ds1307.c revision 1.25.2.2 1 /* $NetBSD: ds1307.c,v 1.25.2.2 2018/07/28 04:37:44 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.25.2.2 2018/07/28 04:37:44 pgoyette Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57
58 struct dsrtc_model {
59 const i2c_addr_t *dm_valid_addrs;
60 uint16_t dm_model;
61 uint8_t dm_ch_reg;
62 uint8_t dm_ch_value;
63 uint8_t dm_vbaten_reg;
64 uint8_t dm_vbaten_value;
65 uint8_t dm_rtc_start;
66 uint8_t dm_rtc_size;
67 uint8_t dm_nvram_start;
68 uint8_t dm_nvram_size;
69 uint8_t dm_flags;
70 #define DSRTC_FLAG_CLOCK_HOLD 0x01
71 #define DSRTC_FLAG_BCD 0x02
72 #define DSRTC_FLAG_TEMP 0x04
73 #define DSRTC_FLAG_VBATEN 0x08
74 #define DSRTC_FLAG_YEAR_START_2K 0x10
75 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
76 };
77
78 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
79 static const struct dsrtc_model ds1307_model = {
80 .dm_valid_addrs = ds1307_valid_addrs,
81 .dm_model = 1307,
82 .dm_ch_reg = DSXXXX_SECONDS,
83 .dm_ch_value = DS1307_SECONDS_CH,
84 .dm_rtc_start = DS1307_RTC_START,
85 .dm_rtc_size = DS1307_RTC_SIZE,
86 .dm_nvram_start = DS1307_NVRAM_START,
87 .dm_nvram_size = DS1307_NVRAM_SIZE,
88 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
89 };
90
91 static const struct dsrtc_model ds1339_model = {
92 .dm_valid_addrs = ds1307_valid_addrs,
93 .dm_model = 1339,
94 .dm_rtc_start = DS1339_RTC_START,
95 .dm_rtc_size = DS1339_RTC_SIZE,
96 .dm_flags = DSRTC_FLAG_BCD,
97 };
98
99 static const struct dsrtc_model ds1340_model = {
100 .dm_valid_addrs = ds1307_valid_addrs,
101 .dm_model = 1340,
102 .dm_ch_reg = DSXXXX_SECONDS,
103 .dm_ch_value = DS1340_SECONDS_EOSC,
104 .dm_rtc_start = DS1340_RTC_START,
105 .dm_rtc_size = DS1340_RTC_SIZE,
106 .dm_flags = DSRTC_FLAG_BCD,
107 };
108
109 static const struct dsrtc_model ds1672_model = {
110 .dm_valid_addrs = ds1307_valid_addrs,
111 .dm_model = 1672,
112 .dm_rtc_start = DS1672_RTC_START,
113 .dm_rtc_size = DS1672_RTC_SIZE,
114 .dm_ch_reg = DS1672_CONTROL,
115 .dm_ch_value = DS1672_CONTROL_CH,
116 .dm_flags = 0,
117 };
118
119 static const struct dsrtc_model ds3231_model = {
120 .dm_valid_addrs = ds1307_valid_addrs,
121 .dm_model = 3231,
122 .dm_rtc_start = DS3232_RTC_START,
123 .dm_rtc_size = DS3232_RTC_SIZE,
124 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
125 };
126
127 static const struct dsrtc_model ds3232_model = {
128 .dm_valid_addrs = ds1307_valid_addrs,
129 .dm_model = 3232,
130 .dm_rtc_start = DS3232_RTC_START,
131 .dm_rtc_size = DS3232_RTC_SIZE,
132 .dm_nvram_start = DS3232_NVRAM_START,
133 .dm_nvram_size = DS3232_NVRAM_SIZE,
134 /*
135 * XXX
136 * the DS3232 likely has the temperature sensor too but I can't
137 * easily verify or test that right now
138 */
139 .dm_flags = DSRTC_FLAG_BCD,
140 };
141
142 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
143 static const struct dsrtc_model mcp7940_model = {
144 .dm_valid_addrs = mcp7940_valid_addrs,
145 .dm_model = 7940,
146 .dm_rtc_start = DS1307_RTC_START,
147 .dm_rtc_size = DS1307_RTC_SIZE,
148 .dm_ch_reg = DSXXXX_SECONDS,
149 .dm_ch_value = DS1307_SECONDS_CH,
150 .dm_vbaten_reg = DSXXXX_DAY,
151 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
152 .dm_nvram_start = MCP7940_NVRAM_START,
153 .dm_nvram_size = MCP7940_NVRAM_SIZE,
154 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
155 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
156 };
157
158 static const struct device_compatible_entry compat_data[] = {
159 { "dallas,ds1307", (uintptr_t)&ds1307_model },
160 { "maxim,ds1307", (uintptr_t)&ds1307_model },
161
162 { "dallas,ds1339", (uintptr_t)&ds1339_model },
163 { "maxim,ds1339", (uintptr_t)&ds1339_model },
164
165 { "dallas,ds1340", (uintptr_t)&ds1340_model },
166 { "maxim,ds1340", (uintptr_t)&ds1340_model },
167
168 { "dallas,ds1672", (uintptr_t)&ds1672_model },
169 { "maxim,ds1672", (uintptr_t)&ds1672_model },
170
171 { "dallas,ds3231", (uintptr_t)&ds3231_model },
172 { "maxim,ds3231", (uintptr_t)&ds3231_model },
173
174 { "dallas,ds3232", (uintptr_t)&ds3232_model },
175 { "maxim,ds3232", (uintptr_t)&ds3232_model },
176
177 { "microchip,mcp7940", (uintptr_t)&mcp7940_model },
178
179 { NULL, 0 }
180 };
181
182 struct dsrtc_softc {
183 device_t sc_dev;
184 i2c_tag_t sc_tag;
185 uint8_t sc_address;
186 bool sc_open;
187 struct dsrtc_model sc_model;
188 struct todr_chip_handle sc_todr;
189 struct sysmon_envsys *sc_sme;
190 envsys_data_t sc_sensor;
191 };
192
193 static void dsrtc_attach(device_t, device_t, void *);
194 static int dsrtc_match(device_t, cfdata_t, void *);
195
196 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
197 dsrtc_match, dsrtc_attach, NULL, NULL);
198
199 dev_type_open(dsrtc_open);
200 dev_type_close(dsrtc_close);
201 dev_type_read(dsrtc_read);
202 dev_type_write(dsrtc_write);
203
204 const struct cdevsw dsrtc_cdevsw = {
205 .d_open = dsrtc_open,
206 .d_close = dsrtc_close,
207 .d_read = dsrtc_read,
208 .d_write = dsrtc_write,
209 .d_ioctl = noioctl,
210 .d_stop = nostop,
211 .d_tty = notty,
212 .d_poll = nopoll,
213 .d_mmap = nommap,
214 .d_kqfilter = nokqfilter,
215 .d_discard = nodiscard,
216 .d_flag = D_OTHER
217 };
218
219 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
220 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
221 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
222 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
223
224 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
225 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
226 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
227 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
228
229 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
230 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
231
232 static const struct dsrtc_model *
233 dsrtc_model_by_number(u_int model)
234 {
235 const struct device_compatible_entry *dce;
236 const struct dsrtc_model *dm;
237
238 /* no model given, assume it's a DS1307 */
239 if (model == 0)
240 return &ds1307_model;
241
242 for (dce = compat_data; dce->compat != NULL; dce++) {
243 dm = (void *)dce->data;
244 if (dm->dm_model == model)
245 return dm;
246 }
247 return NULL;
248 }
249
250 static const struct dsrtc_model *
251 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
252 {
253 const struct dsrtc_model *dm = NULL;
254 const struct device_compatible_entry *dce;
255
256 if (iic_compatible_match(ia, compat_data, &dce))
257 dm = (void *)dce->data;
258
259 return dm;
260 }
261
262 static bool
263 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
264 {
265
266 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
267 if (addr == dm->dm_valid_addrs[i])
268 return true;
269 }
270 return false;
271 }
272
273 static int
274 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
275 {
276 struct i2c_attach_args *ia = arg;
277 const struct dsrtc_model *dm;
278 int match_result;
279
280 if (iic_use_direct_match(ia, cf, compat_data, &match_result))
281 return match_result;
282
283 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
284 if (dm == NULL)
285 return 0;
286
287 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
288 return I2C_MATCH_ADDRESS_ONLY;
289
290 return 0;
291 }
292
293 static void
294 dsrtc_attach(device_t parent, device_t self, void *arg)
295 {
296 struct dsrtc_softc *sc = device_private(self);
297 struct i2c_attach_args *ia = arg;
298 const struct dsrtc_model *dm;
299
300 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
301 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
302
303 if (dm == NULL) {
304 aprint_error(": unable to determine model!\n");
305 return;
306 }
307
308 aprint_naive(": Real-time Clock%s\n",
309 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
310 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
311 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
312
313 sc->sc_tag = ia->ia_tag;
314 sc->sc_address = ia->ia_addr;
315 sc->sc_model = *dm;
316 sc->sc_dev = self;
317 sc->sc_open = 0;
318 sc->sc_todr.cookie = sc;
319 if (dm->dm_flags & DSRTC_FLAG_BCD) {
320 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
321 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
322 } else {
323 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
324 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
325 }
326 sc->sc_todr.todr_setwen = NULL;
327
328 todr_attach(&sc->sc_todr);
329 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
330 int error;
331
332 sc->sc_sme = sysmon_envsys_create();
333 sc->sc_sme->sme_name = device_xname(self);
334 sc->sc_sme->sme_cookie = sc;
335 sc->sc_sme->sme_refresh = dsrtc_refresh;
336
337 sc->sc_sensor.units = ENVSYS_STEMP;
338 sc->sc_sensor.state = ENVSYS_SINVALID;
339 sc->sc_sensor.flags = 0;
340 (void)strlcpy(sc->sc_sensor.desc, "temperature",
341 sizeof(sc->sc_sensor.desc));
342
343 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
344 aprint_error_dev(self, "unable to attach sensor\n");
345 goto bad;
346 }
347
348 error = sysmon_envsys_register(sc->sc_sme);
349 if (error) {
350 aprint_error_dev(self,
351 "error %d registering with sysmon\n", error);
352 goto bad;
353 }
354 }
355 return;
356 bad:
357 sysmon_envsys_destroy(sc->sc_sme);
358 }
359
360 /*ARGSUSED*/
361 int
362 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
363 {
364 struct dsrtc_softc *sc;
365
366 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
367 return ENXIO;
368
369 /* XXX: Locking */
370 if (sc->sc_open)
371 return EBUSY;
372
373 sc->sc_open = true;
374 return 0;
375 }
376
377 /*ARGSUSED*/
378 int
379 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
380 {
381 struct dsrtc_softc *sc;
382
383 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
384 return ENXIO;
385
386 sc->sc_open = false;
387 return 0;
388 }
389
390 /*ARGSUSED*/
391 int
392 dsrtc_read(dev_t dev, struct uio *uio, int flags)
393 {
394 struct dsrtc_softc *sc;
395 int error;
396
397 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
398 return ENXIO;
399
400 const struct dsrtc_model * const dm = &sc->sc_model;
401 if (uio->uio_offset >= dm->dm_nvram_size)
402 return EINVAL;
403
404 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
405 return error;
406
407 KASSERT(uio->uio_offset >= 0);
408 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
409 uint8_t ch, cmd;
410 const u_int a = uio->uio_offset;
411 cmd = a + dm->dm_nvram_start;
412 if ((error = iic_exec(sc->sc_tag,
413 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
414 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
415 iic_release_bus(sc->sc_tag, 0);
416 aprint_error_dev(sc->sc_dev,
417 "%s: read failed at 0x%x: %d\n",
418 __func__, a, error);
419 return error;
420 }
421 if ((error = uiomove(&ch, 1, uio)) != 0) {
422 iic_release_bus(sc->sc_tag, 0);
423 return error;
424 }
425 }
426
427 iic_release_bus(sc->sc_tag, 0);
428
429 return 0;
430 }
431
432 /*ARGSUSED*/
433 int
434 dsrtc_write(dev_t dev, struct uio *uio, int flags)
435 {
436 struct dsrtc_softc *sc;
437 int error;
438
439 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
440 return ENXIO;
441
442 const struct dsrtc_model * const dm = &sc->sc_model;
443 if (uio->uio_offset >= dm->dm_nvram_size)
444 return EINVAL;
445
446 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
447 return error;
448
449 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
450 uint8_t cmdbuf[2];
451 const u_int a = (int)uio->uio_offset;
452 cmdbuf[0] = a + dm->dm_nvram_start;
453 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
454 break;
455
456 if ((error = iic_exec(sc->sc_tag,
457 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
458 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
459 aprint_error_dev(sc->sc_dev,
460 "%s: write failed at 0x%x: %d\n",
461 __func__, a, error);
462 break;
463 }
464 }
465
466 iic_release_bus(sc->sc_tag, 0);
467
468 return error;
469 }
470
471 static int
472 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
473 {
474 struct dsrtc_softc *sc = ch->cookie;
475 struct clock_ymdhms check;
476 int retries;
477
478 memset(dt, 0, sizeof(*dt));
479 memset(&check, 0, sizeof(check));
480
481 /*
482 * Since we don't support Burst Read, we have to read the clock twice
483 * until we get two consecutive identical results.
484 */
485 retries = 5;
486 do {
487 dsrtc_clock_read_ymdhms(sc, dt);
488 dsrtc_clock_read_ymdhms(sc, &check);
489 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
490
491 return 0;
492 }
493
494 static int
495 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
496 {
497 struct dsrtc_softc *sc = ch->cookie;
498
499 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
500 return -1;
501
502 return 0;
503 }
504
505 static int
506 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
507 {
508 struct dsrtc_model * const dm = &sc->sc_model;
509 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
510 int error;
511
512 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
513
514 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
515 aprint_error_dev(sc->sc_dev,
516 "%s: failed to acquire I2C bus: %d\n",
517 __func__, error);
518 return 0;
519 }
520
521 /* Read each RTC register in order. */
522 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
523 cmdbuf[0] = dm->dm_rtc_start + i;
524
525 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
526 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
527 }
528
529 /* Done with I2C */
530 iic_release_bus(sc->sc_tag, I2C_F_POLL);
531
532 if (error != 0) {
533 aprint_error_dev(sc->sc_dev,
534 "%s: failed to read rtc at 0x%x: %d\n",
535 __func__, cmdbuf[0], error);
536 return 0;
537 }
538
539 /*
540 * Convert the RTC's register values into something useable
541 */
542 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
543 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
544
545 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
546 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
547 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
548 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
549 dt->dt_hour += 12;
550 } else
551 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
552 DSXXXX_HOURS_24MASK);
553
554 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
555 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
556
557 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
558 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
559 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
560 else {
561 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
562 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
563 dt->dt_year += 100;
564 }
565
566 return 1;
567 }
568
569 static int
570 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
571 {
572 struct dsrtc_model * const dm = &sc->sc_model;
573 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
574 int error;
575
576 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
577
578 /*
579 * Convert our time representation into something the DSXXXX
580 * can understand.
581 */
582 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
583 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
584 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
585 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
586 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
587 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
588 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
589 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
590 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
591
592 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
593 aprint_error_dev(sc->sc_dev,
594 "%s: failed to acquire I2C bus: %d\n",
595 __func__, error);
596 return 0;
597 }
598
599 /* Stop the clock */
600 cmdbuf[0] = dm->dm_ch_reg;
601
602 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
603 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
604 iic_release_bus(sc->sc_tag, I2C_F_POLL);
605 aprint_error_dev(sc->sc_dev,
606 "%s: failed to read Hold Clock: %d\n",
607 __func__, error);
608 return 0;
609 }
610
611 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
612 cmdbuf[1] &= ~dm->dm_ch_value;
613 else
614 cmdbuf[1] |= dm->dm_ch_value;
615
616 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
617 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
618 iic_release_bus(sc->sc_tag, I2C_F_POLL);
619 aprint_error_dev(sc->sc_dev,
620 "%s: failed to write Hold Clock: %d\n",
621 __func__, error);
622 return 0;
623 }
624
625 /*
626 * Write registers in reverse order. The last write (to the Seconds
627 * register) will undo the Clock Hold, above.
628 */
629 uint8_t op = I2C_OP_WRITE;
630 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
631 cmdbuf[0] = dm->dm_rtc_start + i;
632 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
633 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
634 bcd[i] |= dm->dm_vbaten_value;
635 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
636 op = I2C_OP_WRITE_WITH_STOP;
637 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
638 bcd[i] |= dm->dm_ch_value;
639 }
640 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
641 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
642 iic_release_bus(sc->sc_tag, I2C_F_POLL);
643 aprint_error_dev(sc->sc_dev,
644 "%s: failed to write rtc at 0x%x: %d\n",
645 __func__, i, error);
646 /* XXX: Clock Hold is likely still asserted! */
647 return 0;
648 }
649 }
650 /*
651 * If the clock hold register isn't the same register as seconds,
652 * we need to reeanble the clock.
653 */
654 if (op != I2C_OP_WRITE_WITH_STOP) {
655 cmdbuf[0] = dm->dm_ch_reg;
656 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
657 cmdbuf[1] |= dm->dm_ch_value;
658 else
659 cmdbuf[1] &= ~dm->dm_ch_value;
660
661 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
662 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
663 I2C_F_POLL)) != 0) {
664 iic_release_bus(sc->sc_tag, I2C_F_POLL);
665 aprint_error_dev(sc->sc_dev,
666 "%s: failed to Hold Clock: %d\n",
667 __func__, error);
668 return 0;
669 }
670 }
671
672 iic_release_bus(sc->sc_tag, I2C_F_POLL);
673
674 return 1;
675 }
676
677 static int
678 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
679 {
680 struct dsrtc_softc *sc = ch->cookie;
681 struct timeval check;
682 int retries;
683
684 memset(tv, 0, sizeof(*tv));
685 memset(&check, 0, sizeof(check));
686
687 /*
688 * Since we don't support Burst Read, we have to read the clock twice
689 * until we get two consecutive identical results.
690 */
691 retries = 5;
692 do {
693 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
694 dsrtc_clock_read_timeval(sc, &check.tv_sec);
695 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
696
697 return 0;
698 }
699
700 static int
701 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
702 {
703 struct dsrtc_softc *sc = ch->cookie;
704
705 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
706 return -1;
707
708 return 0;
709 }
710
711 /*
712 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
713 * it, since some I2C controllers don't support anything other than single-byte
714 * transfers.
715 */
716 static int
717 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
718 {
719 const struct dsrtc_model * const dm = &sc->sc_model;
720 uint8_t buf[4];
721 int error;
722
723 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
724 aprint_error_dev(sc->sc_dev,
725 "%s: failed to acquire I2C bus: %d\n",
726 __func__, error);
727 return 0;
728 }
729
730 /* read all registers: */
731 uint8_t reg = dm->dm_rtc_start;
732 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
733 ®, 1, buf, 4, I2C_F_POLL);
734
735 /* Done with I2C */
736 iic_release_bus(sc->sc_tag, I2C_F_POLL);
737
738 if (error != 0) {
739 aprint_error_dev(sc->sc_dev,
740 "%s: failed to read rtc at 0x%x: %d\n",
741 __func__, reg, error);
742 return 0;
743 }
744
745 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
746 *tp = v;
747
748 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
749 __func__, v);
750
751 return 1;
752 }
753
754 static int
755 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
756 {
757 const struct dsrtc_model * const dm = &sc->sc_model;
758 size_t buflen = dm->dm_rtc_size + 2;
759 uint8_t buf[buflen];
760 int error;
761
762 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
763 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
764
765 buf[0] = dm->dm_rtc_start;
766 buf[1] = (t >> 0) & 0xff;
767 buf[2] = (t >> 8) & 0xff;
768 buf[3] = (t >> 16) & 0xff;
769 buf[4] = (t >> 24) & 0xff;
770 buf[5] = 0;
771
772 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
773 aprint_error_dev(sc->sc_dev,
774 "%s: failed to acquire I2C bus: %d\n",
775 __func__, error);
776 return 0;
777 }
778
779 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
780 &buf, buflen, NULL, 0, I2C_F_POLL);
781
782 /* Done with I2C */
783 iic_release_bus(sc->sc_tag, I2C_F_POLL);
784
785 /* send data */
786 if (error != 0) {
787 aprint_error_dev(sc->sc_dev,
788 "%s: failed to set time: %d\n",
789 __func__, error);
790 return 0;
791 }
792
793 return 1;
794 }
795
796 static int
797 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
798 {
799 int error, tc;
800 uint8_t reg = DS3232_TEMP_MSB;
801 uint8_t buf[2];
802
803 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
804 return ENOTSUP;
805
806 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
807 aprint_error_dev(sc->sc_dev,
808 "%s: failed to acquire I2C bus: %d\n",
809 __func__, error);
810 return 0;
811 }
812
813 /* read temperature registers: */
814 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
815 ®, 1, buf, 2, I2C_F_POLL);
816
817 /* Done with I2C */
818 iic_release_bus(sc->sc_tag, I2C_F_POLL);
819
820 if (error != 0) {
821 aprint_error_dev(sc->sc_dev,
822 "%s: failed to read temperature: %d\n",
823 __func__, error);
824 return 0;
825 }
826
827 /* convert to microkelvin */
828 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
829 *temp = tc + 273150000;
830 return 1;
831 }
832
833 static void
834 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
835 {
836 struct dsrtc_softc *sc = sme->sme_cookie;
837 uint32_t temp = 0; /* XXX gcc */
838
839 if (dsrtc_read_temp(sc, &temp) == 0) {
840 edata->state = ENVSYS_SINVALID;
841 return;
842 }
843
844 edata->value_cur = temp;
845
846 edata->state = ENVSYS_SVALID;
847 }
848