ds1307.c revision 1.16 1 /* $NetBSD: ds1307.c,v 1.16 2012/07/25 03:07:37 matt Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.16 2012/07/25 03:07:37 matt Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54
55 struct dsrtc_model {
56 uint16_t dm_model;
57 uint8_t dm_ch_reg;
58 uint8_t dm_ch_value;
59 uint8_t dm_rtc_start;
60 uint8_t dm_rtc_size;
61 uint8_t dm_nvram_start;
62 uint8_t dm_nvram_size;
63 uint8_t dm_flags;
64 #define DSRTC_FLAG_CLOCK_HOLD 1
65 #define DSRTC_FLAG_BCD 2
66 };
67
68 static const struct dsrtc_model dsrtc_models[] = {
69 {
70 .dm_model = 1307,
71 .dm_ch_reg = DSXXXX_SECONDS,
72 .dm_ch_value = DS1307_SECONDS_CH,
73 .dm_rtc_start = DS1307_RTC_START,
74 .dm_rtc_size = DS1307_RTC_SIZE,
75 .dm_nvram_start = DS1307_NVRAM_START,
76 .dm_nvram_size = DS1307_NVRAM_SIZE,
77 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
78 }, {
79 .dm_model = 1339,
80 .dm_rtc_start = DS1339_RTC_START,
81 .dm_rtc_size = DS1339_RTC_SIZE,
82 .dm_flags = DSRTC_FLAG_BCD,
83 }, {
84 .dm_model = 1672,
85 .dm_rtc_start = DS1672_RTC_START,
86 .dm_rtc_size = DS1672_RTC_SIZE,
87 .dm_flags = 0,
88 }, {
89 .dm_model = 3232,
90 .dm_rtc_start = DS3232_RTC_START,
91 .dm_rtc_size = DS3232_RTC_SIZE,
92 .dm_nvram_start = DS3232_NVRAM_START,
93 .dm_nvram_size = DS3232_NVRAM_SIZE,
94 .dm_flags = DSRTC_FLAG_BCD,
95 },
96 };
97
98 struct dsrtc_softc {
99 device_t sc_dev;
100 i2c_tag_t sc_tag;
101 uint8_t sc_address;
102 bool sc_open;
103 struct dsrtc_model sc_model;
104 struct todr_chip_handle sc_todr;
105 };
106
107 static void dsrtc_attach(device_t, device_t, void *);
108 static int dsrtc_match(device_t, cfdata_t, void *);
109
110 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
111 dsrtc_match, dsrtc_attach, NULL, NULL);
112 extern struct cfdriver dsrtc_cd;
113
114 dev_type_open(dsrtc_open);
115 dev_type_close(dsrtc_close);
116 dev_type_read(dsrtc_read);
117 dev_type_write(dsrtc_write);
118
119 const struct cdevsw dsrtc_cdevsw = {
120 dsrtc_open, dsrtc_close, dsrtc_read, dsrtc_write, noioctl,
121 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
122 };
123
124 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
125 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
126 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
127 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
128
129 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
130 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
131 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
132 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
133
134 static const struct dsrtc_model *
135 dsrtc_model(u_int model)
136 {
137 /* no model given, assume it's a DS1307 (the first one) */
138 if (model == 0)
139 return &dsrtc_models[0];
140
141 for (const struct dsrtc_model *dm = dsrtc_models;
142 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
143 if (dm->dm_model == model)
144 return dm;
145 }
146 return NULL;
147 }
148
149 static int
150 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
151 {
152 struct i2c_attach_args *ia = arg;
153
154 if (ia->ia_name) {
155 /* direct config - check name */
156 if (strcmp(ia->ia_name, "dsrtc") == 0)
157 return 1;
158 } else {
159 /* indirect config - check typical address */
160 if (ia->ia_addr == DS1307_ADDR)
161 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
162 }
163 return 0;
164 }
165
166 static void
167 dsrtc_attach(device_t parent, device_t self, void *arg)
168 {
169 struct dsrtc_softc *sc = device_private(self);
170 struct i2c_attach_args *ia = arg;
171 const struct dsrtc_model * const dm =
172 dsrtc_model(device_cfdata(self)->cf_flags);
173
174 aprint_naive(": Real-time Clock%s\n",
175 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
176 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
177 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
178
179 sc->sc_tag = ia->ia_tag;
180 sc->sc_address = ia->ia_addr;
181 sc->sc_model = *dm;
182 sc->sc_dev = self;
183 sc->sc_open = 0;
184 sc->sc_todr.cookie = sc;
185 if (dm->dm_flags & DSRTC_FLAG_BCD) {
186 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
187 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
188 } else {
189 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
190 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
191 }
192 sc->sc_todr.todr_setwen = NULL;
193
194 todr_attach(&sc->sc_todr);
195 }
196
197 /*ARGSUSED*/
198 int
199 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
200 {
201 struct dsrtc_softc *sc;
202
203 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
204 return ENXIO;
205
206 /* XXX: Locking */
207 if (sc->sc_open)
208 return EBUSY;
209
210 sc->sc_open = true;
211 return 0;
212 }
213
214 /*ARGSUSED*/
215 int
216 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
217 {
218 struct dsrtc_softc *sc;
219
220 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
221 return ENXIO;
222
223 sc->sc_open = false;
224 return 0;
225 }
226
227 /*ARGSUSED*/
228 int
229 dsrtc_read(dev_t dev, struct uio *uio, int flags)
230 {
231 struct dsrtc_softc *sc;
232 int error;
233
234 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
235 return ENXIO;
236
237 const struct dsrtc_model * const dm = &sc->sc_model;
238 if (uio->uio_offset >= dm->dm_nvram_size)
239 return EINVAL;
240
241 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
242 return error;
243
244 KASSERT(uio->uio_offset >= 0);
245 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
246 uint8_t ch, cmd;
247 const u_int a = uio->uio_offset;
248 cmd = a + dm->dm_nvram_start;
249 if ((error = iic_exec(sc->sc_tag,
250 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
251 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
252 iic_release_bus(sc->sc_tag, 0);
253 aprint_error_dev(sc->sc_dev,
254 "%s: read failed at 0x%x: %d\n",
255 __func__, a, error);
256 return error;
257 }
258 if ((error = uiomove(&ch, 1, uio)) != 0) {
259 iic_release_bus(sc->sc_tag, 0);
260 return error;
261 }
262 }
263
264 iic_release_bus(sc->sc_tag, 0);
265
266 return 0;
267 }
268
269 /*ARGSUSED*/
270 int
271 dsrtc_write(dev_t dev, struct uio *uio, int flags)
272 {
273 struct dsrtc_softc *sc;
274 int error;
275
276 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
277 return ENXIO;
278
279 const struct dsrtc_model * const dm = &sc->sc_model;
280 if (uio->uio_offset >= dm->dm_nvram_size)
281 return EINVAL;
282
283 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
284 return error;
285
286 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
287 uint8_t cmdbuf[2];
288 const u_int a = (int)uio->uio_offset;
289 cmdbuf[0] = a + dm->dm_nvram_start;
290 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
291 break;
292
293 if ((error = iic_exec(sc->sc_tag,
294 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
295 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
296 aprint_error_dev(sc->sc_dev,
297 "%s: write failed at 0x%x: %d\n",
298 __func__, a, error);
299 break;
300 }
301 }
302
303 iic_release_bus(sc->sc_tag, 0);
304
305 return error;
306 }
307
308 static int
309 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
310 {
311 struct dsrtc_softc *sc = ch->cookie;
312 struct clock_ymdhms check;
313 int retries;
314
315 memset(dt, 0, sizeof(*dt));
316 memset(&check, 0, sizeof(check));
317
318 /*
319 * Since we don't support Burst Read, we have to read the clock twice
320 * until we get two consecutive identical results.
321 */
322 retries = 5;
323 do {
324 dsrtc_clock_read_ymdhms(sc, dt);
325 dsrtc_clock_read_ymdhms(sc, &check);
326 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
327
328 return 0;
329 }
330
331 static int
332 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
333 {
334 struct dsrtc_softc *sc = ch->cookie;
335
336 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
337 return -1;
338
339 return 0;
340 }
341
342 static int
343 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
344 {
345 struct dsrtc_model * const dm = &sc->sc_model;
346 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
347 int error;
348
349 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
350
351 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
352 aprint_error_dev(sc->sc_dev,
353 "%s: failed to acquire I2C bus: %d\n",
354 __func__, error);
355 return 0;
356 }
357
358 /* Read each RTC register in order. */
359 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
360 cmdbuf[0] = dm->dm_rtc_start + i;
361
362 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
363 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
364 }
365
366 /* Done with I2C */
367 iic_release_bus(sc->sc_tag, I2C_F_POLL);
368
369 if (error != 0) {
370 aprint_error_dev(sc->sc_dev,
371 "%s: failed to read rtc at 0x%x: %d\n",
372 __func__, cmdbuf[0], error);
373 return 0;
374 }
375
376 /*
377 * Convert the RTC's register values into something useable
378 */
379 dt->dt_sec = FROMBCD(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
380 dt->dt_min = FROMBCD(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
381
382 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
383 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
384 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
385 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
386 dt->dt_hour += 12;
387 } else
388 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
389 DSXXXX_HOURS_24MASK);
390
391 dt->dt_day = FROMBCD(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
392 dt->dt_mon = FROMBCD(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
393
394 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
395 dt->dt_year = FROMBCD(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
396 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
397 dt->dt_year += 100;
398
399 return 1;
400 }
401
402 static int
403 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
404 {
405 struct dsrtc_model * const dm = &sc->sc_model;
406 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
407 int error;
408
409 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
410
411 /*
412 * Convert our time representation into something the DSXXXX
413 * can understand.
414 */
415 bcd[DSXXXX_SECONDS] = TOBCD(dt->dt_sec);
416 bcd[DSXXXX_MINUTES] = TOBCD(dt->dt_min);
417 bcd[DSXXXX_HOURS] = TOBCD(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
418 bcd[DSXXXX_DATE] = TOBCD(dt->dt_day);
419 bcd[DSXXXX_DAY] = TOBCD(dt->dt_wday);
420 bcd[DSXXXX_MONTH] = TOBCD(dt->dt_mon);
421 bcd[DSXXXX_YEAR] = TOBCD((dt->dt_year - POSIX_BASE_YEAR) % 100);
422 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
423 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
424
425 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
426 aprint_error_dev(sc->sc_dev,
427 "%s: failed to acquire I2C bus: %d\n",
428 __func__, error);
429 return 0;
430 }
431
432 /* Stop the clock */
433 cmdbuf[0] = dm->dm_ch_reg;
434
435 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
436 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
437 iic_release_bus(sc->sc_tag, I2C_F_POLL);
438 aprint_error_dev(sc->sc_dev,
439 "%s: failed to read Hold Clock: %d\n",
440 __func__, error);
441 return 0;
442 }
443
444 cmdbuf[1] |= dm->dm_ch_value;
445
446 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
447 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
448 iic_release_bus(sc->sc_tag, I2C_F_POLL);
449 aprint_error_dev(sc->sc_dev,
450 "%s: failed to write Hold Clock: %d\n",
451 __func__, error);
452 return 0;
453 }
454
455 /*
456 * Write registers in reverse order. The last write (to the Seconds
457 * register) will undo the Clock Hold, above.
458 */
459 uint8_t op = I2C_OP_WRITE;
460 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
461 cmdbuf[0] = dm->dm_rtc_start + i;
462 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
463 op = I2C_OP_WRITE_WITH_STOP;
464 }
465 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
466 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
467 iic_release_bus(sc->sc_tag, I2C_F_POLL);
468 aprint_error_dev(sc->sc_dev,
469 "%s: failed to write rtc at 0x%x: %d\n",
470 __func__, i, error);
471 /* XXX: Clock Hold is likely still asserted! */
472 return 0;
473 }
474 }
475 /*
476 * If the clock hold register isn't the same register as seconds,
477 * we need to reeanble the clock.
478 */
479 if (op != I2C_OP_WRITE_WITH_STOP) {
480 cmdbuf[0] = dm->dm_ch_reg;
481 cmdbuf[1] &= ~dm->dm_ch_value;
482
483 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
484 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
485 I2C_F_POLL)) != 0) {
486 iic_release_bus(sc->sc_tag, I2C_F_POLL);
487 aprint_error_dev(sc->sc_dev,
488 "%s: failed to Hold Clock: %d\n",
489 __func__, error);
490 return 0;
491 }
492 }
493
494 iic_release_bus(sc->sc_tag, I2C_F_POLL);
495
496 return 1;
497 }
498
499 static int
500 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
501 {
502 struct dsrtc_softc *sc = ch->cookie;
503 struct timeval check;
504 int retries;
505
506 memset(tv, 0, sizeof(*tv));
507 memset(&check, 0, sizeof(check));
508
509 /*
510 * Since we don't support Burst Read, we have to read the clock twice
511 * until we get two consecutive identical results.
512 */
513 retries = 5;
514 do {
515 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
516 dsrtc_clock_read_timeval(sc, &check.tv_sec);
517 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
518
519 return 0;
520 }
521
522 static int
523 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
524 {
525 struct dsrtc_softc *sc = ch->cookie;
526
527 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
528 return -1;
529
530 return 0;
531 }
532
533 /*
534 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
535 * it, since some I2C controllers don't support anything other than single-byte
536 * transfers.
537 */
538 static int
539 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
540 {
541 const struct dsrtc_model * const dm = &sc->sc_model;
542 uint8_t buf[4];
543 int error;
544
545 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
546 aprint_error_dev(sc->sc_dev,
547 "%s: failed to acquire I2C bus: %d\n",
548 __func__, error);
549 return 0;
550 }
551
552 /* read all registers: */
553 uint8_t reg = dm->dm_rtc_start;
554 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
555 ®, 1, buf, 4, I2C_F_POLL);
556
557 /* Done with I2C */
558 iic_release_bus(sc->sc_tag, I2C_F_POLL);
559
560 if (error != 0) {
561 aprint_error_dev(sc->sc_dev,
562 "%s: failed to read rtc at 0x%x: %d\n",
563 __func__, reg, error);
564 return 0;
565 }
566
567 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
568 *tp = v;
569
570 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
571 __func__, v);
572
573 return 1;
574 }
575
576 static int
577 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
578 {
579 const struct dsrtc_model * const dm = &sc->sc_model;
580 size_t buflen = dm->dm_rtc_size + 2;
581 uint8_t buf[buflen];
582 int error;
583
584 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
585 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
586
587 buf[0] = dm->dm_rtc_start;
588 buf[1] = (t >> 0) & 0xff;
589 buf[2] = (t >> 8) & 0xff;
590 buf[3] = (t >> 16) & 0xff;
591 buf[4] = (t >> 24) & 0xff;
592 buf[5] = 0;
593
594 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
595 aprint_error_dev(sc->sc_dev,
596 "%s: failed to acquire I2C bus: %d\n",
597 __func__, error);
598 return 0;
599 }
600
601 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
602 &buf, buflen, NULL, 0, I2C_F_POLL);
603
604 /* Done with I2C */
605 iic_release_bus(sc->sc_tag, I2C_F_POLL);
606
607 /* send data */
608 if (error != 0) {
609 aprint_error_dev(sc->sc_dev,
610 "%s: failed to set time: %d\n",
611 __func__, error);
612 return 0;
613 }
614
615 return 1;
616 }
617