ds1307.c revision 1.22.2.1 1 /* $NetBSD: ds1307.c,v 1.22.2.1 2016/11/04 14:49:08 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.22.2.1 2016/11/04 14:49:08 pgoyette Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 struct dsrtc_model {
57 uint16_t dm_model;
58 uint8_t dm_ch_reg;
59 uint8_t dm_ch_value;
60 uint8_t dm_vbaten_reg;
61 uint8_t dm_vbaten_value;
62 uint8_t dm_rtc_start;
63 uint8_t dm_rtc_size;
64 uint8_t dm_nvram_start;
65 uint8_t dm_nvram_size;
66 uint8_t dm_flags;
67 #define DSRTC_FLAG_CLOCK_HOLD 0x01
68 #define DSRTC_FLAG_BCD 0x02
69 #define DSRTC_FLAG_TEMP 0x04
70 #define DSRTC_FLAG_VBATEN 0x08
71 #define DSRTC_FLAG_YEAR_START_2K 0x10
72 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
73 };
74
75 static const struct dsrtc_model dsrtc_models[] = {
76 {
77 .dm_model = 1307,
78 .dm_ch_reg = DSXXXX_SECONDS,
79 .dm_ch_value = DS1307_SECONDS_CH,
80 .dm_rtc_start = DS1307_RTC_START,
81 .dm_rtc_size = DS1307_RTC_SIZE,
82 .dm_nvram_start = DS1307_NVRAM_START,
83 .dm_nvram_size = DS1307_NVRAM_SIZE,
84 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
85 }, {
86 .dm_model = 1339,
87 .dm_rtc_start = DS1339_RTC_START,
88 .dm_rtc_size = DS1339_RTC_SIZE,
89 .dm_flags = DSRTC_FLAG_BCD,
90 }, {
91 .dm_model = 1340,
92 .dm_ch_reg = DSXXXX_SECONDS,
93 .dm_ch_value = DS1340_SECONDS_EOSC,
94 .dm_rtc_start = DS1340_RTC_START,
95 .dm_rtc_size = DS1340_RTC_SIZE,
96 .dm_flags = DSRTC_FLAG_BCD,
97 }, {
98 .dm_model = 1672,
99 .dm_rtc_start = DS1672_RTC_START,
100 .dm_rtc_size = DS1672_RTC_SIZE,
101 .dm_ch_reg = DS1672_CONTROL,
102 .dm_ch_value = DS1672_CONTROL_CH,
103 .dm_flags = 0,
104 }, {
105 .dm_model = 3231,
106 .dm_rtc_start = DS3232_RTC_START,
107 .dm_rtc_size = DS3232_RTC_SIZE,
108 /*
109 * XXX
110 * the DS3232 likely has the temperature sensor too but I can't
111 * easily verify or test that right now
112 */
113 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
114 }, {
115 .dm_model = 3232,
116 .dm_rtc_start = DS3232_RTC_START,
117 .dm_rtc_size = DS3232_RTC_SIZE,
118 .dm_nvram_start = DS3232_NVRAM_START,
119 .dm_nvram_size = DS3232_NVRAM_SIZE,
120 .dm_flags = DSRTC_FLAG_BCD,
121 }, {
122 /* MCP7940 */
123 .dm_model = 7940,
124 .dm_rtc_start = DS1307_RTC_START,
125 .dm_rtc_size = DS1307_RTC_SIZE,
126 .dm_ch_reg = DSXXXX_SECONDS,
127 .dm_ch_value = DS1307_SECONDS_CH,
128 .dm_vbaten_reg = DSXXXX_DAY,
129 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
130 .dm_nvram_start = MCP7940_NVRAM_START,
131 .dm_nvram_size = MCP7940_NVRAM_SIZE,
132 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
133 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
134 },
135 };
136
137 struct dsrtc_softc {
138 device_t sc_dev;
139 i2c_tag_t sc_tag;
140 uint8_t sc_address;
141 bool sc_open;
142 struct dsrtc_model sc_model;
143 struct todr_chip_handle sc_todr;
144 struct sysmon_envsys *sc_sme;
145 envsys_data_t sc_sensor;
146 };
147
148 static void dsrtc_attach(device_t, device_t, void *);
149 static int dsrtc_match(device_t, cfdata_t, void *);
150
151 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
152 dsrtc_match, dsrtc_attach, NULL, NULL);
153 extern struct cfdriver dsrtc_cd;
154
155 dev_type_open(dsrtc_open);
156 dev_type_close(dsrtc_close);
157 dev_type_read(dsrtc_read);
158 dev_type_write(dsrtc_write);
159
160 const struct cdevsw dsrtc_cdevsw = {
161 .d_open = dsrtc_open,
162 .d_close = dsrtc_close,
163 .d_read = dsrtc_read,
164 .d_write = dsrtc_write,
165 .d_ioctl = noioctl,
166 .d_stop = nostop,
167 .d_tty = notty,
168 .d_poll = nopoll,
169 .d_mmap = nommap,
170 .d_kqfilter = nokqfilter,
171 .d_discard = nodiscard,
172 .d_flag = D_OTHER
173 };
174
175 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
176 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
177 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
178 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
179
180 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
181 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
182 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
183 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
184
185 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
186 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
187
188 static const struct dsrtc_model *
189 dsrtc_model(u_int model)
190 {
191 /* no model given, assume it's a DS1307 (the first one) */
192 if (model == 0)
193 return &dsrtc_models[0];
194
195 for (const struct dsrtc_model *dm = dsrtc_models;
196 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
197 if (dm->dm_model == model)
198 return dm;
199 }
200 return NULL;
201 }
202
203 static int
204 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
205 {
206 struct i2c_attach_args *ia = arg;
207
208 if (ia->ia_name) {
209 /* direct config - check name */
210 if (strcmp(ia->ia_name, "dsrtc") == 0)
211 return 1;
212 } else {
213 /* indirect config - check typical address */
214 if (ia->ia_addr == DS1307_ADDR || ia->ia_addr == MCP7940_ADDR)
215 return dsrtc_model(cf->cf_flags & 0xffff) != NULL;
216 }
217 return 0;
218 }
219
220 static void
221 dsrtc_attach(device_t parent, device_t self, void *arg)
222 {
223 struct dsrtc_softc *sc = device_private(self);
224 struct i2c_attach_args *ia = arg;
225 const struct dsrtc_model * const dm =
226 dsrtc_model(device_cfdata(self)->cf_flags);
227
228 aprint_naive(": Real-time Clock%s\n",
229 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
230 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
231 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
232
233 sc->sc_tag = ia->ia_tag;
234 sc->sc_address = ia->ia_addr;
235 sc->sc_model = *dm;
236 sc->sc_dev = self;
237 sc->sc_open = 0;
238 sc->sc_todr.cookie = sc;
239 if (dm->dm_flags & DSRTC_FLAG_BCD) {
240 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
241 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
242 } else {
243 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
244 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
245 }
246 sc->sc_todr.todr_setwen = NULL;
247
248 todr_attach(&sc->sc_todr);
249 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
250 int error;
251
252 sc->sc_sme = sysmon_envsys_create();
253 sc->sc_sme->sme_name = device_xname(self);
254 sc->sc_sme->sme_cookie = sc;
255 sc->sc_sme->sme_refresh = dsrtc_refresh;
256
257 sc->sc_sensor.units = ENVSYS_STEMP;
258 sc->sc_sensor.state = ENVSYS_SINVALID;
259 sc->sc_sensor.flags = 0;
260 (void)strlcpy(sc->sc_sensor.desc, "temperature",
261 sizeof(sc->sc_sensor.desc));
262
263 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
264 aprint_error_dev(self, "unable to attach sensor\n");
265 goto bad;
266 }
267
268 error = sysmon_envsys_register(sc->sc_sme);
269 if (error) {
270 aprint_error_dev(self,
271 "error %d registering with sysmon\n", error);
272 goto bad;
273 }
274 }
275 return;
276 bad:
277 sysmon_envsys_destroy(sc->sc_sme);
278 }
279
280 /*ARGSUSED*/
281 int
282 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
283 {
284 struct dsrtc_softc *sc;
285
286 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
287 return ENXIO;
288
289 /* XXX: Locking */
290 if (sc->sc_open)
291 return EBUSY;
292
293 sc->sc_open = true;
294 return 0;
295 }
296
297 /*ARGSUSED*/
298 int
299 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
300 {
301 struct dsrtc_softc *sc;
302
303 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
304 return ENXIO;
305
306 sc->sc_open = false;
307 return 0;
308 }
309
310 /*ARGSUSED*/
311 int
312 dsrtc_read(dev_t dev, struct uio *uio, int flags)
313 {
314 struct dsrtc_softc *sc;
315 int error;
316
317 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
318 return ENXIO;
319
320 const struct dsrtc_model * const dm = &sc->sc_model;
321 if (uio->uio_offset >= dm->dm_nvram_size)
322 return EINVAL;
323
324 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
325 return error;
326
327 KASSERT(uio->uio_offset >= 0);
328 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
329 uint8_t ch, cmd;
330 const u_int a = uio->uio_offset;
331 cmd = a + dm->dm_nvram_start;
332 if ((error = iic_exec(sc->sc_tag,
333 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
334 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
335 iic_release_bus(sc->sc_tag, 0);
336 aprint_error_dev(sc->sc_dev,
337 "%s: read failed at 0x%x: %d\n",
338 __func__, a, error);
339 return error;
340 }
341 if ((error = uiomove(&ch, 1, uio)) != 0) {
342 iic_release_bus(sc->sc_tag, 0);
343 return error;
344 }
345 }
346
347 iic_release_bus(sc->sc_tag, 0);
348
349 return 0;
350 }
351
352 /*ARGSUSED*/
353 int
354 dsrtc_write(dev_t dev, struct uio *uio, int flags)
355 {
356 struct dsrtc_softc *sc;
357 int error;
358
359 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
360 return ENXIO;
361
362 const struct dsrtc_model * const dm = &sc->sc_model;
363 if (uio->uio_offset >= dm->dm_nvram_size)
364 return EINVAL;
365
366 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
367 return error;
368
369 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
370 uint8_t cmdbuf[2];
371 const u_int a = (int)uio->uio_offset;
372 cmdbuf[0] = a + dm->dm_nvram_start;
373 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
374 break;
375
376 if ((error = iic_exec(sc->sc_tag,
377 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
378 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
379 aprint_error_dev(sc->sc_dev,
380 "%s: write failed at 0x%x: %d\n",
381 __func__, a, error);
382 break;
383 }
384 }
385
386 iic_release_bus(sc->sc_tag, 0);
387
388 return error;
389 }
390
391 static int
392 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
393 {
394 struct dsrtc_softc *sc = ch->cookie;
395 struct clock_ymdhms check;
396 int retries;
397
398 memset(dt, 0, sizeof(*dt));
399 memset(&check, 0, sizeof(check));
400
401 /*
402 * Since we don't support Burst Read, we have to read the clock twice
403 * until we get two consecutive identical results.
404 */
405 retries = 5;
406 do {
407 dsrtc_clock_read_ymdhms(sc, dt);
408 dsrtc_clock_read_ymdhms(sc, &check);
409 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
410
411 return 0;
412 }
413
414 static int
415 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
416 {
417 struct dsrtc_softc *sc = ch->cookie;
418
419 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
420 return -1;
421
422 return 0;
423 }
424
425 static int
426 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
427 {
428 struct dsrtc_model * const dm = &sc->sc_model;
429 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
430 int error;
431
432 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
433
434 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
435 aprint_error_dev(sc->sc_dev,
436 "%s: failed to acquire I2C bus: %d\n",
437 __func__, error);
438 return 0;
439 }
440
441 /* Read each RTC register in order. */
442 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
443 cmdbuf[0] = dm->dm_rtc_start + i;
444
445 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
446 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
447 }
448
449 /* Done with I2C */
450 iic_release_bus(sc->sc_tag, I2C_F_POLL);
451
452 if (error != 0) {
453 aprint_error_dev(sc->sc_dev,
454 "%s: failed to read rtc at 0x%x: %d\n",
455 __func__, cmdbuf[0], error);
456 return 0;
457 }
458
459 /*
460 * Convert the RTC's register values into something useable
461 */
462 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
463 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
464
465 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
466 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
467 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
468 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
469 dt->dt_hour += 12;
470 } else
471 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
472 DSXXXX_HOURS_24MASK);
473
474 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
475 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
476
477 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
478 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
479 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
480 else {
481 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
482 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
483 dt->dt_year += 100;
484 }
485
486 return 1;
487 }
488
489 static int
490 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
491 {
492 struct dsrtc_model * const dm = &sc->sc_model;
493 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
494 int error;
495
496 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
497
498 /*
499 * Convert our time representation into something the DSXXXX
500 * can understand.
501 */
502 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
503 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
504 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
505 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
506 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
507 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
508 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
509 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
510 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
511
512 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
513 aprint_error_dev(sc->sc_dev,
514 "%s: failed to acquire I2C bus: %d\n",
515 __func__, error);
516 return 0;
517 }
518
519 /* Stop the clock */
520 cmdbuf[0] = dm->dm_ch_reg;
521
522 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
523 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
524 iic_release_bus(sc->sc_tag, I2C_F_POLL);
525 aprint_error_dev(sc->sc_dev,
526 "%s: failed to read Hold Clock: %d\n",
527 __func__, error);
528 return 0;
529 }
530
531 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
532 cmdbuf[1] &= ~dm->dm_ch_value;
533 else
534 cmdbuf[1] |= dm->dm_ch_value;
535
536 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
537 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
538 iic_release_bus(sc->sc_tag, I2C_F_POLL);
539 aprint_error_dev(sc->sc_dev,
540 "%s: failed to write Hold Clock: %d\n",
541 __func__, error);
542 return 0;
543 }
544
545 /*
546 * Write registers in reverse order. The last write (to the Seconds
547 * register) will undo the Clock Hold, above.
548 */
549 uint8_t op = I2C_OP_WRITE;
550 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
551 cmdbuf[0] = dm->dm_rtc_start + i;
552 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
553 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
554 bcd[i] |= dm->dm_vbaten_value;
555 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
556 op = I2C_OP_WRITE_WITH_STOP;
557 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
558 bcd[i] |= dm->dm_ch_value;
559 }
560 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
561 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
562 iic_release_bus(sc->sc_tag, I2C_F_POLL);
563 aprint_error_dev(sc->sc_dev,
564 "%s: failed to write rtc at 0x%x: %d\n",
565 __func__, i, error);
566 /* XXX: Clock Hold is likely still asserted! */
567 return 0;
568 }
569 }
570 /*
571 * If the clock hold register isn't the same register as seconds,
572 * we need to reeanble the clock.
573 */
574 if (op != I2C_OP_WRITE_WITH_STOP) {
575 cmdbuf[0] = dm->dm_ch_reg;
576 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
577 cmdbuf[1] |= dm->dm_ch_value;
578 else
579 cmdbuf[1] &= ~dm->dm_ch_value;
580
581 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
582 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
583 I2C_F_POLL)) != 0) {
584 iic_release_bus(sc->sc_tag, I2C_F_POLL);
585 aprint_error_dev(sc->sc_dev,
586 "%s: failed to Hold Clock: %d\n",
587 __func__, error);
588 return 0;
589 }
590 }
591
592 iic_release_bus(sc->sc_tag, I2C_F_POLL);
593
594 return 1;
595 }
596
597 static int
598 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
599 {
600 struct dsrtc_softc *sc = ch->cookie;
601 struct timeval check;
602 int retries;
603
604 memset(tv, 0, sizeof(*tv));
605 memset(&check, 0, sizeof(check));
606
607 /*
608 * Since we don't support Burst Read, we have to read the clock twice
609 * until we get two consecutive identical results.
610 */
611 retries = 5;
612 do {
613 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
614 dsrtc_clock_read_timeval(sc, &check.tv_sec);
615 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
616
617 return 0;
618 }
619
620 static int
621 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
622 {
623 struct dsrtc_softc *sc = ch->cookie;
624
625 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
626 return -1;
627
628 return 0;
629 }
630
631 /*
632 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
633 * it, since some I2C controllers don't support anything other than single-byte
634 * transfers.
635 */
636 static int
637 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
638 {
639 const struct dsrtc_model * const dm = &sc->sc_model;
640 uint8_t buf[4];
641 int error;
642
643 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
644 aprint_error_dev(sc->sc_dev,
645 "%s: failed to acquire I2C bus: %d\n",
646 __func__, error);
647 return 0;
648 }
649
650 /* read all registers: */
651 uint8_t reg = dm->dm_rtc_start;
652 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
653 ®, 1, buf, 4, I2C_F_POLL);
654
655 /* Done with I2C */
656 iic_release_bus(sc->sc_tag, I2C_F_POLL);
657
658 if (error != 0) {
659 aprint_error_dev(sc->sc_dev,
660 "%s: failed to read rtc at 0x%x: %d\n",
661 __func__, reg, error);
662 return 0;
663 }
664
665 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
666 *tp = v;
667
668 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
669 __func__, v);
670
671 return 1;
672 }
673
674 static int
675 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
676 {
677 const struct dsrtc_model * const dm = &sc->sc_model;
678 size_t buflen = dm->dm_rtc_size + 2;
679 uint8_t buf[buflen];
680 int error;
681
682 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
683 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
684
685 buf[0] = dm->dm_rtc_start;
686 buf[1] = (t >> 0) & 0xff;
687 buf[2] = (t >> 8) & 0xff;
688 buf[3] = (t >> 16) & 0xff;
689 buf[4] = (t >> 24) & 0xff;
690 buf[5] = 0;
691
692 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
693 aprint_error_dev(sc->sc_dev,
694 "%s: failed to acquire I2C bus: %d\n",
695 __func__, error);
696 return 0;
697 }
698
699 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
700 &buf, buflen, NULL, 0, I2C_F_POLL);
701
702 /* Done with I2C */
703 iic_release_bus(sc->sc_tag, I2C_F_POLL);
704
705 /* send data */
706 if (error != 0) {
707 aprint_error_dev(sc->sc_dev,
708 "%s: failed to set time: %d\n",
709 __func__, error);
710 return 0;
711 }
712
713 return 1;
714 }
715
716 static int
717 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
718 {
719 int error, tc;
720 uint8_t reg = DS3232_TEMP_MSB;
721 uint8_t buf[2];
722
723 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
724 return ENOTSUP;
725
726 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
727 aprint_error_dev(sc->sc_dev,
728 "%s: failed to acquire I2C bus: %d\n",
729 __func__, error);
730 return 0;
731 }
732
733 /* read temperature registers: */
734 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
735 ®, 1, buf, 2, I2C_F_POLL);
736
737 /* Done with I2C */
738 iic_release_bus(sc->sc_tag, I2C_F_POLL);
739
740 if (error != 0) {
741 aprint_error_dev(sc->sc_dev,
742 "%s: failed to read temperature: %d\n",
743 __func__, error);
744 return 0;
745 }
746
747 /* convert to microkelvin */
748 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
749 *temp = tc + 273150000;
750 return 1;
751 }
752
753 static void
754 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
755 {
756 struct dsrtc_softc *sc = sme->sme_cookie;
757 uint32_t temp = 0; /* XXX gcc */
758
759 if (dsrtc_read_temp(sc, &temp) == 0) {
760 edata->state = ENVSYS_SINVALID;
761 return;
762 }
763
764 edata->value_cur = temp;
765
766 edata->state = ENVSYS_SVALID;
767 }
768