Home | History | Annotate | Line # | Download | only in i2c
ds1307.c revision 1.16
      1 /*	$NetBSD: ds1307.c,v 1.16 2012/07/25 03:07:37 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.16 2012/07/25 03:07:37 matt Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 
     55 struct dsrtc_model {
     56 	uint16_t dm_model;
     57 	uint8_t dm_ch_reg;
     58 	uint8_t dm_ch_value;
     59 	uint8_t dm_rtc_start;
     60 	uint8_t dm_rtc_size;
     61 	uint8_t dm_nvram_start;
     62 	uint8_t dm_nvram_size;
     63 	uint8_t dm_flags;
     64 #define	DSRTC_FLAG_CLOCK_HOLD	1
     65 #define	DSRTC_FLAG_BCD		2
     66 };
     67 
     68 static const struct dsrtc_model dsrtc_models[] = {
     69 	{
     70 		.dm_model = 1307,
     71 		.dm_ch_reg = DSXXXX_SECONDS,
     72 		.dm_ch_value = DS1307_SECONDS_CH,
     73 		.dm_rtc_start = DS1307_RTC_START,
     74 		.dm_rtc_size = DS1307_RTC_SIZE,
     75 		.dm_nvram_start = DS1307_NVRAM_START,
     76 		.dm_nvram_size = DS1307_NVRAM_SIZE,
     77 		.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     78 	}, {
     79 		.dm_model = 1339,
     80 		.dm_rtc_start = DS1339_RTC_START,
     81 		.dm_rtc_size = DS1339_RTC_SIZE,
     82 		.dm_flags = DSRTC_FLAG_BCD,
     83 	}, {
     84 		.dm_model = 1672,
     85 		.dm_rtc_start = DS1672_RTC_START,
     86 		.dm_rtc_size = DS1672_RTC_SIZE,
     87 		.dm_flags = 0,
     88 	}, {
     89 		.dm_model = 3232,
     90 		.dm_rtc_start = DS3232_RTC_START,
     91 		.dm_rtc_size = DS3232_RTC_SIZE,
     92 		.dm_nvram_start = DS3232_NVRAM_START,
     93 		.dm_nvram_size = DS3232_NVRAM_SIZE,
     94 		.dm_flags = DSRTC_FLAG_BCD,
     95 	},
     96 };
     97 
     98 struct dsrtc_softc {
     99 	device_t sc_dev;
    100 	i2c_tag_t sc_tag;
    101 	uint8_t sc_address;
    102 	bool sc_open;
    103 	struct dsrtc_model sc_model;
    104 	struct todr_chip_handle sc_todr;
    105 };
    106 
    107 static void	dsrtc_attach(device_t, device_t, void *);
    108 static int	dsrtc_match(device_t, cfdata_t, void *);
    109 
    110 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    111     dsrtc_match, dsrtc_attach, NULL, NULL);
    112 extern struct cfdriver dsrtc_cd;
    113 
    114 dev_type_open(dsrtc_open);
    115 dev_type_close(dsrtc_close);
    116 dev_type_read(dsrtc_read);
    117 dev_type_write(dsrtc_write);
    118 
    119 const struct cdevsw dsrtc_cdevsw = {
    120 	dsrtc_open, dsrtc_close, dsrtc_read, dsrtc_write, noioctl,
    121 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
    122 };
    123 
    124 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    125 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    126 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    127 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    128 
    129 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    130 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    131 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    132 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    133 
    134 static const struct dsrtc_model *
    135 dsrtc_model(u_int model)
    136 {
    137 	/* no model given, assume it's a DS1307 (the first one) */
    138 	if (model == 0)
    139 		return &dsrtc_models[0];
    140 
    141 	for (const struct dsrtc_model *dm = dsrtc_models;
    142 	     dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
    143 		if (dm->dm_model == model)
    144 			return dm;
    145 	}
    146 	return NULL;
    147 }
    148 
    149 static int
    150 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    151 {
    152 	struct i2c_attach_args *ia = arg;
    153 
    154 	if (ia->ia_name) {
    155 		/* direct config - check name */
    156 		if (strcmp(ia->ia_name, "dsrtc") == 0)
    157 			return 1;
    158 	} else {
    159 		/* indirect config - check typical address */
    160 		if (ia->ia_addr == DS1307_ADDR)
    161 			return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
    162 	}
    163 	return 0;
    164 }
    165 
    166 static void
    167 dsrtc_attach(device_t parent, device_t self, void *arg)
    168 {
    169 	struct dsrtc_softc *sc = device_private(self);
    170 	struct i2c_attach_args *ia = arg;
    171 	const struct dsrtc_model * const dm =
    172 	    dsrtc_model(device_cfdata(self)->cf_flags);
    173 
    174 	aprint_naive(": Real-time Clock%s\n",
    175 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    176 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    177 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    178 
    179 	sc->sc_tag = ia->ia_tag;
    180 	sc->sc_address = ia->ia_addr;
    181 	sc->sc_model = *dm;
    182 	sc->sc_dev = self;
    183 	sc->sc_open = 0;
    184 	sc->sc_todr.cookie = sc;
    185 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    186 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    187 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    188 	} else {
    189 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    190 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    191 	}
    192 	sc->sc_todr.todr_setwen = NULL;
    193 
    194 	todr_attach(&sc->sc_todr);
    195 }
    196 
    197 /*ARGSUSED*/
    198 int
    199 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    200 {
    201 	struct dsrtc_softc *sc;
    202 
    203 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    204 		return ENXIO;
    205 
    206 	/* XXX: Locking */
    207 	if (sc->sc_open)
    208 		return EBUSY;
    209 
    210 	sc->sc_open = true;
    211 	return 0;
    212 }
    213 
    214 /*ARGSUSED*/
    215 int
    216 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    217 {
    218 	struct dsrtc_softc *sc;
    219 
    220 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    221 		return ENXIO;
    222 
    223 	sc->sc_open = false;
    224 	return 0;
    225 }
    226 
    227 /*ARGSUSED*/
    228 int
    229 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    230 {
    231 	struct dsrtc_softc *sc;
    232 	int error;
    233 
    234 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    235 		return ENXIO;
    236 
    237 	const struct dsrtc_model * const dm = &sc->sc_model;
    238 	if (uio->uio_offset >= dm->dm_nvram_size)
    239 		return EINVAL;
    240 
    241 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    242 		return error;
    243 
    244 	KASSERT(uio->uio_offset >= 0);
    245 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    246 		uint8_t ch, cmd;
    247 		const u_int a = uio->uio_offset;
    248 		cmd = a + dm->dm_nvram_start;
    249 		if ((error = iic_exec(sc->sc_tag,
    250 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    251 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    252 			iic_release_bus(sc->sc_tag, 0);
    253 			aprint_error_dev(sc->sc_dev,
    254 			    "%s: read failed at 0x%x: %d\n",
    255 			    __func__, a, error);
    256 			return error;
    257 		}
    258 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    259 			iic_release_bus(sc->sc_tag, 0);
    260 			return error;
    261 		}
    262 	}
    263 
    264 	iic_release_bus(sc->sc_tag, 0);
    265 
    266 	return 0;
    267 }
    268 
    269 /*ARGSUSED*/
    270 int
    271 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    272 {
    273 	struct dsrtc_softc *sc;
    274 	int error;
    275 
    276 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    277 		return ENXIO;
    278 
    279 	const struct dsrtc_model * const dm = &sc->sc_model;
    280 	if (uio->uio_offset >= dm->dm_nvram_size)
    281 		return EINVAL;
    282 
    283 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    284 		return error;
    285 
    286 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    287 		uint8_t cmdbuf[2];
    288 		const u_int a = (int)uio->uio_offset;
    289 		cmdbuf[0] = a + dm->dm_nvram_start;
    290 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    291 			break;
    292 
    293 		if ((error = iic_exec(sc->sc_tag,
    294 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    295 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    296 			aprint_error_dev(sc->sc_dev,
    297 			    "%s: write failed at 0x%x: %d\n",
    298 			    __func__, a, error);
    299 			break;
    300 		}
    301 	}
    302 
    303 	iic_release_bus(sc->sc_tag, 0);
    304 
    305 	return error;
    306 }
    307 
    308 static int
    309 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    310 {
    311 	struct dsrtc_softc *sc = ch->cookie;
    312 	struct clock_ymdhms check;
    313 	int retries;
    314 
    315 	memset(dt, 0, sizeof(*dt));
    316 	memset(&check, 0, sizeof(check));
    317 
    318 	/*
    319 	 * Since we don't support Burst Read, we have to read the clock twice
    320 	 * until we get two consecutive identical results.
    321 	 */
    322 	retries = 5;
    323 	do {
    324 		dsrtc_clock_read_ymdhms(sc, dt);
    325 		dsrtc_clock_read_ymdhms(sc, &check);
    326 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    327 
    328 	return 0;
    329 }
    330 
    331 static int
    332 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    333 {
    334 	struct dsrtc_softc *sc = ch->cookie;
    335 
    336 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    337 		return -1;
    338 
    339 	return 0;
    340 }
    341 
    342 static int
    343 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    344 {
    345 	struct dsrtc_model * const dm = &sc->sc_model;
    346 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    347 	int error;
    348 
    349 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    350 
    351 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    352 		aprint_error_dev(sc->sc_dev,
    353 		    "%s: failed to acquire I2C bus: %d\n",
    354 		    __func__, error);
    355 		return 0;
    356 	}
    357 
    358 	/* Read each RTC register in order. */
    359 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    360 		cmdbuf[0] = dm->dm_rtc_start + i;
    361 
    362 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    363 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
    364 	}
    365 
    366 	/* Done with I2C */
    367 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    368 
    369 	if (error != 0) {
    370 		aprint_error_dev(sc->sc_dev,
    371 		    "%s: failed to read rtc at 0x%x: %d\n",
    372 		    __func__, cmdbuf[0], error);
    373 		return 0;
    374 	}
    375 
    376 	/*
    377 	 * Convert the RTC's register values into something useable
    378 	 */
    379 	dt->dt_sec = FROMBCD(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    380 	dt->dt_min = FROMBCD(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    381 
    382 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    383 		dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
    384 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    385 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    386 			dt->dt_hour += 12;
    387 	} else
    388 		dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
    389 		    DSXXXX_HOURS_24MASK);
    390 
    391 	dt->dt_day = FROMBCD(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    392 	dt->dt_mon = FROMBCD(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    393 
    394 	/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
    395 	dt->dt_year = FROMBCD(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
    396 	if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
    397 		dt->dt_year += 100;
    398 
    399 	return 1;
    400 }
    401 
    402 static int
    403 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    404 {
    405 	struct dsrtc_model * const dm = &sc->sc_model;
    406 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    407 	int error;
    408 
    409 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    410 
    411 	/*
    412 	 * Convert our time representation into something the DSXXXX
    413 	 * can understand.
    414 	 */
    415 	bcd[DSXXXX_SECONDS] = TOBCD(dt->dt_sec);
    416 	bcd[DSXXXX_MINUTES] = TOBCD(dt->dt_min);
    417 	bcd[DSXXXX_HOURS] = TOBCD(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    418 	bcd[DSXXXX_DATE] = TOBCD(dt->dt_day);
    419 	bcd[DSXXXX_DAY] = TOBCD(dt->dt_wday);
    420 	bcd[DSXXXX_MONTH] = TOBCD(dt->dt_mon);
    421 	bcd[DSXXXX_YEAR] = TOBCD((dt->dt_year - POSIX_BASE_YEAR) % 100);
    422 	if (dt->dt_year - POSIX_BASE_YEAR >= 100)
    423 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    424 
    425 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    426 		aprint_error_dev(sc->sc_dev,
    427 		    "%s: failed to acquire I2C bus: %d\n",
    428 		    __func__, error);
    429 		return 0;
    430 	}
    431 
    432 	/* Stop the clock */
    433 	cmdbuf[0] = dm->dm_ch_reg;
    434 
    435 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    436 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    437 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    438 		aprint_error_dev(sc->sc_dev,
    439 		    "%s: failed to read Hold Clock: %d\n",
    440 		    __func__, error);
    441 		return 0;
    442 	}
    443 
    444 	cmdbuf[1] |= dm->dm_ch_value;
    445 
    446 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    447 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    448 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    449 		aprint_error_dev(sc->sc_dev,
    450 		    "%s: failed to write Hold Clock: %d\n",
    451 		    __func__, error);
    452 		return 0;
    453 	}
    454 
    455 	/*
    456 	 * Write registers in reverse order. The last write (to the Seconds
    457 	 * register) will undo the Clock Hold, above.
    458 	 */
    459 	uint8_t op = I2C_OP_WRITE;
    460 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    461 		cmdbuf[0] = dm->dm_rtc_start + i;
    462 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    463 			op = I2C_OP_WRITE_WITH_STOP;
    464 		}
    465 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    466 		    cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
    467 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    468 			aprint_error_dev(sc->sc_dev,
    469 			    "%s: failed to write rtc at 0x%x: %d\n",
    470 			    __func__, i, error);
    471 			/* XXX: Clock Hold is likely still asserted! */
    472 			return 0;
    473 		}
    474 	}
    475 	/*
    476 	 * If the clock hold register isn't the same register as seconds,
    477 	 * we need to reeanble the clock.
    478 	 */
    479 	if (op != I2C_OP_WRITE_WITH_STOP) {
    480 		cmdbuf[0] = dm->dm_ch_reg;
    481 		cmdbuf[1] &= ~dm->dm_ch_value;
    482 
    483 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    484 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
    485 		    I2C_F_POLL)) != 0) {
    486 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    487 			aprint_error_dev(sc->sc_dev,
    488 			    "%s: failed to Hold Clock: %d\n",
    489 			    __func__, error);
    490 			return 0;
    491 		}
    492 	}
    493 
    494 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    495 
    496 	return 1;
    497 }
    498 
    499 static int
    500 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    501 {
    502 	struct dsrtc_softc *sc = ch->cookie;
    503 	struct timeval check;
    504 	int retries;
    505 
    506 	memset(tv, 0, sizeof(*tv));
    507 	memset(&check, 0, sizeof(check));
    508 
    509 	/*
    510 	 * Since we don't support Burst Read, we have to read the clock twice
    511 	 * until we get two consecutive identical results.
    512 	 */
    513 	retries = 5;
    514 	do {
    515 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    516 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    517 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    518 
    519 	return 0;
    520 }
    521 
    522 static int
    523 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    524 {
    525 	struct dsrtc_softc *sc = ch->cookie;
    526 
    527 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    528 		return -1;
    529 
    530 	return 0;
    531 }
    532 
    533 /*
    534  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    535  * it, since some I2C controllers don't support anything other than single-byte
    536  * transfers.
    537  */
    538 static int
    539 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    540 {
    541 	const struct dsrtc_model * const dm = &sc->sc_model;
    542 	uint8_t buf[4];
    543 	int error;
    544 
    545 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    546 		aprint_error_dev(sc->sc_dev,
    547 		    "%s: failed to acquire I2C bus: %d\n",
    548 		    __func__, error);
    549 		return 0;
    550 	}
    551 
    552 	/* read all registers: */
    553 	uint8_t reg = dm->dm_rtc_start;
    554 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    555 	     &reg, 1, buf, 4, I2C_F_POLL);
    556 
    557 	/* Done with I2C */
    558 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    559 
    560 	if (error != 0) {
    561 		aprint_error_dev(sc->sc_dev,
    562 		    "%s: failed to read rtc at 0x%x: %d\n",
    563 		    __func__, reg, error);
    564 		return 0;
    565 	}
    566 
    567 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    568 	*tp = v;
    569 
    570 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    571 	    __func__, v);
    572 
    573 	return 1;
    574 }
    575 
    576 static int
    577 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    578 {
    579 	const struct dsrtc_model * const dm = &sc->sc_model;
    580 	size_t buflen = dm->dm_rtc_size + 2;
    581 	uint8_t buf[buflen];
    582 	int error;
    583 
    584 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    585 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    586 
    587 	buf[0] = dm->dm_rtc_start;
    588 	buf[1] = (t >> 0) & 0xff;
    589 	buf[2] = (t >> 8) & 0xff;
    590 	buf[3] = (t >> 16) & 0xff;
    591 	buf[4] = (t >> 24) & 0xff;
    592 	buf[5] = 0;
    593 
    594 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    595 		aprint_error_dev(sc->sc_dev,
    596 		    "%s: failed to acquire I2C bus: %d\n",
    597 		    __func__, error);
    598 		return 0;
    599 	}
    600 
    601 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    602 	    &buf, buflen, NULL, 0, I2C_F_POLL);
    603 
    604 	/* Done with I2C */
    605 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    606 
    607 	/* send data */
    608 	if (error != 0) {
    609 		aprint_error_dev(sc->sc_dev,
    610 		    "%s: failed to set time: %d\n",
    611 		    __func__, error);
    612 		return 0;
    613 	}
    614 
    615 	return 1;
    616 }
    617