Home | History | Annotate | Line # | Download | only in i2c
ds1307.c revision 1.42
      1 /*	$NetBSD: ds1307.c,v 1.42 2025/09/07 21:45:15 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2003 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.42 2025/09/07 21:45:15 thorpej Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/device.h>
     44 #include <sys/kernel.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/uio.h>
     47 #include <sys/conf.h>
     48 #include <sys/event.h>
     49 
     50 #include <dev/clock_subr.h>
     51 
     52 #include <dev/i2c/i2cvar.h>
     53 #include <dev/i2c/ds1307reg.h>
     54 #include <dev/sysmon/sysmonvar.h>
     55 
     56 #include "ioconf.h"
     57 #include "opt_dsrtc.h"
     58 
     59 struct dsrtc_model {
     60 	const i2c_addr_t *dm_valid_addrs;
     61 	uint16_t dm_model;
     62 	uint8_t dm_ch_reg;
     63 	uint8_t dm_ch_value;
     64 	uint8_t dm_vbaten_reg;
     65 	uint8_t dm_vbaten_value;
     66 	uint8_t dm_rtc_start;
     67 	uint8_t dm_rtc_size;
     68 	uint8_t dm_nvram_start;
     69 	uint8_t dm_nvram_size;
     70 	uint8_t dm_flags;
     71 #define	DSRTC_FLAG_CLOCK_HOLD		0x01
     72 #define	DSRTC_FLAG_BCD			0x02
     73 #define	DSRTC_FLAG_TEMP			0x04
     74 #define DSRTC_FLAG_VBATEN		0x08
     75 #define	DSRTC_FLAG_YEAR_START_2K	0x10
     76 #define	DSRTC_FLAG_CLOCK_HOLD_REVERSED	0x20
     77 };
     78 
     79 static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
     80 static const struct dsrtc_model ds1307_model = {
     81 	.dm_valid_addrs = ds1307_valid_addrs,
     82 	.dm_model = 1307,
     83 	.dm_ch_reg = DSXXXX_SECONDS,
     84 	.dm_ch_value = DS1307_SECONDS_CH,
     85 	.dm_rtc_start = DS1307_RTC_START,
     86 	.dm_rtc_size = DS1307_RTC_SIZE,
     87 	.dm_nvram_start = DS1307_NVRAM_START,
     88 	.dm_nvram_size = DS1307_NVRAM_SIZE,
     89 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
     90 };
     91 
     92 static const struct dsrtc_model ds1339_model = {
     93 	.dm_valid_addrs = ds1307_valid_addrs,
     94 	.dm_model = 1339,
     95 	.dm_rtc_start = DS1339_RTC_START,
     96 	.dm_rtc_size = DS1339_RTC_SIZE,
     97 	.dm_flags = DSRTC_FLAG_BCD,
     98 };
     99 
    100 static const struct dsrtc_model ds1340_model = {
    101 	.dm_valid_addrs = ds1307_valid_addrs,
    102 	.dm_model = 1340,
    103 	.dm_ch_reg = DSXXXX_SECONDS,
    104 	.dm_ch_value = DS1340_SECONDS_EOSC,
    105 	.dm_rtc_start = DS1340_RTC_START,
    106 	.dm_rtc_size = DS1340_RTC_SIZE,
    107 	.dm_flags = DSRTC_FLAG_BCD,
    108 };
    109 
    110 static const struct dsrtc_model ds1672_model = {
    111 	.dm_valid_addrs = ds1307_valid_addrs,
    112 	.dm_model = 1672,
    113 	.dm_rtc_start = DS1672_RTC_START,
    114 	.dm_rtc_size = DS1672_RTC_SIZE,
    115 	.dm_ch_reg = DS1672_CONTROL,
    116 	.dm_ch_value = DS1672_CONTROL_CH,
    117 	.dm_flags = 0,
    118 };
    119 
    120 static const struct dsrtc_model ds3231_model = {
    121 	.dm_valid_addrs = ds1307_valid_addrs,
    122 	.dm_model = 3231,
    123 	.dm_rtc_start = DS3232_RTC_START,
    124 	.dm_rtc_size = DS3232_RTC_SIZE,
    125 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
    126 };
    127 
    128 static const struct dsrtc_model ds3232_model = {
    129 	.dm_valid_addrs = ds1307_valid_addrs,
    130 	.dm_model = 3232,
    131 	.dm_rtc_start = DS3232_RTC_START,
    132 	.dm_rtc_size = DS3232_RTC_SIZE,
    133 	.dm_nvram_start = DS3232_NVRAM_START,
    134 	.dm_nvram_size = DS3232_NVRAM_SIZE,
    135 	/*
    136 	 * XXX
    137 	 * the DS3232 likely has the temperature sensor too but I can't
    138 	 * easily verify or test that right now
    139 	 */
    140 	.dm_flags = DSRTC_FLAG_BCD,
    141 };
    142 
    143 static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
    144 static const struct dsrtc_model mcp7940_model = {
    145 	.dm_valid_addrs = mcp7940_valid_addrs,
    146 	.dm_model = 7940,
    147 	.dm_rtc_start = DS1307_RTC_START,
    148 	.dm_rtc_size = DS1307_RTC_SIZE,
    149 	.dm_ch_reg = DSXXXX_SECONDS,
    150 	.dm_ch_value = DS1307_SECONDS_CH,
    151 	.dm_vbaten_reg = DSXXXX_DAY,
    152 	.dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
    153 	.dm_nvram_start = MCP7940_NVRAM_START,
    154 	.dm_nvram_size = MCP7940_NVRAM_SIZE,
    155 	.dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
    156 		DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
    157 };
    158 
    159 static const struct device_compatible_entry compat_data[] = {
    160 	{ .compat = "dallas,ds1307",		.data = &ds1307_model },
    161 	{ .compat = "maxim,ds1307",		.data = &ds1307_model },
    162 	{ .compat = "i2c-ds1307",		.data = &ds1307_model },
    163 
    164 	{ .compat = "dallas,ds1339",		.data = &ds1339_model },
    165 	{ .compat = "maxim,ds1339",		.data = &ds1339_model },
    166 
    167 	{ .compat = "dallas,ds1340",		.data = &ds1340_model },
    168 	{ .compat = "maxim,ds1340",		.data = &ds1340_model },
    169 
    170 	{ .compat = "dallas,ds1672",		.data = &ds1672_model },
    171 	{ .compat = "maxim,ds1672",		.data = &ds1672_model },
    172 
    173 	{ .compat = "dallas,ds3231",		.data = &ds3231_model },
    174 	{ .compat = "maxim,ds3231",		.data = &ds3231_model },
    175 
    176 	{ .compat = "dallas,ds3232",		.data = &ds3232_model },
    177 	{ .compat = "maxim,ds3232",		.data = &ds3232_model },
    178 
    179 	{ .compat = "microchip,mcp7940",	.data = &mcp7940_model },
    180 
    181 	DEVICE_COMPAT_EOL
    182 };
    183 
    184 struct dsrtc_softc {
    185 	device_t sc_dev;
    186 	i2c_tag_t sc_tag;
    187 	uint8_t sc_address;
    188 	bool sc_open;
    189 	struct dsrtc_model sc_model;
    190 	struct todr_chip_handle sc_todr;
    191 	struct sysmon_envsys *sc_sme;
    192 	envsys_data_t sc_sensor;
    193 };
    194 
    195 static void	dsrtc_attach(device_t, device_t, void *);
    196 static int	dsrtc_match(device_t, cfdata_t, void *);
    197 
    198 CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
    199     dsrtc_match, dsrtc_attach, NULL, NULL);
    200 
    201 dev_type_open(dsrtc_open);
    202 dev_type_close(dsrtc_close);
    203 dev_type_read(dsrtc_read);
    204 dev_type_write(dsrtc_write);
    205 
    206 const struct cdevsw dsrtc_cdevsw = {
    207 	.d_open = dsrtc_open,
    208 	.d_close = dsrtc_close,
    209 	.d_read = dsrtc_read,
    210 	.d_write = dsrtc_write,
    211 	.d_ioctl = noioctl,
    212 	.d_stop = nostop,
    213 	.d_tty = notty,
    214 	.d_poll = nopoll,
    215 	.d_mmap = nommap,
    216 	.d_kqfilter = nokqfilter,
    217 	.d_discard = nodiscard,
    218 	.d_flag = D_OTHER
    219 };
    220 
    221 static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    222 static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
    223 static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    224 static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
    225 
    226 static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
    227 static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
    228 static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
    229 static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
    230 
    231 static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
    232 static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
    233 
    234 static const struct dsrtc_model *
    235 dsrtc_model_by_number(u_int model)
    236 {
    237 	const struct device_compatible_entry *dce;
    238 	const struct dsrtc_model *dm;
    239 
    240 	/* no model given, assume it's a DS1307 */
    241 	if (model == 0)
    242 		return &ds1307_model;
    243 
    244 	for (dce = compat_data; dce->compat != NULL; dce++) {
    245 		dm = dce->data;
    246 		if (dm->dm_model == model)
    247 			return dm;
    248 	}
    249 	return NULL;
    250 }
    251 
    252 static const struct dsrtc_model *
    253 dsrtc_model_by_compat(const struct i2c_attach_args *ia)
    254 {
    255 	const struct dsrtc_model *dm = NULL;
    256 	const struct device_compatible_entry *dce;
    257 
    258 	if ((dce = iic_compatible_lookup(ia, compat_data)) != NULL)
    259 		dm = dce->data;
    260 
    261 	return dm;
    262 }
    263 
    264 static bool
    265 dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
    266 {
    267 
    268 	for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
    269 		if (addr == dm->dm_valid_addrs[i])
    270 			return true;
    271 	}
    272 	return false;
    273 }
    274 
    275 static int
    276 dsrtc_match(device_t parent, cfdata_t cf, void *arg)
    277 {
    278 	struct i2c_attach_args *ia = arg;
    279 	const struct dsrtc_model *dm;
    280 	int match_result;
    281 
    282 	if (iic_use_direct_match(ia, cf, compat_data, &match_result))
    283 		return match_result;
    284 
    285 	dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
    286 	if (dm == NULL)
    287 		return 0;
    288 
    289 	if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
    290 		return I2C_MATCH_ADDRESS_ONLY;
    291 
    292 	return 0;
    293 }
    294 
    295 static void
    296 dsrtc_attach(device_t parent, device_t self, void *arg)
    297 {
    298 	struct dsrtc_softc *sc = device_private(self);
    299 	struct i2c_attach_args *ia = arg;
    300 	const struct dsrtc_model *dm;
    301 	prop_dictionary_t dict = device_properties(self);
    302 	bool base_2k = FALSE;
    303 
    304 	if ((dm = dsrtc_model_by_compat(ia)) == NULL)
    305 		dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
    306 
    307 	if (dm == NULL) {
    308 		aprint_error(": unable to determine model!\n");
    309 		return;
    310 	}
    311 
    312 	aprint_naive(": Real-time Clock%s\n",
    313 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    314 	aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
    315 	    dm->dm_nvram_size > 0 ? "/NVRAM" : "");
    316 
    317 	sc->sc_tag = ia->ia_tag;
    318 	sc->sc_address = ia->ia_addr;
    319 	sc->sc_model = *dm;
    320 	sc->sc_dev = self;
    321 	sc->sc_open = 0;
    322 	sc->sc_todr.todr_dev = self;
    323 
    324 	if (dm->dm_flags & DSRTC_FLAG_BCD) {
    325 		sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
    326 		sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
    327 	} else {
    328 		sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
    329 		sc->sc_todr.todr_settime = dsrtc_settime_timeval;
    330 	}
    331 
    332 #ifdef DSRTC_YEAR_START_2K
    333 	sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
    334 #endif
    335 
    336 	prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k);
    337 	if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
    338 
    339 
    340 	todr_attach(&sc->sc_todr);
    341 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
    342 		int error;
    343 
    344 		sc->sc_sme = sysmon_envsys_create();
    345 		sc->sc_sme->sme_name = device_xname(self);
    346 		sc->sc_sme->sme_cookie = sc;
    347 		sc->sc_sme->sme_refresh = dsrtc_refresh;
    348 
    349 		sc->sc_sensor.units =  ENVSYS_STEMP;
    350 		sc->sc_sensor.state = ENVSYS_SINVALID;
    351 		sc->sc_sensor.flags = 0;
    352 		(void)strlcpy(sc->sc_sensor.desc, "temperature",
    353 		    sizeof(sc->sc_sensor.desc));
    354 
    355 		if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
    356 			aprint_error_dev(self, "unable to attach sensor\n");
    357 			goto bad;
    358 		}
    359 
    360 		error = sysmon_envsys_register(sc->sc_sme);
    361 		if (error) {
    362 			aprint_error_dev(self,
    363 			    "error %d registering with sysmon\n", error);
    364 			goto bad;
    365 		}
    366 	}
    367 	return;
    368 bad:
    369 	sysmon_envsys_destroy(sc->sc_sme);
    370 }
    371 
    372 /*ARGSUSED*/
    373 int
    374 dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
    375 {
    376 	struct dsrtc_softc *sc;
    377 
    378 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    379 		return ENXIO;
    380 
    381 	/* XXX: Locking */
    382 	if (sc->sc_open)
    383 		return EBUSY;
    384 
    385 	sc->sc_open = true;
    386 	return 0;
    387 }
    388 
    389 /*ARGSUSED*/
    390 int
    391 dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
    392 {
    393 	struct dsrtc_softc *sc;
    394 
    395 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    396 		return ENXIO;
    397 
    398 	sc->sc_open = false;
    399 	return 0;
    400 }
    401 
    402 /*ARGSUSED*/
    403 int
    404 dsrtc_read(dev_t dev, struct uio *uio, int flags)
    405 {
    406 	struct dsrtc_softc *sc;
    407 	int error;
    408 
    409 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    410 		return ENXIO;
    411 
    412 	const struct dsrtc_model * const dm = &sc->sc_model;
    413 	if (uio->uio_offset < 0 || uio->uio_offset >= dm->dm_nvram_size)
    414 		return EINVAL;
    415 
    416 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    417 		return error;
    418 
    419 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    420 		uint8_t ch, cmd;
    421 		const u_int a = uio->uio_offset;
    422 		cmd = a + dm->dm_nvram_start;
    423 		if ((error = iic_exec(sc->sc_tag,
    424 		    uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
    425 		    sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
    426 			iic_release_bus(sc->sc_tag, 0);
    427 			aprint_error_dev(sc->sc_dev,
    428 			    "%s: read failed at 0x%x: %d\n",
    429 			    __func__, a, error);
    430 			return error;
    431 		}
    432 		if ((error = uiomove(&ch, 1, uio)) != 0) {
    433 			iic_release_bus(sc->sc_tag, 0);
    434 			return error;
    435 		}
    436 	}
    437 
    438 	iic_release_bus(sc->sc_tag, 0);
    439 
    440 	return 0;
    441 }
    442 
    443 /*ARGSUSED*/
    444 int
    445 dsrtc_write(dev_t dev, struct uio *uio, int flags)
    446 {
    447 	struct dsrtc_softc *sc;
    448 	int error;
    449 
    450 	if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
    451 		return ENXIO;
    452 
    453 	const struct dsrtc_model * const dm = &sc->sc_model;
    454 	if (uio->uio_offset >= dm->dm_nvram_size)
    455 		return EINVAL;
    456 
    457 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
    458 		return error;
    459 
    460 	while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
    461 		uint8_t cmdbuf[2];
    462 		const u_int a = (int)uio->uio_offset;
    463 		cmdbuf[0] = a + dm->dm_nvram_start;
    464 		if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
    465 			break;
    466 
    467 		if ((error = iic_exec(sc->sc_tag,
    468 		    uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
    469 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    470 			aprint_error_dev(sc->sc_dev,
    471 			    "%s: write failed at 0x%x: %d\n",
    472 			    __func__, a, error);
    473 			break;
    474 		}
    475 	}
    476 
    477 	iic_release_bus(sc->sc_tag, 0);
    478 
    479 	return error;
    480 }
    481 
    482 static int
    483 dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    484 {
    485 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    486 	struct clock_ymdhms check;
    487 	int retries;
    488 
    489 	memset(dt, 0, sizeof(*dt));
    490 	memset(&check, 0, sizeof(check));
    491 
    492 	/*
    493 	 * Since we don't support Burst Read, we have to read the clock twice
    494 	 * until we get two consecutive identical results.
    495 	 */
    496 	retries = 5;
    497 	do {
    498 		dsrtc_clock_read_ymdhms(sc, dt);
    499 		dsrtc_clock_read_ymdhms(sc, &check);
    500 	} while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
    501 
    502 	return 0;
    503 }
    504 
    505 static int
    506 dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
    507 {
    508 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    509 
    510 	if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
    511 		return -1;
    512 
    513 	return 0;
    514 }
    515 
    516 static int
    517 dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    518 {
    519 	struct dsrtc_model * const dm = &sc->sc_model;
    520 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
    521 	int error;
    522 
    523 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    524 
    525 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    526 		aprint_error_dev(sc->sc_dev,
    527 		    "%s: failed to acquire I2C bus: %d\n",
    528 		    __func__, error);
    529 		return 0;
    530 	}
    531 
    532 	/* Read each RTC register in order. */
    533 	for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
    534 		cmdbuf[0] = dm->dm_rtc_start + i;
    535 
    536 		error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
    537 		    sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0);
    538 	}
    539 
    540 	/* Done with I2C */
    541 	iic_release_bus(sc->sc_tag, 0);
    542 
    543 	if (error != 0) {
    544 		aprint_error_dev(sc->sc_dev,
    545 		    "%s: failed to read rtc at 0x%x: %d\n",
    546 		    __func__, cmdbuf[0], error);
    547 		return 0;
    548 	}
    549 
    550 	/*
    551 	 * Convert the RTC's register values into something useable
    552 	 */
    553 	dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
    554 	dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
    555 
    556 	if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
    557 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    558 		    DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
    559 		if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
    560 			dt->dt_hour += 12;
    561 	} else
    562 		dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
    563 		    DSXXXX_HOURS_24MASK);
    564 
    565 	dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
    566 	dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
    567 
    568 	/* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
    569 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
    570 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
    571 	else {
    572 		dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
    573 		if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
    574 			dt->dt_year += 100;
    575 	}
    576 
    577 	return 1;
    578 }
    579 
    580 static int
    581 dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
    582 {
    583 	struct dsrtc_model * const dm = &sc->sc_model;
    584 	uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
    585 	int error, offset;
    586 
    587 	KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
    588 
    589 	/*
    590 	 * Convert our time representation into something the DSXXXX
    591 	 * can understand.
    592 	 */
    593 	bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
    594 	bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
    595 	bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
    596 	bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
    597 	bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
    598 	bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
    599 
    600 	if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
    601 		offset = 2000;
    602 	} else {
    603 		offset = POSIX_BASE_YEAR;
    604 	}
    605 
    606 	bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
    607 	if (dt->dt_year - offset >= 100)
    608 		bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
    609 
    610 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    611 		aprint_error_dev(sc->sc_dev,
    612 		    "%s: failed to acquire I2C bus: %d\n",
    613 		    __func__, error);
    614 		return 0;
    615 	}
    616 
    617 	/* Stop the clock */
    618 	cmdbuf[0] = dm->dm_ch_reg;
    619 
    620 	if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
    621 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    622 		iic_release_bus(sc->sc_tag, 0);
    623 		aprint_error_dev(sc->sc_dev,
    624 		    "%s: failed to read Hold Clock: %d\n",
    625 		    __func__, error);
    626 		return 0;
    627 	}
    628 
    629 	if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    630 		cmdbuf[1] &= ~dm->dm_ch_value;
    631 	else
    632 		cmdbuf[1] |= dm->dm_ch_value;
    633 
    634 	if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
    635 	    cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    636 		iic_release_bus(sc->sc_tag, 0);
    637 		aprint_error_dev(sc->sc_dev,
    638 		    "%s: failed to write Hold Clock: %d\n",
    639 		    __func__, error);
    640 		return 0;
    641 	}
    642 
    643 	/*
    644 	 * Write registers in reverse order. The last write (to the Seconds
    645 	 * register) will undo the Clock Hold, above.
    646 	 */
    647 	uint8_t op = I2C_OP_WRITE;
    648 	for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
    649 		cmdbuf[0] = dm->dm_rtc_start + i;
    650 		if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
    651 				dm->dm_rtc_start + i == dm->dm_vbaten_reg)
    652 			bcd[i] |= dm->dm_vbaten_value;
    653 		if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
    654 			op = I2C_OP_WRITE_WITH_STOP;
    655 			if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    656 				bcd[i] |= dm->dm_ch_value;
    657 		}
    658 		if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
    659 		    cmdbuf, 1, &bcd[i], 1, 0)) != 0) {
    660 			iic_release_bus(sc->sc_tag, 0);
    661 			aprint_error_dev(sc->sc_dev,
    662 			    "%s: failed to write rtc at 0x%x: %d\n",
    663 			    __func__, i, error);
    664 			/* XXX: Clock Hold is likely still asserted! */
    665 			return 0;
    666 		}
    667 	}
    668 	/*
    669 	 * If the clock hold register isn't the same register as seconds,
    670 	 * we need to reenable the clock.
    671 	 */
    672 	if (op != I2C_OP_WRITE_WITH_STOP) {
    673 		cmdbuf[0] = dm->dm_ch_reg;
    674 		if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
    675 			cmdbuf[1] |= dm->dm_ch_value;
    676 		else
    677 			cmdbuf[1] &= ~dm->dm_ch_value;
    678 
    679 		if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
    680 		    sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
    681 			iic_release_bus(sc->sc_tag, 0);
    682 			aprint_error_dev(sc->sc_dev,
    683 			    "%s: failed to Hold Clock: %d\n",
    684 			    __func__, error);
    685 			return 0;
    686 		}
    687 	}
    688 
    689 	iic_release_bus(sc->sc_tag, 0);
    690 
    691 	return 1;
    692 }
    693 
    694 static int
    695 dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    696 {
    697 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    698 	struct timeval check;
    699 	int retries;
    700 
    701 	memset(tv, 0, sizeof(*tv));
    702 	memset(&check, 0, sizeof(check));
    703 
    704 	/*
    705 	 * Since we don't support Burst Read, we have to read the clock twice
    706 	 * until we get two consecutive identical results.
    707 	 */
    708 	retries = 5;
    709 	do {
    710 		dsrtc_clock_read_timeval(sc, &tv->tv_sec);
    711 		dsrtc_clock_read_timeval(sc, &check.tv_sec);
    712 	} while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
    713 
    714 	return 0;
    715 }
    716 
    717 static int
    718 dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
    719 {
    720 	struct dsrtc_softc *sc = device_private(ch->todr_dev);
    721 
    722 	if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
    723 		return -1;
    724 
    725 	return 0;
    726 }
    727 
    728 /*
    729  * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
    730  * it, since some I2C controllers don't support anything other than single-byte
    731  * transfers.
    732  */
    733 static int
    734 dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
    735 {
    736 	const struct dsrtc_model * const dm = &sc->sc_model;
    737 	uint8_t buf[4];
    738 	int error;
    739 
    740 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    741 		aprint_error_dev(sc->sc_dev,
    742 		    "%s: failed to acquire I2C bus: %d\n",
    743 		    __func__, error);
    744 		return 0;
    745 	}
    746 
    747 	/* read all registers: */
    748 	uint8_t reg = dm->dm_rtc_start;
    749 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    750 	     &reg, 1, buf, 4, 0);
    751 
    752 	/* Done with I2C */
    753 	iic_release_bus(sc->sc_tag, 0);
    754 
    755 	if (error != 0) {
    756 		aprint_error_dev(sc->sc_dev,
    757 		    "%s: failed to read rtc at 0x%x: %d\n",
    758 		    __func__, reg, error);
    759 		return 0;
    760 	}
    761 
    762 	uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
    763 	*tp = v;
    764 
    765 	aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
    766 	    __func__, v);
    767 
    768 	return 1;
    769 }
    770 
    771 static int
    772 dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
    773 {
    774 	const struct dsrtc_model * const dm = &sc->sc_model;
    775 	size_t buflen = dm->dm_rtc_size + 2;
    776 	/* XXX: the biggest dm_rtc_size we have now is 7, so we should be ok */
    777 	uint8_t buf[16];
    778 	int error;
    779 
    780 	KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
    781 	KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
    782 
    783 	buf[0] = dm->dm_rtc_start;
    784 	buf[1] = (t >> 0) & 0xff;
    785 	buf[2] = (t >> 8) & 0xff;
    786 	buf[3] = (t >> 16) & 0xff;
    787 	buf[4] = (t >> 24) & 0xff;
    788 	buf[5] = 0;
    789 
    790 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    791 		aprint_error_dev(sc->sc_dev,
    792 		    "%s: failed to acquire I2C bus: %d\n",
    793 		    __func__, error);
    794 		return 0;
    795 	}
    796 
    797 	error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
    798 	    &buf, buflen, NULL, 0, 0);
    799 
    800 	/* Done with I2C */
    801 	iic_release_bus(sc->sc_tag, 0);
    802 
    803 	/* send data */
    804 	if (error != 0) {
    805 		aprint_error_dev(sc->sc_dev,
    806 		    "%s: failed to set time: %d\n",
    807 		    __func__, error);
    808 		return 0;
    809 	}
    810 
    811 	return 1;
    812 }
    813 
    814 static int
    815 dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
    816 {
    817 	int error, tc;
    818 	uint8_t reg = DS3232_TEMP_MSB;
    819 	uint8_t buf[2];
    820 
    821 	if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
    822 		return ENOTSUP;
    823 
    824 	if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
    825 		aprint_error_dev(sc->sc_dev,
    826 		    "%s: failed to acquire I2C bus: %d\n",
    827 		    __func__, error);
    828 		return 0;
    829 	}
    830 
    831 	/* read temperature registers: */
    832 	error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
    833 	     &reg, 1, buf, 2, 0);
    834 
    835 	/* Done with I2C */
    836 	iic_release_bus(sc->sc_tag, 0);
    837 
    838 	if (error != 0) {
    839 		aprint_error_dev(sc->sc_dev,
    840 		    "%s: failed to read temperature: %d\n",
    841 		    __func__, error);
    842 		return 0;
    843 	}
    844 
    845 	/* convert to microkelvin */
    846 	tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
    847 	*temp = tc + 273150000;
    848 	return 1;
    849 }
    850 
    851 static void
    852 dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
    853 {
    854 	struct dsrtc_softc *sc = sme->sme_cookie;
    855 	uint32_t temp = 0;	/* XXX gcc */
    856 
    857 	if (dsrtc_read_temp(sc, &temp) == 0) {
    858 		edata->state = ENVSYS_SINVALID;
    859 		return;
    860 	}
    861 
    862 	edata->value_cur = temp;
    863 
    864 	edata->state = ENVSYS_SVALID;
    865 }
    866