ds1307.c revision 1.30 1 /* $NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $ */
2
3 /*
4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $");
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/device.h>
44 #include <sys/kernel.h>
45 #include <sys/fcntl.h>
46 #include <sys/uio.h>
47 #include <sys/conf.h>
48 #include <sys/event.h>
49
50 #include <dev/clock_subr.h>
51
52 #include <dev/i2c/i2cvar.h>
53 #include <dev/i2c/ds1307reg.h>
54 #include <dev/sysmon/sysmonvar.h>
55
56 #include "ioconf.h"
57 #include "opt_dsrtc.h"
58
59 struct dsrtc_model {
60 const i2c_addr_t *dm_valid_addrs;
61 uint16_t dm_model;
62 uint8_t dm_ch_reg;
63 uint8_t dm_ch_value;
64 uint8_t dm_vbaten_reg;
65 uint8_t dm_vbaten_value;
66 uint8_t dm_rtc_start;
67 uint8_t dm_rtc_size;
68 uint8_t dm_nvram_start;
69 uint8_t dm_nvram_size;
70 uint8_t dm_flags;
71 #define DSRTC_FLAG_CLOCK_HOLD 0x01
72 #define DSRTC_FLAG_BCD 0x02
73 #define DSRTC_FLAG_TEMP 0x04
74 #define DSRTC_FLAG_VBATEN 0x08
75 #define DSRTC_FLAG_YEAR_START_2K 0x10
76 #define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
77 };
78
79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
80 static const struct dsrtc_model ds1307_model = {
81 .dm_valid_addrs = ds1307_valid_addrs,
82 .dm_model = 1307,
83 .dm_ch_reg = DSXXXX_SECONDS,
84 .dm_ch_value = DS1307_SECONDS_CH,
85 .dm_rtc_start = DS1307_RTC_START,
86 .dm_rtc_size = DS1307_RTC_SIZE,
87 .dm_nvram_start = DS1307_NVRAM_START,
88 .dm_nvram_size = DS1307_NVRAM_SIZE,
89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
90 };
91
92 static const struct dsrtc_model ds1339_model = {
93 .dm_valid_addrs = ds1307_valid_addrs,
94 .dm_model = 1339,
95 .dm_rtc_start = DS1339_RTC_START,
96 .dm_rtc_size = DS1339_RTC_SIZE,
97 .dm_flags = DSRTC_FLAG_BCD,
98 };
99
100 static const struct dsrtc_model ds1340_model = {
101 .dm_valid_addrs = ds1307_valid_addrs,
102 .dm_model = 1340,
103 .dm_ch_reg = DSXXXX_SECONDS,
104 .dm_ch_value = DS1340_SECONDS_EOSC,
105 .dm_rtc_start = DS1340_RTC_START,
106 .dm_rtc_size = DS1340_RTC_SIZE,
107 .dm_flags = DSRTC_FLAG_BCD,
108 };
109
110 static const struct dsrtc_model ds1672_model = {
111 .dm_valid_addrs = ds1307_valid_addrs,
112 .dm_model = 1672,
113 .dm_rtc_start = DS1672_RTC_START,
114 .dm_rtc_size = DS1672_RTC_SIZE,
115 .dm_ch_reg = DS1672_CONTROL,
116 .dm_ch_value = DS1672_CONTROL_CH,
117 .dm_flags = 0,
118 };
119
120 static const struct dsrtc_model ds3231_model = {
121 .dm_valid_addrs = ds1307_valid_addrs,
122 .dm_model = 3231,
123 .dm_rtc_start = DS3232_RTC_START,
124 .dm_rtc_size = DS3232_RTC_SIZE,
125 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
126 };
127
128 static const struct dsrtc_model ds3232_model = {
129 .dm_valid_addrs = ds1307_valid_addrs,
130 .dm_model = 3232,
131 .dm_rtc_start = DS3232_RTC_START,
132 .dm_rtc_size = DS3232_RTC_SIZE,
133 .dm_nvram_start = DS3232_NVRAM_START,
134 .dm_nvram_size = DS3232_NVRAM_SIZE,
135 /*
136 * XXX
137 * the DS3232 likely has the temperature sensor too but I can't
138 * easily verify or test that right now
139 */
140 .dm_flags = DSRTC_FLAG_BCD,
141 };
142
143 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
144 static const struct dsrtc_model mcp7940_model = {
145 .dm_valid_addrs = mcp7940_valid_addrs,
146 .dm_model = 7940,
147 .dm_rtc_start = DS1307_RTC_START,
148 .dm_rtc_size = DS1307_RTC_SIZE,
149 .dm_ch_reg = DSXXXX_SECONDS,
150 .dm_ch_value = DS1307_SECONDS_CH,
151 .dm_vbaten_reg = DSXXXX_DAY,
152 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
153 .dm_nvram_start = MCP7940_NVRAM_START,
154 .dm_nvram_size = MCP7940_NVRAM_SIZE,
155 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
156 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
157 };
158
159 static const struct device_compatible_entry compat_data[] = {
160 { "dallas,ds1307", (uintptr_t)&ds1307_model },
161 { "maxim,ds1307", (uintptr_t)&ds1307_model },
162
163 { "dallas,ds1339", (uintptr_t)&ds1339_model },
164 { "maxim,ds1339", (uintptr_t)&ds1339_model },
165
166 { "dallas,ds1340", (uintptr_t)&ds1340_model },
167 { "maxim,ds1340", (uintptr_t)&ds1340_model },
168
169 { "dallas,ds1672", (uintptr_t)&ds1672_model },
170 { "maxim,ds1672", (uintptr_t)&ds1672_model },
171
172 { "dallas,ds3231", (uintptr_t)&ds3231_model },
173 { "maxim,ds3231", (uintptr_t)&ds3231_model },
174
175 { "dallas,ds3232", (uintptr_t)&ds3232_model },
176 { "maxim,ds3232", (uintptr_t)&ds3232_model },
177
178 { "microchip,mcp7940", (uintptr_t)&mcp7940_model },
179
180 { NULL, 0 }
181 };
182
183 struct dsrtc_softc {
184 device_t sc_dev;
185 i2c_tag_t sc_tag;
186 uint8_t sc_address;
187 bool sc_open;
188 struct dsrtc_model sc_model;
189 struct todr_chip_handle sc_todr;
190 struct sysmon_envsys *sc_sme;
191 envsys_data_t sc_sensor;
192 };
193
194 static void dsrtc_attach(device_t, device_t, void *);
195 static int dsrtc_match(device_t, cfdata_t, void *);
196
197 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
198 dsrtc_match, dsrtc_attach, NULL, NULL);
199
200 dev_type_open(dsrtc_open);
201 dev_type_close(dsrtc_close);
202 dev_type_read(dsrtc_read);
203 dev_type_write(dsrtc_write);
204
205 const struct cdevsw dsrtc_cdevsw = {
206 .d_open = dsrtc_open,
207 .d_close = dsrtc_close,
208 .d_read = dsrtc_read,
209 .d_write = dsrtc_write,
210 .d_ioctl = noioctl,
211 .d_stop = nostop,
212 .d_tty = notty,
213 .d_poll = nopoll,
214 .d_mmap = nommap,
215 .d_kqfilter = nokqfilter,
216 .d_discard = nodiscard,
217 .d_flag = D_OTHER
218 };
219
220 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
221 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
222 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
223 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
224
225 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
226 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
227 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
228 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
229
230 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
231 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
232
233 static const struct dsrtc_model *
234 dsrtc_model_by_number(u_int model)
235 {
236 const struct device_compatible_entry *dce;
237 const struct dsrtc_model *dm;
238
239 /* no model given, assume it's a DS1307 */
240 if (model == 0)
241 return &ds1307_model;
242
243 for (dce = compat_data; dce->compat != NULL; dce++) {
244 dm = (void *)dce->data;
245 if (dm->dm_model == model)
246 return dm;
247 }
248 return NULL;
249 }
250
251 static const struct dsrtc_model *
252 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
253 {
254 const struct dsrtc_model *dm = NULL;
255 const struct device_compatible_entry *dce;
256
257 if (iic_compatible_match(ia, compat_data, &dce))
258 dm = (void *)dce->data;
259
260 return dm;
261 }
262
263 static bool
264 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
265 {
266
267 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
268 if (addr == dm->dm_valid_addrs[i])
269 return true;
270 }
271 return false;
272 }
273
274 static int
275 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
276 {
277 struct i2c_attach_args *ia = arg;
278 const struct dsrtc_model *dm;
279 int match_result;
280
281 if (iic_use_direct_match(ia, cf, compat_data, &match_result))
282 return match_result;
283
284 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
285 if (dm == NULL)
286 return 0;
287
288 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
289 return I2C_MATCH_ADDRESS_ONLY;
290
291 return 0;
292 }
293
294 static void
295 dsrtc_attach(device_t parent, device_t self, void *arg)
296 {
297 struct dsrtc_softc *sc = device_private(self);
298 struct i2c_attach_args *ia = arg;
299 const struct dsrtc_model *dm;
300
301 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
302 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
303
304 if (dm == NULL) {
305 aprint_error(": unable to determine model!\n");
306 return;
307 }
308
309 aprint_naive(": Real-time Clock%s\n",
310 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
311 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
312 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
313
314 sc->sc_tag = ia->ia_tag;
315 sc->sc_address = ia->ia_addr;
316 sc->sc_model = *dm;
317 sc->sc_dev = self;
318 sc->sc_open = 0;
319 sc->sc_todr.cookie = sc;
320
321 if (dm->dm_flags & DSRTC_FLAG_BCD) {
322 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
323 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
324 } else {
325 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
326 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
327 }
328 sc->sc_todr.todr_setwen = NULL;
329
330 #ifdef DSRTC_YEAR_START_2K
331 sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
332 #endif
333
334 todr_attach(&sc->sc_todr);
335 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
336 int error;
337
338 sc->sc_sme = sysmon_envsys_create();
339 sc->sc_sme->sme_name = device_xname(self);
340 sc->sc_sme->sme_cookie = sc;
341 sc->sc_sme->sme_refresh = dsrtc_refresh;
342
343 sc->sc_sensor.units = ENVSYS_STEMP;
344 sc->sc_sensor.state = ENVSYS_SINVALID;
345 sc->sc_sensor.flags = 0;
346 (void)strlcpy(sc->sc_sensor.desc, "temperature",
347 sizeof(sc->sc_sensor.desc));
348
349 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
350 aprint_error_dev(self, "unable to attach sensor\n");
351 goto bad;
352 }
353
354 error = sysmon_envsys_register(sc->sc_sme);
355 if (error) {
356 aprint_error_dev(self,
357 "error %d registering with sysmon\n", error);
358 goto bad;
359 }
360 }
361 return;
362 bad:
363 sysmon_envsys_destroy(sc->sc_sme);
364 }
365
366 /*ARGSUSED*/
367 int
368 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
369 {
370 struct dsrtc_softc *sc;
371
372 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
373 return ENXIO;
374
375 /* XXX: Locking */
376 if (sc->sc_open)
377 return EBUSY;
378
379 sc->sc_open = true;
380 return 0;
381 }
382
383 /*ARGSUSED*/
384 int
385 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
386 {
387 struct dsrtc_softc *sc;
388
389 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
390 return ENXIO;
391
392 sc->sc_open = false;
393 return 0;
394 }
395
396 /*ARGSUSED*/
397 int
398 dsrtc_read(dev_t dev, struct uio *uio, int flags)
399 {
400 struct dsrtc_softc *sc;
401 int error;
402
403 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
404 return ENXIO;
405
406 const struct dsrtc_model * const dm = &sc->sc_model;
407 if (uio->uio_offset >= dm->dm_nvram_size)
408 return EINVAL;
409
410 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
411 return error;
412
413 KASSERT(uio->uio_offset >= 0);
414 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
415 uint8_t ch, cmd;
416 const u_int a = uio->uio_offset;
417 cmd = a + dm->dm_nvram_start;
418 if ((error = iic_exec(sc->sc_tag,
419 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
420 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
421 iic_release_bus(sc->sc_tag, 0);
422 aprint_error_dev(sc->sc_dev,
423 "%s: read failed at 0x%x: %d\n",
424 __func__, a, error);
425 return error;
426 }
427 if ((error = uiomove(&ch, 1, uio)) != 0) {
428 iic_release_bus(sc->sc_tag, 0);
429 return error;
430 }
431 }
432
433 iic_release_bus(sc->sc_tag, 0);
434
435 return 0;
436 }
437
438 /*ARGSUSED*/
439 int
440 dsrtc_write(dev_t dev, struct uio *uio, int flags)
441 {
442 struct dsrtc_softc *sc;
443 int error;
444
445 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
446 return ENXIO;
447
448 const struct dsrtc_model * const dm = &sc->sc_model;
449 if (uio->uio_offset >= dm->dm_nvram_size)
450 return EINVAL;
451
452 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
453 return error;
454
455 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
456 uint8_t cmdbuf[2];
457 const u_int a = (int)uio->uio_offset;
458 cmdbuf[0] = a + dm->dm_nvram_start;
459 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
460 break;
461
462 if ((error = iic_exec(sc->sc_tag,
463 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
464 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
465 aprint_error_dev(sc->sc_dev,
466 "%s: write failed at 0x%x: %d\n",
467 __func__, a, error);
468 break;
469 }
470 }
471
472 iic_release_bus(sc->sc_tag, 0);
473
474 return error;
475 }
476
477 static int
478 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
479 {
480 struct dsrtc_softc *sc = ch->cookie;
481 struct clock_ymdhms check;
482 int retries;
483
484 memset(dt, 0, sizeof(*dt));
485 memset(&check, 0, sizeof(check));
486
487 /*
488 * Since we don't support Burst Read, we have to read the clock twice
489 * until we get two consecutive identical results.
490 */
491 retries = 5;
492 do {
493 dsrtc_clock_read_ymdhms(sc, dt);
494 dsrtc_clock_read_ymdhms(sc, &check);
495 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
496
497 return 0;
498 }
499
500 static int
501 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
502 {
503 struct dsrtc_softc *sc = ch->cookie;
504
505 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
506 return -1;
507
508 return 0;
509 }
510
511 static int
512 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
513 {
514 struct dsrtc_model * const dm = &sc->sc_model;
515 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
516 int error;
517
518 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
519
520 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
521 aprint_error_dev(sc->sc_dev,
522 "%s: failed to acquire I2C bus: %d\n",
523 __func__, error);
524 return 0;
525 }
526
527 /* Read each RTC register in order. */
528 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
529 cmdbuf[0] = dm->dm_rtc_start + i;
530
531 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
532 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
533 }
534
535 /* Done with I2C */
536 iic_release_bus(sc->sc_tag, I2C_F_POLL);
537
538 if (error != 0) {
539 aprint_error_dev(sc->sc_dev,
540 "%s: failed to read rtc at 0x%x: %d\n",
541 __func__, cmdbuf[0], error);
542 return 0;
543 }
544
545 /*
546 * Convert the RTC's register values into something useable
547 */
548 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
549 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
550
551 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
552 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
553 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
554 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
555 dt->dt_hour += 12;
556 } else
557 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
558 DSXXXX_HOURS_24MASK);
559
560 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
561 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
562
563 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
564 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
565 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
566 else {
567 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
568 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
569 dt->dt_year += 100;
570 }
571
572 return 1;
573 }
574
575 static int
576 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
577 {
578 struct dsrtc_model * const dm = &sc->sc_model;
579 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
580 int error, offset;
581
582 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
583
584 /*
585 * Convert our time representation into something the DSXXXX
586 * can understand.
587 */
588 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
589 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
590 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
591 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
592 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
593 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
594
595 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
596 offset = 2000;
597 } else {
598 offset = POSIX_BASE_YEAR;
599 }
600
601 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
602 if (dt->dt_year - offset >= 100)
603 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
604
605 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
606 aprint_error_dev(sc->sc_dev,
607 "%s: failed to acquire I2C bus: %d\n",
608 __func__, error);
609 return 0;
610 }
611
612 /* Stop the clock */
613 cmdbuf[0] = dm->dm_ch_reg;
614
615 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
616 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
617 iic_release_bus(sc->sc_tag, I2C_F_POLL);
618 aprint_error_dev(sc->sc_dev,
619 "%s: failed to read Hold Clock: %d\n",
620 __func__, error);
621 return 0;
622 }
623
624 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
625 cmdbuf[1] &= ~dm->dm_ch_value;
626 else
627 cmdbuf[1] |= dm->dm_ch_value;
628
629 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
630 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
631 iic_release_bus(sc->sc_tag, I2C_F_POLL);
632 aprint_error_dev(sc->sc_dev,
633 "%s: failed to write Hold Clock: %d\n",
634 __func__, error);
635 return 0;
636 }
637
638 /*
639 * Write registers in reverse order. The last write (to the Seconds
640 * register) will undo the Clock Hold, above.
641 */
642 uint8_t op = I2C_OP_WRITE;
643 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
644 cmdbuf[0] = dm->dm_rtc_start + i;
645 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
646 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
647 bcd[i] |= dm->dm_vbaten_value;
648 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
649 op = I2C_OP_WRITE_WITH_STOP;
650 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
651 bcd[i] |= dm->dm_ch_value;
652 }
653 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
654 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
655 iic_release_bus(sc->sc_tag, I2C_F_POLL);
656 aprint_error_dev(sc->sc_dev,
657 "%s: failed to write rtc at 0x%x: %d\n",
658 __func__, i, error);
659 /* XXX: Clock Hold is likely still asserted! */
660 return 0;
661 }
662 }
663 /*
664 * If the clock hold register isn't the same register as seconds,
665 * we need to reeanble the clock.
666 */
667 if (op != I2C_OP_WRITE_WITH_STOP) {
668 cmdbuf[0] = dm->dm_ch_reg;
669 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
670 cmdbuf[1] |= dm->dm_ch_value;
671 else
672 cmdbuf[1] &= ~dm->dm_ch_value;
673
674 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
675 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
676 I2C_F_POLL)) != 0) {
677 iic_release_bus(sc->sc_tag, I2C_F_POLL);
678 aprint_error_dev(sc->sc_dev,
679 "%s: failed to Hold Clock: %d\n",
680 __func__, error);
681 return 0;
682 }
683 }
684
685 iic_release_bus(sc->sc_tag, I2C_F_POLL);
686
687 return 1;
688 }
689
690 static int
691 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
692 {
693 struct dsrtc_softc *sc = ch->cookie;
694 struct timeval check;
695 int retries;
696
697 memset(tv, 0, sizeof(*tv));
698 memset(&check, 0, sizeof(check));
699
700 /*
701 * Since we don't support Burst Read, we have to read the clock twice
702 * until we get two consecutive identical results.
703 */
704 retries = 5;
705 do {
706 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
707 dsrtc_clock_read_timeval(sc, &check.tv_sec);
708 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
709
710 return 0;
711 }
712
713 static int
714 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
715 {
716 struct dsrtc_softc *sc = ch->cookie;
717
718 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
719 return -1;
720
721 return 0;
722 }
723
724 /*
725 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
726 * it, since some I2C controllers don't support anything other than single-byte
727 * transfers.
728 */
729 static int
730 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
731 {
732 const struct dsrtc_model * const dm = &sc->sc_model;
733 uint8_t buf[4];
734 int error;
735
736 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
737 aprint_error_dev(sc->sc_dev,
738 "%s: failed to acquire I2C bus: %d\n",
739 __func__, error);
740 return 0;
741 }
742
743 /* read all registers: */
744 uint8_t reg = dm->dm_rtc_start;
745 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
746 ®, 1, buf, 4, I2C_F_POLL);
747
748 /* Done with I2C */
749 iic_release_bus(sc->sc_tag, I2C_F_POLL);
750
751 if (error != 0) {
752 aprint_error_dev(sc->sc_dev,
753 "%s: failed to read rtc at 0x%x: %d\n",
754 __func__, reg, error);
755 return 0;
756 }
757
758 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
759 *tp = v;
760
761 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
762 __func__, v);
763
764 return 1;
765 }
766
767 static int
768 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
769 {
770 const struct dsrtc_model * const dm = &sc->sc_model;
771 size_t buflen = dm->dm_rtc_size + 2;
772 uint8_t buf[buflen];
773 int error;
774
775 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
776 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
777
778 buf[0] = dm->dm_rtc_start;
779 buf[1] = (t >> 0) & 0xff;
780 buf[2] = (t >> 8) & 0xff;
781 buf[3] = (t >> 16) & 0xff;
782 buf[4] = (t >> 24) & 0xff;
783 buf[5] = 0;
784
785 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
786 aprint_error_dev(sc->sc_dev,
787 "%s: failed to acquire I2C bus: %d\n",
788 __func__, error);
789 return 0;
790 }
791
792 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
793 &buf, buflen, NULL, 0, I2C_F_POLL);
794
795 /* Done with I2C */
796 iic_release_bus(sc->sc_tag, I2C_F_POLL);
797
798 /* send data */
799 if (error != 0) {
800 aprint_error_dev(sc->sc_dev,
801 "%s: failed to set time: %d\n",
802 __func__, error);
803 return 0;
804 }
805
806 return 1;
807 }
808
809 static int
810 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
811 {
812 int error, tc;
813 uint8_t reg = DS3232_TEMP_MSB;
814 uint8_t buf[2];
815
816 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
817 return ENOTSUP;
818
819 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
820 aprint_error_dev(sc->sc_dev,
821 "%s: failed to acquire I2C bus: %d\n",
822 __func__, error);
823 return 0;
824 }
825
826 /* read temperature registers: */
827 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
828 ®, 1, buf, 2, I2C_F_POLL);
829
830 /* Done with I2C */
831 iic_release_bus(sc->sc_tag, I2C_F_POLL);
832
833 if (error != 0) {
834 aprint_error_dev(sc->sc_dev,
835 "%s: failed to read temperature: %d\n",
836 __func__, error);
837 return 0;
838 }
839
840 /* convert to microkelvin */
841 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
842 *temp = tc + 273150000;
843 return 1;
844 }
845
846 static void
847 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
848 {
849 struct dsrtc_softc *sc = sme->sme_cookie;
850 uint32_t temp = 0; /* XXX gcc */
851
852 if (dsrtc_read_temp(sc, &temp) == 0) {
853 edata->state = ENVSYS_SINVALID;
854 return;
855 }
856
857 edata->value_cur = temp;
858
859 edata->state = ENVSYS_SVALID;
860 }
861