ds1307.c revision 1.16.4.1 1 /* $NetBSD: ds1307.c,v 1.16.4.1 2014/05/18 17:45:37 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.16.4.1 2014/05/18 17:45:37 rmind Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54
55 struct dsrtc_model {
56 uint16_t dm_model;
57 uint8_t dm_ch_reg;
58 uint8_t dm_ch_value;
59 uint8_t dm_rtc_start;
60 uint8_t dm_rtc_size;
61 uint8_t dm_nvram_start;
62 uint8_t dm_nvram_size;
63 uint8_t dm_flags;
64 #define DSRTC_FLAG_CLOCK_HOLD 1
65 #define DSRTC_FLAG_BCD 2
66 };
67
68 static const struct dsrtc_model dsrtc_models[] = {
69 {
70 .dm_model = 1307,
71 .dm_ch_reg = DSXXXX_SECONDS,
72 .dm_ch_value = DS1307_SECONDS_CH,
73 .dm_rtc_start = DS1307_RTC_START,
74 .dm_rtc_size = DS1307_RTC_SIZE,
75 .dm_nvram_start = DS1307_NVRAM_START,
76 .dm_nvram_size = DS1307_NVRAM_SIZE,
77 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
78 }, {
79 .dm_model = 1339,
80 .dm_rtc_start = DS1339_RTC_START,
81 .dm_rtc_size = DS1339_RTC_SIZE,
82 .dm_flags = DSRTC_FLAG_BCD,
83 }, {
84 .dm_model = 1672,
85 .dm_rtc_start = DS1672_RTC_START,
86 .dm_rtc_size = DS1672_RTC_SIZE,
87 .dm_flags = 0,
88 }, {
89 .dm_model = 3232,
90 .dm_rtc_start = DS3232_RTC_START,
91 .dm_rtc_size = DS3232_RTC_SIZE,
92 .dm_nvram_start = DS3232_NVRAM_START,
93 .dm_nvram_size = DS3232_NVRAM_SIZE,
94 .dm_flags = DSRTC_FLAG_BCD,
95 },
96 };
97
98 struct dsrtc_softc {
99 device_t sc_dev;
100 i2c_tag_t sc_tag;
101 uint8_t sc_address;
102 bool sc_open;
103 struct dsrtc_model sc_model;
104 struct todr_chip_handle sc_todr;
105 };
106
107 static void dsrtc_attach(device_t, device_t, void *);
108 static int dsrtc_match(device_t, cfdata_t, void *);
109
110 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
111 dsrtc_match, dsrtc_attach, NULL, NULL);
112 extern struct cfdriver dsrtc_cd;
113
114 dev_type_open(dsrtc_open);
115 dev_type_close(dsrtc_close);
116 dev_type_read(dsrtc_read);
117 dev_type_write(dsrtc_write);
118
119 const struct cdevsw dsrtc_cdevsw = {
120 .d_open = dsrtc_open,
121 .d_close = dsrtc_close,
122 .d_read = dsrtc_read,
123 .d_write = dsrtc_write,
124 .d_ioctl = noioctl,
125 .d_stop = nostop,
126 .d_tty = notty,
127 .d_poll = nopoll,
128 .d_mmap = nommap,
129 .d_kqfilter = nokqfilter,
130 .d_flag = D_OTHER
131 };
132
133 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
134 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
135 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
136 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
137
138 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
139 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
140 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
141 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
142
143 static const struct dsrtc_model *
144 dsrtc_model(u_int model)
145 {
146 /* no model given, assume it's a DS1307 (the first one) */
147 if (model == 0)
148 return &dsrtc_models[0];
149
150 for (const struct dsrtc_model *dm = dsrtc_models;
151 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
152 if (dm->dm_model == model)
153 return dm;
154 }
155 return NULL;
156 }
157
158 static int
159 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
160 {
161 struct i2c_attach_args *ia = arg;
162
163 if (ia->ia_name) {
164 /* direct config - check name */
165 if (strcmp(ia->ia_name, "dsrtc") == 0)
166 return 1;
167 } else {
168 /* indirect config - check typical address */
169 if (ia->ia_addr == DS1307_ADDR)
170 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
171 }
172 return 0;
173 }
174
175 static void
176 dsrtc_attach(device_t parent, device_t self, void *arg)
177 {
178 struct dsrtc_softc *sc = device_private(self);
179 struct i2c_attach_args *ia = arg;
180 const struct dsrtc_model * const dm =
181 dsrtc_model(device_cfdata(self)->cf_flags);
182
183 aprint_naive(": Real-time Clock%s\n",
184 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
185 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
186 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
187
188 sc->sc_tag = ia->ia_tag;
189 sc->sc_address = ia->ia_addr;
190 sc->sc_model = *dm;
191 sc->sc_dev = self;
192 sc->sc_open = 0;
193 sc->sc_todr.cookie = sc;
194 if (dm->dm_flags & DSRTC_FLAG_BCD) {
195 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
196 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
197 } else {
198 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
199 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
200 }
201 sc->sc_todr.todr_setwen = NULL;
202
203 todr_attach(&sc->sc_todr);
204 }
205
206 /*ARGSUSED*/
207 int
208 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
209 {
210 struct dsrtc_softc *sc;
211
212 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
213 return ENXIO;
214
215 /* XXX: Locking */
216 if (sc->sc_open)
217 return EBUSY;
218
219 sc->sc_open = true;
220 return 0;
221 }
222
223 /*ARGSUSED*/
224 int
225 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
226 {
227 struct dsrtc_softc *sc;
228
229 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
230 return ENXIO;
231
232 sc->sc_open = false;
233 return 0;
234 }
235
236 /*ARGSUSED*/
237 int
238 dsrtc_read(dev_t dev, struct uio *uio, int flags)
239 {
240 struct dsrtc_softc *sc;
241 int error;
242
243 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
244 return ENXIO;
245
246 const struct dsrtc_model * const dm = &sc->sc_model;
247 if (uio->uio_offset >= dm->dm_nvram_size)
248 return EINVAL;
249
250 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
251 return error;
252
253 KASSERT(uio->uio_offset >= 0);
254 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
255 uint8_t ch, cmd;
256 const u_int a = uio->uio_offset;
257 cmd = a + dm->dm_nvram_start;
258 if ((error = iic_exec(sc->sc_tag,
259 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
260 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
261 iic_release_bus(sc->sc_tag, 0);
262 aprint_error_dev(sc->sc_dev,
263 "%s: read failed at 0x%x: %d\n",
264 __func__, a, error);
265 return error;
266 }
267 if ((error = uiomove(&ch, 1, uio)) != 0) {
268 iic_release_bus(sc->sc_tag, 0);
269 return error;
270 }
271 }
272
273 iic_release_bus(sc->sc_tag, 0);
274
275 return 0;
276 }
277
278 /*ARGSUSED*/
279 int
280 dsrtc_write(dev_t dev, struct uio *uio, int flags)
281 {
282 struct dsrtc_softc *sc;
283 int error;
284
285 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
286 return ENXIO;
287
288 const struct dsrtc_model * const dm = &sc->sc_model;
289 if (uio->uio_offset >= dm->dm_nvram_size)
290 return EINVAL;
291
292 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
293 return error;
294
295 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
296 uint8_t cmdbuf[2];
297 const u_int a = (int)uio->uio_offset;
298 cmdbuf[0] = a + dm->dm_nvram_start;
299 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
300 break;
301
302 if ((error = iic_exec(sc->sc_tag,
303 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
304 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
305 aprint_error_dev(sc->sc_dev,
306 "%s: write failed at 0x%x: %d\n",
307 __func__, a, error);
308 break;
309 }
310 }
311
312 iic_release_bus(sc->sc_tag, 0);
313
314 return error;
315 }
316
317 static int
318 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
319 {
320 struct dsrtc_softc *sc = ch->cookie;
321 struct clock_ymdhms check;
322 int retries;
323
324 memset(dt, 0, sizeof(*dt));
325 memset(&check, 0, sizeof(check));
326
327 /*
328 * Since we don't support Burst Read, we have to read the clock twice
329 * until we get two consecutive identical results.
330 */
331 retries = 5;
332 do {
333 dsrtc_clock_read_ymdhms(sc, dt);
334 dsrtc_clock_read_ymdhms(sc, &check);
335 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
336
337 return 0;
338 }
339
340 static int
341 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
342 {
343 struct dsrtc_softc *sc = ch->cookie;
344
345 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
346 return -1;
347
348 return 0;
349 }
350
351 static int
352 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
353 {
354 struct dsrtc_model * const dm = &sc->sc_model;
355 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
356 int error;
357
358 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
359
360 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
361 aprint_error_dev(sc->sc_dev,
362 "%s: failed to acquire I2C bus: %d\n",
363 __func__, error);
364 return 0;
365 }
366
367 /* Read each RTC register in order. */
368 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
369 cmdbuf[0] = dm->dm_rtc_start + i;
370
371 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
372 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
373 }
374
375 /* Done with I2C */
376 iic_release_bus(sc->sc_tag, I2C_F_POLL);
377
378 if (error != 0) {
379 aprint_error_dev(sc->sc_dev,
380 "%s: failed to read rtc at 0x%x: %d\n",
381 __func__, cmdbuf[0], error);
382 return 0;
383 }
384
385 /*
386 * Convert the RTC's register values into something useable
387 */
388 dt->dt_sec = FROMBCD(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
389 dt->dt_min = FROMBCD(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
390
391 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
392 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
393 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
394 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
395 dt->dt_hour += 12;
396 } else
397 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
398 DSXXXX_HOURS_24MASK);
399
400 dt->dt_day = FROMBCD(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
401 dt->dt_mon = FROMBCD(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
402
403 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
404 dt->dt_year = FROMBCD(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
405 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
406 dt->dt_year += 100;
407
408 return 1;
409 }
410
411 static int
412 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
413 {
414 struct dsrtc_model * const dm = &sc->sc_model;
415 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
416 int error;
417
418 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
419
420 /*
421 * Convert our time representation into something the DSXXXX
422 * can understand.
423 */
424 bcd[DSXXXX_SECONDS] = TOBCD(dt->dt_sec);
425 bcd[DSXXXX_MINUTES] = TOBCD(dt->dt_min);
426 bcd[DSXXXX_HOURS] = TOBCD(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
427 bcd[DSXXXX_DATE] = TOBCD(dt->dt_day);
428 bcd[DSXXXX_DAY] = TOBCD(dt->dt_wday);
429 bcd[DSXXXX_MONTH] = TOBCD(dt->dt_mon);
430 bcd[DSXXXX_YEAR] = TOBCD((dt->dt_year - POSIX_BASE_YEAR) % 100);
431 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
432 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
433
434 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
435 aprint_error_dev(sc->sc_dev,
436 "%s: failed to acquire I2C bus: %d\n",
437 __func__, error);
438 return 0;
439 }
440
441 /* Stop the clock */
442 cmdbuf[0] = dm->dm_ch_reg;
443
444 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
445 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
446 iic_release_bus(sc->sc_tag, I2C_F_POLL);
447 aprint_error_dev(sc->sc_dev,
448 "%s: failed to read Hold Clock: %d\n",
449 __func__, error);
450 return 0;
451 }
452
453 cmdbuf[1] |= dm->dm_ch_value;
454
455 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
456 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
457 iic_release_bus(sc->sc_tag, I2C_F_POLL);
458 aprint_error_dev(sc->sc_dev,
459 "%s: failed to write Hold Clock: %d\n",
460 __func__, error);
461 return 0;
462 }
463
464 /*
465 * Write registers in reverse order. The last write (to the Seconds
466 * register) will undo the Clock Hold, above.
467 */
468 uint8_t op = I2C_OP_WRITE;
469 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
470 cmdbuf[0] = dm->dm_rtc_start + i;
471 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
472 op = I2C_OP_WRITE_WITH_STOP;
473 }
474 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
475 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
476 iic_release_bus(sc->sc_tag, I2C_F_POLL);
477 aprint_error_dev(sc->sc_dev,
478 "%s: failed to write rtc at 0x%x: %d\n",
479 __func__, i, error);
480 /* XXX: Clock Hold is likely still asserted! */
481 return 0;
482 }
483 }
484 /*
485 * If the clock hold register isn't the same register as seconds,
486 * we need to reeanble the clock.
487 */
488 if (op != I2C_OP_WRITE_WITH_STOP) {
489 cmdbuf[0] = dm->dm_ch_reg;
490 cmdbuf[1] &= ~dm->dm_ch_value;
491
492 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
493 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
494 I2C_F_POLL)) != 0) {
495 iic_release_bus(sc->sc_tag, I2C_F_POLL);
496 aprint_error_dev(sc->sc_dev,
497 "%s: failed to Hold Clock: %d\n",
498 __func__, error);
499 return 0;
500 }
501 }
502
503 iic_release_bus(sc->sc_tag, I2C_F_POLL);
504
505 return 1;
506 }
507
508 static int
509 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
510 {
511 struct dsrtc_softc *sc = ch->cookie;
512 struct timeval check;
513 int retries;
514
515 memset(tv, 0, sizeof(*tv));
516 memset(&check, 0, sizeof(check));
517
518 /*
519 * Since we don't support Burst Read, we have to read the clock twice
520 * until we get two consecutive identical results.
521 */
522 retries = 5;
523 do {
524 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
525 dsrtc_clock_read_timeval(sc, &check.tv_sec);
526 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
527
528 return 0;
529 }
530
531 static int
532 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
533 {
534 struct dsrtc_softc *sc = ch->cookie;
535
536 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
537 return -1;
538
539 return 0;
540 }
541
542 /*
543 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
544 * it, since some I2C controllers don't support anything other than single-byte
545 * transfers.
546 */
547 static int
548 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
549 {
550 const struct dsrtc_model * const dm = &sc->sc_model;
551 uint8_t buf[4];
552 int error;
553
554 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
555 aprint_error_dev(sc->sc_dev,
556 "%s: failed to acquire I2C bus: %d\n",
557 __func__, error);
558 return 0;
559 }
560
561 /* read all registers: */
562 uint8_t reg = dm->dm_rtc_start;
563 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
564 ®, 1, buf, 4, I2C_F_POLL);
565
566 /* Done with I2C */
567 iic_release_bus(sc->sc_tag, I2C_F_POLL);
568
569 if (error != 0) {
570 aprint_error_dev(sc->sc_dev,
571 "%s: failed to read rtc at 0x%x: %d\n",
572 __func__, reg, error);
573 return 0;
574 }
575
576 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
577 *tp = v;
578
579 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
580 __func__, v);
581
582 return 1;
583 }
584
585 static int
586 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
587 {
588 const struct dsrtc_model * const dm = &sc->sc_model;
589 size_t buflen = dm->dm_rtc_size + 2;
590 uint8_t buf[buflen];
591 int error;
592
593 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
594 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
595
596 buf[0] = dm->dm_rtc_start;
597 buf[1] = (t >> 0) & 0xff;
598 buf[2] = (t >> 8) & 0xff;
599 buf[3] = (t >> 16) & 0xff;
600 buf[4] = (t >> 24) & 0xff;
601 buf[5] = 0;
602
603 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
604 aprint_error_dev(sc->sc_dev,
605 "%s: failed to acquire I2C bus: %d\n",
606 __func__, error);
607 return 0;
608 }
609
610 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
611 &buf, buflen, NULL, 0, I2C_F_POLL);
612
613 /* Done with I2C */
614 iic_release_bus(sc->sc_tag, I2C_F_POLL);
615
616 /* send data */
617 if (error != 0) {
618 aprint_error_dev(sc->sc_dev,
619 "%s: failed to set time: %d\n",
620 __func__, error);
621 return 0;
622 }
623
624 return 1;
625 }
626