Home | History | Annotate | Line # | Download | only in i2c
ds1307.c revision 1.30
      1 /*	$NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 #include <dev/sysmon/sysmonvar.h>
     55 
     56 #include "ioconf.h"
     57 #include "opt_dsrtc.h"
     58 
     59 struct dsrtc_model {
     60 	const i2c_addr_t *dm_valid_addrs;
     61 	uint16_t dm_model;
     62 	uint8_t dm_ch_reg;
     63 	uint8_t dm_ch_value;
     64 	uint8_t dm_vbaten_reg;
     65 	uint8_t dm_vbaten_value;
     66 	uint8_t dm_rtc_start;
     67 	uint8_t dm_rtc_size;
     68 	uint8_t dm_nvram_start;
     69 	uint8_t dm_nvram_size;
     70 	uint8_t dm_flags;
     71 #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     72 #define	DSRTC_FLAG_BCD			0x02
     73 #define	DSRTC_FLAG_TEMP			0x04
     74 #define DSRTC_FLAG_VBATEN		0x08
     75 #define	DSRTC_FLAG_YEAR_START_2K	0x10
     76 #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     77 };
     78 
     79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     80 static const struct dsrtc_model ds1307_model = {
     81 	.dm_valid_addrs = ds1307_valid_addrs,
     82 	.dm_model = 1307,
     83 	.dm_ch_reg = DSXXXX_SECONDS,
     84 	.dm_ch_value = DS1307_SECONDS_CH,
     85 	.dm_rtc_start = DS1307_RTC_START,
     86 	.dm_rtc_size = DS1307_RTC_SIZE,
     87 	.dm_nvram_start = DS1307_NVRAM_START,
     88 	.dm_nvram_size = DS1307_NVRAM_SIZE,
     89 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     90 };
     91 
     92 static const struct dsrtc_model ds1339_model = {
     93 	.dm_valid_addrs = ds1307_valid_addrs,
     94 	.dm_model = 1339,
     95 	.dm_rtc_start = DS1339_RTC_START,
     96 	.dm_rtc_size = DS1339_RTC_SIZE,
     97 	.dm_flags = DSRTC_FLAG_BCD,
     98 };
     99 
    100 static const struct dsrtc_model ds1340_model = {
    101 	.dm_valid_addrs = ds1307_valid_addrs,
    102 	.dm_model = 1340,
    103 	.dm_ch_reg = DSXXXX_SECONDS,
    104 	.dm_ch_value = DS1340_SECONDS_EOSC,
    105 	.dm_rtc_start = DS1340_RTC_START,
    106 	.dm_rtc_size = DS1340_RTC_SIZE,
    107 	.dm_flags = DSRTC_FLAG_BCD,
    108 };
    109 
    110 static const struct dsrtc_model ds1672_model = {
    111 	.dm_valid_addrs = ds1307_valid_addrs,
    112 	.dm_model = 1672,
    113 	.dm_rtc_start = DS1672_RTC_START,
    114 	.dm_rtc_size = DS1672_RTC_SIZE,
    115 	.dm_ch_reg = DS1672_CONTROL,
    116 	.dm_ch_value = DS1672_CONTROL_CH,
    117 	.dm_flags = 0,
    118 };
    119 
    120 static const struct dsrtc_model ds3231_model = {
    121 	.dm_valid_addrs = ds1307_valid_addrs,
    122 	.dm_model = 3231,
    123 	.dm_rtc_start = DS3232_RTC_START,
    124 	.dm_rtc_size = DS3232_RTC_SIZE,
    125 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    126 };
    127 
    128 static const struct dsrtc_model ds3232_model = {
    129 	.dm_valid_addrs = ds1307_valid_addrs,
    130 	.dm_model = 3232,
    131 	.dm_rtc_start = DS3232_RTC_START,
    132 	.dm_rtc_size = DS3232_RTC_SIZE,
    133 	.dm_nvram_start = DS3232_NVRAM_START,
    134 	.dm_nvram_size = DS3232_NVRAM_SIZE,
    135 	/*
    136 	 * XXX
    137 	 * the DS3232 likely has the temperature sensor too but I can't
    138 	 * easily verify or test that right now
    139 	 */
    140 	.dm_flags = DSRTC_FLAG_BCD,
    141 };
    142 
    143 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
    144 static const struct dsrtc_model mcp7940_model = {
    145 	.dm_valid_addrs = mcp7940_valid_addrs,
    146 	.dm_model = 7940,
    147 	.dm_rtc_start = DS1307_RTC_START,
    148 	.dm_rtc_size = DS1307_RTC_SIZE,
    149 	.dm_ch_reg = DSXXXX_SECONDS,
    150 	.dm_ch_value = DS1307_SECONDS_CH,
    151 	.dm_vbaten_reg = DSXXXX_DAY,
    152 	.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    153 	.dm_nvram_start = MCP7940_NVRAM_START,
    154 	.dm_nvram_size = MCP7940_NVRAM_SIZE,
    155 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    156 		DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    157 };
    158 
    159 static const struct device_compatible_entry compat_data[] = {
    160 	{ "dallas,ds1307",		(uintptr_t)&ds1307_model },
    161 	{ "maxim,ds1307",		(uintptr_t)&ds1307_model },
    162 
    163 	{ "dallas,ds1339",		(uintptr_t)&ds1339_model },
    164 	{ "maxim,ds1339",		(uintptr_t)&ds1339_model },
    165 
    166 	{ "dallas,ds1340",		(uintptr_t)&ds1340_model },
    167 	{ "maxim,ds1340",		(uintptr_t)&ds1340_model },
    168 
    169 	{ "dallas,ds1672",		(uintptr_t)&ds1672_model },
    170 	{ "maxim,ds1672",		(uintptr_t)&ds1672_model },
    171 
    172 	{ "dallas,ds3231",		(uintptr_t)&ds3231_model },
    173 	{ "maxim,ds3231",		(uintptr_t)&ds3231_model },
    174 
    175 	{ "dallas,ds3232",		(uintptr_t)&ds3232_model },
    176 	{ "maxim,ds3232",		(uintptr_t)&ds3232_model },
    177 
    178 	{ "microchip,mcp7940",		(uintptr_t)&mcp7940_model },
    179 
    180 	{ NULL,				0 }
    181 };
    182 
    183 struct dsrtc_softc {
    184 	device_t sc_dev;
    185 	i2c_tag_t sc_tag;
    186 	uint8_t sc_address;
    187 	bool sc_open;
    188 	struct dsrtc_model sc_model;
    189 	struct todr_chip_handle sc_todr;
    190 	struct sysmon_envsys *sc_sme;
    191 	envsys_data_t sc_sensor;
    192 };
    193 
    194 static void	dsrtc_attach(device_t, device_t, void *);
    195 static int	dsrtc_match(device_t, cfdata_t, void *);
    196 
    197 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    198     dsrtc_match, dsrtc_attach, NULL, NULL);
    199 
    200 dev_type_open(dsrtc_open);
    201 dev_type_close(dsrtc_close);
    202 dev_type_read(dsrtc_read);
    203 dev_type_write(dsrtc_write);
    204 
    205 const struct cdevsw dsrtc_cdevsw = {
    206 	.d_open = dsrtc_open,
    207 	.d_close = dsrtc_close,
    208 	.d_read = dsrtc_read,
    209 	.d_write = dsrtc_write,
    210 	.d_ioctl = noioctl,
    211 	.d_stop = nostop,
    212 	.d_tty = notty,
    213 	.d_poll = nopoll,
    214 	.d_mmap = nommap,
    215 	.d_kqfilter = nokqfilter,
    216 	.d_discard = nodiscard,
    217 	.d_flag = D_OTHER
    218 };
    219 
    220 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    221 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    222 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    223 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    224 
    225 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    226 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    227 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    228 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    229 
    230 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    231 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    232 
    233 static const struct dsrtc_model *
    234 dsrtc_model_by_number(u_int model)
    235 {
    236 	const struct device_compatible_entry *dce;
    237 	const struct dsrtc_model *dm;
    238 
    239 	/* no model given, assume it's a DS1307 */
    240 	if (model == 0)
    241 		return &ds1307_model;
    242 
    243 	for (dce = compat_data; dce->compat != NULL; dce++) {
    244 		dm = (void *)dce->data;
    245 		if (dm->dm_model == model)
    246 			return dm;
    247 	}
    248 	return NULL;
    249 }
    250 
    251 static const struct dsrtc_model *
    252 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    253 {
    254 	const struct dsrtc_model *dm = NULL;
    255 	const struct device_compatible_entry *dce;
    256 
    257 	if (iic_compatible_match(ia, compat_data, &dce))
    258 		dm = (void *)dce->data;
    259 
    260 	return dm;
    261 }
    262 
    263 static bool
    264 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    265 {
    266 
    267 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    268 		if (addr == dm->dm_valid_addrs[i])
    269 			return true;
    270 	}
    271 	return false;
    272 }
    273 
    274 static int
    275 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    276 {
    277 	struct i2c_attach_args *ia = arg;
    278 	const struct dsrtc_model *dm;
    279 	int match_result;
    280 
    281 	if (iic_use_direct_match(ia, cf, compat_data, &match_result))
    282 		return match_result;
    283 
    284 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    285 	if (dm == NULL)
    286 		return 0;
    287 
    288 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    289 		return I2C_MATCH_ADDRESS_ONLY;
    290 
    291 	return 0;
    292 }
    293 
    294 static void
    295 dsrtc_attach(device_t parent, device_t self, void *arg)
    296 {
    297 	struct dsrtc_softc *sc = device_private(self);
    298 	struct i2c_attach_args *ia = arg;
    299 	const struct dsrtc_model *dm;
    300 
    301 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    302 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    303 
    304 	if (dm == NULL) {
    305 		aprint_error(": unable to determine model!\n");
    306 		return;
    307 	}
    308 
    309 	aprint_naive(": Real-time Clock%s\n",
    310 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    311 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    312 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    313 
    314 	sc->sc_tag = ia->ia_tag;
    315 	sc->sc_address = ia->ia_addr;
    316 	sc->sc_model = *dm;
    317 	sc->sc_dev = self;
    318 	sc->sc_open = 0;
    319 	sc->sc_todr.cookie = sc;
    320 
    321 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    322 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    323 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    324 	} else {
    325 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    326 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    327 	}
    328 	sc->sc_todr.todr_setwen = NULL;
    329 
    330 #ifdef DSRTC_YEAR_START_2K
    331 	sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
    332 #endif
    333 
    334 	todr_attach(&sc->sc_todr);
    335 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    336 		int error;
    337 
    338 		sc->sc_sme = sysmon_envsys_create();
    339 		sc->sc_sme->sme_name = device_xname(self);
    340 		sc->sc_sme->sme_cookie = sc;
    341 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    342 
    343 		sc->sc_sensor.units =  ENVSYS_STEMP;
    344 		sc->sc_sensor.state = ENVSYS_SINVALID;
    345 		sc->sc_sensor.flags = 0;
    346 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    347 		    sizeof(sc->sc_sensor.desc));
    348 
    349 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    350 			aprint_error_dev(self, "unable to attach sensor\n");
    351 			goto bad;
    352 		}
    353 
    354 		error = sysmon_envsys_register(sc->sc_sme);
    355 		if (error) {
    356 			aprint_error_dev(self,
    357 			    "error %d registering with sysmon\n", error);
    358 			goto bad;
    359 		}
    360 	}
    361 	return;
    362 bad:
    363 	sysmon_envsys_destroy(sc->sc_sme);
    364 }
    365 
    366 /*ARGSUSED*/
    367 int
    368 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    369 {
    370 	struct dsrtc_softc *sc;
    371 
    372 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    373 		return ENXIO;
    374 
    375 	/* XXX: Locking */
    376 	if (sc->sc_open)
    377 		return EBUSY;
    378 
    379 	sc->sc_open = true;
    380 	return 0;
    381 }
    382 
    383 /*ARGSUSED*/
    384 int
    385 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    386 {
    387 	struct dsrtc_softc *sc;
    388 
    389 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    390 		return ENXIO;
    391 
    392 	sc->sc_open = false;
    393 	return 0;
    394 }
    395 
    396 /*ARGSUSED*/
    397 int
    398 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    399 {
    400 	struct dsrtc_softc *sc;
    401 	int error;
    402 
    403 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    404 		return ENXIO;
    405 
    406 	const struct dsrtc_model * const dm = &sc->sc_model;
    407 	if (uio->uio_offset >= dm->dm_nvram_size)
    408 		return EINVAL;
    409 
    410 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    411 		return error;
    412 
    413 	KASSERT(uio->uio_offset >= 0);
    414 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    415 		uint8_t ch, cmd;
    416 		const u_int a = uio->uio_offset;
    417 		cmd = a + dm->dm_nvram_start;
    418 		if ((error = iic_exec(sc->sc_tag,
    419 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    420 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    421 			iic_release_bus(sc->sc_tag, 0);
    422 			aprint_error_dev(sc->sc_dev,
    423 			    "%s: read failed at 0x%x: %d\n",
    424 			    __func__, a, error);
    425 			return error;
    426 		}
    427 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    428 			iic_release_bus(sc->sc_tag, 0);
    429 			return error;
    430 		}
    431 	}
    432 
    433 	iic_release_bus(sc->sc_tag, 0);
    434 
    435 	return 0;
    436 }
    437 
    438 /*ARGSUSED*/
    439 int
    440 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    441 {
    442 	struct dsrtc_softc *sc;
    443 	int error;
    444 
    445 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    446 		return ENXIO;
    447 
    448 	const struct dsrtc_model * const dm = &sc->sc_model;
    449 	if (uio->uio_offset >= dm->dm_nvram_size)
    450 		return EINVAL;
    451 
    452 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    453 		return error;
    454 
    455 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    456 		uint8_t cmdbuf[2];
    457 		const u_int a = (int)uio->uio_offset;
    458 		cmdbuf[0] = a + dm->dm_nvram_start;
    459 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    460 			break;
    461 
    462 		if ((error = iic_exec(sc->sc_tag,
    463 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    464 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    465 			aprint_error_dev(sc->sc_dev,
    466 			    "%s: write failed at 0x%x: %d\n",
    467 			    __func__, a, error);
    468 			break;
    469 		}
    470 	}
    471 
    472 	iic_release_bus(sc->sc_tag, 0);
    473 
    474 	return error;
    475 }
    476 
    477 static int
    478 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    479 {
    480 	struct dsrtc_softc *sc = ch->cookie;
    481 	struct clock_ymdhms check;
    482 	int retries;
    483 
    484 	memset(dt, 0, sizeof(*dt));
    485 	memset(&check, 0, sizeof(check));
    486 
    487 	/*
    488 	 * Since we don't support Burst Read, we have to read the clock twice
    489 	 * until we get two consecutive identical results.
    490 	 */
    491 	retries = 5;
    492 	do {
    493 		dsrtc_clock_read_ymdhms(sc, dt);
    494 		dsrtc_clock_read_ymdhms(sc, &check);
    495 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    496 
    497 	return 0;
    498 }
    499 
    500 static int
    501 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    502 {
    503 	struct dsrtc_softc *sc = ch->cookie;
    504 
    505 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    506 		return -1;
    507 
    508 	return 0;
    509 }
    510 
    511 static int
    512 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    513 {
    514 	struct dsrtc_model * const dm = &sc->sc_model;
    515 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    516 	int error;
    517 
    518 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    519 
    520 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    521 		aprint_error_dev(sc->sc_dev,
    522 		    "%s: failed to acquire I2C bus: %d\n",
    523 		    __func__, error);
    524 		return 0;
    525 	}
    526 
    527 	/* Read each RTC register in order. */
    528 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    529 		cmdbuf[0] = dm->dm_rtc_start + i;
    530 
    531 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    532 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
    533 	}
    534 
    535 	/* Done with I2C */
    536 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    537 
    538 	if (error != 0) {
    539 		aprint_error_dev(sc->sc_dev,
    540 		    "%s: failed to read rtc at 0x%x: %d\n",
    541 		    __func__, cmdbuf[0], error);
    542 		return 0;
    543 	}
    544 
    545 	/*
    546 	 * Convert the RTC's register values into something useable
    547 	 */
    548 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    549 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    550 
    551 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    552 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    553 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    554 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    555 			dt->dt_hour += 12;
    556 	} else
    557 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    558 		    DSXXXX_HOURS_24MASK);
    559 
    560 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    561 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    562 
    563 	/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
    564 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
    565 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
    566 	else {
    567 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
    568 		if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
    569 			dt->dt_year += 100;
    570 	}
    571 
    572 	return 1;
    573 }
    574 
    575 static int
    576 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    577 {
    578 	struct dsrtc_model * const dm = &sc->sc_model;
    579 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    580 	int error, offset;
    581 
    582 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    583 
    584 	/*
    585 	 * Convert our time representation into something the DSXXXX
    586 	 * can understand.
    587 	 */
    588 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    589 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    590 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    591 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    592 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    593 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    594 
    595 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
    596 		offset = 2000;
    597 	} else {
    598 		offset = POSIX_BASE_YEAR;
    599 	}
    600 
    601 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
    602 	if (dt->dt_year - offset >= 100)
    603 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    604 
    605 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    606 		aprint_error_dev(sc->sc_dev,
    607 		    "%s: failed to acquire I2C bus: %d\n",
    608 		    __func__, error);
    609 		return 0;
    610 	}
    611 
    612 	/* Stop the clock */
    613 	cmdbuf[0] = dm->dm_ch_reg;
    614 
    615 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    616 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    617 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    618 		aprint_error_dev(sc->sc_dev,
    619 		    "%s: failed to read Hold Clock: %d\n",
    620 		    __func__, error);
    621 		return 0;
    622 	}
    623 
    624 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    625 		cmdbuf[1] &= ~dm->dm_ch_value;
    626 	else
    627 		cmdbuf[1] |= dm->dm_ch_value;
    628 
    629 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    630 	    cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
    631 		iic_release_bus(sc->sc_tag, I2C_F_POLL);
    632 		aprint_error_dev(sc->sc_dev,
    633 		    "%s: failed to write Hold Clock: %d\n",
    634 		    __func__, error);
    635 		return 0;
    636 	}
    637 
    638 	/*
    639 	 * Write registers in reverse order. The last write (to the Seconds
    640 	 * register) will undo the Clock Hold, above.
    641 	 */
    642 	uint8_t op = I2C_OP_WRITE;
    643 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    644 		cmdbuf[0] = dm->dm_rtc_start + i;
    645 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    646 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    647 			bcd[i] |= dm->dm_vbaten_value;
    648 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    649 			op = I2C_OP_WRITE_WITH_STOP;
    650 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    651 				bcd[i] |= dm->dm_ch_value;
    652 		}
    653 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    654 		    cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
    655 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    656 			aprint_error_dev(sc->sc_dev,
    657 			    "%s: failed to write rtc at 0x%x: %d\n",
    658 			    __func__, i, error);
    659 			/* XXX: Clock Hold is likely still asserted! */
    660 			return 0;
    661 		}
    662 	}
    663 	/*
    664 	 * If the clock hold register isn't the same register as seconds,
    665 	 * we need to reeanble the clock.
    666 	 */
    667 	if (op != I2C_OP_WRITE_WITH_STOP) {
    668 		cmdbuf[0] = dm->dm_ch_reg;
    669 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    670 			cmdbuf[1] |= dm->dm_ch_value;
    671 		else
    672 			cmdbuf[1] &= ~dm->dm_ch_value;
    673 
    674 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    675 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
    676 		    I2C_F_POLL)) != 0) {
    677 			iic_release_bus(sc->sc_tag, I2C_F_POLL);
    678 			aprint_error_dev(sc->sc_dev,
    679 			    "%s: failed to Hold Clock: %d\n",
    680 			    __func__, error);
    681 			return 0;
    682 		}
    683 	}
    684 
    685 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    686 
    687 	return 1;
    688 }
    689 
    690 static int
    691 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    692 {
    693 	struct dsrtc_softc *sc = ch->cookie;
    694 	struct timeval check;
    695 	int retries;
    696 
    697 	memset(tv, 0, sizeof(*tv));
    698 	memset(&check, 0, sizeof(check));
    699 
    700 	/*
    701 	 * Since we don't support Burst Read, we have to read the clock twice
    702 	 * until we get two consecutive identical results.
    703 	 */
    704 	retries = 5;
    705 	do {
    706 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    707 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    708 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    709 
    710 	return 0;
    711 }
    712 
    713 static int
    714 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    715 {
    716 	struct dsrtc_softc *sc = ch->cookie;
    717 
    718 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    719 		return -1;
    720 
    721 	return 0;
    722 }
    723 
    724 /*
    725  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    726  * it, since some I2C controllers don't support anything other than single-byte
    727  * transfers.
    728  */
    729 static int
    730 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    731 {
    732 	const struct dsrtc_model * const dm = &sc->sc_model;
    733 	uint8_t buf[4];
    734 	int error;
    735 
    736 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    737 		aprint_error_dev(sc->sc_dev,
    738 		    "%s: failed to acquire I2C bus: %d\n",
    739 		    __func__, error);
    740 		return 0;
    741 	}
    742 
    743 	/* read all registers: */
    744 	uint8_t reg = dm->dm_rtc_start;
    745 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    746 	     &reg, 1, buf, 4, I2C_F_POLL);
    747 
    748 	/* Done with I2C */
    749 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    750 
    751 	if (error != 0) {
    752 		aprint_error_dev(sc->sc_dev,
    753 		    "%s: failed to read rtc at 0x%x: %d\n",
    754 		    __func__, reg, error);
    755 		return 0;
    756 	}
    757 
    758 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    759 	*tp = v;
    760 
    761 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    762 	    __func__, v);
    763 
    764 	return 1;
    765 }
    766 
    767 static int
    768 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    769 {
    770 	const struct dsrtc_model * const dm = &sc->sc_model;
    771 	size_t buflen = dm->dm_rtc_size + 2;
    772 	uint8_t buf[buflen];
    773 	int error;
    774 
    775 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    776 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    777 
    778 	buf[0] = dm->dm_rtc_start;
    779 	buf[1] = (t >> 0) & 0xff;
    780 	buf[2] = (t >> 8) & 0xff;
    781 	buf[3] = (t >> 16) & 0xff;
    782 	buf[4] = (t >> 24) & 0xff;
    783 	buf[5] = 0;
    784 
    785 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    786 		aprint_error_dev(sc->sc_dev,
    787 		    "%s: failed to acquire I2C bus: %d\n",
    788 		    __func__, error);
    789 		return 0;
    790 	}
    791 
    792 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    793 	    &buf, buflen, NULL, 0, I2C_F_POLL);
    794 
    795 	/* Done with I2C */
    796 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    797 
    798 	/* send data */
    799 	if (error != 0) {
    800 		aprint_error_dev(sc->sc_dev,
    801 		    "%s: failed to set time: %d\n",
    802 		    __func__, error);
    803 		return 0;
    804 	}
    805 
    806 	return 1;
    807 }
    808 
    809 static int
    810 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    811 {
    812 	int error, tc;
    813 	uint8_t reg = DS3232_TEMP_MSB;
    814 	uint8_t buf[2];
    815 
    816 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    817 		return ENOTSUP;
    818 
    819 	if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
    820 		aprint_error_dev(sc->sc_dev,
    821 		    "%s: failed to acquire I2C bus: %d\n",
    822 		    __func__, error);
    823 		return 0;
    824 	}
    825 
    826 	/* read temperature registers: */
    827 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    828 	     &reg, 1, buf, 2, I2C_F_POLL);
    829 
    830 	/* Done with I2C */
    831 	iic_release_bus(sc->sc_tag, I2C_F_POLL);
    832 
    833 	if (error != 0) {
    834 		aprint_error_dev(sc->sc_dev,
    835 		    "%s: failed to read temperature: %d\n",
    836 		    __func__, error);
    837 		return 0;
    838 	}
    839 
    840 	/* convert to microkelvin */
    841 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    842 	*temp = tc + 273150000;
    843 	return 1;
    844 }
    845 
    846 static void
    847 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    848 {
    849 	struct dsrtc_softc *sc = sme->sme_cookie;
    850 	uint32_t temp = 0;	/* XXX gcc */
    851 
    852 	if (dsrtc_read_temp(sc, &temp) == 0) {
    853 		edata->state = ENVSYS_SINVALID;
    854 		return;
    855 	}
    856 
    857 	edata->value_cur = temp;
    858 
    859 	edata->state = ENVSYS_SVALID;
    860 }
    861