ds1307.c revision 1.22 1 /* $NetBSD: ds1307.c,v 1.22 2016/04/05 10:53:16 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.22 2016/04/05 10:53:16 bouyer Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 struct dsrtc_model {
57 uint16_t dm_model;
58 uint8_t dm_ch_reg;
59 uint8_t dm_ch_value;
60 uint8_t dm_rtc_start;
61 uint8_t dm_rtc_size;
62 uint8_t dm_nvram_start;
63 uint8_t dm_nvram_size;
64 uint8_t dm_flags;
65 #define DSRTC_FLAG_CLOCK_HOLD 1
66 #define DSRTC_FLAG_BCD 2
67 #define DSRTC_FLAG_TEMP 4
68 };
69
70 static const struct dsrtc_model dsrtc_models[] = {
71 {
72 .dm_model = 1307,
73 .dm_ch_reg = DSXXXX_SECONDS,
74 .dm_ch_value = DS1307_SECONDS_CH,
75 .dm_rtc_start = DS1307_RTC_START,
76 .dm_rtc_size = DS1307_RTC_SIZE,
77 .dm_nvram_start = DS1307_NVRAM_START,
78 .dm_nvram_size = DS1307_NVRAM_SIZE,
79 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
80 }, {
81 .dm_model = 1339,
82 .dm_rtc_start = DS1339_RTC_START,
83 .dm_rtc_size = DS1339_RTC_SIZE,
84 .dm_flags = DSRTC_FLAG_BCD,
85 }, {
86 .dm_model = 1672,
87 .dm_rtc_start = DS1672_RTC_START,
88 .dm_rtc_size = DS1672_RTC_SIZE,
89 .dm_ch_reg = DS1672_CONTROL,
90 .dm_ch_value = DS1672_CONTROL_CH,
91 .dm_flags = 0,
92 }, {
93 .dm_model = 3231,
94 .dm_rtc_start = DS3232_RTC_START,
95 .dm_rtc_size = DS3232_RTC_SIZE,
96 /*
97 * XXX
98 * the DS3232 likely has the temperature sensor too but I can't
99 * easily verify or test that right now
100 */
101 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
102 }, {
103 .dm_model = 3232,
104 .dm_rtc_start = DS3232_RTC_START,
105 .dm_rtc_size = DS3232_RTC_SIZE,
106 .dm_nvram_start = DS3232_NVRAM_START,
107 .dm_nvram_size = DS3232_NVRAM_SIZE,
108 .dm_flags = DSRTC_FLAG_BCD,
109 },
110 };
111
112 struct dsrtc_softc {
113 device_t sc_dev;
114 i2c_tag_t sc_tag;
115 uint8_t sc_address;
116 bool sc_open;
117 struct dsrtc_model sc_model;
118 struct todr_chip_handle sc_todr;
119 struct sysmon_envsys *sc_sme;
120 envsys_data_t sc_sensor;
121 };
122
123 static void dsrtc_attach(device_t, device_t, void *);
124 static int dsrtc_match(device_t, cfdata_t, void *);
125
126 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
127 dsrtc_match, dsrtc_attach, NULL, NULL);
128 extern struct cfdriver dsrtc_cd;
129
130 dev_type_open(dsrtc_open);
131 dev_type_close(dsrtc_close);
132 dev_type_read(dsrtc_read);
133 dev_type_write(dsrtc_write);
134
135 const struct cdevsw dsrtc_cdevsw = {
136 .d_open = dsrtc_open,
137 .d_close = dsrtc_close,
138 .d_read = dsrtc_read,
139 .d_write = dsrtc_write,
140 .d_ioctl = noioctl,
141 .d_stop = nostop,
142 .d_tty = notty,
143 .d_poll = nopoll,
144 .d_mmap = nommap,
145 .d_kqfilter = nokqfilter,
146 .d_discard = nodiscard,
147 .d_flag = D_OTHER
148 };
149
150 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
151 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
152 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
153 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
154
155 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
156 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
157 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
158 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
159
160 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
161 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
162
163 static const struct dsrtc_model *
164 dsrtc_model(u_int model)
165 {
166 /* no model given, assume it's a DS1307 (the first one) */
167 if (model == 0)
168 return &dsrtc_models[0];
169
170 for (const struct dsrtc_model *dm = dsrtc_models;
171 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
172 if (dm->dm_model == model)
173 return dm;
174 }
175 return NULL;
176 }
177
178 static int
179 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
180 {
181 struct i2c_attach_args *ia = arg;
182
183 if (ia->ia_name) {
184 /* direct config - check name */
185 if (strcmp(ia->ia_name, "dsrtc") == 0)
186 return 1;
187 } else {
188 /* indirect config - check typical address */
189 if (ia->ia_addr == DS1307_ADDR)
190 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
191 }
192 return 0;
193 }
194
195 static void
196 dsrtc_attach(device_t parent, device_t self, void *arg)
197 {
198 struct dsrtc_softc *sc = device_private(self);
199 struct i2c_attach_args *ia = arg;
200 const struct dsrtc_model * const dm =
201 dsrtc_model(device_cfdata(self)->cf_flags);
202
203 aprint_naive(": Real-time Clock%s\n",
204 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
205 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
206 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
207
208 sc->sc_tag = ia->ia_tag;
209 sc->sc_address = ia->ia_addr;
210 sc->sc_model = *dm;
211 sc->sc_dev = self;
212 sc->sc_open = 0;
213 sc->sc_todr.cookie = sc;
214 if (dm->dm_flags & DSRTC_FLAG_BCD) {
215 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
216 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
217 } else {
218 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
219 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
220 }
221 sc->sc_todr.todr_setwen = NULL;
222
223 todr_attach(&sc->sc_todr);
224 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
225 int error;
226
227 sc->sc_sme = sysmon_envsys_create();
228 sc->sc_sme->sme_name = device_xname(self);
229 sc->sc_sme->sme_cookie = sc;
230 sc->sc_sme->sme_refresh = dsrtc_refresh;
231
232 sc->sc_sensor.units = ENVSYS_STEMP;
233 sc->sc_sensor.state = ENVSYS_SINVALID;
234 sc->sc_sensor.flags = 0;
235 (void)strlcpy(sc->sc_sensor.desc, "temperature",
236 sizeof(sc->sc_sensor.desc));
237
238 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
239 aprint_error_dev(self, "unable to attach sensor\n");
240 goto bad;
241 }
242
243 error = sysmon_envsys_register(sc->sc_sme);
244 if (error) {
245 aprint_error_dev(self,
246 "error %d registering with sysmon\n", error);
247 goto bad;
248 }
249 }
250 return;
251 bad:
252 sysmon_envsys_destroy(sc->sc_sme);
253 }
254
255 /*ARGSUSED*/
256 int
257 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
258 {
259 struct dsrtc_softc *sc;
260
261 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
262 return ENXIO;
263
264 /* XXX: Locking */
265 if (sc->sc_open)
266 return EBUSY;
267
268 sc->sc_open = true;
269 return 0;
270 }
271
272 /*ARGSUSED*/
273 int
274 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
275 {
276 struct dsrtc_softc *sc;
277
278 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
279 return ENXIO;
280
281 sc->sc_open = false;
282 return 0;
283 }
284
285 /*ARGSUSED*/
286 int
287 dsrtc_read(dev_t dev, struct uio *uio, int flags)
288 {
289 struct dsrtc_softc *sc;
290 int error;
291
292 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
293 return ENXIO;
294
295 const struct dsrtc_model * const dm = &sc->sc_model;
296 if (uio->uio_offset >= dm->dm_nvram_size)
297 return EINVAL;
298
299 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
300 return error;
301
302 KASSERT(uio->uio_offset >= 0);
303 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
304 uint8_t ch, cmd;
305 const u_int a = uio->uio_offset;
306 cmd = a + dm->dm_nvram_start;
307 if ((error = iic_exec(sc->sc_tag,
308 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
309 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
310 iic_release_bus(sc->sc_tag, 0);
311 aprint_error_dev(sc->sc_dev,
312 "%s: read failed at 0x%x: %d\n",
313 __func__, a, error);
314 return error;
315 }
316 if ((error = uiomove(&ch, 1, uio)) != 0) {
317 iic_release_bus(sc->sc_tag, 0);
318 return error;
319 }
320 }
321
322 iic_release_bus(sc->sc_tag, 0);
323
324 return 0;
325 }
326
327 /*ARGSUSED*/
328 int
329 dsrtc_write(dev_t dev, struct uio *uio, int flags)
330 {
331 struct dsrtc_softc *sc;
332 int error;
333
334 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
335 return ENXIO;
336
337 const struct dsrtc_model * const dm = &sc->sc_model;
338 if (uio->uio_offset >= dm->dm_nvram_size)
339 return EINVAL;
340
341 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
342 return error;
343
344 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
345 uint8_t cmdbuf[2];
346 const u_int a = (int)uio->uio_offset;
347 cmdbuf[0] = a + dm->dm_nvram_start;
348 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
349 break;
350
351 if ((error = iic_exec(sc->sc_tag,
352 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
353 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
354 aprint_error_dev(sc->sc_dev,
355 "%s: write failed at 0x%x: %d\n",
356 __func__, a, error);
357 break;
358 }
359 }
360
361 iic_release_bus(sc->sc_tag, 0);
362
363 return error;
364 }
365
366 static int
367 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
368 {
369 struct dsrtc_softc *sc = ch->cookie;
370 struct clock_ymdhms check;
371 int retries;
372
373 memset(dt, 0, sizeof(*dt));
374 memset(&check, 0, sizeof(check));
375
376 /*
377 * Since we don't support Burst Read, we have to read the clock twice
378 * until we get two consecutive identical results.
379 */
380 retries = 5;
381 do {
382 dsrtc_clock_read_ymdhms(sc, dt);
383 dsrtc_clock_read_ymdhms(sc, &check);
384 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
385
386 return 0;
387 }
388
389 static int
390 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
391 {
392 struct dsrtc_softc *sc = ch->cookie;
393
394 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
395 return -1;
396
397 return 0;
398 }
399
400 static int
401 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
402 {
403 struct dsrtc_model * const dm = &sc->sc_model;
404 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
405 int error;
406
407 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
408
409 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
410 aprint_error_dev(sc->sc_dev,
411 "%s: failed to acquire I2C bus: %d\n",
412 __func__, error);
413 return 0;
414 }
415
416 /* Read each RTC register in order. */
417 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
418 cmdbuf[0] = dm->dm_rtc_start + i;
419
420 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
421 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
422 }
423
424 /* Done with I2C */
425 iic_release_bus(sc->sc_tag, I2C_F_POLL);
426
427 if (error != 0) {
428 aprint_error_dev(sc->sc_dev,
429 "%s: failed to read rtc at 0x%x: %d\n",
430 __func__, cmdbuf[0], error);
431 return 0;
432 }
433
434 /*
435 * Convert the RTC's register values into something useable
436 */
437 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
438 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
439
440 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
441 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
442 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
443 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
444 dt->dt_hour += 12;
445 } else
446 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
447 DSXXXX_HOURS_24MASK);
448
449 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
450 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
451
452 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
453 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
454 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
455 dt->dt_year += 100;
456
457 return 1;
458 }
459
460 static int
461 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
462 {
463 struct dsrtc_model * const dm = &sc->sc_model;
464 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
465 int error;
466
467 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
468
469 /*
470 * Convert our time representation into something the DSXXXX
471 * can understand.
472 */
473 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
474 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
475 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
476 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
477 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
478 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
479 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
480 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
481 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
482
483 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
484 aprint_error_dev(sc->sc_dev,
485 "%s: failed to acquire I2C bus: %d\n",
486 __func__, error);
487 return 0;
488 }
489
490 /* Stop the clock */
491 cmdbuf[0] = dm->dm_ch_reg;
492
493 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
494 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
495 iic_release_bus(sc->sc_tag, I2C_F_POLL);
496 aprint_error_dev(sc->sc_dev,
497 "%s: failed to read Hold Clock: %d\n",
498 __func__, error);
499 return 0;
500 }
501
502 cmdbuf[1] |= dm->dm_ch_value;
503
504 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
505 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
506 iic_release_bus(sc->sc_tag, I2C_F_POLL);
507 aprint_error_dev(sc->sc_dev,
508 "%s: failed to write Hold Clock: %d\n",
509 __func__, error);
510 return 0;
511 }
512
513 /*
514 * Write registers in reverse order. The last write (to the Seconds
515 * register) will undo the Clock Hold, above.
516 */
517 uint8_t op = I2C_OP_WRITE;
518 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
519 cmdbuf[0] = dm->dm_rtc_start + i;
520 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
521 op = I2C_OP_WRITE_WITH_STOP;
522 }
523 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
524 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
525 iic_release_bus(sc->sc_tag, I2C_F_POLL);
526 aprint_error_dev(sc->sc_dev,
527 "%s: failed to write rtc at 0x%x: %d\n",
528 __func__, i, error);
529 /* XXX: Clock Hold is likely still asserted! */
530 return 0;
531 }
532 }
533 /*
534 * If the clock hold register isn't the same register as seconds,
535 * we need to reeanble the clock.
536 */
537 if (op != I2C_OP_WRITE_WITH_STOP) {
538 cmdbuf[0] = dm->dm_ch_reg;
539 cmdbuf[1] &= ~dm->dm_ch_value;
540
541 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
542 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
543 I2C_F_POLL)) != 0) {
544 iic_release_bus(sc->sc_tag, I2C_F_POLL);
545 aprint_error_dev(sc->sc_dev,
546 "%s: failed to Hold Clock: %d\n",
547 __func__, error);
548 return 0;
549 }
550 }
551
552 iic_release_bus(sc->sc_tag, I2C_F_POLL);
553
554 return 1;
555 }
556
557 static int
558 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
559 {
560 struct dsrtc_softc *sc = ch->cookie;
561 struct timeval check;
562 int retries;
563
564 memset(tv, 0, sizeof(*tv));
565 memset(&check, 0, sizeof(check));
566
567 /*
568 * Since we don't support Burst Read, we have to read the clock twice
569 * until we get two consecutive identical results.
570 */
571 retries = 5;
572 do {
573 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
574 dsrtc_clock_read_timeval(sc, &check.tv_sec);
575 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
576
577 return 0;
578 }
579
580 static int
581 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
582 {
583 struct dsrtc_softc *sc = ch->cookie;
584
585 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
586 return -1;
587
588 return 0;
589 }
590
591 /*
592 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
593 * it, since some I2C controllers don't support anything other than single-byte
594 * transfers.
595 */
596 static int
597 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
598 {
599 const struct dsrtc_model * const dm = &sc->sc_model;
600 uint8_t buf[4];
601 int error;
602
603 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
604 aprint_error_dev(sc->sc_dev,
605 "%s: failed to acquire I2C bus: %d\n",
606 __func__, error);
607 return 0;
608 }
609
610 /* read all registers: */
611 uint8_t reg = dm->dm_rtc_start;
612 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
613 ®, 1, buf, 4, I2C_F_POLL);
614
615 /* Done with I2C */
616 iic_release_bus(sc->sc_tag, I2C_F_POLL);
617
618 if (error != 0) {
619 aprint_error_dev(sc->sc_dev,
620 "%s: failed to read rtc at 0x%x: %d\n",
621 __func__, reg, error);
622 return 0;
623 }
624
625 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
626 *tp = v;
627
628 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
629 __func__, v);
630
631 return 1;
632 }
633
634 static int
635 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
636 {
637 const struct dsrtc_model * const dm = &sc->sc_model;
638 size_t buflen = dm->dm_rtc_size + 2;
639 uint8_t buf[buflen];
640 int error;
641
642 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
643 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
644
645 buf[0] = dm->dm_rtc_start;
646 buf[1] = (t >> 0) & 0xff;
647 buf[2] = (t >> 8) & 0xff;
648 buf[3] = (t >> 16) & 0xff;
649 buf[4] = (t >> 24) & 0xff;
650 buf[5] = 0;
651
652 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
653 aprint_error_dev(sc->sc_dev,
654 "%s: failed to acquire I2C bus: %d\n",
655 __func__, error);
656 return 0;
657 }
658
659 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
660 &buf, buflen, NULL, 0, I2C_F_POLL);
661
662 /* Done with I2C */
663 iic_release_bus(sc->sc_tag, I2C_F_POLL);
664
665 /* send data */
666 if (error != 0) {
667 aprint_error_dev(sc->sc_dev,
668 "%s: failed to set time: %d\n",
669 __func__, error);
670 return 0;
671 }
672
673 return 1;
674 }
675
676 static int
677 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
678 {
679 int error, tc;
680 uint8_t reg = DS3232_TEMP_MSB;
681 uint8_t buf[2];
682
683 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
684 return ENOTSUP;
685
686 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
687 aprint_error_dev(sc->sc_dev,
688 "%s: failed to acquire I2C bus: %d\n",
689 __func__, error);
690 return 0;
691 }
692
693 /* read temperature registers: */
694 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
695 ®, 1, buf, 2, I2C_F_POLL);
696
697 /* Done with I2C */
698 iic_release_bus(sc->sc_tag, I2C_F_POLL);
699
700 if (error != 0) {
701 aprint_error_dev(sc->sc_dev,
702 "%s: failed to read temperature: %d\n",
703 __func__, error);
704 return 0;
705 }
706
707 /* convert to microkelvin */
708 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
709 *temp = tc + 273150000;
710 return 1;
711 }
712
713 static void
714 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
715 {
716 struct dsrtc_softc *sc = sme->sme_cookie;
717 uint32_t temp = 0; /* XXX gcc */
718
719 if (dsrtc_read_temp(sc, &temp) == 0) {
720 edata->state = ENVSYS_SINVALID;
721 return;
722 }
723
724 edata->value_cur = temp;
725
726 edata->state = ENVSYS_SVALID;
727 }
728