ds1307.c revision 1.21 1 /* $NetBSD: ds1307.c,v 1.21 2014/11/20 16:34:26 christos Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.21 2014/11/20 16:34:26 christos Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 struct dsrtc_model {
57 uint16_t dm_model;
58 uint8_t dm_ch_reg;
59 uint8_t dm_ch_value;
60 uint8_t dm_rtc_start;
61 uint8_t dm_rtc_size;
62 uint8_t dm_nvram_start;
63 uint8_t dm_nvram_size;
64 uint8_t dm_flags;
65 #define DSRTC_FLAG_CLOCK_HOLD 1
66 #define DSRTC_FLAG_BCD 2
67 #define DSRTC_FLAG_TEMP 4
68 };
69
70 static const struct dsrtc_model dsrtc_models[] = {
71 {
72 .dm_model = 1307,
73 .dm_ch_reg = DSXXXX_SECONDS,
74 .dm_ch_value = DS1307_SECONDS_CH,
75 .dm_rtc_start = DS1307_RTC_START,
76 .dm_rtc_size = DS1307_RTC_SIZE,
77 .dm_nvram_start = DS1307_NVRAM_START,
78 .dm_nvram_size = DS1307_NVRAM_SIZE,
79 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
80 }, {
81 .dm_model = 1339,
82 .dm_rtc_start = DS1339_RTC_START,
83 .dm_rtc_size = DS1339_RTC_SIZE,
84 .dm_flags = DSRTC_FLAG_BCD,
85 }, {
86 .dm_model = 1672,
87 .dm_rtc_start = DS1672_RTC_START,
88 .dm_rtc_size = DS1672_RTC_SIZE,
89 .dm_flags = 0,
90 }, {
91 .dm_model = 3231,
92 .dm_rtc_start = DS3232_RTC_START,
93 .dm_rtc_size = DS3232_RTC_SIZE,
94 /*
95 * XXX
96 * the DS3232 likely has the temperature sensor too but I can't
97 * easily verify or test that right now
98 */
99 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
100 }, {
101 .dm_model = 3232,
102 .dm_rtc_start = DS3232_RTC_START,
103 .dm_rtc_size = DS3232_RTC_SIZE,
104 .dm_nvram_start = DS3232_NVRAM_START,
105 .dm_nvram_size = DS3232_NVRAM_SIZE,
106 .dm_flags = DSRTC_FLAG_BCD,
107 },
108 };
109
110 struct dsrtc_softc {
111 device_t sc_dev;
112 i2c_tag_t sc_tag;
113 uint8_t sc_address;
114 bool sc_open;
115 struct dsrtc_model sc_model;
116 struct todr_chip_handle sc_todr;
117 struct sysmon_envsys *sc_sme;
118 envsys_data_t sc_sensor;
119 };
120
121 static void dsrtc_attach(device_t, device_t, void *);
122 static int dsrtc_match(device_t, cfdata_t, void *);
123
124 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
125 dsrtc_match, dsrtc_attach, NULL, NULL);
126 extern struct cfdriver dsrtc_cd;
127
128 dev_type_open(dsrtc_open);
129 dev_type_close(dsrtc_close);
130 dev_type_read(dsrtc_read);
131 dev_type_write(dsrtc_write);
132
133 const struct cdevsw dsrtc_cdevsw = {
134 .d_open = dsrtc_open,
135 .d_close = dsrtc_close,
136 .d_read = dsrtc_read,
137 .d_write = dsrtc_write,
138 .d_ioctl = noioctl,
139 .d_stop = nostop,
140 .d_tty = notty,
141 .d_poll = nopoll,
142 .d_mmap = nommap,
143 .d_kqfilter = nokqfilter,
144 .d_discard = nodiscard,
145 .d_flag = D_OTHER
146 };
147
148 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
149 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
150 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
151 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
152
153 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
154 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
155 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
156 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
157
158 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
159 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
160
161 static const struct dsrtc_model *
162 dsrtc_model(u_int model)
163 {
164 /* no model given, assume it's a DS1307 (the first one) */
165 if (model == 0)
166 return &dsrtc_models[0];
167
168 for (const struct dsrtc_model *dm = dsrtc_models;
169 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
170 if (dm->dm_model == model)
171 return dm;
172 }
173 return NULL;
174 }
175
176 static int
177 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
178 {
179 struct i2c_attach_args *ia = arg;
180
181 if (ia->ia_name) {
182 /* direct config - check name */
183 if (strcmp(ia->ia_name, "dsrtc") == 0)
184 return 1;
185 } else {
186 /* indirect config - check typical address */
187 if (ia->ia_addr == DS1307_ADDR)
188 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
189 }
190 return 0;
191 }
192
193 static void
194 dsrtc_attach(device_t parent, device_t self, void *arg)
195 {
196 struct dsrtc_softc *sc = device_private(self);
197 struct i2c_attach_args *ia = arg;
198 const struct dsrtc_model * const dm =
199 dsrtc_model(device_cfdata(self)->cf_flags);
200
201 aprint_naive(": Real-time Clock%s\n",
202 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
203 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
204 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
205
206 sc->sc_tag = ia->ia_tag;
207 sc->sc_address = ia->ia_addr;
208 sc->sc_model = *dm;
209 sc->sc_dev = self;
210 sc->sc_open = 0;
211 sc->sc_todr.cookie = sc;
212 if (dm->dm_flags & DSRTC_FLAG_BCD) {
213 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
214 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
215 } else {
216 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
217 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
218 }
219 sc->sc_todr.todr_setwen = NULL;
220
221 todr_attach(&sc->sc_todr);
222 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
223 int error;
224
225 sc->sc_sme = sysmon_envsys_create();
226 sc->sc_sme->sme_name = device_xname(self);
227 sc->sc_sme->sme_cookie = sc;
228 sc->sc_sme->sme_refresh = dsrtc_refresh;
229
230 sc->sc_sensor.units = ENVSYS_STEMP;
231 sc->sc_sensor.state = ENVSYS_SINVALID;
232 sc->sc_sensor.flags = 0;
233 (void)strlcpy(sc->sc_sensor.desc, "temperature",
234 sizeof(sc->sc_sensor.desc));
235
236 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
237 aprint_error_dev(self, "unable to attach sensor\n");
238 goto bad;
239 }
240
241 error = sysmon_envsys_register(sc->sc_sme);
242 if (error) {
243 aprint_error_dev(self,
244 "error %d registering with sysmon\n", error);
245 goto bad;
246 }
247 }
248 return;
249 bad:
250 sysmon_envsys_destroy(sc->sc_sme);
251 }
252
253 /*ARGSUSED*/
254 int
255 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
256 {
257 struct dsrtc_softc *sc;
258
259 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
260 return ENXIO;
261
262 /* XXX: Locking */
263 if (sc->sc_open)
264 return EBUSY;
265
266 sc->sc_open = true;
267 return 0;
268 }
269
270 /*ARGSUSED*/
271 int
272 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
273 {
274 struct dsrtc_softc *sc;
275
276 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
277 return ENXIO;
278
279 sc->sc_open = false;
280 return 0;
281 }
282
283 /*ARGSUSED*/
284 int
285 dsrtc_read(dev_t dev, struct uio *uio, int flags)
286 {
287 struct dsrtc_softc *sc;
288 int error;
289
290 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
291 return ENXIO;
292
293 const struct dsrtc_model * const dm = &sc->sc_model;
294 if (uio->uio_offset >= dm->dm_nvram_size)
295 return EINVAL;
296
297 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
298 return error;
299
300 KASSERT(uio->uio_offset >= 0);
301 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
302 uint8_t ch, cmd;
303 const u_int a = uio->uio_offset;
304 cmd = a + dm->dm_nvram_start;
305 if ((error = iic_exec(sc->sc_tag,
306 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
307 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
308 iic_release_bus(sc->sc_tag, 0);
309 aprint_error_dev(sc->sc_dev,
310 "%s: read failed at 0x%x: %d\n",
311 __func__, a, error);
312 return error;
313 }
314 if ((error = uiomove(&ch, 1, uio)) != 0) {
315 iic_release_bus(sc->sc_tag, 0);
316 return error;
317 }
318 }
319
320 iic_release_bus(sc->sc_tag, 0);
321
322 return 0;
323 }
324
325 /*ARGSUSED*/
326 int
327 dsrtc_write(dev_t dev, struct uio *uio, int flags)
328 {
329 struct dsrtc_softc *sc;
330 int error;
331
332 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
333 return ENXIO;
334
335 const struct dsrtc_model * const dm = &sc->sc_model;
336 if (uio->uio_offset >= dm->dm_nvram_size)
337 return EINVAL;
338
339 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
340 return error;
341
342 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
343 uint8_t cmdbuf[2];
344 const u_int a = (int)uio->uio_offset;
345 cmdbuf[0] = a + dm->dm_nvram_start;
346 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
347 break;
348
349 if ((error = iic_exec(sc->sc_tag,
350 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
351 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
352 aprint_error_dev(sc->sc_dev,
353 "%s: write failed at 0x%x: %d\n",
354 __func__, a, error);
355 break;
356 }
357 }
358
359 iic_release_bus(sc->sc_tag, 0);
360
361 return error;
362 }
363
364 static int
365 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
366 {
367 struct dsrtc_softc *sc = ch->cookie;
368 struct clock_ymdhms check;
369 int retries;
370
371 memset(dt, 0, sizeof(*dt));
372 memset(&check, 0, sizeof(check));
373
374 /*
375 * Since we don't support Burst Read, we have to read the clock twice
376 * until we get two consecutive identical results.
377 */
378 retries = 5;
379 do {
380 dsrtc_clock_read_ymdhms(sc, dt);
381 dsrtc_clock_read_ymdhms(sc, &check);
382 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
383
384 return 0;
385 }
386
387 static int
388 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
389 {
390 struct dsrtc_softc *sc = ch->cookie;
391
392 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
393 return -1;
394
395 return 0;
396 }
397
398 static int
399 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
400 {
401 struct dsrtc_model * const dm = &sc->sc_model;
402 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
403 int error;
404
405 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
406
407 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
408 aprint_error_dev(sc->sc_dev,
409 "%s: failed to acquire I2C bus: %d\n",
410 __func__, error);
411 return 0;
412 }
413
414 /* Read each RTC register in order. */
415 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
416 cmdbuf[0] = dm->dm_rtc_start + i;
417
418 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
419 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
420 }
421
422 /* Done with I2C */
423 iic_release_bus(sc->sc_tag, I2C_F_POLL);
424
425 if (error != 0) {
426 aprint_error_dev(sc->sc_dev,
427 "%s: failed to read rtc at 0x%x: %d\n",
428 __func__, cmdbuf[0], error);
429 return 0;
430 }
431
432 /*
433 * Convert the RTC's register values into something useable
434 */
435 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
436 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
437
438 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
439 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
440 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
441 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
442 dt->dt_hour += 12;
443 } else
444 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
445 DSXXXX_HOURS_24MASK);
446
447 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
448 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
449
450 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
451 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
452 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
453 dt->dt_year += 100;
454
455 return 1;
456 }
457
458 static int
459 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
460 {
461 struct dsrtc_model * const dm = &sc->sc_model;
462 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
463 int error;
464
465 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
466
467 /*
468 * Convert our time representation into something the DSXXXX
469 * can understand.
470 */
471 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
472 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
473 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
474 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
475 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
476 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
477 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
478 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
479 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
480
481 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
482 aprint_error_dev(sc->sc_dev,
483 "%s: failed to acquire I2C bus: %d\n",
484 __func__, error);
485 return 0;
486 }
487
488 /* Stop the clock */
489 cmdbuf[0] = dm->dm_ch_reg;
490
491 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
492 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
493 iic_release_bus(sc->sc_tag, I2C_F_POLL);
494 aprint_error_dev(sc->sc_dev,
495 "%s: failed to read Hold Clock: %d\n",
496 __func__, error);
497 return 0;
498 }
499
500 cmdbuf[1] |= dm->dm_ch_value;
501
502 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
503 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
504 iic_release_bus(sc->sc_tag, I2C_F_POLL);
505 aprint_error_dev(sc->sc_dev,
506 "%s: failed to write Hold Clock: %d\n",
507 __func__, error);
508 return 0;
509 }
510
511 /*
512 * Write registers in reverse order. The last write (to the Seconds
513 * register) will undo the Clock Hold, above.
514 */
515 uint8_t op = I2C_OP_WRITE;
516 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
517 cmdbuf[0] = dm->dm_rtc_start + i;
518 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
519 op = I2C_OP_WRITE_WITH_STOP;
520 }
521 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
522 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
523 iic_release_bus(sc->sc_tag, I2C_F_POLL);
524 aprint_error_dev(sc->sc_dev,
525 "%s: failed to write rtc at 0x%x: %d\n",
526 __func__, i, error);
527 /* XXX: Clock Hold is likely still asserted! */
528 return 0;
529 }
530 }
531 /*
532 * If the clock hold register isn't the same register as seconds,
533 * we need to reeanble the clock.
534 */
535 if (op != I2C_OP_WRITE_WITH_STOP) {
536 cmdbuf[0] = dm->dm_ch_reg;
537 cmdbuf[1] &= ~dm->dm_ch_value;
538
539 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
540 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
541 I2C_F_POLL)) != 0) {
542 iic_release_bus(sc->sc_tag, I2C_F_POLL);
543 aprint_error_dev(sc->sc_dev,
544 "%s: failed to Hold Clock: %d\n",
545 __func__, error);
546 return 0;
547 }
548 }
549
550 iic_release_bus(sc->sc_tag, I2C_F_POLL);
551
552 return 1;
553 }
554
555 static int
556 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
557 {
558 struct dsrtc_softc *sc = ch->cookie;
559 struct timeval check;
560 int retries;
561
562 memset(tv, 0, sizeof(*tv));
563 memset(&check, 0, sizeof(check));
564
565 /*
566 * Since we don't support Burst Read, we have to read the clock twice
567 * until we get two consecutive identical results.
568 */
569 retries = 5;
570 do {
571 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
572 dsrtc_clock_read_timeval(sc, &check.tv_sec);
573 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
574
575 return 0;
576 }
577
578 static int
579 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
580 {
581 struct dsrtc_softc *sc = ch->cookie;
582
583 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
584 return -1;
585
586 return 0;
587 }
588
589 /*
590 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
591 * it, since some I2C controllers don't support anything other than single-byte
592 * transfers.
593 */
594 static int
595 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
596 {
597 const struct dsrtc_model * const dm = &sc->sc_model;
598 uint8_t buf[4];
599 int error;
600
601 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
602 aprint_error_dev(sc->sc_dev,
603 "%s: failed to acquire I2C bus: %d\n",
604 __func__, error);
605 return 0;
606 }
607
608 /* read all registers: */
609 uint8_t reg = dm->dm_rtc_start;
610 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
611 ®, 1, buf, 4, I2C_F_POLL);
612
613 /* Done with I2C */
614 iic_release_bus(sc->sc_tag, I2C_F_POLL);
615
616 if (error != 0) {
617 aprint_error_dev(sc->sc_dev,
618 "%s: failed to read rtc at 0x%x: %d\n",
619 __func__, reg, error);
620 return 0;
621 }
622
623 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
624 *tp = v;
625
626 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
627 __func__, v);
628
629 return 1;
630 }
631
632 static int
633 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
634 {
635 const struct dsrtc_model * const dm = &sc->sc_model;
636 size_t buflen = dm->dm_rtc_size + 2;
637 uint8_t buf[buflen];
638 int error;
639
640 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
641 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
642
643 buf[0] = dm->dm_rtc_start;
644 buf[1] = (t >> 0) & 0xff;
645 buf[2] = (t >> 8) & 0xff;
646 buf[3] = (t >> 16) & 0xff;
647 buf[4] = (t >> 24) & 0xff;
648 buf[5] = 0;
649
650 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
651 aprint_error_dev(sc->sc_dev,
652 "%s: failed to acquire I2C bus: %d\n",
653 __func__, error);
654 return 0;
655 }
656
657 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
658 &buf, buflen, NULL, 0, I2C_F_POLL);
659
660 /* Done with I2C */
661 iic_release_bus(sc->sc_tag, I2C_F_POLL);
662
663 /* send data */
664 if (error != 0) {
665 aprint_error_dev(sc->sc_dev,
666 "%s: failed to set time: %d\n",
667 __func__, error);
668 return 0;
669 }
670
671 return 1;
672 }
673
674 static int
675 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
676 {
677 int error, tc;
678 uint8_t reg = DS3232_TEMP_MSB;
679 uint8_t buf[2];
680
681 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
682 return ENOTSUP;
683
684 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
685 aprint_error_dev(sc->sc_dev,
686 "%s: failed to acquire I2C bus: %d\n",
687 __func__, error);
688 return 0;
689 }
690
691 /* read temperature registers: */
692 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
693 ®, 1, buf, 2, I2C_F_POLL);
694
695 /* Done with I2C */
696 iic_release_bus(sc->sc_tag, I2C_F_POLL);
697
698 if (error != 0) {
699 aprint_error_dev(sc->sc_dev,
700 "%s: failed to read temperature: %d\n",
701 __func__, error);
702 return 0;
703 }
704
705 /* convert to microkelvin */
706 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
707 *temp = tc + 273150000;
708 return 1;
709 }
710
711 static void
712 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
713 {
714 struct dsrtc_softc *sc = sme->sme_cookie;
715 uint32_t temp = 0; /* XXX gcc */
716
717 if (dsrtc_read_temp(sc, &temp) == 0) {
718 edata->state = ENVSYS_SINVALID;
719 return;
720 }
721
722 edata->value_cur = temp;
723
724 edata->state = ENVSYS_SVALID;
725 }
726