ds1307.c revision 1.29.2.2 1 /* $NetBSD: ds1307.c,v 1.29.2.2 2020/04/08 14:08:05 martin Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.29.2.2 2020/04/08 14:08:05 martin Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57 #include "opt_dsrtc.h"
58
59 struct dsrtc_model {
60 const i2c_addr_t *dm_valid_addrs;
61 uint16_t dm_model;
62 uint8_t dm_ch_reg;
63 uint8_t dm_ch_value;
64 uint8_t dm_vbaten_reg;
65 uint8_t dm_vbaten_value;
66 uint8_t dm_rtc_start;
67 uint8_t dm_rtc_size;
68 uint8_t dm_nvram_start;
69 uint8_t dm_nvram_size;
70 uint8_t dm_flags;
71 #define DSRTC_FLAG_CLOCK_HOLD 0x01
72 #define DSRTC_FLAG_BCD 0x02
73 #define DSRTC_FLAG_TEMP 0x04
74 #define DSRTC_FLAG_VBATEN 0x08
75 #define DSRTC_FLAG_YEAR_START_2K 0x10
76 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
77 };
78
79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
80 static const struct dsrtc_model ds1307_model = {
81 .dm_valid_addrs = ds1307_valid_addrs,
82 .dm_model = 1307,
83 .dm_ch_reg = DSXXXX_SECONDS,
84 .dm_ch_value = DS1307_SECONDS_CH,
85 .dm_rtc_start = DS1307_RTC_START,
86 .dm_rtc_size = DS1307_RTC_SIZE,
87 .dm_nvram_start = DS1307_NVRAM_START,
88 .dm_nvram_size = DS1307_NVRAM_SIZE,
89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
90 };
91
92 static const struct dsrtc_model ds1339_model = {
93 .dm_valid_addrs = ds1307_valid_addrs,
94 .dm_model = 1339,
95 .dm_rtc_start = DS1339_RTC_START,
96 .dm_rtc_size = DS1339_RTC_SIZE,
97 .dm_flags = DSRTC_FLAG_BCD,
98 };
99
100 static const struct dsrtc_model ds1340_model = {
101 .dm_valid_addrs = ds1307_valid_addrs,
102 .dm_model = 1340,
103 .dm_ch_reg = DSXXXX_SECONDS,
104 .dm_ch_value = DS1340_SECONDS_EOSC,
105 .dm_rtc_start = DS1340_RTC_START,
106 .dm_rtc_size = DS1340_RTC_SIZE,
107 .dm_flags = DSRTC_FLAG_BCD,
108 };
109
110 static const struct dsrtc_model ds1672_model = {
111 .dm_valid_addrs = ds1307_valid_addrs,
112 .dm_model = 1672,
113 .dm_rtc_start = DS1672_RTC_START,
114 .dm_rtc_size = DS1672_RTC_SIZE,
115 .dm_ch_reg = DS1672_CONTROL,
116 .dm_ch_value = DS1672_CONTROL_CH,
117 .dm_flags = 0,
118 };
119
120 static const struct dsrtc_model ds3231_model = {
121 .dm_valid_addrs = ds1307_valid_addrs,
122 .dm_model = 3231,
123 .dm_rtc_start = DS3232_RTC_START,
124 .dm_rtc_size = DS3232_RTC_SIZE,
125 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
126 };
127
128 static const struct dsrtc_model ds3232_model = {
129 .dm_valid_addrs = ds1307_valid_addrs,
130 .dm_model = 3232,
131 .dm_rtc_start = DS3232_RTC_START,
132 .dm_rtc_size = DS3232_RTC_SIZE,
133 .dm_nvram_start = DS3232_NVRAM_START,
134 .dm_nvram_size = DS3232_NVRAM_SIZE,
135 /*
136 * XXX
137 * the DS3232 likely has the temperature sensor too but I can't
138 * easily verify or test that right now
139 */
140 .dm_flags = DSRTC_FLAG_BCD,
141 };
142
143 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
144 static const struct dsrtc_model mcp7940_model = {
145 .dm_valid_addrs = mcp7940_valid_addrs,
146 .dm_model = 7940,
147 .dm_rtc_start = DS1307_RTC_START,
148 .dm_rtc_size = DS1307_RTC_SIZE,
149 .dm_ch_reg = DSXXXX_SECONDS,
150 .dm_ch_value = DS1307_SECONDS_CH,
151 .dm_vbaten_reg = DSXXXX_DAY,
152 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
153 .dm_nvram_start = MCP7940_NVRAM_START,
154 .dm_nvram_size = MCP7940_NVRAM_SIZE,
155 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
156 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
157 };
158
159 static const struct device_compatible_entry compat_data[] = {
160 { "dallas,ds1307", (uintptr_t)&ds1307_model },
161 { "maxim,ds1307", (uintptr_t)&ds1307_model },
162
163 { "dallas,ds1339", (uintptr_t)&ds1339_model },
164 { "maxim,ds1339", (uintptr_t)&ds1339_model },
165
166 { "dallas,ds1340", (uintptr_t)&ds1340_model },
167 { "maxim,ds1340", (uintptr_t)&ds1340_model },
168
169 { "dallas,ds1672", (uintptr_t)&ds1672_model },
170 { "maxim,ds1672", (uintptr_t)&ds1672_model },
171
172 { "dallas,ds3231", (uintptr_t)&ds3231_model },
173 { "maxim,ds3231", (uintptr_t)&ds3231_model },
174
175 { "dallas,ds3232", (uintptr_t)&ds3232_model },
176 { "maxim,ds3232", (uintptr_t)&ds3232_model },
177
178 { "microchip,mcp7940", (uintptr_t)&mcp7940_model },
179
180 { NULL, 0 }
181 };
182
183 struct dsrtc_softc {
184 device_t sc_dev;
185 i2c_tag_t sc_tag;
186 uint8_t sc_address;
187 bool sc_open;
188 struct dsrtc_model sc_model;
189 struct todr_chip_handle sc_todr;
190 struct sysmon_envsys *sc_sme;
191 envsys_data_t sc_sensor;
192 };
193
194 static void dsrtc_attach(device_t, device_t, void *);
195 static int dsrtc_match(device_t, cfdata_t, void *);
196
197 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
198 dsrtc_match, dsrtc_attach, NULL, NULL);
199
200 dev_type_open(dsrtc_open);
201 dev_type_close(dsrtc_close);
202 dev_type_read(dsrtc_read);
203 dev_type_write(dsrtc_write);
204
205 const struct cdevsw dsrtc_cdevsw = {
206 .d_open = dsrtc_open,
207 .d_close = dsrtc_close,
208 .d_read = dsrtc_read,
209 .d_write = dsrtc_write,
210 .d_ioctl = noioctl,
211 .d_stop = nostop,
212 .d_tty = notty,
213 .d_poll = nopoll,
214 .d_mmap = nommap,
215 .d_kqfilter = nokqfilter,
216 .d_discard = nodiscard,
217 .d_flag = D_OTHER
218 };
219
220 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
221 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
222 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
223 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
224
225 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
226 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
227 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
228 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
229
230 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
231 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
232
233 static const struct dsrtc_model *
234 dsrtc_model_by_number(u_int model)
235 {
236 const struct device_compatible_entry *dce;
237 const struct dsrtc_model *dm;
238
239 /* no model given, assume it's a DS1307 */
240 if (model == 0)
241 return &ds1307_model;
242
243 for (dce = compat_data; dce->compat != NULL; dce++) {
244 dm = (void *)dce->data;
245 if (dm->dm_model == model)
246 return dm;
247 }
248 return NULL;
249 }
250
251 static const struct dsrtc_model *
252 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
253 {
254 const struct dsrtc_model *dm = NULL;
255 const struct device_compatible_entry *dce;
256
257 if (iic_compatible_match(ia, compat_data, &dce))
258 dm = (void *)dce->data;
259
260 return dm;
261 }
262
263 static bool
264 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
265 {
266
267 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
268 if (addr == dm->dm_valid_addrs[i])
269 return true;
270 }
271 return false;
272 }
273
274 static int
275 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
276 {
277 struct i2c_attach_args *ia = arg;
278 const struct dsrtc_model *dm;
279 int match_result;
280
281 if (iic_use_direct_match(ia, cf, compat_data, &match_result))
282 return match_result;
283
284 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
285 if (dm == NULL)
286 return 0;
287
288 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
289 return I2C_MATCH_ADDRESS_ONLY;
290
291 return 0;
292 }
293
294 static void
295 dsrtc_attach(device_t parent, device_t self, void *arg)
296 {
297 struct dsrtc_softc *sc = device_private(self);
298 struct i2c_attach_args *ia = arg;
299 const struct dsrtc_model *dm;
300 prop_dictionary_t dict = device_properties(self);
301 bool base_2k = FALSE;
302
303 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
304 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
305
306 if (dm == NULL) {
307 aprint_error(": unable to determine model!\n");
308 return;
309 }
310
311 aprint_naive(": Real-time Clock%s\n",
312 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
313 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
314 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
315
316 sc->sc_tag = ia->ia_tag;
317 sc->sc_address = ia->ia_addr;
318 sc->sc_model = *dm;
319 sc->sc_dev = self;
320 sc->sc_open = 0;
321 sc->sc_todr.cookie = sc;
322
323 if (dm->dm_flags & DSRTC_FLAG_BCD) {
324 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
325 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
326 } else {
327 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
328 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
329 }
330 sc->sc_todr.todr_setwen = NULL;
331
332 #ifdef DSRTC_YEAR_START_2K
333 sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
334 #endif
335
336 prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k);
337 if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
338
339
340 todr_attach(&sc->sc_todr);
341 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
342 int error;
343
344 sc->sc_sme = sysmon_envsys_create();
345 sc->sc_sme->sme_name = device_xname(self);
346 sc->sc_sme->sme_cookie = sc;
347 sc->sc_sme->sme_refresh = dsrtc_refresh;
348
349 sc->sc_sensor.units = ENVSYS_STEMP;
350 sc->sc_sensor.state = ENVSYS_SINVALID;
351 sc->sc_sensor.flags = 0;
352 (void)strlcpy(sc->sc_sensor.desc, "temperature",
353 sizeof(sc->sc_sensor.desc));
354
355 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
356 aprint_error_dev(self, "unable to attach sensor\n");
357 goto bad;
358 }
359
360 error = sysmon_envsys_register(sc->sc_sme);
361 if (error) {
362 aprint_error_dev(self,
363 "error %d registering with sysmon\n", error);
364 goto bad;
365 }
366 }
367 return;
368 bad:
369 sysmon_envsys_destroy(sc->sc_sme);
370 }
371
372 /*ARGSUSED*/
373 int
374 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
375 {
376 struct dsrtc_softc *sc;
377
378 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
379 return ENXIO;
380
381 /* XXX: Locking */
382 if (sc->sc_open)
383 return EBUSY;
384
385 sc->sc_open = true;
386 return 0;
387 }
388
389 /*ARGSUSED*/
390 int
391 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
392 {
393 struct dsrtc_softc *sc;
394
395 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
396 return ENXIO;
397
398 sc->sc_open = false;
399 return 0;
400 }
401
402 /*ARGSUSED*/
403 int
404 dsrtc_read(dev_t dev, struct uio *uio, int flags)
405 {
406 struct dsrtc_softc *sc;
407 int error;
408
409 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
410 return ENXIO;
411
412 const struct dsrtc_model * const dm = &sc->sc_model;
413 if (uio->uio_offset >= dm->dm_nvram_size)
414 return EINVAL;
415
416 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
417 return error;
418
419 KASSERT(uio->uio_offset >= 0);
420 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
421 uint8_t ch, cmd;
422 const u_int a = uio->uio_offset;
423 cmd = a + dm->dm_nvram_start;
424 if ((error = iic_exec(sc->sc_tag,
425 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
426 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
427 iic_release_bus(sc->sc_tag, 0);
428 aprint_error_dev(sc->sc_dev,
429 "%s: read failed at 0x%x: %d\n",
430 __func__, a, error);
431 return error;
432 }
433 if ((error = uiomove(&ch, 1, uio)) != 0) {
434 iic_release_bus(sc->sc_tag, 0);
435 return error;
436 }
437 }
438
439 iic_release_bus(sc->sc_tag, 0);
440
441 return 0;
442 }
443
444 /*ARGSUSED*/
445 int
446 dsrtc_write(dev_t dev, struct uio *uio, int flags)
447 {
448 struct dsrtc_softc *sc;
449 int error;
450
451 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
452 return ENXIO;
453
454 const struct dsrtc_model * const dm = &sc->sc_model;
455 if (uio->uio_offset >= dm->dm_nvram_size)
456 return EINVAL;
457
458 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
459 return error;
460
461 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
462 uint8_t cmdbuf[2];
463 const u_int a = (int)uio->uio_offset;
464 cmdbuf[0] = a + dm->dm_nvram_start;
465 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
466 break;
467
468 if ((error = iic_exec(sc->sc_tag,
469 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
470 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
471 aprint_error_dev(sc->sc_dev,
472 "%s: write failed at 0x%x: %d\n",
473 __func__, a, error);
474 break;
475 }
476 }
477
478 iic_release_bus(sc->sc_tag, 0);
479
480 return error;
481 }
482
483 static int
484 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
485 {
486 struct dsrtc_softc *sc = ch->cookie;
487 struct clock_ymdhms check;
488 int retries;
489
490 memset(dt, 0, sizeof(*dt));
491 memset(&check, 0, sizeof(check));
492
493 /*
494 * Since we don't support Burst Read, we have to read the clock twice
495 * until we get two consecutive identical results.
496 */
497 retries = 5;
498 do {
499 dsrtc_clock_read_ymdhms(sc, dt);
500 dsrtc_clock_read_ymdhms(sc, &check);
501 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
502
503 return 0;
504 }
505
506 static int
507 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
508 {
509 struct dsrtc_softc *sc = ch->cookie;
510
511 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
512 return -1;
513
514 return 0;
515 }
516
517 static int
518 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
519 {
520 struct dsrtc_model * const dm = &sc->sc_model;
521 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
522 int error;
523
524 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
525
526 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
527 aprint_error_dev(sc->sc_dev,
528 "%s: failed to acquire I2C bus: %d\n",
529 __func__, error);
530 return 0;
531 }
532
533 /* Read each RTC register in order. */
534 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
535 cmdbuf[0] = dm->dm_rtc_start + i;
536
537 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
538 sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0);
539 }
540
541 /* Done with I2C */
542 iic_release_bus(sc->sc_tag, 0);
543
544 if (error != 0) {
545 aprint_error_dev(sc->sc_dev,
546 "%s: failed to read rtc at 0x%x: %d\n",
547 __func__, cmdbuf[0], error);
548 return 0;
549 }
550
551 /*
552 * Convert the RTC's register values into something useable
553 */
554 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
555 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
556
557 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
558 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
559 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
560 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
561 dt->dt_hour += 12;
562 } else
563 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
564 DSXXXX_HOURS_24MASK);
565
566 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
567 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
568
569 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
570 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
571 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
572 else {
573 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
574 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
575 dt->dt_year += 100;
576 }
577
578 return 1;
579 }
580
581 static int
582 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
583 {
584 struct dsrtc_model * const dm = &sc->sc_model;
585 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
586 int error, offset;
587
588 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
589
590 /*
591 * Convert our time representation into something the DSXXXX
592 * can understand.
593 */
594 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
595 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
596 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
597 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
598 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
599 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
600
601 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
602 offset = 2000;
603 } else {
604 offset = POSIX_BASE_YEAR;
605 }
606
607 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
608 if (dt->dt_year - offset >= 100)
609 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
610
611 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
612 aprint_error_dev(sc->sc_dev,
613 "%s: failed to acquire I2C bus: %d\n",
614 __func__, error);
615 return 0;
616 }
617
618 /* Stop the clock */
619 cmdbuf[0] = dm->dm_ch_reg;
620
621 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
622 cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
623 iic_release_bus(sc->sc_tag, 0);
624 aprint_error_dev(sc->sc_dev,
625 "%s: failed to read Hold Clock: %d\n",
626 __func__, error);
627 return 0;
628 }
629
630 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
631 cmdbuf[1] &= ~dm->dm_ch_value;
632 else
633 cmdbuf[1] |= dm->dm_ch_value;
634
635 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
636 cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
637 iic_release_bus(sc->sc_tag, 0);
638 aprint_error_dev(sc->sc_dev,
639 "%s: failed to write Hold Clock: %d\n",
640 __func__, error);
641 return 0;
642 }
643
644 /*
645 * Write registers in reverse order. The last write (to the Seconds
646 * register) will undo the Clock Hold, above.
647 */
648 uint8_t op = I2C_OP_WRITE;
649 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
650 cmdbuf[0] = dm->dm_rtc_start + i;
651 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
652 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
653 bcd[i] |= dm->dm_vbaten_value;
654 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
655 op = I2C_OP_WRITE_WITH_STOP;
656 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
657 bcd[i] |= dm->dm_ch_value;
658 }
659 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
660 cmdbuf, 1, &bcd[i], 1, 0)) != 0) {
661 iic_release_bus(sc->sc_tag, 0);
662 aprint_error_dev(sc->sc_dev,
663 "%s: failed to write rtc at 0x%x: %d\n",
664 __func__, i, error);
665 /* XXX: Clock Hold is likely still asserted! */
666 return 0;
667 }
668 }
669 /*
670 * If the clock hold register isn't the same register as seconds,
671 * we need to reeanble the clock.
672 */
673 if (op != I2C_OP_WRITE_WITH_STOP) {
674 cmdbuf[0] = dm->dm_ch_reg;
675 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
676 cmdbuf[1] |= dm->dm_ch_value;
677 else
678 cmdbuf[1] &= ~dm->dm_ch_value;
679
680 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
681 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
682 iic_release_bus(sc->sc_tag, 0);
683 aprint_error_dev(sc->sc_dev,
684 "%s: failed to Hold Clock: %d\n",
685 __func__, error);
686 return 0;
687 }
688 }
689
690 iic_release_bus(sc->sc_tag, 0);
691
692 return 1;
693 }
694
695 static int
696 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
697 {
698 struct dsrtc_softc *sc = ch->cookie;
699 struct timeval check;
700 int retries;
701
702 memset(tv, 0, sizeof(*tv));
703 memset(&check, 0, sizeof(check));
704
705 /*
706 * Since we don't support Burst Read, we have to read the clock twice
707 * until we get two consecutive identical results.
708 */
709 retries = 5;
710 do {
711 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
712 dsrtc_clock_read_timeval(sc, &check.tv_sec);
713 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
714
715 return 0;
716 }
717
718 static int
719 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
720 {
721 struct dsrtc_softc *sc = ch->cookie;
722
723 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
724 return -1;
725
726 return 0;
727 }
728
729 /*
730 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
731 * it, since some I2C controllers don't support anything other than single-byte
732 * transfers.
733 */
734 static int
735 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
736 {
737 const struct dsrtc_model * const dm = &sc->sc_model;
738 uint8_t buf[4];
739 int error;
740
741 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
742 aprint_error_dev(sc->sc_dev,
743 "%s: failed to acquire I2C bus: %d\n",
744 __func__, error);
745 return 0;
746 }
747
748 /* read all registers: */
749 uint8_t reg = dm->dm_rtc_start;
750 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
751 ®, 1, buf, 4, 0);
752
753 /* Done with I2C */
754 iic_release_bus(sc->sc_tag, 0);
755
756 if (error != 0) {
757 aprint_error_dev(sc->sc_dev,
758 "%s: failed to read rtc at 0x%x: %d\n",
759 __func__, reg, error);
760 return 0;
761 }
762
763 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
764 *tp = v;
765
766 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
767 __func__, v);
768
769 return 1;
770 }
771
772 static int
773 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
774 {
775 const struct dsrtc_model * const dm = &sc->sc_model;
776 size_t buflen = dm->dm_rtc_size + 2;
777 uint8_t buf[buflen];
778 int error;
779
780 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
781 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
782
783 buf[0] = dm->dm_rtc_start;
784 buf[1] = (t >> 0) & 0xff;
785 buf[2] = (t >> 8) & 0xff;
786 buf[3] = (t >> 16) & 0xff;
787 buf[4] = (t >> 24) & 0xff;
788 buf[5] = 0;
789
790 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
791 aprint_error_dev(sc->sc_dev,
792 "%s: failed to acquire I2C bus: %d\n",
793 __func__, error);
794 return 0;
795 }
796
797 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
798 &buf, buflen, NULL, 0, 0);
799
800 /* Done with I2C */
801 iic_release_bus(sc->sc_tag, 0);
802
803 /* send data */
804 if (error != 0) {
805 aprint_error_dev(sc->sc_dev,
806 "%s: failed to set time: %d\n",
807 __func__, error);
808 return 0;
809 }
810
811 return 1;
812 }
813
814 static int
815 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
816 {
817 int error, tc;
818 uint8_t reg = DS3232_TEMP_MSB;
819 uint8_t buf[2];
820
821 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
822 return ENOTSUP;
823
824 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
825 aprint_error_dev(sc->sc_dev,
826 "%s: failed to acquire I2C bus: %d\n",
827 __func__, error);
828 return 0;
829 }
830
831 /* read temperature registers: */
832 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
833 ®, 1, buf, 2, 0);
834
835 /* Done with I2C */
836 iic_release_bus(sc->sc_tag, 0);
837
838 if (error != 0) {
839 aprint_error_dev(sc->sc_dev,
840 "%s: failed to read temperature: %d\n",
841 __func__, error);
842 return 0;
843 }
844
845 /* convert to microkelvin */
846 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
847 *temp = tc + 273150000;
848 return 1;
849 }
850
851 static void
852 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
853 {
854 struct dsrtc_softc *sc = sme->sme_cookie;
855 uint32_t temp = 0; /* XXX gcc */
856
857 if (dsrtc_read_temp(sc, &temp) == 0) {
858 edata->state = ENVSYS_SINVALID;
859 return;
860 }
861
862 edata->value_cur = temp;
863
864 edata->state = ENVSYS_SVALID;
865 }
866