ds1307.c revision 1.16.2.2 1 /* $NetBSD: ds1307.c,v 1.16.2.2 2017/12/03 11:37:02 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.16.2.2 2017/12/03 11:37:02 jdolecek Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57
58 struct dsrtc_model {
59 uint16_t dm_model;
60 uint8_t dm_ch_reg;
61 uint8_t dm_ch_value;
62 uint8_t dm_vbaten_reg;
63 uint8_t dm_vbaten_value;
64 uint8_t dm_rtc_start;
65 uint8_t dm_rtc_size;
66 uint8_t dm_nvram_start;
67 uint8_t dm_nvram_size;
68 uint8_t dm_flags;
69 #define DSRTC_FLAG_CLOCK_HOLD 0x01
70 #define DSRTC_FLAG_BCD 0x02
71 #define DSRTC_FLAG_TEMP 0x04
72 #define DSRTC_FLAG_VBATEN 0x08
73 #define DSRTC_FLAG_YEAR_START_2K 0x10
74 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
75 };
76
77 static const struct dsrtc_model dsrtc_models[] = {
78 {
79 .dm_model = 1307,
80 .dm_ch_reg = DSXXXX_SECONDS,
81 .dm_ch_value = DS1307_SECONDS_CH,
82 .dm_rtc_start = DS1307_RTC_START,
83 .dm_rtc_size = DS1307_RTC_SIZE,
84 .dm_nvram_start = DS1307_NVRAM_START,
85 .dm_nvram_size = DS1307_NVRAM_SIZE,
86 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
87 }, {
88 .dm_model = 1339,
89 .dm_rtc_start = DS1339_RTC_START,
90 .dm_rtc_size = DS1339_RTC_SIZE,
91 .dm_flags = DSRTC_FLAG_BCD,
92 }, {
93 .dm_model = 1340,
94 .dm_ch_reg = DSXXXX_SECONDS,
95 .dm_ch_value = DS1340_SECONDS_EOSC,
96 .dm_rtc_start = DS1340_RTC_START,
97 .dm_rtc_size = DS1340_RTC_SIZE,
98 .dm_flags = DSRTC_FLAG_BCD,
99 }, {
100 .dm_model = 1672,
101 .dm_rtc_start = DS1672_RTC_START,
102 .dm_rtc_size = DS1672_RTC_SIZE,
103 .dm_ch_reg = DS1672_CONTROL,
104 .dm_ch_value = DS1672_CONTROL_CH,
105 .dm_flags = 0,
106 }, {
107 .dm_model = 3231,
108 .dm_rtc_start = DS3232_RTC_START,
109 .dm_rtc_size = DS3232_RTC_SIZE,
110 /*
111 * XXX
112 * the DS3232 likely has the temperature sensor too but I can't
113 * easily verify or test that right now
114 */
115 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
116 }, {
117 .dm_model = 3232,
118 .dm_rtc_start = DS3232_RTC_START,
119 .dm_rtc_size = DS3232_RTC_SIZE,
120 .dm_nvram_start = DS3232_NVRAM_START,
121 .dm_nvram_size = DS3232_NVRAM_SIZE,
122 .dm_flags = DSRTC_FLAG_BCD,
123 }, {
124 /* MCP7940 */
125 .dm_model = 7940,
126 .dm_rtc_start = DS1307_RTC_START,
127 .dm_rtc_size = DS1307_RTC_SIZE,
128 .dm_ch_reg = DSXXXX_SECONDS,
129 .dm_ch_value = DS1307_SECONDS_CH,
130 .dm_vbaten_reg = DSXXXX_DAY,
131 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
132 .dm_nvram_start = MCP7940_NVRAM_START,
133 .dm_nvram_size = MCP7940_NVRAM_SIZE,
134 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
135 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
136 },
137 };
138
139 struct dsrtc_softc {
140 device_t sc_dev;
141 i2c_tag_t sc_tag;
142 uint8_t sc_address;
143 bool sc_open;
144 struct dsrtc_model sc_model;
145 struct todr_chip_handle sc_todr;
146 struct sysmon_envsys *sc_sme;
147 envsys_data_t sc_sensor;
148 };
149
150 static void dsrtc_attach(device_t, device_t, void *);
151 static int dsrtc_match(device_t, cfdata_t, void *);
152
153 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
154 dsrtc_match, dsrtc_attach, NULL, NULL);
155
156 dev_type_open(dsrtc_open);
157 dev_type_close(dsrtc_close);
158 dev_type_read(dsrtc_read);
159 dev_type_write(dsrtc_write);
160
161 const struct cdevsw dsrtc_cdevsw = {
162 .d_open = dsrtc_open,
163 .d_close = dsrtc_close,
164 .d_read = dsrtc_read,
165 .d_write = dsrtc_write,
166 .d_ioctl = noioctl,
167 .d_stop = nostop,
168 .d_tty = notty,
169 .d_poll = nopoll,
170 .d_mmap = nommap,
171 .d_kqfilter = nokqfilter,
172 .d_discard = nodiscard,
173 .d_flag = D_OTHER
174 };
175
176 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
177 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
178 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
179 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
180
181 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
182 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
183 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
184 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
185
186 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
187 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
188
189 static const struct dsrtc_model *
190 dsrtc_model(u_int model)
191 {
192 /* no model given, assume it's a DS1307 (the first one) */
193 if (model == 0)
194 return &dsrtc_models[0];
195
196 for (const struct dsrtc_model *dm = dsrtc_models;
197 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
198 if (dm->dm_model == model)
199 return dm;
200 }
201 return NULL;
202 }
203
204 static int
205 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
206 {
207 struct i2c_attach_args *ia = arg;
208
209 if (ia->ia_name) {
210 /* direct config - check name */
211 if (strcmp(ia->ia_name, "dsrtc") == 0)
212 return 1;
213 } else {
214 /* indirect config - check typical address */
215 if (ia->ia_addr == DS1307_ADDR || ia->ia_addr == MCP7940_ADDR)
216 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
217 }
218 return 0;
219 }
220
221 static void
222 dsrtc_attach(device_t parent, device_t self, void *arg)
223 {
224 struct dsrtc_softc *sc = device_private(self);
225 struct i2c_attach_args *ia = arg;
226 const struct dsrtc_model * const dm =
227 dsrtc_model(device_cfdata(self)->cf_flags);
228
229 aprint_naive(": Real-time Clock%s\n",
230 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
231 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
232 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
233
234 sc->sc_tag = ia->ia_tag;
235 sc->sc_address = ia->ia_addr;
236 sc->sc_model = *dm;
237 sc->sc_dev = self;
238 sc->sc_open = 0;
239 sc->sc_todr.cookie = sc;
240 if (dm->dm_flags & DSRTC_FLAG_BCD) {
241 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
242 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
243 } else {
244 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
245 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
246 }
247 sc->sc_todr.todr_setwen = NULL;
248
249 todr_attach(&sc->sc_todr);
250 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
251 int error;
252
253 sc->sc_sme = sysmon_envsys_create();
254 sc->sc_sme->sme_name = device_xname(self);
255 sc->sc_sme->sme_cookie = sc;
256 sc->sc_sme->sme_refresh = dsrtc_refresh;
257
258 sc->sc_sensor.units = ENVSYS_STEMP;
259 sc->sc_sensor.state = ENVSYS_SINVALID;
260 sc->sc_sensor.flags = 0;
261 (void)strlcpy(sc->sc_sensor.desc, "temperature",
262 sizeof(sc->sc_sensor.desc));
263
264 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
265 aprint_error_dev(self, "unable to attach sensor\n");
266 goto bad;
267 }
268
269 error = sysmon_envsys_register(sc->sc_sme);
270 if (error) {
271 aprint_error_dev(self,
272 "error %d registering with sysmon\n", error);
273 goto bad;
274 }
275 }
276 return;
277 bad:
278 sysmon_envsys_destroy(sc->sc_sme);
279 }
280
281 /*ARGSUSED*/
282 int
283 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
284 {
285 struct dsrtc_softc *sc;
286
287 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
288 return ENXIO;
289
290 /* XXX: Locking */
291 if (sc->sc_open)
292 return EBUSY;
293
294 sc->sc_open = true;
295 return 0;
296 }
297
298 /*ARGSUSED*/
299 int
300 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
301 {
302 struct dsrtc_softc *sc;
303
304 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
305 return ENXIO;
306
307 sc->sc_open = false;
308 return 0;
309 }
310
311 /*ARGSUSED*/
312 int
313 dsrtc_read(dev_t dev, struct uio *uio, int flags)
314 {
315 struct dsrtc_softc *sc;
316 int error;
317
318 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
319 return ENXIO;
320
321 const struct dsrtc_model * const dm = &sc->sc_model;
322 if (uio->uio_offset >= dm->dm_nvram_size)
323 return EINVAL;
324
325 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
326 return error;
327
328 KASSERT(uio->uio_offset >= 0);
329 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
330 uint8_t ch, cmd;
331 const u_int a = uio->uio_offset;
332 cmd = a + dm->dm_nvram_start;
333 if ((error = iic_exec(sc->sc_tag,
334 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
335 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
336 iic_release_bus(sc->sc_tag, 0);
337 aprint_error_dev(sc->sc_dev,
338 "%s: read failed at 0x%x: %d\n",
339 __func__, a, error);
340 return error;
341 }
342 if ((error = uiomove(&ch, 1, uio)) != 0) {
343 iic_release_bus(sc->sc_tag, 0);
344 return error;
345 }
346 }
347
348 iic_release_bus(sc->sc_tag, 0);
349
350 return 0;
351 }
352
353 /*ARGSUSED*/
354 int
355 dsrtc_write(dev_t dev, struct uio *uio, int flags)
356 {
357 struct dsrtc_softc *sc;
358 int error;
359
360 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
361 return ENXIO;
362
363 const struct dsrtc_model * const dm = &sc->sc_model;
364 if (uio->uio_offset >= dm->dm_nvram_size)
365 return EINVAL;
366
367 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
368 return error;
369
370 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
371 uint8_t cmdbuf[2];
372 const u_int a = (int)uio->uio_offset;
373 cmdbuf[0] = a + dm->dm_nvram_start;
374 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
375 break;
376
377 if ((error = iic_exec(sc->sc_tag,
378 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
379 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
380 aprint_error_dev(sc->sc_dev,
381 "%s: write failed at 0x%x: %d\n",
382 __func__, a, error);
383 break;
384 }
385 }
386
387 iic_release_bus(sc->sc_tag, 0);
388
389 return error;
390 }
391
392 static int
393 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
394 {
395 struct dsrtc_softc *sc = ch->cookie;
396 struct clock_ymdhms check;
397 int retries;
398
399 memset(dt, 0, sizeof(*dt));
400 memset(&check, 0, sizeof(check));
401
402 /*
403 * Since we don't support Burst Read, we have to read the clock twice
404 * until we get two consecutive identical results.
405 */
406 retries = 5;
407 do {
408 dsrtc_clock_read_ymdhms(sc, dt);
409 dsrtc_clock_read_ymdhms(sc, &check);
410 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
411
412 return 0;
413 }
414
415 static int
416 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
417 {
418 struct dsrtc_softc *sc = ch->cookie;
419
420 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
421 return -1;
422
423 return 0;
424 }
425
426 static int
427 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
428 {
429 struct dsrtc_model * const dm = &sc->sc_model;
430 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
431 int error;
432
433 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
434
435 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
436 aprint_error_dev(sc->sc_dev,
437 "%s: failed to acquire I2C bus: %d\n",
438 __func__, error);
439 return 0;
440 }
441
442 /* Read each RTC register in order. */
443 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
444 cmdbuf[0] = dm->dm_rtc_start + i;
445
446 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
447 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
448 }
449
450 /* Done with I2C */
451 iic_release_bus(sc->sc_tag, I2C_F_POLL);
452
453 if (error != 0) {
454 aprint_error_dev(sc->sc_dev,
455 "%s: failed to read rtc at 0x%x: %d\n",
456 __func__, cmdbuf[0], error);
457 return 0;
458 }
459
460 /*
461 * Convert the RTC's register values into something useable
462 */
463 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
464 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
465
466 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
467 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
468 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
469 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
470 dt->dt_hour += 12;
471 } else
472 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
473 DSXXXX_HOURS_24MASK);
474
475 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
476 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
477
478 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
479 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
480 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
481 else {
482 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
483 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
484 dt->dt_year += 100;
485 }
486
487 return 1;
488 }
489
490 static int
491 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
492 {
493 struct dsrtc_model * const dm = &sc->sc_model;
494 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
495 int error;
496
497 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
498
499 /*
500 * Convert our time representation into something the DSXXXX
501 * can understand.
502 */
503 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
504 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
505 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
506 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
507 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
508 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
509 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
510 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
511 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
512
513 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
514 aprint_error_dev(sc->sc_dev,
515 "%s: failed to acquire I2C bus: %d\n",
516 __func__, error);
517 return 0;
518 }
519
520 /* Stop the clock */
521 cmdbuf[0] = dm->dm_ch_reg;
522
523 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
524 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
525 iic_release_bus(sc->sc_tag, I2C_F_POLL);
526 aprint_error_dev(sc->sc_dev,
527 "%s: failed to read Hold Clock: %d\n",
528 __func__, error);
529 return 0;
530 }
531
532 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
533 cmdbuf[1] &= ~dm->dm_ch_value;
534 else
535 cmdbuf[1] |= dm->dm_ch_value;
536
537 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
538 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
539 iic_release_bus(sc->sc_tag, I2C_F_POLL);
540 aprint_error_dev(sc->sc_dev,
541 "%s: failed to write Hold Clock: %d\n",
542 __func__, error);
543 return 0;
544 }
545
546 /*
547 * Write registers in reverse order. The last write (to the Seconds
548 * register) will undo the Clock Hold, above.
549 */
550 uint8_t op = I2C_OP_WRITE;
551 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
552 cmdbuf[0] = dm->dm_rtc_start + i;
553 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
554 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
555 bcd[i] |= dm->dm_vbaten_value;
556 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
557 op = I2C_OP_WRITE_WITH_STOP;
558 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
559 bcd[i] |= dm->dm_ch_value;
560 }
561 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
562 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
563 iic_release_bus(sc->sc_tag, I2C_F_POLL);
564 aprint_error_dev(sc->sc_dev,
565 "%s: failed to write rtc at 0x%x: %d\n",
566 __func__, i, error);
567 /* XXX: Clock Hold is likely still asserted! */
568 return 0;
569 }
570 }
571 /*
572 * If the clock hold register isn't the same register as seconds,
573 * we need to reeanble the clock.
574 */
575 if (op != I2C_OP_WRITE_WITH_STOP) {
576 cmdbuf[0] = dm->dm_ch_reg;
577 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
578 cmdbuf[1] |= dm->dm_ch_value;
579 else
580 cmdbuf[1] &= ~dm->dm_ch_value;
581
582 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
583 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
584 I2C_F_POLL)) != 0) {
585 iic_release_bus(sc->sc_tag, I2C_F_POLL);
586 aprint_error_dev(sc->sc_dev,
587 "%s: failed to Hold Clock: %d\n",
588 __func__, error);
589 return 0;
590 }
591 }
592
593 iic_release_bus(sc->sc_tag, I2C_F_POLL);
594
595 return 1;
596 }
597
598 static int
599 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
600 {
601 struct dsrtc_softc *sc = ch->cookie;
602 struct timeval check;
603 int retries;
604
605 memset(tv, 0, sizeof(*tv));
606 memset(&check, 0, sizeof(check));
607
608 /*
609 * Since we don't support Burst Read, we have to read the clock twice
610 * until we get two consecutive identical results.
611 */
612 retries = 5;
613 do {
614 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
615 dsrtc_clock_read_timeval(sc, &check.tv_sec);
616 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
617
618 return 0;
619 }
620
621 static int
622 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
623 {
624 struct dsrtc_softc *sc = ch->cookie;
625
626 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
627 return -1;
628
629 return 0;
630 }
631
632 /*
633 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
634 * it, since some I2C controllers don't support anything other than single-byte
635 * transfers.
636 */
637 static int
638 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
639 {
640 const struct dsrtc_model * const dm = &sc->sc_model;
641 uint8_t buf[4];
642 int error;
643
644 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
645 aprint_error_dev(sc->sc_dev,
646 "%s: failed to acquire I2C bus: %d\n",
647 __func__, error);
648 return 0;
649 }
650
651 /* read all registers: */
652 uint8_t reg = dm->dm_rtc_start;
653 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
654 ®, 1, buf, 4, I2C_F_POLL);
655
656 /* Done with I2C */
657 iic_release_bus(sc->sc_tag, I2C_F_POLL);
658
659 if (error != 0) {
660 aprint_error_dev(sc->sc_dev,
661 "%s: failed to read rtc at 0x%x: %d\n",
662 __func__, reg, error);
663 return 0;
664 }
665
666 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
667 *tp = v;
668
669 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
670 __func__, v);
671
672 return 1;
673 }
674
675 static int
676 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
677 {
678 const struct dsrtc_model * const dm = &sc->sc_model;
679 size_t buflen = dm->dm_rtc_size + 2;
680 uint8_t buf[buflen];
681 int error;
682
683 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
684 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
685
686 buf[0] = dm->dm_rtc_start;
687 buf[1] = (t >> 0) & 0xff;
688 buf[2] = (t >> 8) & 0xff;
689 buf[3] = (t >> 16) & 0xff;
690 buf[4] = (t >> 24) & 0xff;
691 buf[5] = 0;
692
693 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
694 aprint_error_dev(sc->sc_dev,
695 "%s: failed to acquire I2C bus: %d\n",
696 __func__, error);
697 return 0;
698 }
699
700 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
701 &buf, buflen, NULL, 0, I2C_F_POLL);
702
703 /* Done with I2C */
704 iic_release_bus(sc->sc_tag, I2C_F_POLL);
705
706 /* send data */
707 if (error != 0) {
708 aprint_error_dev(sc->sc_dev,
709 "%s: failed to set time: %d\n",
710 __func__, error);
711 return 0;
712 }
713
714 return 1;
715 }
716
717 static int
718 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
719 {
720 int error, tc;
721 uint8_t reg = DS3232_TEMP_MSB;
722 uint8_t buf[2];
723
724 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
725 return ENOTSUP;
726
727 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
728 aprint_error_dev(sc->sc_dev,
729 "%s: failed to acquire I2C bus: %d\n",
730 __func__, error);
731 return 0;
732 }
733
734 /* read temperature registers: */
735 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
736 ®, 1, buf, 2, I2C_F_POLL);
737
738 /* Done with I2C */
739 iic_release_bus(sc->sc_tag, I2C_F_POLL);
740
741 if (error != 0) {
742 aprint_error_dev(sc->sc_dev,
743 "%s: failed to read temperature: %d\n",
744 __func__, error);
745 return 0;
746 }
747
748 /* convert to microkelvin */
749 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
750 *temp = tc + 273150000;
751 return 1;
752 }
753
754 static void
755 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
756 {
757 struct dsrtc_softc *sc = sme->sme_cookie;
758 uint32_t temp = 0; /* XXX gcc */
759
760 if (dsrtc_read_temp(sc, &temp) == 0) {
761 edata->state = ENVSYS_SINVALID;
762 return;
763 }
764
765 edata->value_cur = temp;
766
767 edata->state = ENVSYS_SVALID;
768 }
769