ds1307.c revision 1.26 1 /* $NetBSD: ds1307.c,v 1.26 2018/06/16 21:28:07 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.26 2018/06/16 21:28:07 thorpej Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57
58 struct dsrtc_model {
59 const char **dm_compats;
60 const i2c_addr_t *dm_valid_addrs;
61 uint16_t dm_model;
62 uint8_t dm_ch_reg;
63 uint8_t dm_ch_value;
64 uint8_t dm_vbaten_reg;
65 uint8_t dm_vbaten_value;
66 uint8_t dm_rtc_start;
67 uint8_t dm_rtc_size;
68 uint8_t dm_nvram_start;
69 uint8_t dm_nvram_size;
70 uint8_t dm_flags;
71 #define DSRTC_FLAG_CLOCK_HOLD 0x01
72 #define DSRTC_FLAG_BCD 0x02
73 #define DSRTC_FLAG_TEMP 0x04
74 #define DSRTC_FLAG_VBATEN 0x08
75 #define DSRTC_FLAG_YEAR_START_2K 0x10
76 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
77 };
78
79 static const char *ds1307_compats[] = { "dallas,ds1307", "maxim,ds1307", NULL };
80 static const char *ds1339_compats[] = { "dallas,ds1339", "maxim,ds1339", NULL };
81 static const char *ds1340_compats[] = { "dallas,ds1340", "maxim,ds1340", NULL };
82 static const char *ds1672_compats[] = { "dallas,ds1672", "maxim,ds1672", NULL };
83 static const char *ds3231_compats[] = { "dallas,ds3231", "maxim,ds3231", NULL };
84 static const char *ds3232_compats[] = { "dallas,ds3232", "maxim,ds3232", NULL };
85
86 /* XXX vendor prefix */
87 static const char *mcp7940_compats[] = { "microchip,mcp7940", NULL };
88
89 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
90 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
91
92 static const struct dsrtc_model dsrtc_models[] = {
93 {
94 .dm_compats = ds1307_compats,
95 .dm_valid_addrs = ds1307_valid_addrs,
96 .dm_model = 1307,
97 .dm_ch_reg = DSXXXX_SECONDS,
98 .dm_ch_value = DS1307_SECONDS_CH,
99 .dm_rtc_start = DS1307_RTC_START,
100 .dm_rtc_size = DS1307_RTC_SIZE,
101 .dm_nvram_start = DS1307_NVRAM_START,
102 .dm_nvram_size = DS1307_NVRAM_SIZE,
103 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
104 }, {
105 .dm_compats = ds1339_compats,
106 .dm_valid_addrs = ds1307_valid_addrs,
107 .dm_model = 1339,
108 .dm_rtc_start = DS1339_RTC_START,
109 .dm_rtc_size = DS1339_RTC_SIZE,
110 .dm_flags = DSRTC_FLAG_BCD,
111 }, {
112 .dm_compats = ds1340_compats,
113 .dm_valid_addrs = ds1307_valid_addrs,
114 .dm_model = 1340,
115 .dm_ch_reg = DSXXXX_SECONDS,
116 .dm_ch_value = DS1340_SECONDS_EOSC,
117 .dm_rtc_start = DS1340_RTC_START,
118 .dm_rtc_size = DS1340_RTC_SIZE,
119 .dm_flags = DSRTC_FLAG_BCD,
120 }, {
121 .dm_compats = ds1672_compats,
122 .dm_valid_addrs = ds1307_valid_addrs,
123 .dm_model = 1672,
124 .dm_rtc_start = DS1672_RTC_START,
125 .dm_rtc_size = DS1672_RTC_SIZE,
126 .dm_ch_reg = DS1672_CONTROL,
127 .dm_ch_value = DS1672_CONTROL_CH,
128 .dm_flags = 0,
129 }, {
130 .dm_compats = ds3231_compats,
131 .dm_valid_addrs = ds1307_valid_addrs,
132 .dm_model = 3231,
133 .dm_rtc_start = DS3232_RTC_START,
134 .dm_rtc_size = DS3232_RTC_SIZE,
135 /*
136 * XXX
137 * the DS3232 likely has the temperature sensor too but I can't
138 * easily verify or test that right now
139 */
140 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
141 }, {
142 .dm_compats = ds3232_compats,
143 .dm_valid_addrs = ds1307_valid_addrs,
144 .dm_model = 3232,
145 .dm_rtc_start = DS3232_RTC_START,
146 .dm_rtc_size = DS3232_RTC_SIZE,
147 .dm_nvram_start = DS3232_NVRAM_START,
148 .dm_nvram_size = DS3232_NVRAM_SIZE,
149 .dm_flags = DSRTC_FLAG_BCD,
150 }, {
151 /* MCP7940 */
152 .dm_compats = mcp7940_compats,
153 .dm_valid_addrs = mcp7940_valid_addrs,
154 .dm_model = 7940,
155 .dm_rtc_start = DS1307_RTC_START,
156 .dm_rtc_size = DS1307_RTC_SIZE,
157 .dm_ch_reg = DSXXXX_SECONDS,
158 .dm_ch_value = DS1307_SECONDS_CH,
159 .dm_vbaten_reg = DSXXXX_DAY,
160 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
161 .dm_nvram_start = MCP7940_NVRAM_START,
162 .dm_nvram_size = MCP7940_NVRAM_SIZE,
163 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
164 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
165 },
166 };
167
168 struct dsrtc_softc {
169 device_t sc_dev;
170 i2c_tag_t sc_tag;
171 uint8_t sc_address;
172 bool sc_open;
173 struct dsrtc_model sc_model;
174 struct todr_chip_handle sc_todr;
175 struct sysmon_envsys *sc_sme;
176 envsys_data_t sc_sensor;
177 };
178
179 static void dsrtc_attach(device_t, device_t, void *);
180 static int dsrtc_match(device_t, cfdata_t, void *);
181
182 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
183 dsrtc_match, dsrtc_attach, NULL, NULL);
184
185 dev_type_open(dsrtc_open);
186 dev_type_close(dsrtc_close);
187 dev_type_read(dsrtc_read);
188 dev_type_write(dsrtc_write);
189
190 const struct cdevsw dsrtc_cdevsw = {
191 .d_open = dsrtc_open,
192 .d_close = dsrtc_close,
193 .d_read = dsrtc_read,
194 .d_write = dsrtc_write,
195 .d_ioctl = noioctl,
196 .d_stop = nostop,
197 .d_tty = notty,
198 .d_poll = nopoll,
199 .d_mmap = nommap,
200 .d_kqfilter = nokqfilter,
201 .d_discard = nodiscard,
202 .d_flag = D_OTHER
203 };
204
205 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
206 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
207 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
208 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
209
210 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
211 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
212 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
213 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
214
215 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
216 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
217
218 static const struct dsrtc_model *
219 dsrtc_model_by_number(u_int model)
220 {
221 /* no model given, assume it's a DS1307 (the first one) */
222 if (model == 0)
223 return &dsrtc_models[0];
224
225 for (const struct dsrtc_model *dm = dsrtc_models;
226 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
227 if (dm->dm_model == model)
228 return dm;
229 }
230 return NULL;
231 }
232
233 static const struct dsrtc_model *
234 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
235 {
236 const struct dsrtc_model *best_model = NULL, *dm;
237 int best_match = 0, match_result;
238
239 for (dm = dsrtc_models;
240 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
241 match_result = iic_compat_match(ia, dm->dm_compats);
242 if (match_result > best_match) {
243 best_match = match_result;
244 best_model = dm;
245 }
246 }
247 return best_model;
248 }
249
250 static bool
251 dsrtc_direct_match(const struct i2c_attach_args *ia, const cfdata_t cf,
252 int *best_matchp)
253 {
254 const struct dsrtc_model *dm;
255 int best_match = 0, match_result;
256
257 for (dm = dsrtc_models;
258 dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
259 if (iic_use_direct_match(ia, cf, dm->dm_compats,
260 &match_result) == false)
261 return false;
262 if (match_result > best_match)
263 best_match = match_result;
264 }
265
266 *best_matchp = best_match;
267 return true;
268 }
269
270 static bool
271 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
272 {
273
274 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
275 if (addr == dm->dm_valid_addrs[i])
276 return true;
277 }
278 return false;
279 }
280
281 static int
282 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
283 {
284 struct i2c_attach_args *ia = arg;
285 const struct dsrtc_model *dm;
286 int match_result;
287
288 if (dsrtc_direct_match(ia, cf, &match_result))
289 return match_result;
290
291 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
292 if (dm == NULL)
293 return 0;
294
295 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
296 return I2C_MATCH_ADDRESS_ONLY;
297
298 return 0;
299 }
300
301 static void
302 dsrtc_attach(device_t parent, device_t self, void *arg)
303 {
304 struct dsrtc_softc *sc = device_private(self);
305 struct i2c_attach_args *ia = arg;
306 const struct dsrtc_model *dm;
307
308 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
309 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
310
311 if (dm == NULL) {
312 aprint_error(": unable to determine model!\n");
313 return;
314 }
315
316 aprint_naive(": Real-time Clock%s\n",
317 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
318 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
319 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
320
321 sc->sc_tag = ia->ia_tag;
322 sc->sc_address = ia->ia_addr;
323 sc->sc_model = *dm;
324 sc->sc_dev = self;
325 sc->sc_open = 0;
326 sc->sc_todr.cookie = sc;
327 if (dm->dm_flags & DSRTC_FLAG_BCD) {
328 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
329 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
330 } else {
331 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
332 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
333 }
334 sc->sc_todr.todr_setwen = NULL;
335
336 todr_attach(&sc->sc_todr);
337 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
338 int error;
339
340 sc->sc_sme = sysmon_envsys_create();
341 sc->sc_sme->sme_name = device_xname(self);
342 sc->sc_sme->sme_cookie = sc;
343 sc->sc_sme->sme_refresh = dsrtc_refresh;
344
345 sc->sc_sensor.units = ENVSYS_STEMP;
346 sc->sc_sensor.state = ENVSYS_SINVALID;
347 sc->sc_sensor.flags = 0;
348 (void)strlcpy(sc->sc_sensor.desc, "temperature",
349 sizeof(sc->sc_sensor.desc));
350
351 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
352 aprint_error_dev(self, "unable to attach sensor\n");
353 goto bad;
354 }
355
356 error = sysmon_envsys_register(sc->sc_sme);
357 if (error) {
358 aprint_error_dev(self,
359 "error %d registering with sysmon\n", error);
360 goto bad;
361 }
362 }
363 return;
364 bad:
365 sysmon_envsys_destroy(sc->sc_sme);
366 }
367
368 /*ARGSUSED*/
369 int
370 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
371 {
372 struct dsrtc_softc *sc;
373
374 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
375 return ENXIO;
376
377 /* XXX: Locking */
378 if (sc->sc_open)
379 return EBUSY;
380
381 sc->sc_open = true;
382 return 0;
383 }
384
385 /*ARGSUSED*/
386 int
387 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
388 {
389 struct dsrtc_softc *sc;
390
391 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
392 return ENXIO;
393
394 sc->sc_open = false;
395 return 0;
396 }
397
398 /*ARGSUSED*/
399 int
400 dsrtc_read(dev_t dev, struct uio *uio, int flags)
401 {
402 struct dsrtc_softc *sc;
403 int error;
404
405 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
406 return ENXIO;
407
408 const struct dsrtc_model * const dm = &sc->sc_model;
409 if (uio->uio_offset >= dm->dm_nvram_size)
410 return EINVAL;
411
412 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
413 return error;
414
415 KASSERT(uio->uio_offset >= 0);
416 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
417 uint8_t ch, cmd;
418 const u_int a = uio->uio_offset;
419 cmd = a + dm->dm_nvram_start;
420 if ((error = iic_exec(sc->sc_tag,
421 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
422 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
423 iic_release_bus(sc->sc_tag, 0);
424 aprint_error_dev(sc->sc_dev,
425 "%s: read failed at 0x%x: %d\n",
426 __func__, a, error);
427 return error;
428 }
429 if ((error = uiomove(&ch, 1, uio)) != 0) {
430 iic_release_bus(sc->sc_tag, 0);
431 return error;
432 }
433 }
434
435 iic_release_bus(sc->sc_tag, 0);
436
437 return 0;
438 }
439
440 /*ARGSUSED*/
441 int
442 dsrtc_write(dev_t dev, struct uio *uio, int flags)
443 {
444 struct dsrtc_softc *sc;
445 int error;
446
447 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
448 return ENXIO;
449
450 const struct dsrtc_model * const dm = &sc->sc_model;
451 if (uio->uio_offset >= dm->dm_nvram_size)
452 return EINVAL;
453
454 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
455 return error;
456
457 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
458 uint8_t cmdbuf[2];
459 const u_int a = (int)uio->uio_offset;
460 cmdbuf[0] = a + dm->dm_nvram_start;
461 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
462 break;
463
464 if ((error = iic_exec(sc->sc_tag,
465 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
466 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
467 aprint_error_dev(sc->sc_dev,
468 "%s: write failed at 0x%x: %d\n",
469 __func__, a, error);
470 break;
471 }
472 }
473
474 iic_release_bus(sc->sc_tag, 0);
475
476 return error;
477 }
478
479 static int
480 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
481 {
482 struct dsrtc_softc *sc = ch->cookie;
483 struct clock_ymdhms check;
484 int retries;
485
486 memset(dt, 0, sizeof(*dt));
487 memset(&check, 0, sizeof(check));
488
489 /*
490 * Since we don't support Burst Read, we have to read the clock twice
491 * until we get two consecutive identical results.
492 */
493 retries = 5;
494 do {
495 dsrtc_clock_read_ymdhms(sc, dt);
496 dsrtc_clock_read_ymdhms(sc, &check);
497 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
498
499 return 0;
500 }
501
502 static int
503 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
504 {
505 struct dsrtc_softc *sc = ch->cookie;
506
507 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
508 return -1;
509
510 return 0;
511 }
512
513 static int
514 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
515 {
516 struct dsrtc_model * const dm = &sc->sc_model;
517 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
518 int error;
519
520 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
521
522 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
523 aprint_error_dev(sc->sc_dev,
524 "%s: failed to acquire I2C bus: %d\n",
525 __func__, error);
526 return 0;
527 }
528
529 /* Read each RTC register in order. */
530 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
531 cmdbuf[0] = dm->dm_rtc_start + i;
532
533 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
534 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
535 }
536
537 /* Done with I2C */
538 iic_release_bus(sc->sc_tag, I2C_F_POLL);
539
540 if (error != 0) {
541 aprint_error_dev(sc->sc_dev,
542 "%s: failed to read rtc at 0x%x: %d\n",
543 __func__, cmdbuf[0], error);
544 return 0;
545 }
546
547 /*
548 * Convert the RTC's register values into something useable
549 */
550 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
551 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
552
553 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
554 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
555 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
556 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
557 dt->dt_hour += 12;
558 } else
559 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
560 DSXXXX_HOURS_24MASK);
561
562 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
563 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
564
565 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
566 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
567 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
568 else {
569 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
570 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
571 dt->dt_year += 100;
572 }
573
574 return 1;
575 }
576
577 static int
578 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
579 {
580 struct dsrtc_model * const dm = &sc->sc_model;
581 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
582 int error;
583
584 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
585
586 /*
587 * Convert our time representation into something the DSXXXX
588 * can understand.
589 */
590 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
591 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
592 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
593 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
594 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
595 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
596 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
597 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
598 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
599
600 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
601 aprint_error_dev(sc->sc_dev,
602 "%s: failed to acquire I2C bus: %d\n",
603 __func__, error);
604 return 0;
605 }
606
607 /* Stop the clock */
608 cmdbuf[0] = dm->dm_ch_reg;
609
610 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
611 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
612 iic_release_bus(sc->sc_tag, I2C_F_POLL);
613 aprint_error_dev(sc->sc_dev,
614 "%s: failed to read Hold Clock: %d\n",
615 __func__, error);
616 return 0;
617 }
618
619 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
620 cmdbuf[1] &= ~dm->dm_ch_value;
621 else
622 cmdbuf[1] |= dm->dm_ch_value;
623
624 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
625 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
626 iic_release_bus(sc->sc_tag, I2C_F_POLL);
627 aprint_error_dev(sc->sc_dev,
628 "%s: failed to write Hold Clock: %d\n",
629 __func__, error);
630 return 0;
631 }
632
633 /*
634 * Write registers in reverse order. The last write (to the Seconds
635 * register) will undo the Clock Hold, above.
636 */
637 uint8_t op = I2C_OP_WRITE;
638 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
639 cmdbuf[0] = dm->dm_rtc_start + i;
640 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
641 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
642 bcd[i] |= dm->dm_vbaten_value;
643 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
644 op = I2C_OP_WRITE_WITH_STOP;
645 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
646 bcd[i] |= dm->dm_ch_value;
647 }
648 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
649 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
650 iic_release_bus(sc->sc_tag, I2C_F_POLL);
651 aprint_error_dev(sc->sc_dev,
652 "%s: failed to write rtc at 0x%x: %d\n",
653 __func__, i, error);
654 /* XXX: Clock Hold is likely still asserted! */
655 return 0;
656 }
657 }
658 /*
659 * If the clock hold register isn't the same register as seconds,
660 * we need to reeanble the clock.
661 */
662 if (op != I2C_OP_WRITE_WITH_STOP) {
663 cmdbuf[0] = dm->dm_ch_reg;
664 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
665 cmdbuf[1] |= dm->dm_ch_value;
666 else
667 cmdbuf[1] &= ~dm->dm_ch_value;
668
669 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
670 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
671 I2C_F_POLL)) != 0) {
672 iic_release_bus(sc->sc_tag, I2C_F_POLL);
673 aprint_error_dev(sc->sc_dev,
674 "%s: failed to Hold Clock: %d\n",
675 __func__, error);
676 return 0;
677 }
678 }
679
680 iic_release_bus(sc->sc_tag, I2C_F_POLL);
681
682 return 1;
683 }
684
685 static int
686 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
687 {
688 struct dsrtc_softc *sc = ch->cookie;
689 struct timeval check;
690 int retries;
691
692 memset(tv, 0, sizeof(*tv));
693 memset(&check, 0, sizeof(check));
694
695 /*
696 * Since we don't support Burst Read, we have to read the clock twice
697 * until we get two consecutive identical results.
698 */
699 retries = 5;
700 do {
701 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
702 dsrtc_clock_read_timeval(sc, &check.tv_sec);
703 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
704
705 return 0;
706 }
707
708 static int
709 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
710 {
711 struct dsrtc_softc *sc = ch->cookie;
712
713 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
714 return -1;
715
716 return 0;
717 }
718
719 /*
720 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
721 * it, since some I2C controllers don't support anything other than single-byte
722 * transfers.
723 */
724 static int
725 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
726 {
727 const struct dsrtc_model * const dm = &sc->sc_model;
728 uint8_t buf[4];
729 int error;
730
731 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
732 aprint_error_dev(sc->sc_dev,
733 "%s: failed to acquire I2C bus: %d\n",
734 __func__, error);
735 return 0;
736 }
737
738 /* read all registers: */
739 uint8_t reg = dm->dm_rtc_start;
740 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
741 ®, 1, buf, 4, I2C_F_POLL);
742
743 /* Done with I2C */
744 iic_release_bus(sc->sc_tag, I2C_F_POLL);
745
746 if (error != 0) {
747 aprint_error_dev(sc->sc_dev,
748 "%s: failed to read rtc at 0x%x: %d\n",
749 __func__, reg, error);
750 return 0;
751 }
752
753 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
754 *tp = v;
755
756 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
757 __func__, v);
758
759 return 1;
760 }
761
762 static int
763 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
764 {
765 const struct dsrtc_model * const dm = &sc->sc_model;
766 size_t buflen = dm->dm_rtc_size + 2;
767 uint8_t buf[buflen];
768 int error;
769
770 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
771 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
772
773 buf[0] = dm->dm_rtc_start;
774 buf[1] = (t >> 0) & 0xff;
775 buf[2] = (t >> 8) & 0xff;
776 buf[3] = (t >> 16) & 0xff;
777 buf[4] = (t >> 24) & 0xff;
778 buf[5] = 0;
779
780 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
781 aprint_error_dev(sc->sc_dev,
782 "%s: failed to acquire I2C bus: %d\n",
783 __func__, error);
784 return 0;
785 }
786
787 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
788 &buf, buflen, NULL, 0, I2C_F_POLL);
789
790 /* Done with I2C */
791 iic_release_bus(sc->sc_tag, I2C_F_POLL);
792
793 /* send data */
794 if (error != 0) {
795 aprint_error_dev(sc->sc_dev,
796 "%s: failed to set time: %d\n",
797 __func__, error);
798 return 0;
799 }
800
801 return 1;
802 }
803
804 static int
805 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
806 {
807 int error, tc;
808 uint8_t reg = DS3232_TEMP_MSB;
809 uint8_t buf[2];
810
811 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
812 return ENOTSUP;
813
814 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
815 aprint_error_dev(sc->sc_dev,
816 "%s: failed to acquire I2C bus: %d\n",
817 __func__, error);
818 return 0;
819 }
820
821 /* read temperature registers: */
822 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
823 ®, 1, buf, 2, I2C_F_POLL);
824
825 /* Done with I2C */
826 iic_release_bus(sc->sc_tag, I2C_F_POLL);
827
828 if (error != 0) {
829 aprint_error_dev(sc->sc_dev,
830 "%s: failed to read temperature: %d\n",
831 __func__, error);
832 return 0;
833 }
834
835 /* convert to microkelvin */
836 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
837 *temp = tc + 273150000;
838 return 1;
839 }
840
841 static void
842 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
843 {
844 struct dsrtc_softc *sc = sme->sme_cookie;
845 uint32_t temp = 0; /* XXX gcc */
846
847 if (dsrtc_read_temp(sc, &temp) == 0) {
848 edata->state = ENVSYS_SINVALID;
849 return;
850 }
851
852 edata->value_cur = temp;
853
854 edata->state = ENVSYS_SVALID;
855 }
856