rkpmic.c revision 1.5 1 1.5 tnn /* $NetBSD: rkpmic.c,v 1.5 2019/09/18 15:12:37 tnn Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2018 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.5 tnn __KERNEL_RCSID(0, "$NetBSD: rkpmic.c,v 1.5 2019/09/18 15:12:37 tnn Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/systm.h>
34 1.1 jmcneill #include <sys/kernel.h>
35 1.1 jmcneill #include <sys/device.h>
36 1.1 jmcneill #include <sys/conf.h>
37 1.1 jmcneill #include <sys/bus.h>
38 1.1 jmcneill #include <sys/kmem.h>
39 1.1 jmcneill
40 1.4 tnn #include <dev/clock_subr.h>
41 1.4 tnn
42 1.1 jmcneill #include <dev/i2c/i2cvar.h>
43 1.1 jmcneill
44 1.1 jmcneill #include <dev/fdt/fdtvar.h>
45 1.1 jmcneill
46 1.4 tnn #define SECONDS_REG 0x00
47 1.4 tnn #define MINUTES_REG 0x01
48 1.4 tnn #define HOURS_REG 0x02
49 1.4 tnn #define DAYS_REG 0x03
50 1.4 tnn #define MONTHS_REG 0x04
51 1.4 tnn #define YEARS_REG 0x05
52 1.4 tnn #define WEEKS_REG 0x06
53 1.4 tnn
54 1.4 tnn #define RTC_CTRL_REG 0x10
55 1.4 tnn #define RTC_CTRL_READSEL __BIT(7)
56 1.4 tnn #define RTC_CTRL_GET_TIME __BIT(6)
57 1.4 tnn #define RTC_CTRL_SET_32_COUNTER __BIT(5)
58 1.4 tnn #define RTC_CTRL_TEST_MODE __BIT(4)
59 1.4 tnn #define RTC_CTRL_AMPM_MODE __BIT(3)
60 1.4 tnn #define RTC_CTRL_AUTO_COMP __BIT(2)
61 1.4 tnn #define RTC_CTRL_ROUND_30S __BIT(1)
62 1.4 tnn #define RTC_CTRL_STOP_RTC __BIT(0)
63 1.4 tnn
64 1.4 tnn #define RTC_INT_REG 0x12
65 1.4 tnn #define RTC_COMP_LSB_REG 0x13
66 1.4 tnn #define RTC_COMP_MSB_REG 0x14
67 1.1 jmcneill #define CHIP_NAME_REG 0x17
68 1.1 jmcneill #define CHIP_VER_REG 0x18
69 1.1 jmcneill
70 1.1 jmcneill struct rkpmic_ctrl {
71 1.1 jmcneill const char * name;
72 1.1 jmcneill uint8_t enable_reg;
73 1.1 jmcneill uint8_t enable_mask;
74 1.1 jmcneill uint8_t vsel_reg;
75 1.1 jmcneill uint8_t vsel_mask;
76 1.1 jmcneill u_int base;
77 1.1 jmcneill u_int step;
78 1.2 jmcneill u_int flags;
79 1.2 jmcneill #define F_ENABLE_WRITE_MASK 0x00
80 1.1 jmcneill };
81 1.1 jmcneill
82 1.1 jmcneill struct rkpmic_config {
83 1.1 jmcneill const char * name;
84 1.1 jmcneill const struct rkpmic_ctrl *ctrl;
85 1.1 jmcneill u_int nctrl;
86 1.1 jmcneill };
87 1.1 jmcneill
88 1.2 jmcneill static const struct rkpmic_ctrl rk805_ctrls[] = {
89 1.2 jmcneill /* DCDC */
90 1.2 jmcneill { .name = "DCDC_REG1", .flags = F_ENABLE_WRITE_MASK,
91 1.2 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(0),
92 1.2 jmcneill .vsel_reg = 0x2f, .vsel_mask = __BITS(5,0),
93 1.2 jmcneill .base = 712500, .step = 12500 },
94 1.2 jmcneill { .name = "DCDC_REG2", .flags = F_ENABLE_WRITE_MASK,
95 1.2 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(1),
96 1.2 jmcneill .vsel_reg = 0x33, .vsel_mask = __BITS(5,0),
97 1.2 jmcneill .base = 712500, .step = 12500 },
98 1.2 jmcneill { .name = "DCDC_REG3", .flags = F_ENABLE_WRITE_MASK,
99 1.2 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(2) },
100 1.2 jmcneill { .name = "DCDC_REG4", .flags = F_ENABLE_WRITE_MASK,
101 1.2 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(3),
102 1.2 jmcneill .vsel_reg = 0x38, .vsel_mask = __BITS(3,0),
103 1.2 jmcneill .base = 800000, .step = 100000 },
104 1.2 jmcneill
105 1.2 jmcneill /* LDO */
106 1.2 jmcneill { .name = "LDO_REG1", .flags = F_ENABLE_WRITE_MASK,
107 1.2 jmcneill .enable_reg = 0x27, .enable_mask = __BIT(0),
108 1.2 jmcneill .vsel_reg = 0x3b, .vsel_mask = __BITS(4,0),
109 1.2 jmcneill .base = 800000, .step = 100000 },
110 1.2 jmcneill { .name = "LDO_REG2", .flags = F_ENABLE_WRITE_MASK,
111 1.2 jmcneill .enable_reg = 0x27, .enable_mask = __BIT(1),
112 1.2 jmcneill .vsel_reg = 0x3d, .vsel_mask = __BITS(4,0),
113 1.2 jmcneill .base = 800000, .step = 100000 },
114 1.2 jmcneill { .name = "LDO_REG3", .flags = F_ENABLE_WRITE_MASK,
115 1.2 jmcneill .enable_reg = 0x27, .enable_mask = __BIT(2),
116 1.2 jmcneill .vsel_reg = 0x3f, .vsel_mask = __BITS(4,0),
117 1.2 jmcneill .base = 800000, .step = 100000 },
118 1.2 jmcneill };
119 1.2 jmcneill
120 1.2 jmcneill static const struct rkpmic_config rk805_config = {
121 1.2 jmcneill .name = "RK805",
122 1.2 jmcneill .ctrl = rk805_ctrls,
123 1.2 jmcneill .nctrl = __arraycount(rk805_ctrls),
124 1.2 jmcneill };
125 1.2 jmcneill
126 1.1 jmcneill static const struct rkpmic_ctrl rk808_ctrls[] = {
127 1.1 jmcneill /* DCDC */
128 1.1 jmcneill { .name = "DCDC_REG1",
129 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(0),
130 1.1 jmcneill .vsel_reg = 0x2f, .vsel_mask = __BITS(5,0),
131 1.1 jmcneill .base = 712500, .step = 12500 },
132 1.1 jmcneill { .name = "DCDC_REG2",
133 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(1),
134 1.1 jmcneill .vsel_reg = 0x33, .vsel_mask = __BITS(5,0),
135 1.1 jmcneill .base = 712500, .step = 12500 },
136 1.1 jmcneill { .name = "DCDC_REG3",
137 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(2) },
138 1.1 jmcneill { .name = "DCDC_REG4",
139 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(3),
140 1.1 jmcneill .vsel_reg = 0x38, .vsel_mask = __BITS(3,0),
141 1.1 jmcneill .base = 1800000, .step = 100000 },
142 1.1 jmcneill
143 1.1 jmcneill /* LDO */
144 1.1 jmcneill { .name = "LDO_REG1",
145 1.1 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(0),
146 1.1 jmcneill .vsel_reg = 0x3b, .vsel_mask = __BITS(4,0),
147 1.1 jmcneill .base = 1800000, .step = 100000 },
148 1.1 jmcneill { .name = "LDO_REG2",
149 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(1),
150 1.1 jmcneill .vsel_reg = 0x3d, .vsel_mask = __BITS(4,0),
151 1.1 jmcneill .base = 1800000, .step = 100000 },
152 1.1 jmcneill { .name = "LDO_REG3",
153 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(2),
154 1.1 jmcneill .vsel_reg = 0x3f, .vsel_mask = __BITS(3,0),
155 1.1 jmcneill .base = 800000, .step = 100000 },
156 1.1 jmcneill { .name = "LDO_REG4",
157 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(3),
158 1.1 jmcneill .vsel_reg = 0x41, .vsel_mask = __BITS(4,0),
159 1.1 jmcneill .base = 1800000, .step = 100000 },
160 1.1 jmcneill { .name = "LDO_REG5",
161 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(4),
162 1.1 jmcneill .vsel_reg = 0x43, .vsel_mask = __BITS(4,0),
163 1.1 jmcneill .base = 1800000, .step = 100000 },
164 1.1 jmcneill { .name = "LDO_REG6",
165 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(5),
166 1.1 jmcneill .vsel_reg = 0x45, .vsel_mask = __BITS(4,0),
167 1.1 jmcneill .base = 800000, .step = 100000 },
168 1.1 jmcneill { .name = "LDO_REG7",
169 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(6),
170 1.1 jmcneill .vsel_reg = 0x47, .vsel_mask = __BITS(4,0),
171 1.1 jmcneill .base = 800000, .step = 100000 },
172 1.1 jmcneill { .name = "LDO_REG8",
173 1.3 jmcneill .enable_reg = 0x24, .enable_mask = __BIT(7),
174 1.1 jmcneill .vsel_reg = 0x49, .vsel_mask = __BITS(4,0),
175 1.1 jmcneill .base = 1800000, .step = 100000 },
176 1.1 jmcneill
177 1.1 jmcneill /* SWITCH */
178 1.1 jmcneill { .name = "SWITCH_REG1",
179 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(5) },
180 1.1 jmcneill { .name = "SWITCH_REG2",
181 1.1 jmcneill .enable_reg = 0x23, .enable_mask = __BIT(6) },
182 1.1 jmcneill };
183 1.1 jmcneill
184 1.1 jmcneill static const struct rkpmic_config rk808_config = {
185 1.1 jmcneill .name = "RK808",
186 1.1 jmcneill .ctrl = rk808_ctrls,
187 1.1 jmcneill .nctrl = __arraycount(rk808_ctrls),
188 1.1 jmcneill };
189 1.1 jmcneill
190 1.1 jmcneill struct rkpmic_softc {
191 1.1 jmcneill device_t sc_dev;
192 1.1 jmcneill i2c_tag_t sc_i2c;
193 1.1 jmcneill i2c_addr_t sc_addr;
194 1.1 jmcneill int sc_phandle;
195 1.4 tnn struct todr_chip_handle sc_todr;
196 1.1 jmcneill struct rkpmic_config *sc_conf;
197 1.1 jmcneill };
198 1.1 jmcneill
199 1.1 jmcneill struct rkreg_softc {
200 1.1 jmcneill device_t sc_dev;
201 1.1 jmcneill struct rkpmic_softc *sc_pmic;
202 1.1 jmcneill const struct rkpmic_ctrl *sc_ctrl;
203 1.1 jmcneill };
204 1.1 jmcneill
205 1.1 jmcneill struct rkreg_attach_args {
206 1.1 jmcneill const struct rkpmic_ctrl *reg_ctrl;
207 1.1 jmcneill int reg_phandle;
208 1.1 jmcneill };
209 1.1 jmcneill
210 1.1 jmcneill static const struct device_compatible_entry compat_data[] = {
211 1.2 jmcneill { "rockchip,rk805", (uintptr_t)&rk805_config },
212 1.1 jmcneill { "rockchip,rk808", (uintptr_t)&rk808_config },
213 1.1 jmcneill { NULL }
214 1.1 jmcneill };
215 1.1 jmcneill
216 1.1 jmcneill static uint8_t
217 1.1 jmcneill rkpmic_read(struct rkpmic_softc *sc, uint8_t reg, int flags)
218 1.1 jmcneill {
219 1.1 jmcneill uint8_t val = 0;
220 1.1 jmcneill int error;
221 1.1 jmcneill
222 1.1 jmcneill error = iic_smbus_read_byte(sc->sc_i2c, sc->sc_addr, reg, &val, flags);
223 1.1 jmcneill if (error != 0)
224 1.4 tnn device_printf(sc->sc_dev, "error reading reg %#x: %d\n", reg, error);
225 1.1 jmcneill
226 1.1 jmcneill return val;
227 1.1 jmcneill }
228 1.1 jmcneill
229 1.1 jmcneill static void
230 1.1 jmcneill rkpmic_write(struct rkpmic_softc *sc, uint8_t reg, uint8_t val, int flags)
231 1.1 jmcneill {
232 1.1 jmcneill int error;
233 1.1 jmcneill
234 1.1 jmcneill error = iic_smbus_write_byte(sc->sc_i2c, sc->sc_addr, reg, val, flags);
235 1.1 jmcneill if (error != 0)
236 1.4 tnn device_printf(sc->sc_dev, "error writing reg %#x: %d\n", reg, error);
237 1.1 jmcneill }
238 1.1 jmcneill
239 1.1 jmcneill #define I2C_READ(sc, reg) rkpmic_read((sc), (reg), I2C_F_POLL)
240 1.1 jmcneill #define I2C_WRITE(sc, reg, val) rkpmic_write((sc), (reg), (val), I2C_F_POLL)
241 1.1 jmcneill #define I2C_LOCK(sc) iic_acquire_bus((sc)->sc_i2c, I2C_F_POLL)
242 1.1 jmcneill #define I2C_UNLOCK(sc) iic_release_bus((sc)->sc_i2c, I2C_F_POLL)
243 1.1 jmcneill
244 1.1 jmcneill static int
245 1.4 tnn rkpmic_todr_settime(todr_chip_handle_t ch, struct clock_ymdhms *dt)
246 1.4 tnn {
247 1.4 tnn struct rkpmic_softc * const sc = ch->cookie;
248 1.4 tnn uint8_t val;
249 1.4 tnn
250 1.4 tnn if (dt->dt_year < 2000 || dt->dt_year >= 2100) {
251 1.4 tnn device_printf(sc->sc_dev, "year out of range\n");
252 1.4 tnn return EINVAL;
253 1.4 tnn }
254 1.4 tnn
255 1.4 tnn if (I2C_LOCK(sc))
256 1.4 tnn return EBUSY;
257 1.4 tnn
258 1.4 tnn val = I2C_READ(sc, RTC_CTRL_REG);
259 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_STOP_RTC);
260 1.4 tnn I2C_WRITE(sc, SECONDS_REG, bintobcd(dt->dt_sec));
261 1.4 tnn I2C_WRITE(sc, MINUTES_REG, bintobcd(dt->dt_min));
262 1.4 tnn I2C_WRITE(sc, HOURS_REG, bintobcd(dt->dt_hour));
263 1.4 tnn I2C_WRITE(sc, DAYS_REG, bintobcd(dt->dt_day));
264 1.4 tnn I2C_WRITE(sc, MONTHS_REG, bintobcd(dt->dt_mon));
265 1.4 tnn I2C_WRITE(sc, YEARS_REG, bintobcd(dt->dt_year % 100));
266 1.4 tnn I2C_WRITE(sc, WEEKS_REG, bintobcd(dt->dt_wday == 0 ? 7 : dt->dt_wday));
267 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, val);
268 1.4 tnn I2C_UNLOCK(sc);
269 1.4 tnn
270 1.4 tnn return 0;
271 1.4 tnn }
272 1.4 tnn
273 1.4 tnn static int
274 1.4 tnn rkpmic_todr_gettime(todr_chip_handle_t ch, struct clock_ymdhms *dt)
275 1.4 tnn {
276 1.4 tnn struct rkpmic_softc * const sc = ch->cookie;
277 1.4 tnn uint8_t val;
278 1.4 tnn
279 1.4 tnn if (I2C_LOCK(sc))
280 1.4 tnn return EBUSY;
281 1.4 tnn
282 1.4 tnn val = I2C_READ(sc, RTC_CTRL_REG);
283 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_GET_TIME | RTC_CTRL_READSEL);
284 1.5 tnn delay(1000000 / 32768); /* wait one cycle for shadow regs to latch */
285 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, val | RTC_CTRL_READSEL);
286 1.4 tnn dt->dt_sec = bcdtobin(I2C_READ(sc, SECONDS_REG));
287 1.4 tnn dt->dt_min = bcdtobin(I2C_READ(sc, MINUTES_REG));
288 1.4 tnn dt->dt_hour = bcdtobin(I2C_READ(sc, HOURS_REG));
289 1.4 tnn dt->dt_day = bcdtobin(I2C_READ(sc, DAYS_REG));
290 1.4 tnn dt->dt_mon = bcdtobin(I2C_READ(sc, MONTHS_REG));
291 1.4 tnn dt->dt_year = 2000 + bcdtobin(I2C_READ(sc, YEARS_REG));
292 1.4 tnn dt->dt_wday = bcdtobin(I2C_READ(sc, WEEKS_REG));
293 1.4 tnn if (dt->dt_wday == 7)
294 1.4 tnn dt->dt_wday = 0;
295 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, val);
296 1.4 tnn I2C_UNLOCK(sc);
297 1.4 tnn
298 1.4 tnn /*
299 1.4 tnn * RK808 has a hw bug which makes the 31st of November a valid day.
300 1.4 tnn * If we detect the 31st of November we skip ahead one day.
301 1.4 tnn * If the system has been turned off during the crossover the clock
302 1.4 tnn * will have lost a day. No easy way to detect this. Oh well.
303 1.4 tnn */
304 1.4 tnn if (dt->dt_mon == 11 && dt->dt_day == 31) {
305 1.4 tnn dt->dt_day--;
306 1.4 tnn clock_secs_to_ymdhms(clock_ymdhms_to_secs(dt) + 86400, dt);
307 1.4 tnn rkpmic_todr_settime(ch, dt);
308 1.4 tnn }
309 1.4 tnn
310 1.4 tnn #if 0
311 1.4 tnn device_printf(sc->sc_dev, "%04" PRIu64 "-%02u-%02u (%u) %02u:%02u:%02u\n",
312 1.4 tnn dt->dt_year, dt->dt_mon, dt->dt_day, dt->dt_wday,
313 1.4 tnn dt->dt_hour, dt->dt_min, dt->dt_sec);
314 1.4 tnn #endif
315 1.4 tnn
316 1.4 tnn return 0;
317 1.4 tnn }
318 1.4 tnn
319 1.4 tnn
320 1.4 tnn static int
321 1.1 jmcneill rkpmic_match(device_t parent, cfdata_t match, void *aux)
322 1.1 jmcneill {
323 1.1 jmcneill struct i2c_attach_args *ia = aux;
324 1.1 jmcneill int match_result;
325 1.1 jmcneill
326 1.1 jmcneill if (iic_use_direct_match(ia, match, compat_data, &match_result))
327 1.1 jmcneill return match_result;
328 1.1 jmcneill
329 1.1 jmcneill return 0;
330 1.1 jmcneill }
331 1.1 jmcneill
332 1.1 jmcneill static void
333 1.1 jmcneill rkpmic_attach(device_t parent, device_t self, void *aux)
334 1.1 jmcneill {
335 1.1 jmcneill struct rkpmic_softc * const sc = device_private(self);
336 1.1 jmcneill struct i2c_attach_args *ia = aux;
337 1.1 jmcneill struct rkreg_attach_args raa;
338 1.1 jmcneill const struct device_compatible_entry *entry;
339 1.1 jmcneill int child, regulators;
340 1.1 jmcneill u_int chipid, n;
341 1.1 jmcneill
342 1.1 jmcneill iic_compatible_match(ia, compat_data, &entry);
343 1.1 jmcneill
344 1.1 jmcneill sc->sc_dev = self;
345 1.1 jmcneill sc->sc_i2c = ia->ia_tag;
346 1.1 jmcneill sc->sc_addr = ia->ia_addr;
347 1.1 jmcneill sc->sc_phandle = ia->ia_cookie;
348 1.1 jmcneill sc->sc_conf = (void *)entry->data;
349 1.1 jmcneill
350 1.4 tnn memset(&sc->sc_todr, 0, sizeof(sc->sc_todr));
351 1.4 tnn sc->sc_todr.cookie = sc;
352 1.4 tnn sc->sc_todr.todr_gettime_ymdhms = rkpmic_todr_gettime;
353 1.4 tnn sc->sc_todr.todr_settime_ymdhms = rkpmic_todr_settime;
354 1.4 tnn
355 1.1 jmcneill aprint_naive("\n");
356 1.4 tnn aprint_normal(": %s Power Management and Real Time Clock IC\n", sc->sc_conf->name);
357 1.1 jmcneill
358 1.1 jmcneill I2C_LOCK(sc);
359 1.1 jmcneill chipid = I2C_READ(sc, CHIP_NAME_REG) << 8;
360 1.1 jmcneill chipid |= I2C_READ(sc, CHIP_VER_REG);
361 1.1 jmcneill aprint_debug_dev(self, "Chip ID 0x%04x\n", chipid);
362 1.4 tnn I2C_WRITE(sc, RTC_CTRL_REG, 0x0);
363 1.4 tnn I2C_WRITE(sc, RTC_INT_REG, 0);
364 1.4 tnn I2C_WRITE(sc, RTC_COMP_LSB_REG, 0);
365 1.4 tnn I2C_WRITE(sc, RTC_COMP_MSB_REG, 0);
366 1.1 jmcneill I2C_UNLOCK(sc);
367 1.1 jmcneill
368 1.4 tnn fdtbus_todr_attach(self, sc->sc_phandle, &sc->sc_todr);
369 1.4 tnn
370 1.1 jmcneill regulators = of_find_firstchild_byname(sc->sc_phandle, "regulators");
371 1.1 jmcneill if (regulators < 0)
372 1.1 jmcneill return;
373 1.1 jmcneill
374 1.1 jmcneill for (n = 0; n < sc->sc_conf->nctrl; n++) {
375 1.1 jmcneill child = of_find_firstchild_byname(regulators, sc->sc_conf->ctrl[n].name);
376 1.1 jmcneill if (child < 0)
377 1.1 jmcneill continue;
378 1.1 jmcneill raa.reg_ctrl = &sc->sc_conf->ctrl[n];
379 1.1 jmcneill raa.reg_phandle = child;
380 1.1 jmcneill config_found(self, &raa, NULL);
381 1.1 jmcneill }
382 1.1 jmcneill }
383 1.1 jmcneill
384 1.1 jmcneill static int
385 1.1 jmcneill rkreg_acquire(device_t dev)
386 1.1 jmcneill {
387 1.1 jmcneill return 0;
388 1.1 jmcneill }
389 1.1 jmcneill
390 1.1 jmcneill static void
391 1.1 jmcneill rkreg_release(device_t dev)
392 1.1 jmcneill {
393 1.1 jmcneill }
394 1.1 jmcneill
395 1.1 jmcneill static int
396 1.1 jmcneill rkreg_enable(device_t dev, bool enable)
397 1.1 jmcneill {
398 1.1 jmcneill struct rkreg_softc * const sc = device_private(dev);
399 1.1 jmcneill const struct rkpmic_ctrl *c = sc->sc_ctrl;
400 1.1 jmcneill uint8_t val;
401 1.1 jmcneill
402 1.1 jmcneill if (!c->enable_mask)
403 1.1 jmcneill return EINVAL;
404 1.1 jmcneill
405 1.1 jmcneill I2C_LOCK(sc->sc_pmic);
406 1.2 jmcneill if (c->flags & F_ENABLE_WRITE_MASK)
407 1.2 jmcneill val |= c->enable_mask << 4;
408 1.2 jmcneill else
409 1.2 jmcneill val = I2C_READ(sc->sc_pmic, c->enable_reg);
410 1.1 jmcneill if (enable)
411 1.1 jmcneill val |= c->enable_mask;
412 1.1 jmcneill else
413 1.1 jmcneill val &= ~c->enable_mask;
414 1.1 jmcneill I2C_WRITE(sc->sc_pmic, c->enable_reg, val);
415 1.1 jmcneill I2C_UNLOCK(sc->sc_pmic);
416 1.1 jmcneill
417 1.1 jmcneill return 0;
418 1.1 jmcneill }
419 1.1 jmcneill
420 1.1 jmcneill static int
421 1.1 jmcneill rkreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
422 1.1 jmcneill {
423 1.1 jmcneill struct rkreg_softc * const sc = device_private(dev);
424 1.1 jmcneill const struct rkpmic_ctrl *c = sc->sc_ctrl;
425 1.1 jmcneill uint8_t val;
426 1.1 jmcneill u_int vsel;
427 1.1 jmcneill
428 1.1 jmcneill if (!c->vsel_mask)
429 1.1 jmcneill return EINVAL;
430 1.1 jmcneill
431 1.1 jmcneill if (min_uvol < c->base)
432 1.1 jmcneill return ERANGE;
433 1.1 jmcneill
434 1.1 jmcneill vsel = (min_uvol - c->base) / c->step;
435 1.1 jmcneill if (vsel > __SHIFTOUT_MASK(c->vsel_mask))
436 1.1 jmcneill return ERANGE;
437 1.1 jmcneill
438 1.1 jmcneill I2C_LOCK(sc->sc_pmic);
439 1.1 jmcneill val = I2C_READ(sc->sc_pmic, c->vsel_reg);
440 1.1 jmcneill val &= ~c->vsel_mask;
441 1.1 jmcneill val |= __SHIFTIN(vsel, c->vsel_mask);
442 1.1 jmcneill I2C_WRITE(sc->sc_pmic, c->vsel_reg, val);
443 1.1 jmcneill I2C_UNLOCK(sc->sc_pmic);
444 1.1 jmcneill
445 1.1 jmcneill return 0;
446 1.1 jmcneill }
447 1.1 jmcneill
448 1.1 jmcneill static int
449 1.1 jmcneill rkreg_get_voltage(device_t dev, u_int *puvol)
450 1.1 jmcneill {
451 1.1 jmcneill struct rkreg_softc * const sc = device_private(dev);
452 1.1 jmcneill const struct rkpmic_ctrl *c = sc->sc_ctrl;
453 1.1 jmcneill uint8_t val;
454 1.1 jmcneill
455 1.1 jmcneill if (!c->vsel_mask)
456 1.1 jmcneill return EINVAL;
457 1.1 jmcneill
458 1.1 jmcneill I2C_LOCK(sc->sc_pmic);
459 1.1 jmcneill val = I2C_READ(sc->sc_pmic, c->vsel_reg);
460 1.1 jmcneill I2C_UNLOCK(sc->sc_pmic);
461 1.1 jmcneill
462 1.1 jmcneill *puvol = __SHIFTOUT(val, c->vsel_mask) * c->step + c->base;
463 1.1 jmcneill
464 1.1 jmcneill return 0;
465 1.1 jmcneill }
466 1.1 jmcneill
467 1.1 jmcneill static struct fdtbus_regulator_controller_func rkreg_funcs = {
468 1.1 jmcneill .acquire = rkreg_acquire,
469 1.1 jmcneill .release = rkreg_release,
470 1.1 jmcneill .enable = rkreg_enable,
471 1.1 jmcneill .set_voltage = rkreg_set_voltage,
472 1.1 jmcneill .get_voltage = rkreg_get_voltage,
473 1.1 jmcneill };
474 1.1 jmcneill
475 1.1 jmcneill static int
476 1.1 jmcneill rkreg_match(device_t parent, cfdata_t match, void *aux)
477 1.1 jmcneill {
478 1.1 jmcneill return 1;
479 1.1 jmcneill }
480 1.1 jmcneill
481 1.1 jmcneill static void
482 1.1 jmcneill rkreg_attach(device_t parent, device_t self, void *aux)
483 1.1 jmcneill {
484 1.1 jmcneill struct rkreg_softc * const sc = device_private(self);
485 1.1 jmcneill struct rkreg_attach_args *raa = aux;
486 1.1 jmcneill const int phandle = raa->reg_phandle;
487 1.1 jmcneill const char *name;
488 1.1 jmcneill
489 1.1 jmcneill sc->sc_dev = self;
490 1.1 jmcneill sc->sc_pmic = device_private(parent);
491 1.1 jmcneill sc->sc_ctrl = raa->reg_ctrl;
492 1.1 jmcneill
493 1.1 jmcneill fdtbus_register_regulator_controller(self, phandle,
494 1.1 jmcneill &rkreg_funcs);
495 1.1 jmcneill
496 1.1 jmcneill aprint_naive("\n");
497 1.1 jmcneill name = fdtbus_get_string(phandle, "regulator-name");
498 1.1 jmcneill if (!name)
499 1.1 jmcneill name = fdtbus_get_string(phandle, "name");
500 1.1 jmcneill aprint_normal(": %s\n", name);
501 1.1 jmcneill }
502 1.1 jmcneill
503 1.1 jmcneill CFATTACH_DECL_NEW(rkpmic, sizeof(struct rkpmic_softc),
504 1.1 jmcneill rkpmic_match, rkpmic_attach, NULL, NULL);
505 1.1 jmcneill
506 1.1 jmcneill CFATTACH_DECL_NEW(rkreg, sizeof(struct rkreg_softc),
507 1.1 jmcneill rkreg_match, rkreg_attach, NULL, NULL);
508