Home | History | Annotate | Line # | Download | only in i2c
ds1307.c revision 1.26
      1 /*	$NetBSD: ds1307.c,v 1.26 2018/06/16 21:28:07 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.26 2018/06/16 21:28:07 thorpej Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 #include <dev/sysmon/sysmonvar.h>
     55 
     56 #include "ioconf.h"
     57 
     58 struct dsrtc_model {
     59 	const char **dm_compats;
     60 	const i2c_addr_t *dm_valid_addrs;
     61 	uint16_t dm_model;
     62 	uint8_t dm_ch_reg;
     63 	uint8_t dm_ch_value;
     64 	uint8_t dm_vbaten_reg;
     65 	uint8_t dm_vbaten_value;
     66 	uint8_t dm_rtc_start;
     67 	uint8_t dm_rtc_size;
     68 	uint8_t dm_nvram_start;
     69 	uint8_t dm_nvram_size;
     70 	uint8_t dm_flags;
     71 #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     72 #define	DSRTC_FLAG_BCD			0x02
     73 #define	DSRTC_FLAG_TEMP			0x04
     74 #define DSRTC_FLAG_VBATEN		0x08
     75 #define	DSRTC_FLAG_YEAR_START_2K	0x10
     76 #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     77 };
     78 
     79 static const char *ds1307_compats[] = { "dallas,ds1307", "maxim,ds1307", NULL };
     80 static const char *ds1339_compats[] = { "dallas,ds1339", "maxim,ds1339", NULL };
     81 static const char *ds1340_compats[] = { "dallas,ds1340", "maxim,ds1340", NULL };
     82 static const char *ds1672_compats[] = { "dallas,ds1672", "maxim,ds1672", NULL };
     83 static const char *ds3231_compats[] = { "dallas,ds3231", "maxim,ds3231", NULL };
     84 static const char *ds3232_compats[] = { "dallas,ds3232", "maxim,ds3232", NULL };
     85 
     86 				/* XXX vendor prefix */
     87 static const char *mcp7940_compats[] = { "microchip,mcp7940", NULL };
     88 
     89 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     90 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
     91 
     92 static const struct dsrtc_model dsrtc_models[] = {
     93 	{
     94 		.dm_compats = ds1307_compats,
     95 		.dm_valid_addrs = ds1307_valid_addrs,
     96 		.dm_model = 1307,
     97 		.dm_ch_reg = DSXXXX_SECONDS,
     98 		.dm_ch_value = DS1307_SECONDS_CH,
     99 		.dm_rtc_start = DS1307_RTC_START,
    100 		.dm_rtc_size = DS1307_RTC_SIZE,
    101 		.dm_nvram_start = DS1307_NVRAM_START,
    102 		.dm_nvram_size = DS1307_NVRAM_SIZE,
    103 		.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
    104 	}, {
    105 		.dm_compats = ds1339_compats,
    106 		.dm_valid_addrs = ds1307_valid_addrs,
    107 		.dm_model = 1339,
    108 		.dm_rtc_start = DS1339_RTC_START,
    109 		.dm_rtc_size = DS1339_RTC_SIZE,
    110 		.dm_flags = DSRTC_FLAG_BCD,
    111 	}, {
    112 		.dm_compats = ds1340_compats,
    113 		.dm_valid_addrs = ds1307_valid_addrs,
    114 		.dm_model = 1340,
    115 		.dm_ch_reg = DSXXXX_SECONDS,
    116 		.dm_ch_value = DS1340_SECONDS_EOSC,
    117 		.dm_rtc_start = DS1340_RTC_START,
    118 		.dm_rtc_size = DS1340_RTC_SIZE,
    119 		.dm_flags = DSRTC_FLAG_BCD,
    120 	}, {
    121 		.dm_compats = ds1672_compats,
    122 		.dm_valid_addrs = ds1307_valid_addrs,
    123 		.dm_model = 1672,
    124 		.dm_rtc_start = DS1672_RTC_START,
    125 		.dm_rtc_size = DS1672_RTC_SIZE,
    126 		.dm_ch_reg = DS1672_CONTROL,
    127 		.dm_ch_value = DS1672_CONTROL_CH,
    128 		.dm_flags = 0,
    129 	}, {
    130 		.dm_compats = ds3231_compats,
    131 		.dm_valid_addrs = ds1307_valid_addrs,
    132 		.dm_model = 3231,
    133 		.dm_rtc_start = DS3232_RTC_START,
    134 		.dm_rtc_size = DS3232_RTC_SIZE,
    135 		/*
    136 		 * XXX
    137 		 * the DS3232 likely has the temperature sensor too but I can't
    138 		 * easily verify or test that right now
    139 		 */
    140 		.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    141 	}, {
    142 		.dm_compats = ds3232_compats,
    143 		.dm_valid_addrs = ds1307_valid_addrs,
    144 		.dm_model = 3232,
    145 		.dm_rtc_start = DS3232_RTC_START,
    146 		.dm_rtc_size = DS3232_RTC_SIZE,
    147 		.dm_nvram_start = DS3232_NVRAM_START,
    148 		.dm_nvram_size = DS3232_NVRAM_SIZE,
    149 		.dm_flags = DSRTC_FLAG_BCD,
    150 	}, {
    151 		/* MCP7940 */
    152 		.dm_compats = mcp7940_compats,
    153 		.dm_valid_addrs = mcp7940_valid_addrs,
    154 		.dm_model = 7940,
    155 		.dm_rtc_start = DS1307_RTC_START,
    156 		.dm_rtc_size = DS1307_RTC_SIZE,
    157 		.dm_ch_reg = DSXXXX_SECONDS,
    158 		.dm_ch_value = DS1307_SECONDS_CH,
    159 		.dm_vbaten_reg = DSXXXX_DAY,
    160 		.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    161 		.dm_nvram_start = MCP7940_NVRAM_START,
    162 		.dm_nvram_size = MCP7940_NVRAM_SIZE,
    163 		.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    164 			DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    165 	},
    166 };
    167 
    168 struct dsrtc_softc {
    169 	device_t sc_dev;
    170 	i2c_tag_t sc_tag;
    171 	uint8_t sc_address;
    172 	bool sc_open;
    173 	struct dsrtc_model sc_model;
    174 	struct todr_chip_handle sc_todr;
    175 	struct sysmon_envsys *sc_sme;
    176 	envsys_data_t sc_sensor;
    177 };
    178 
    179 static void	dsrtc_attach(device_t, device_t, void *);
    180 static int	dsrtc_match(device_t, cfdata_t, void *);
    181 
    182 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    183     dsrtc_match, dsrtc_attach, NULL, NULL);
    184 
    185 dev_type_open(dsrtc_open);
    186 dev_type_close(dsrtc_close);
    187 dev_type_read(dsrtc_read);
    188 dev_type_write(dsrtc_write);
    189 
    190 const struct cdevsw dsrtc_cdevsw = {
    191 	.d_open = dsrtc_open,
    192 	.d_close = dsrtc_close,
    193 	.d_read = dsrtc_read,
    194 	.d_write = dsrtc_write,
    195 	.d_ioctl = noioctl,
    196 	.d_stop = nostop,
    197 	.d_tty = notty,
    198 	.d_poll = nopoll,
    199 	.d_mmap = nommap,
    200 	.d_kqfilter = nokqfilter,
    201 	.d_discard = nodiscard,
    202 	.d_flag = D_OTHER
    203 };
    204 
    205 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    206 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    207 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    208 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    209 
    210 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    211 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    212 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    213 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    214 
    215 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    216 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    217 
    218 static const struct dsrtc_model *
    219 dsrtc_model_by_number(u_int model)
    220 {
    221 	/* no model given, assume it's a DS1307 (the first one) */
    222 	if (model == 0)
    223 		return &dsrtc_models[0];
    224 
    225 	for (const struct dsrtc_model *dm = dsrtc_models;
    226 	     dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
    227 		if (dm->dm_model == model)
    228 			return dm;
    229 	}
    230 	return NULL;
    231 }
    232 
    233 static const struct dsrtc_model *
    234 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    235 {
    236 	const struct dsrtc_model *best_model = NULL, *dm;
    237 	int best_match = 0, match_result;
    238 
    239 	for (dm = dsrtc_models;
    240 	     dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
    241 		match_result = iic_compat_match(ia, dm->dm_compats);
    242 		if (match_result > best_match) {
    243 			best_match = match_result;
    244 			best_model = dm;
    245 		}
    246 	}
    247 	return best_model;
    248 }
    249 
    250 static bool
    251 dsrtc_direct_match(const struct i2c_attach_args *ia, const cfdata_t cf,
    252 		   int *best_matchp)
    253 {
    254 	const struct dsrtc_model *dm;
    255 	int best_match = 0, match_result;
    256 
    257 	for (dm = dsrtc_models;
    258 	     dm < dsrtc_models + __arraycount(dsrtc_models); dm++) {
    259 		if (iic_use_direct_match(ia, cf, dm->dm_compats,
    260 					 &match_result) == false)
    261 			return false;
    262 		if (match_result > best_match)
    263 			best_match = match_result;
    264 	}
    265 
    266 	*best_matchp = best_match;
    267 	return true;
    268 }
    269 
    270 static bool
    271 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    272 {
    273 
    274 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    275 		if (addr == dm->dm_valid_addrs[i])
    276 			return true;
    277 	}
    278 	return false;
    279 }
    280 
    281 static int
    282 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    283 {
    284 	struct i2c_attach_args *ia = arg;
    285 	const struct dsrtc_model *dm;
    286 	int match_result;
    287 
    288 	if (dsrtc_direct_match(ia, cf, &match_result))
    289 		return match_result;
    290 
    291 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    292 	if (dm == NULL)
    293 		return 0;
    294 
    295 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    296 		return I2C_MATCH_ADDRESS_ONLY;
    297 
    298 	return 0;
    299 }
    300 
    301 static void
    302 dsrtc_attach(device_t parent, device_t self, void *arg)
    303 {
    304 	struct dsrtc_softc *sc = device_private(self);
    305 	struct i2c_attach_args *ia = arg;
    306 	const struct dsrtc_model *dm;
    307 
    308 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    309 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    310 
    311 	if (dm == NULL) {
    312 		aprint_error(": unable to determine model!\n");
    313 		return;
    314 	}
    315 
    316 	aprint_naive(": Real-time Clock%s\n",
    317 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    318 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    319 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    320 
    321 	sc->sc_tag = ia->ia_tag;
    322 	sc->sc_address = ia->ia_addr;
    323 	sc->sc_model = *dm;
    324 	sc->sc_dev = self;
    325 	sc->sc_open = 0;
    326 	sc->sc_todr.cookie = sc;
    327 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    328 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    329 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    330 	} else {
    331 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    332 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    333 	}
    334 	sc->sc_todr.todr_setwen = NULL;
    335 
    336 	todr_attach(&sc->sc_todr);
    337 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    338 		int error;
    339 
    340 		sc->sc_sme = sysmon_envsys_create();
    341 		sc->sc_sme->sme_name = device_xname(self);
    342 		sc->sc_sme->sme_cookie = sc;
    343 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    344 
    345 		sc->sc_sensor.units =  ENVSYS_STEMP;
    346 		sc->sc_sensor.state = ENVSYS_SINVALID;
    347 		sc->sc_sensor.flags = 0;
    348 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    349 		    sizeof(sc->sc_sensor.desc));
    350 
    351 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    352 			aprint_error_dev(self, "unable to attach sensor\n");
    353 			goto bad;
    354 		}
    355 
    356 		error = sysmon_envsys_register(sc->sc_sme);
    357 		if (error) {
    358 			aprint_error_dev(self,
    359 			    "error %d registering with sysmon\n", error);
    360 			goto bad;
    361 		}
    362 	}
    363 	return;
    364 bad:
    365 	sysmon_envsys_destroy(sc->sc_sme);
    366 }
    367 
    368 /*ARGSUSED*/
    369 int
    370 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    371 {
    372 	struct dsrtc_softc *sc;
    373 
    374 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    375 		return ENXIO;
    376 
    377 	/* XXX: Locking */
    378 	if (sc->sc_open)
    379 		return EBUSY;
    380 
    381 	sc->sc_open = true;
    382 	return 0;
    383 }
    384 
    385 /*ARGSUSED*/
    386 int
    387 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    388 {
    389 	struct dsrtc_softc *sc;
    390 
    391 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    392 		return ENXIO;
    393 
    394 	sc->sc_open = false;
    395 	return 0;
    396 }
    397 
    398 /*ARGSUSED*/
    399 int
    400 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    401 {
    402 	struct dsrtc_softc *sc;
    403 	int error;
    404 
    405 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    406 		return ENXIO;
    407 
    408 	const struct dsrtc_model * const dm = &sc->sc_model;
    409 	if (uio->uio_offset >= dm->dm_nvram_size)
    410 		return EINVAL;
    411 
    412 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    413 		return error;
    414 
    415 	KASSERT(uio->uio_offset >= 0);
    416 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    417 		uint8_t ch, cmd;
    418 		const u_int a = uio->uio_offset;
    419 		cmd = a + dm->dm_nvram_start;
    420 		if ((error = iic_exec(sc->sc_tag,
    421 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    422 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    423 			iic_release_bus(sc->sc_tag, 0);
    424 			aprint_error_dev(sc->sc_dev,
    425 			    "%s: read failed at 0x%x: %d\n",
    426 			    __func__, a, error);
    427 			return error;
    428 		}
    429 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    430 			iic_release_bus(sc->sc_tag, 0);
    431 			return error;
    432 		}
    433 	}
    434 
    435 	iic_release_bus(sc->sc_tag, 0);
    436 
    437 	return 0;
    438 }
    439 
    440 /*ARGSUSED*/
    441 int
    442 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    443 {
    444 	struct dsrtc_softc *sc;
    445 	int error;
    446 
    447 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    448 		return ENXIO;
    449 
    450 	const struct dsrtc_model * const dm = &sc->sc_model;
    451 	if (uio->uio_offset >= dm->dm_nvram_size)
    452 		return EINVAL;
    453 
    454 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    455 		return error;
    456 
    457 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    458 		uint8_t cmdbuf[2];
    459 		const u_int a = (int)uio->uio_offset;
    460 		cmdbuf[0] = a + dm->dm_nvram_start;
    461 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    462 			break;
    463 
    464 		if ((error = iic_exec(sc->sc_tag,
    465 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    466 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    467 			aprint_error_dev(sc->sc_dev,
    468 			    "%s: write failed at 0x%x: %d\n",
    469 			    __func__, a, error);
    470 			break;
    471 		}
    472 	}
    473 
    474 	iic_release_bus(sc->sc_tag, 0);
    475 
    476 	return error;
    477 }
    478 
    479 static int
    480 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    481 {
    482 	struct dsrtc_softc *sc = ch->cookie;
    483 	struct clock_ymdhms check;
    484 	int retries;
    485 
    486 	memset(dt, 0, sizeof(*dt));
    487 	memset(&check, 0, sizeof(check));
    488 
    489 	/*
    490 	 * Since we don't support Burst Read, we have to read the clock twice
    491 	 * until we get two consecutive identical results.
    492 	 */
    493 	retries = 5;
    494 	do {
    495 		dsrtc_clock_read_ymdhms(sc, dt);
    496 		dsrtc_clock_read_ymdhms(sc, &check);
    497 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    498 
    499 	return 0;
    500 }
    501 
    502 static int
    503 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    504 {
    505 	struct dsrtc_softc *sc = ch->cookie;
    506 
    507 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    508 		return -1;
    509 
    510 	return 0;
    511 }
    512 
    513 static int
    514 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    515 {
    516 	struct dsrtc_model * const dm = &sc->sc_model;
    517 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    518 	int error;
    519 
    520 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    521 
    522 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    523 		aprint_error_dev(sc->sc_dev,
    524 		    "%s: failed to acquire I2C bus: %d\n",
    525 		    __func__, error);
    526 		return 0;
    527 	}
    528 
    529 	/* Read each RTC register in order. */
    530 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    531 		cmdbuf[0] = dm->dm_rtc_start + i;
    532 
    533 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    534 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
    535 	}
    536 
    537 	/* Done with I2C */
    538 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    539 
    540 	if (error != 0) {
    541 		aprint_error_dev(sc->sc_dev,
    542 		    "%s: failed to read rtc at 0x%x: %d\n",
    543 		    __func__, cmdbuf[0], error);
    544 		return 0;
    545 	}
    546 
    547 	/*
    548 	 * Convert the RTC's register values into something useable
    549 	 */
    550 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    551 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    552 
    553 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    554 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    555 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    556 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    557 			dt->dt_hour += 12;
    558 	} else
    559 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    560 		    DSXXXX_HOURS_24MASK);
    561 
    562 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    563 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    564 
    565 	/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
    566 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
    567 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
    568 	else {
    569 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
    570 		if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
    571 			dt->dt_year += 100;
    572 	}
    573 
    574 	return 1;
    575 }
    576 
    577 static int
    578 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    579 {
    580 	struct dsrtc_model * const dm = &sc->sc_model;
    581 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    582 	int error;
    583 
    584 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    585 
    586 	/*
    587 	 * Convert our time representation into something the DSXXXX
    588 	 * can understand.
    589 	 */
    590 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    591 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    592 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    593 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    594 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    595 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    596 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
    597 	if (dt->dt_year - POSIX_BASE_YEAR >= 100)
    598 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    599 
    600 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    601 		aprint_error_dev(sc->sc_dev,
    602 		    "%s: failed to acquire I2C bus: %d\n",
    603 		    __func__, error);
    604 		return 0;
    605 	}
    606 
    607 	/* Stop the clock */
    608 	cmdbuf[0] = dm->dm_ch_reg;
    609 
    610 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    611 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    612 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    613 		aprint_error_dev(sc->sc_dev,
    614 		    "%s: failed to read Hold Clock: %d\n",
    615 		    __func__, error);
    616 		return 0;
    617 	}
    618 
    619 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    620 		cmdbuf[1] &= ~dm->dm_ch_value;
    621 	else
    622 		cmdbuf[1] |= dm->dm_ch_value;
    623 
    624 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    625 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    626 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    627 		aprint_error_dev(sc->sc_dev,
    628 		    "%s: failed to write Hold Clock: %d\n",
    629 		    __func__, error);
    630 		return 0;
    631 	}
    632 
    633 	/*
    634 	 * Write registers in reverse order. The last write (to the Seconds
    635 	 * register) will undo the Clock Hold, above.
    636 	 */
    637 	uint8_t op = I2C_OP_WRITE;
    638 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    639 		cmdbuf[0] = dm->dm_rtc_start + i;
    640 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    641 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    642 			bcd[i] |= dm->dm_vbaten_value;
    643 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    644 			op = I2C_OP_WRITE_WITH_STOP;
    645 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    646 				bcd[i] |= dm->dm_ch_value;
    647 		}
    648 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    649 		    cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
    650 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    651 			aprint_error_dev(sc->sc_dev,
    652 			    "%s: failed to write rtc at 0x%x: %d\n",
    653 			    __func__, i, error);
    654 			/* XXX: Clock Hold is likely still asserted! */
    655 			return 0;
    656 		}
    657 	}
    658 	/*
    659 	 * If the clock hold register isn't the same register as seconds,
    660 	 * we need to reeanble the clock.
    661 	 */
    662 	if (op != I2C_OP_WRITE_WITH_STOP) {
    663 		cmdbuf[0] = dm->dm_ch_reg;
    664 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    665 			cmdbuf[1] |= dm->dm_ch_value;
    666 		else
    667 			cmdbuf[1] &= ~dm->dm_ch_value;
    668 
    669 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    670 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
    671 		    I2C_F_POLL)) != 0) {
    672 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    673 			aprint_error_dev(sc->sc_dev,
    674 			    "%s: failed to Hold Clock: %d\n",
    675 			    __func__, error);
    676 			return 0;
    677 		}
    678 	}
    679 
    680 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    681 
    682 	return 1;
    683 }
    684 
    685 static int
    686 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    687 {
    688 	struct dsrtc_softc *sc = ch->cookie;
    689 	struct timeval check;
    690 	int retries;
    691 
    692 	memset(tv, 0, sizeof(*tv));
    693 	memset(&check, 0, sizeof(check));
    694 
    695 	/*
    696 	 * Since we don't support Burst Read, we have to read the clock twice
    697 	 * until we get two consecutive identical results.
    698 	 */
    699 	retries = 5;
    700 	do {
    701 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    702 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    703 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    704 
    705 	return 0;
    706 }
    707 
    708 static int
    709 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    710 {
    711 	struct dsrtc_softc *sc = ch->cookie;
    712 
    713 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    714 		return -1;
    715 
    716 	return 0;
    717 }
    718 
    719 /*
    720  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    721  * it, since some I2C controllers don't support anything other than single-byte
    722  * transfers.
    723  */
    724 static int
    725 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    726 {
    727 	const struct dsrtc_model * const dm = &sc->sc_model;
    728 	uint8_t buf[4];
    729 	int error;
    730 
    731 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    732 		aprint_error_dev(sc->sc_dev,
    733 		    "%s: failed to acquire I2C bus: %d\n",
    734 		    __func__, error);
    735 		return 0;
    736 	}
    737 
    738 	/* read all registers: */
    739 	uint8_t reg = dm->dm_rtc_start;
    740 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    741 	     &reg, 1, buf, 4, I2C_F_POLL);
    742 
    743 	/* Done with I2C */
    744 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    745 
    746 	if (error != 0) {
    747 		aprint_error_dev(sc->sc_dev,
    748 		    "%s: failed to read rtc at 0x%x: %d\n",
    749 		    __func__, reg, error);
    750 		return 0;
    751 	}
    752 
    753 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    754 	*tp = v;
    755 
    756 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    757 	    __func__, v);
    758 
    759 	return 1;
    760 }
    761 
    762 static int
    763 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    764 {
    765 	const struct dsrtc_model * const dm = &sc->sc_model;
    766 	size_t buflen = dm->dm_rtc_size + 2;
    767 	uint8_t buf[buflen];
    768 	int error;
    769 
    770 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    771 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    772 
    773 	buf[0] = dm->dm_rtc_start;
    774 	buf[1] = (t >> 0) & 0xff;
    775 	buf[2] = (t >> 8) & 0xff;
    776 	buf[3] = (t >> 16) & 0xff;
    777 	buf[4] = (t >> 24) & 0xff;
    778 	buf[5] = 0;
    779 
    780 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    781 		aprint_error_dev(sc->sc_dev,
    782 		    "%s: failed to acquire I2C bus: %d\n",
    783 		    __func__, error);
    784 		return 0;
    785 	}
    786 
    787 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    788 	    &buf, buflen, NULL, 0, I2C_F_POLL);
    789 
    790 	/* Done with I2C */
    791 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    792 
    793 	/* send data */
    794 	if (error != 0) {
    795 		aprint_error_dev(sc->sc_dev,
    796 		    "%s: failed to set time: %d\n",
    797 		    __func__, error);
    798 		return 0;
    799 	}
    800 
    801 	return 1;
    802 }
    803 
    804 static int
    805 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    806 {
    807 	int error, tc;
    808 	uint8_t reg = DS3232_TEMP_MSB;
    809 	uint8_t buf[2];
    810 
    811 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    812 		return ENOTSUP;
    813 
    814 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    815 		aprint_error_dev(sc->sc_dev,
    816 		    "%s: failed to acquire I2C bus: %d\n",
    817 		    __func__, error);
    818 		return 0;
    819 	}
    820 
    821 	/* read temperature registers: */
    822 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    823 	     &reg, 1, buf, 2, I2C_F_POLL);
    824 
    825 	/* Done with I2C */
    826 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    827 
    828 	if (error != 0) {
    829 		aprint_error_dev(sc->sc_dev,
    830 		    "%s: failed to read temperature: %d\n",
    831 		    __func__, error);
    832 		return 0;
    833 	}
    834 
    835 	/* convert to microkelvin */
    836 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    837 	*temp = tc + 273150000;
    838 	return 1;
    839 }
    840 
    841 static void
    842 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    843 {
    844 	struct dsrtc_softc *sc = sme->sme_cookie;
    845 	uint32_t temp = 0;	/* XXX gcc */
    846 
    847 	if (dsrtc_read_temp(sc, &temp) == 0) {
    848 		edata->state = ENVSYS_SINVALID;
    849 		return;
    850 	}
    851 
    852 	edata->value_cur = temp;
    853 
    854 	edata->state = ENVSYS_SVALID;
    855 }
    856