted! */
    647      1.14       phx 			return 0;
    648       1.1   thorpej 		}
    649       1.1   thorpej 	}
    650      1.15      matt 	/*
    651      1.15      matt 	 * If the clock hold register isn't the same register as seconds,
    652      1.15      matt 	 * we need to reeanble the clock.
    653      1.15      matt 	 */
    654      1.15      matt 	if (op != I2C_OP_WRITE_WITH_STOP) {
    655      1.15      matt 		cmdbuf[0] = dm->dm_ch_reg;
    656      1.24   aymeric 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    657      1.24   aymeric 			cmdbuf[1] |= dm->dm_ch_value;
    658      1.24   aymeric 		else
    659      1.24   aymeric 			cmdbuf[1] &= ~dm->dm_ch_value;
    660      1.15      matt 
    661      1.16      matt 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    662      1.16      matt 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
    663      1.16      matt 		    I2C_F_POLL)) != 0) {
    664      1.15      matt 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    665      1.15      matt 			aprint_error_dev(sc->sc_dev,
    666      1.16      matt 			    "%s: failed to Hold Clock: %d\n",
    667      1.16      matt 			    __func__, error);
    668      1.15      matt 			return 0;
    669      1.15      matt 		}
    670      1.15      matt 	}
    671       1.1   thorpej 
    672       1.1   thorpej 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    673       1.1   thorpej 
    674      1.14       phx 	return 1;
    675       1.1   thorpej }
    676      1.15      matt 
    677      1.15      matt static int
    678      1.15      matt dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    679      1.15      matt {
    680      1.15      matt 	struct dsrtc_softc *sc = ch->cookie;
    681      1.15      matt 	struct timeval check;
    682      1.15      matt 	int retries;
    683      1.15      matt 
    684      1.15      matt 	memset(tv, 0, sizeof(*tv));
    685      1.15      matt 	memset(&check, 0, sizeof(check));
    686      1.15      matt 
    687      1.15      matt 	/*
    688      1.15      matt 	 * Since we don't support Burst Read, we have to read the clock twice
    689      1.15      matt 	 * until we get two consecutive identical results.
    690      1.15      matt 	 */
    691      1.15      matt 	retries = 5;
    692      1.15      matt 	do {
    693      1.15      matt 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    694      1.15      matt 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    695      1.15      matt 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    696      1.15      matt 
    697      1.15      matt 	return 0;
    698      1.15      matt }
    699      1.15      matt 
    700      1.15      matt static int
    701      1.15      matt dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    702      1.15      matt {
    703      1.15      matt 	struct dsrtc_softc *sc = ch->cookie;
    704      1.15      matt 
    705      1.15      matt 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    706      1.15      matt 		return -1;
    707      1.15      matt 
    708      1.15      matt 	return 0;
    709      1.15      matt }
    710      1.15      matt 
    711      1.15      matt /*
    712      1.15      matt  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    713      1.15      matt  * it, since some I2C controllers don't support anything other than single-byte
    714      1.15      matt  * transfers.
    715      1.15      matt  */
    716      1.15      matt static int
    717      1.15      matt dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    718      1.15      matt {
    719      1.15      matt 	const struct dsrtc_model * const dm = &sc->sc_model;
    720      1.15      matt 	uint8_t buf[4];
    721      1.16      matt 	int error;
    722      1.15      matt 
    723      1.16      matt 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    724      1.16      matt 		aprint_error_dev(sc->sc_dev,
    725      1.16      matt 		    "%s: failed to acquire I2C bus: %d\n",
    726      1.16      matt 		    __func__, error);
    727      1.16      matt 		return 0;
    728      1.15      matt 	}
    729      1.15      matt 
    730      1.15      matt 	/* read all registers: */
    731      1.15      matt 	uint8_t reg = dm->dm_rtc_start;
    732      1.16      matt 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    733      1.16      matt 	     &reg, 1, buf, 4, I2C_F_POLL);
    734      1.15      matt 
    735      1.15      matt 	/* Done with I2C */
    736      1.15      matt 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    737      1.15      matt 
    738      1.16      matt 	if (error != 0) {
    739      1.16      matt 		aprint_error_dev(sc->sc_dev,
    740      1.16      matt 		    "%s: failed to read rtc at 0x%x: %d\n",
    741      1.16      matt 		    __func__, reg, error);
    742      1.16      matt 		return 0;
    743      1.16      matt 	}
    744      1.16      matt 
    745      1.15      matt 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    746      1.15      matt 	*tp = v;
    747      1.15      matt 
    748      1.15      matt 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    749      1.15      matt 	    __func__, v);
    750      1.15      matt 
    751      1.16      matt 	return 1;
    752      1.15      matt }
    753      1.15      matt 
    754      1.15      matt static int
    755      1.15      matt dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    756      1.15      matt {
    757      1.15      matt 	const struct dsrtc_model * const dm = &sc->sc_model;
    758      1.15      matt 	size_t buflen = dm->dm_rtc_size + 2;
    759      1.15      matt 	uint8_t buf[buflen];
    760      1.16      matt 	int error;
    761      1.15      matt 
    762      1.15      matt 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    763      1.15      matt 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    764      1.15      matt 
    765      1.15      matt 	buf[0] = dm->dm_rtc_start;
    766      1.15      matt 	buf[1] = (t >> 0) & 0xff;
    767      1.15      matt 	buf[2] = (t >> 8) & 0xff;
    768      1.15      matt 	buf[3] = (t >> 16) & 0xff;
    769      1.15      matt 	buf[4] = (t >> 24) & 0xff;
    770      1.15      matt 	buf[5] = 0;
    771      1.15      matt 
    772      1.16      matt 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    773      1.16      matt 		aprint_error_dev(sc->sc_dev,
    774      1.16      matt 		    "%s: failed to acquire I2C bus: %d\n",
    775      1.16      matt 		    __func__, error);
    776      1.16      matt 		return 0;
    777      1.15      matt 	}
    778      1.15      matt 
    779      1.16      matt 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    780      1.16      matt 	    &buf, buflen, NULL, 0, I2C_F_POLL);
    781      1.16      matt 
    782      1.16      matt 	/* Done with I2C */
    783      1.16      matt 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    784      1.16      matt 
    785      1.15      matt 	/* send data */
    786      1.16      matt 	if (error != 0) {
    787      1.16      matt 		aprint_error_dev(sc->sc_dev,
    788      1.16      matt 		    "%s: failed to set time: %d\n",
    789      1.16      matt 		    __func__, error);
    790      1.16      matt 		return 0;
    791      1.15      matt 	}
    792      1.15      matt 
    793      1.16      matt 	return 1;
    794      1.15      matt }
    795      1.19  macallan 
    796      1.19  macallan static int
    797      1.19  macallan dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    798      1.19  macallan {
    799      1.19  macallan 	int error, tc;
    800      1.19  macallan 	uint8_t reg = DS3232_TEMP_MSB;
    801      1.19  macallan 	uint8_t buf[2];
    802      1.19  macallan 
    803      1.19  macallan 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    804      1.19  macallan 		return ENOTSUP;
    805      1.19  macallan 
    806      1.19  macallan 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    807      1.19  macallan 		aprint_error_dev(sc->sc_dev,
    808      1.19  macallan 		    "%s: failed to acquire I2C bus: %d\n",
    809      1.19  macallan 		    __func__, error);
    810      1.19  macallan 		return 0;
    811      1.19  macallan 	}
    812      1.19  macallan 
    813      1.19  macallan 	/* read temperature registers: */
    814      1.19  macallan 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    815      1.19  macallan 	     &reg, 1, buf, 2, I2C_F_POLL);
    816      1.19  macallan 
    817      1.19  macallan 	/* Done with I2C */
    818      1.19  macallan 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    819      1.19  macallan 
    820      1.19  macallan 	if (error != 0) {
    821      1.19  macallan 		aprint_error_dev(sc->sc_dev,
    822      1.19  macallan 		    "%s: failed to read temperature: %d\n",
    823      1.19  macallan 		    __func__, error);
    824      1.19  macallan 		return 0;
    825      1.19  macallan 	}
    826      1.19  macallan 
    827      1.19  macallan 	/* convert to microkelvin */
    828      1.19  macallan 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    829      1.19  macallan 	*temp = tc + 273150000;
    830      1.19  macallan 	return 1;
    831      1.19  macallan }
    832      1.19  macallan 
    833      1.19  macallan static void
    834      1.19  macallan dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    835      1.19  macallan {
    836      1.19  macallan 	struct dsrtc_softc *sc = sme->sme_cookie;
    837      1.20    martin 	uint32_t temp = 0;	/* XXX gcc */
    838      1.19  macallan 
    839      1.19  macallan 	if (dsrtc_read_temp(sc, &temp) == 0) {
    840      1.19  macallan 		edata->state = ENVSYS_SINVALID;
    841      1.19  macallan 		return;
    842      1.19  macallan 	}
    843      1.19  macallan 
    844      1.19  macallan 	edata->value_cur = temp;
    845      1.19  macallan 
    846      1.19  macallan 	edata->state = ENVSYS_SVALID;
    847      1.19  macallan }
    848