ds1307.c revision 1.17.2.1 1 /* $NetBSD: ds1307.c,v 1.17.2.1 2014/08/10 06:54:51 tls Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.17.2.1 2014/08/10 06:54:51 tls Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54
55 struct dsrtc_model {
56 uint16_t dm_model;
57 uint8_t dm_ch_reg;
58 uint8_t dm_ch_value;
59 uint8_t dm_rtc_start;
60 uint8_t dm_rtc_size;
61 uint8_t dm_nvram_start;
62 uint8_t dm_nvram_size;
63 uint8_t dm_flags;
64 #define DSRTC_FLAG_CLOCK_HOLD 1
65 #define DSRTC_FLAG_BCD 2
66 };
67
68 static const struct dsrtc_model dsrtc_models[] = {
69 {
70 .dm_model = 1307,
71 .dm_ch_reg = DSXXXX_SECONDS,
72 .dm_ch_value = DS1307_SECONDS_CH,
73 .dm_rtc_start = DS1307_RTC_START,
74 .dm_rtc_size = DS1307_RTC_SIZE,
75 .dm_nvram_start = DS1307_NVRAM_START,
76 .dm_nvram_size = DS1307_NVRAM_SIZE,
77 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
78 }, {
79 .dm_model = 1339,
80 .dm_rtc_start = DS1339_RTC_START,
81 .dm_rtc_size = DS1339_RTC_SIZE,
82 .dm_flags = DSRTC_FLAG_BCD,
83 }, {
84 .dm_model = 1672,
85 .dm_rtc_start = DS1672_RTC_START,
86 .dm_rtc_size = DS1672_RTC_SIZE,
87 .dm_flags = 0,
88 }, {
89 .dm_model = 3232,
90 .dm_rtc_start = DS3232_RTC_START,
91 .dm_rtc_size = DS3232_RTC_SIZE,
92 .dm_nvram_start = DS3232_NVRAM_START,
93 .dm_nvram_size = DS3232_NVRAM_SIZE,
94 .dm_flags = DSRTC_FLAG_BCD,
95 },
96 };
97
98 struct dsrtc_softc {
99 device_t sc_dev;
100 i2c_tag_t sc_tag;
101 uint8_t sc_address;
102 bool sc_open;
103 struct dsrtc_model sc_model;
104 struct todr_chip_handle sc_todr;
105 };
106
107 static void dsrtc_attach(device_t, device_t, void *);
108 static int dsrtc_match(device_t, cfdata_t, void *);
109
110 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
111 dsrtc_match, dsrtc_attach, NULL, NULL);
112 extern struct cfdriver dsrtc_cd;
113
114 dev_type_open(dsrtc_open);
115 dev_type_close(dsrtc_close);
116 dev_type_read(dsrtc_read);
117 dev_type_write(dsrtc_write);
118
119 const struct cdevsw dsrtc_cdevsw = {
120 .d_open = dsrtc_open,
121 .d_close = dsrtc_close,
122 .d_read = dsrtc_read,
123 .d_write = dsrtc_write,
124 .d_ioctl = noioctl,
125 .d_stop = nostop,
126 .d_tty = notty,
127 .d_poll = nopoll,
128 .d_mmap = nommap,
129 .d_kqfilter = nokqfilter,
130 .d_discard = nodiscard,
131 .d_flag = D_OTHER
132 };
133
134 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
135 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
136 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
137 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
138
139 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
140 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
141 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
142 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
143
144 static const struct dsrtc_model *
145 dsrtc_model(u_int model)
146 {
147 /* no model given, assume it's a DS1307 (the first one) */
148 if (model == 0)
149 return &dsrtc_models[0];
150
151 for (const struct dsrtc_model *dm = dsrtc_models;
152 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
153 if (dm->dm_model == model)
154 return dm;
155 }
156 return NULL;
157 }
158
159 static int
160 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
161 {
162 struct i2c_attach_args *ia = arg;
163
164 if (ia->ia_name) {
165 /* direct config - check name */
166 if (strcmp(ia->ia_name, "dsrtc") == 0)
167 return 1;
168 } else {
169 /* indirect config - check typical address */
170 if (ia->ia_addr == DS1307_ADDR)
171 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
172 }
173 return 0;
174 }
175
176 static void
177 dsrtc_attach(device_t parent, device_t self, void *arg)
178 {
179 struct dsrtc_softc *sc = device_private(self);
180 struct i2c_attach_args *ia = arg;
181 const struct dsrtc_model * const dm =
182 dsrtc_model(device_cfdata(self)->cf_flags);
183
184 aprint_naive(": Real-time Clock%s\n",
185 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
186 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
187 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
188
189 sc->sc_tag = ia->ia_tag;
190 sc->sc_address = ia->ia_addr;
191 sc->sc_model = *dm;
192 sc->sc_dev = self;
193 sc->sc_open = 0;
194 sc->sc_todr.cookie = sc;
195 if (dm->dm_flags & DSRTC_FLAG_BCD) {
196 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
197 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
198 } else {
199 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
200 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
201 }
202 sc->sc_todr.todr_setwen = NULL;
203
204 todr_attach(&sc->sc_todr);
205 }
206
207 /*ARGSUSED*/
208 int
209 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
210 {
211 struct dsrtc_softc *sc;
212
213 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
214 return ENXIO;
215
216 /* XXX: Locking */
217 if (sc->sc_open)
218 return EBUSY;
219
220 sc->sc_open = true;
221 return 0;
222 }
223
224 /*ARGSUSED*/
225 int
226 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
227 {
228 struct dsrtc_softc *sc;
229
230 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
231 return ENXIO;
232
233 sc->sc_open = false;
234 return 0;
235 }
236
237 /*ARGSUSED*/
238 int
239 dsrtc_read(dev_t dev, struct uio *uio, int flags)
240 {
241 struct dsrtc_softc *sc;
242 int error;
243
244 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
245 return ENXIO;
246
247 const struct dsrtc_model * const dm = &sc->sc_model;
248 if (uio->uio_offset >= dm->dm_nvram_size)
249 return EINVAL;
250
251 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
252 return error;
253
254 KASSERT(uio->uio_offset >= 0);
255 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
256 uint8_t ch, cmd;
257 const u_int a = uio->uio_offset;
258 cmd = a + dm->dm_nvram_start;
259 if ((error = iic_exec(sc->sc_tag,
260 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
261 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
262 iic_release_bus(sc->sc_tag, 0);
263 aprint_error_dev(sc->sc_dev,
264 "%s: read failed at 0x%x: %d\n",
265 __func__, a, error);
266 return error;
267 }
268 if ((error = uiomove(&ch, 1, uio)) != 0) {
269 iic_release_bus(sc->sc_tag, 0);
270 return error;
271 }
272 }
273
274 iic_release_bus(sc->sc_tag, 0);
275
276 return 0;
277 }
278
279 /*ARGSUSED*/
280 int
281 dsrtc_write(dev_t dev, struct uio *uio, int flags)
282 {
283 struct dsrtc_softc *sc;
284 int error;
285
286 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
287 return ENXIO;
288
289 const struct dsrtc_model * const dm = &sc->sc_model;
290 if (uio->uio_offset >= dm->dm_nvram_size)
291 return EINVAL;
292
293 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
294 return error;
295
296 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
297 uint8_t cmdbuf[2];
298 const u_int a = (int)uio->uio_offset;
299 cmdbuf[0] = a + dm->dm_nvram_start;
300 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
301 break;
302
303 if ((error = iic_exec(sc->sc_tag,
304 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
305 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
306 aprint_error_dev(sc->sc_dev,
307 "%s: write failed at 0x%x: %d\n",
308 __func__, a, error);
309 break;
310 }
311 }
312
313 iic_release_bus(sc->sc_tag, 0);
314
315 return error;
316 }
317
318 static int
319 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
320 {
321 struct dsrtc_softc *sc = ch->cookie;
322 struct clock_ymdhms check;
323 int retries;
324
325 memset(dt, 0, sizeof(*dt));
326 memset(&check, 0, sizeof(check));
327
328 /*
329 * Since we don't support Burst Read, we have to read the clock twice
330 * until we get two consecutive identical results.
331 */
332 retries = 5;
333 do {
334 dsrtc_clock_read_ymdhms(sc, dt);
335 dsrtc_clock_read_ymdhms(sc, &check);
336 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
337
338 return 0;
339 }
340
341 static int
342 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
343 {
344 struct dsrtc_softc *sc = ch->cookie;
345
346 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
347 return -1;
348
349 return 0;
350 }
351
352 static int
353 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
354 {
355 struct dsrtc_model * const dm = &sc->sc_model;
356 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
357 int error;
358
359 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
360
361 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
362 aprint_error_dev(sc->sc_dev,
363 "%s: failed to acquire I2C bus: %d\n",
364 __func__, error);
365 return 0;
366 }
367
368 /* Read each RTC register in order. */
369 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
370 cmdbuf[0] = dm->dm_rtc_start + i;
371
372 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
373 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
374 }
375
376 /* Done with I2C */
377 iic_release_bus(sc->sc_tag, I2C_F_POLL);
378
379 if (error != 0) {
380 aprint_error_dev(sc->sc_dev,
381 "%s: failed to read rtc at 0x%x: %d\n",
382 __func__, cmdbuf[0], error);
383 return 0;
384 }
385
386 /*
387 * Convert the RTC's register values into something useable
388 */
389 dt->dt_sec = FROMBCD(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
390 dt->dt_min = FROMBCD(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
391
392 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
393 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
394 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
395 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
396 dt->dt_hour += 12;
397 } else
398 dt->dt_hour = FROMBCD(bcd[DSXXXX_HOURS] &
399 DSXXXX_HOURS_24MASK);
400
401 dt->dt_day = FROMBCD(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
402 dt->dt_mon = FROMBCD(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
403
404 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
405 dt->dt_year = FROMBCD(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
406 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
407 dt->dt_year += 100;
408
409 return 1;
410 }
411
412 static int
413 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
414 {
415 struct dsrtc_model * const dm = &sc->sc_model;
416 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
417 int error;
418
419 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
420
421 /*
422 * Convert our time representation into something the DSXXXX
423 * can understand.
424 */
425 bcd[DSXXXX_SECONDS] = TOBCD(dt->dt_sec);
426 bcd[DSXXXX_MINUTES] = TOBCD(dt->dt_min);
427 bcd[DSXXXX_HOURS] = TOBCD(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
428 bcd[DSXXXX_DATE] = TOBCD(dt->dt_day);
429 bcd[DSXXXX_DAY] = TOBCD(dt->dt_wday);
430 bcd[DSXXXX_MONTH] = TOBCD(dt->dt_mon);
431 bcd[DSXXXX_YEAR] = TOBCD((dt->dt_year - POSIX_BASE_YEAR) % 100);
432 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
433 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
434
435 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
436 aprint_error_dev(sc->sc_dev,
437 "%s: failed to acquire I2C bus: %d\n",
438 __func__, error);
439 return 0;
440 }
441
442 /* Stop the clock */
443 cmdbuf[0] = dm->dm_ch_reg;
444
445 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
446 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
447 iic_release_bus(sc->sc_tag, I2C_F_POLL);
448 aprint_error_dev(sc->sc_dev,
449 "%s: failed to read Hold Clock: %d\n",
450 __func__, error);
451 return 0;
452 }
453
454 cmdbuf[1] |= dm->dm_ch_value;
455
456 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
457 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
458 iic_release_bus(sc->sc_tag, I2C_F_POLL);
459 aprint_error_dev(sc->sc_dev,
460 "%s: failed to write Hold Clock: %d\n",
461 __func__, error);
462 return 0;
463 }
464
465 /*
466 * Write registers in reverse order. The last write (to the Seconds
467 * register) will undo the Clock Hold, above.
468 */
469 uint8_t op = I2C_OP_WRITE;
470 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
471 cmdbuf[0] = dm->dm_rtc_start + i;
472 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
473 op = I2C_OP_WRITE_WITH_STOP;
474 }
475 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
476 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
477 iic_release_bus(sc->sc_tag, I2C_F_POLL);
478 aprint_error_dev(sc->sc_dev,
479 "%s: failed to write rtc at 0x%x: %d\n",
480 __func__, i, error);
481 /* XXX: Clock Hold is likely still asserted! */
482 return 0;
483 }
484 }
485 /*
486 * If the clock hold register isn't the same register as seconds,
487 * we need to reeanble the clock.
488 */
489 if (op != I2C_OP_WRITE_WITH_STOP) {
490 cmdbuf[0] = dm->dm_ch_reg;
491 cmdbuf[1] &= ~dm->dm_ch_value;
492
493 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
494 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
495 I2C_F_POLL)) != 0) {
496 iic_release_bus(sc->sc_tag, I2C_F_POLL);
497 aprint_error_dev(sc->sc_dev,
498 "%s: failed to Hold Clock: %d\n",
499 __func__, error);
500 return 0;
501 }
502 }
503
504 iic_release_bus(sc->sc_tag, I2C_F_POLL);
505
506 return 1;
507 }
508
509 static int
510 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
511 {
512 struct dsrtc_softc *sc = ch->cookie;
513 struct timeval check;
514 int retries;
515
516 memset(tv, 0, sizeof(*tv));
517 memset(&check, 0, sizeof(check));
518
519 /*
520 * Since we don't support Burst Read, we have to read the clock twice
521 * until we get two consecutive identical results.
522 */
523 retries = 5;
524 do {
525 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
526 dsrtc_clock_read_timeval(sc, &check.tv_sec);
527 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
528
529 return 0;
530 }
531
532 static int
533 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
534 {
535 struct dsrtc_softc *sc = ch->cookie;
536
537 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
538 return -1;
539
540 return 0;
541 }
542
543 /*
544 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
545 * it, since some I2C controllers don't support anything other than single-byte
546 * transfers.
547 */
548 static int
549 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
550 {
551 const struct dsrtc_model * const dm = &sc->sc_model;
552 uint8_t buf[4];
553 int error;
554
555 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
556 aprint_error_dev(sc->sc_dev,
557 "%s: failed to acquire I2C bus: %d\n",
558 __func__, error);
559 return 0;
560 }
561
562 /* read all registers: */
563 uint8_t reg = dm->dm_rtc_start;
564 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
565 ®, 1, buf, 4, I2C_F_POLL);
566
567 /* Done with I2C */
568 iic_release_bus(sc->sc_tag, I2C_F_POLL);
569
570 if (error != 0) {
571 aprint_error_dev(sc->sc_dev,
572 "%s: failed to read rtc at 0x%x: %d\n",
573 __func__, reg, error);
574 return 0;
575 }
576
577 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
578 *tp = v;
579
580 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
581 __func__, v);
582
583 return 1;
584 }
585
586 static int
587 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
588 {
589 const struct dsrtc_model * const dm = &sc->sc_model;
590 size_t buflen = dm->dm_rtc_size + 2;
591 uint8_t buf[buflen];
592 int error;
593
594 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
595 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
596
597 buf[0] = dm->dm_rtc_start;
598 buf[1] = (t >> 0) & 0xff;
599 buf[2] = (t >> 8) & 0xff;
600 buf[3] = (t >> 16) & 0xff;
601 buf[4] = (t >> 24) & 0xff;
602 buf[5] = 0;
603
604 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
605 aprint_error_dev(sc->sc_dev,
606 "%s: failed to acquire I2C bus: %d\n",
607 __func__, error);
608 return 0;
609 }
610
611 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
612 &buf, buflen, NULL, 0, I2C_F_POLL);
613
614 /* Done with I2C */
615 iic_release_bus(sc->sc_tag, I2C_F_POLL);
616
617 /* send data */
618 if (error != 0) {
619 aprint_error_dev(sc->sc_dev,
620 "%s: failed to set time: %d\n",
621 __func__, error);
622 return 0;
623 }
624
625 return 1;
626 }
627