ds1307.c revision 1.27 1 /* $NetBSD: ds1307.c,v 1.27 2018/06/18 17:07:07 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.27 2018/06/18 17:07:07 thorpej Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57
58 struct dsrtc_model {
59 const i2c_addr_t *dm_valid_addrs;
60 uint16_t dm_model;
61 uint8_t dm_ch_reg;
62 uint8_t dm_ch_value;
63 uint8_t dm_vbaten_reg;
64 uint8_t dm_vbaten_value;
65 uint8_t dm_rtc_start;
66 uint8_t dm_rtc_size;
67 uint8_t dm_nvram_start;
68 uint8_t dm_nvram_size;
69 uint8_t dm_flags;
70 #define DSRTC_FLAG_CLOCK_HOLD 0x01
71 #define DSRTC_FLAG_BCD 0x02
72 #define DSRTC_FLAG_TEMP 0x04
73 #define DSRTC_FLAG_VBATEN 0x08
74 #define DSRTC_FLAG_YEAR_START_2K 0x10
75 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
76 };
77
78 static const char *ds1307_compats[] = { "dallas,ds1307", "maxim,ds1307", NULL };
79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
80 static const struct dsrtc_model ds1307_model = {
81 .dm_valid_addrs = ds1307_valid_addrs,
82 .dm_model = 1307,
83 .dm_ch_reg = DSXXXX_SECONDS,
84 .dm_ch_value = DS1307_SECONDS_CH,
85 .dm_rtc_start = DS1307_RTC_START,
86 .dm_rtc_size = DS1307_RTC_SIZE,
87 .dm_nvram_start = DS1307_NVRAM_START,
88 .dm_nvram_size = DS1307_NVRAM_SIZE,
89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
90 };
91
92 static const char *ds1339_compats[] = { "dallas,ds1339", "maxim,ds1339", NULL };
93 static const struct dsrtc_model ds1339_model = {
94 .dm_valid_addrs = ds1307_valid_addrs,
95 .dm_model = 1339,
96 .dm_rtc_start = DS1339_RTC_START,
97 .dm_rtc_size = DS1339_RTC_SIZE,
98 .dm_flags = DSRTC_FLAG_BCD,
99 };
100
101 static const char *ds1340_compats[] = { "dallas,ds1340", "maxim,ds1340", NULL };
102 static const struct dsrtc_model ds1340_model = {
103 .dm_valid_addrs = ds1307_valid_addrs,
104 .dm_model = 1340,
105 .dm_ch_reg = DSXXXX_SECONDS,
106 .dm_ch_value = DS1340_SECONDS_EOSC,
107 .dm_rtc_start = DS1340_RTC_START,
108 .dm_rtc_size = DS1340_RTC_SIZE,
109 .dm_flags = DSRTC_FLAG_BCD,
110 };
111
112 static const char *ds1672_compats[] = { "dallas,ds1672", "maxim,ds1672", NULL };
113 static const struct dsrtc_model ds1672_model = {
114 .dm_valid_addrs = ds1307_valid_addrs,
115 .dm_model = 1672,
116 .dm_rtc_start = DS1672_RTC_START,
117 .dm_rtc_size = DS1672_RTC_SIZE,
118 .dm_ch_reg = DS1672_CONTROL,
119 .dm_ch_value = DS1672_CONTROL_CH,
120 .dm_flags = 0,
121 };
122
123 static const char *ds3231_compats[] = { "dallas,ds3231", "maxim,ds3231", NULL };
124 static const struct dsrtc_model ds3231_model = {
125 .dm_valid_addrs = ds1307_valid_addrs,
126 .dm_model = 3231,
127 .dm_rtc_start = DS3232_RTC_START,
128 .dm_rtc_size = DS3232_RTC_SIZE,
129 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
130 };
131
132 static const char *ds3232_compats[] = { "dallas,ds3232", "maxim,ds3232", NULL };
133 static const struct dsrtc_model ds3232_model = {
134 .dm_valid_addrs = ds1307_valid_addrs,
135 .dm_model = 3232,
136 .dm_rtc_start = DS3232_RTC_START,
137 .dm_rtc_size = DS3232_RTC_SIZE,
138 .dm_nvram_start = DS3232_NVRAM_START,
139 .dm_nvram_size = DS3232_NVRAM_SIZE,
140 /*
141 * XXX
142 * the DS3232 likely has the temperature sensor too but I can't
143 * easily verify or test that right now
144 */
145 .dm_flags = DSRTC_FLAG_BCD,
146 };
147
148 /* XXX vendor prefix */
149 static const char *mcp7940_compats[] = { "microchip,mcp7940", NULL };
150 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
151 static const struct dsrtc_model mcp7940_model = {
152 .dm_valid_addrs = mcp7940_valid_addrs,
153 .dm_model = 7940,
154 .dm_rtc_start = DS1307_RTC_START,
155 .dm_rtc_size = DS1307_RTC_SIZE,
156 .dm_ch_reg = DSXXXX_SECONDS,
157 .dm_ch_value = DS1307_SECONDS_CH,
158 .dm_vbaten_reg = DSXXXX_DAY,
159 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
160 .dm_nvram_start = MCP7940_NVRAM_START,
161 .dm_nvram_size = MCP7940_NVRAM_SIZE,
162 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
163 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
164 };
165
166 static const struct device_compatible_entry dsrtc_compat_data[] = {
167 DEVICE_COMPAT_ENTRY_WITH_DATA(ds1307_compats, &ds1307_model),
168 DEVICE_COMPAT_ENTRY_WITH_DATA(ds1339_compats, &ds1339_model),
169 DEVICE_COMPAT_ENTRY_WITH_DATA(ds1340_compats, &ds1340_model),
170 DEVICE_COMPAT_ENTRY_WITH_DATA(ds1672_compats, &ds1672_model),
171 DEVICE_COMPAT_ENTRY_WITH_DATA(ds3231_compats, &ds3231_model),
172 DEVICE_COMPAT_ENTRY_WITH_DATA(ds3232_compats, &ds3232_model),
173 DEVICE_COMPAT_ENTRY_WITH_DATA(mcp7940_compats, &mcp7940_model),
174 DEVICE_COMPAT_TERMINATOR
175 };
176
177 struct dsrtc_softc {
178 device_t sc_dev;
179 i2c_tag_t sc_tag;
180 uint8_t sc_address;
181 bool sc_open;
182 struct dsrtc_model sc_model;
183 struct todr_chip_handle sc_todr;
184 struct sysmon_envsys *sc_sme;
185 envsys_data_t sc_sensor;
186 };
187
188 static void dsrtc_attach(device_t, device_t, void *);
189 static int dsrtc_match(device_t, cfdata_t, void *);
190
191 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
192 dsrtc_match, dsrtc_attach, NULL, NULL);
193
194 dev_type_open(dsrtc_open);
195 dev_type_close(dsrtc_close);
196 dev_type_read(dsrtc_read);
197 dev_type_write(dsrtc_write);
198
199 const struct cdevsw dsrtc_cdevsw = {
200 .d_open = dsrtc_open,
201 .d_close = dsrtc_close,
202 .d_read = dsrtc_read,
203 .d_write = dsrtc_write,
204 .d_ioctl = noioctl,
205 .d_stop = nostop,
206 .d_tty = notty,
207 .d_poll = nopoll,
208 .d_mmap = nommap,
209 .d_kqfilter = nokqfilter,
210 .d_discard = nodiscard,
211 .d_flag = D_OTHER
212 };
213
214 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
215 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
216 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
217 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
218
219 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
220 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
221 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
222 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
223
224 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
225 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
226
227 static const struct dsrtc_model *
228 dsrtc_model_by_number(u_int model)
229 {
230 const struct device_compatible_entry *dce;
231 const struct dsrtc_model *dm;
232
233 /* no model given, assume it's a DS1307 */
234 if (model == 0)
235 return &ds1307_model;
236
237 for (dce = dsrtc_compat_data;
238 DEVICE_COMPAT_ENTRY_IS_TERMINATOR(dce) == false; dce++) {
239 dm = DEVICE_COMPAT_ENTRY_GET_PTR(dce);
240 if (dm->dm_model == model)
241 return dm;
242 }
243 return NULL;
244 }
245
246 static const struct dsrtc_model *
247 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
248 {
249 const struct dsrtc_model *dm = NULL;
250 const struct device_compatible_entry *dce;
251
252 dce = iic_compatible_match(ia, dsrtc_compat_data, NULL);
253 if (dce != NULL)
254 dm = DEVICE_COMPAT_ENTRY_GET_PTR(dce);
255
256 return dm;
257 }
258
259 static bool
260 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
261 {
262
263 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
264 if (addr == dm->dm_valid_addrs[i])
265 return true;
266 }
267 return false;
268 }
269
270 static int
271 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
272 {
273 struct i2c_attach_args *ia = arg;
274 const struct dsrtc_model *dm;
275 int match_result;
276
277 if (iic_use_direct_match(ia, cf, dsrtc_compat_data, &match_result))
278 return match_result;
279
280 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
281 if (dm == NULL)
282 return 0;
283
284 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
285 return I2C_MATCH_ADDRESS_ONLY;
286
287 return 0;
288 }
289
290 static void
291 dsrtc_attach(device_t parent, device_t self, void *arg)
292 {
293 struct dsrtc_softc *sc = device_private(self);
294 struct i2c_attach_args *ia = arg;
295 const struct dsrtc_model *dm;
296
297 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
298 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
299
300 if (dm == NULL) {
301 aprint_error(": unable to determine model!\n");
302 return;
303 }
304
305 aprint_naive(": Real-time Clock%s\n",
306 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
307 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
308 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
309
310 sc->sc_tag = ia->ia_tag;
311 sc->sc_address = ia->ia_addr;
312 sc->sc_model = *dm;
313 sc->sc_dev = self;
314 sc->sc_open = 0;
315 sc->sc_todr.cookie = sc;
316 if (dm->dm_flags & DSRTC_FLAG_BCD) {
317 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
318 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
319 } else {
320 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
321 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
322 }
323 sc->sc_todr.todr_setwen = NULL;
324
325 todr_attach(&sc->sc_todr);
326 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
327 int error;
328
329 sc->sc_sme = sysmon_envsys_create();
330 sc->sc_sme->sme_name = device_xname(self);
331 sc->sc_sme->sme_cookie = sc;
332 sc->sc_sme->sme_refresh = dsrtc_refresh;
333
334 sc->sc_sensor.units = ENVSYS_STEMP;
335 sc->sc_sensor.state = ENVSYS_SINVALID;
336 sc->sc_sensor.flags = 0;
337 (void)strlcpy(sc->sc_sensor.desc, "temperature",
338 sizeof(sc->sc_sensor.desc));
339
340 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
341 aprint_error_dev(self, "unable to attach sensor\n");
342 goto bad;
343 }
344
345 error = sysmon_envsys_register(sc->sc_sme);
346 if (error) {
347 aprint_error_dev(self,
348 "error %d registering with sysmon\n", error);
349 goto bad;
350 }
351 }
352 return;
353 bad:
354 sysmon_envsys_destroy(sc->sc_sme);
355 }
356
357 /*ARGSUSED*/
358 int
359 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
360 {
361 struct dsrtc_softc *sc;
362
363 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
364 return ENXIO;
365
366 /* XXX: Locking */
367 if (sc->sc_open)
368 return EBUSY;
369
370 sc->sc_open = true;
371 return 0;
372 }
373
374 /*ARGSUSED*/
375 int
376 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
377 {
378 struct dsrtc_softc *sc;
379
380 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
381 return ENXIO;
382
383 sc->sc_open = false;
384 return 0;
385 }
386
387 /*ARGSUSED*/
388 int
389 dsrtc_read(dev_t dev, struct uio *uio, int flags)
390 {
391 struct dsrtc_softc *sc;
392 int error;
393
394 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
395 return ENXIO;
396
397 const struct dsrtc_model * const dm = &sc->sc_model;
398 if (uio->uio_offset >= dm->dm_nvram_size)
399 return EINVAL;
400
401 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
402 return error;
403
404 KASSERT(uio->uio_offset >= 0);
405 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
406 uint8_t ch, cmd;
407 const u_int a = uio->uio_offset;
408 cmd = a + dm->dm_nvram_start;
409 if ((error = iic_exec(sc->sc_tag,
410 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
411 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
412 iic_release_bus(sc->sc_tag, 0);
413 aprint_error_dev(sc->sc_dev,
414 "%s: read failed at 0x%x: %d\n",
415 __func__, a, error);
416 return error;
417 }
418 if ((error = uiomove(&ch, 1, uio)) != 0) {
419 iic_release_bus(sc->sc_tag, 0);
420 return error;
421 }
422 }
423
424 iic_release_bus(sc->sc_tag, 0);
425
426 return 0;
427 }
428
429 /*ARGSUSED*/
430 int
431 dsrtc_write(dev_t dev, struct uio *uio, int flags)
432 {
433 struct dsrtc_softc *sc;
434 int error;
435
436 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
437 return ENXIO;
438
439 const struct dsrtc_model * const dm = &sc->sc_model;
440 if (uio->uio_offset >= dm->dm_nvram_size)
441 return EINVAL;
442
443 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
444 return error;
445
446 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
447 uint8_t cmdbuf[2];
448 const u_int a = (int)uio->uio_offset;
449 cmdbuf[0] = a + dm->dm_nvram_start;
450 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
451 break;
452
453 if ((error = iic_exec(sc->sc_tag,
454 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
455 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
456 aprint_error_dev(sc->sc_dev,
457 "%s: write failed at 0x%x: %d\n",
458 __func__, a, error);
459 break;
460 }
461 }
462
463 iic_release_bus(sc->sc_tag, 0);
464
465 return error;
466 }
467
468 static int
469 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
470 {
471 struct dsrtc_softc *sc = ch->cookie;
472 struct clock_ymdhms check;
473 int retries;
474
475 memset(dt, 0, sizeof(*dt));
476 memset(&check, 0, sizeof(check));
477
478 /*
479 * Since we don't support Burst Read, we have to read the clock twice
480 * until we get two consecutive identical results.
481 */
482 retries = 5;
483 do {
484 dsrtc_clock_read_ymdhms(sc, dt);
485 dsrtc_clock_read_ymdhms(sc, &check);
486 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
487
488 return 0;
489 }
490
491 static int
492 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
493 {
494 struct dsrtc_softc *sc = ch->cookie;
495
496 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
497 return -1;
498
499 return 0;
500 }
501
502 static int
503 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
504 {
505 struct dsrtc_model * const dm = &sc->sc_model;
506 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
507 int error;
508
509 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
510
511 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
512 aprint_error_dev(sc->sc_dev,
513 "%s: failed to acquire I2C bus: %d\n",
514 __func__, error);
515 return 0;
516 }
517
518 /* Read each RTC register in order. */
519 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
520 cmdbuf[0] = dm->dm_rtc_start + i;
521
522 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
523 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
524 }
525
526 /* Done with I2C */
527 iic_release_bus(sc->sc_tag, I2C_F_POLL);
528
529 if (error != 0) {
530 aprint_error_dev(sc->sc_dev,
531 "%s: failed to read rtc at 0x%x: %d\n",
532 __func__, cmdbuf[0], error);
533 return 0;
534 }
535
536 /*
537 * Convert the RTC's register values into something useable
538 */
539 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
540 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
541
542 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
543 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
544 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
545 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
546 dt->dt_hour += 12;
547 } else
548 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
549 DSXXXX_HOURS_24MASK);
550
551 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
552 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
553
554 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
555 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
556 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
557 else {
558 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
559 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
560 dt->dt_year += 100;
561 }
562
563 return 1;
564 }
565
566 static int
567 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
568 {
569 struct dsrtc_model * const dm = &sc->sc_model;
570 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
571 int error;
572
573 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
574
575 /*
576 * Convert our time representation into something the DSXXXX
577 * can understand.
578 */
579 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
580 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
581 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
582 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
583 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
584 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
585 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - POSIX_BASE_YEAR) % 100);
586 if (dt->dt_year - POSIX_BASE_YEAR >= 100)
587 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
588
589 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
590 aprint_error_dev(sc->sc_dev,
591 "%s: failed to acquire I2C bus: %d\n",
592 __func__, error);
593 return 0;
594 }
595
596 /* Stop the clock */
597 cmdbuf[0] = dm->dm_ch_reg;
598
599 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
600 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
601 iic_release_bus(sc->sc_tag, I2C_F_POLL);
602 aprint_error_dev(sc->sc_dev,
603 "%s: failed to read Hold Clock: %d\n",
604 __func__, error);
605 return 0;
606 }
607
608 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
609 cmdbuf[1] &= ~dm->dm_ch_value;
610 else
611 cmdbuf[1] |= dm->dm_ch_value;
612
613 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
614 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
615 iic_release_bus(sc->sc_tag, I2C_F_POLL);
616 aprint_error_dev(sc->sc_dev,
617 "%s: failed to write Hold Clock: %d\n",
618 __func__, error);
619 return 0;
620 }
621
622 /*
623 * Write registers in reverse order. The last write (to the Seconds
624 * register) will undo the Clock Hold, above.
625 */
626 uint8_t op = I2C_OP_WRITE;
627 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
628 cmdbuf[0] = dm->dm_rtc_start + i;
629 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
630 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
631 bcd[i] |= dm->dm_vbaten_value;
632 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
633 op = I2C_OP_WRITE_WITH_STOP;
634 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
635 bcd[i] |= dm->dm_ch_value;
636 }
637 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
638 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
639 iic_release_bus(sc->sc_tag, I2C_F_POLL);
640 aprint_error_dev(sc->sc_dev,
641 "%s: failed to write rtc at 0x%x: %d\n",
642 __func__, i, error);
643 /* XXX: Clock Hold is likely still asserted! */
644 return 0;
645 }
646 }
647 /*
648 * If the clock hold register isn't the same register as seconds,
649 * we need to reeanble the clock.
650 */
651 if (op != I2C_OP_WRITE_WITH_STOP) {
652 cmdbuf[0] = dm->dm_ch_reg;
653 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
654 cmdbuf[1] |= dm->dm_ch_value;
655 else
656 cmdbuf[1] &= ~dm->dm_ch_value;
657
658 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
659 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
660 I2C_F_POLL)) != 0) {
661 iic_release_bus(sc->sc_tag, I2C_F_POLL);
662 aprint_error_dev(sc->sc_dev,
663 "%s: failed to Hold Clock: %d\n",
664 __func__, error);
665 return 0;
666 }
667 }
668
669 iic_release_bus(sc->sc_tag, I2C_F_POLL);
670
671 return 1;
672 }
673
674 static int
675 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
676 {
677 struct dsrtc_softc *sc = ch->cookie;
678 struct timeval check;
679 int retries;
680
681 memset(tv, 0, sizeof(*tv));
682 memset(&check, 0, sizeof(check));
683
684 /*
685 * Since we don't support Burst Read, we have to read the clock twice
686 * until we get two consecutive identical results.
687 */
688 retries = 5;
689 do {
690 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
691 dsrtc_clock_read_timeval(sc, &check.tv_sec);
692 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
693
694 return 0;
695 }
696
697 static int
698 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
699 {
700 struct dsrtc_softc *sc = ch->cookie;
701
702 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
703 return -1;
704
705 return 0;
706 }
707
708 /*
709 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
710 * it, since some I2C controllers don't support anything other than single-byte
711 * transfers.
712 */
713 static int
714 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
715 {
716 const struct dsrtc_model * const dm = &sc->sc_model;
717 uint8_t buf[4];
718 int error;
719
720 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
721 aprint_error_dev(sc->sc_dev,
722 "%s: failed to acquire I2C bus: %d\n",
723 __func__, error);
724 return 0;
725 }
726
727 /* read all registers: */
728 uint8_t reg = dm->dm_rtc_start;
729 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
730 ®, 1, buf, 4, I2C_F_POLL);
731
732 /* Done with I2C */
733 iic_release_bus(sc->sc_tag, I2C_F_POLL);
734
735 if (error != 0) {
736 aprint_error_dev(sc->sc_dev,
737 "%s: failed to read rtc at 0x%x: %d\n",
738 __func__, reg, error);
739 return 0;
740 }
741
742 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
743 *tp = v;
744
745 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
746 __func__, v);
747
748 return 1;
749 }
750
751 static int
752 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
753 {
754 const struct dsrtc_model * const dm = &sc->sc_model;
755 size_t buflen = dm->dm_rtc_size + 2;
756 uint8_t buf[buflen];
757 int error;
758
759 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
760 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
761
762 buf[0] = dm->dm_rtc_start;
763 buf[1] = (t >> 0) & 0xff;
764 buf[2] = (t >> 8) & 0xff;
765 buf[3] = (t >> 16) & 0xff;
766 buf[4] = (t >> 24) & 0xff;
767 buf[5] = 0;
768
769 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
770 aprint_error_dev(sc->sc_dev,
771 "%s: failed to acquire I2C bus: %d\n",
772 __func__, error);
773 return 0;
774 }
775
776 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
777 &buf, buflen, NULL, 0, I2C_F_POLL);
778
779 /* Done with I2C */
780 iic_release_bus(sc->sc_tag, I2C_F_POLL);
781
782 /* send data */
783 if (error != 0) {
784 aprint_error_dev(sc->sc_dev,
785 "%s: failed to set time: %d\n",
786 __func__, error);
787 return 0;
788 }
789
790 return 1;
791 }
792
793 static int
794 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
795 {
796 int error, tc;
797 uint8_t reg = DS3232_TEMP_MSB;
798 uint8_t buf[2];
799
800 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
801 return ENOTSUP;
802
803 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
804 aprint_error_dev(sc->sc_dev,
805 "%s: failed to acquire I2C bus: %d\n",
806 __func__, error);
807 return 0;
808 }
809
810 /* read temperature registers: */
811 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
812 ®, 1, buf, 2, I2C_F_POLL);
813
814 /* Done with I2C */
815 iic_release_bus(sc->sc_tag, I2C_F_POLL);
816
817 if (error != 0) {
818 aprint_error_dev(sc->sc_dev,
819 "%s: failed to read temperature: %d\n",
820 __func__, error);
821 return 0;
822 }
823
824 /* convert to microkelvin */
825 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
826 *temp = tc + 273150000;
827 return 1;
828 }
829
830 static void
831 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
832 {
833 struct dsrtc_softc *sc = sme->sme_cookie;
834 uint32_t temp = 0; /* XXX gcc */
835
836 if (dsrtc_read_temp(sc, &temp) == 0) {
837 edata->state = ENVSYS_SINVALID;
838 return;
839 }
840
841 edata->value_cur = temp;
842
843 edata->state = ENVSYS_SVALID;
844 }
845