aac.c revision 1.37 1 1.37 briggs /* $NetBSD: aac.c,v 1.37 2007/10/21 12:59:33 briggs Exp $ */
2 1.1 ad
3 1.1 ad /*-
4 1.31 briggs * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 ad * by Andrew Doran.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. All advertising materials mentioning features or use of this software
19 1.1 ad * must display the following acknowledgement:
20 1.1 ad * This product includes software developed by the NetBSD
21 1.1 ad * Foundation, Inc. and its contributors.
22 1.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 ad * contributors may be used to endorse or promote products derived
24 1.1 ad * from this software without specific prior written permission.
25 1.1 ad *
26 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 ad * POSSIBILITY OF SUCH DAMAGE.
37 1.1 ad */
38 1.1 ad
39 1.1 ad /*-
40 1.1 ad * Copyright (c) 2001 Scott Long
41 1.1 ad * Copyright (c) 2001 Adaptec, Inc.
42 1.1 ad * Copyright (c) 2000 Michael Smith
43 1.1 ad * Copyright (c) 2000 BSDi
44 1.1 ad * Copyright (c) 2000 Niklas Hallqvist
45 1.1 ad * All rights reserved.
46 1.1 ad *
47 1.1 ad * Redistribution and use in source and binary forms, with or without
48 1.1 ad * modification, are permitted provided that the following conditions
49 1.1 ad * are met:
50 1.1 ad * 1. Redistributions of source code must retain the above copyright
51 1.1 ad * notice, this list of conditions and the following disclaimer.
52 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
53 1.1 ad * notice, this list of conditions and the following disclaimer in the
54 1.1 ad * documentation and/or other materials provided with the distribution.
55 1.1 ad *
56 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
57 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
60 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 1.1 ad * SUCH DAMAGE.
67 1.1 ad */
68 1.1 ad
69 1.1 ad /*
70 1.1 ad * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
71 1.1 ad *
72 1.1 ad * TODO:
73 1.1 ad *
74 1.1 ad * o Management interface.
75 1.1 ad * o Look again at some of the portability issues.
76 1.1 ad * o Handle various AIFs (e.g., notification that a container is going away).
77 1.1 ad */
78 1.1 ad
79 1.1 ad #include <sys/cdefs.h>
80 1.37 briggs __KERNEL_RCSID(0, "$NetBSD: aac.c,v 1.37 2007/10/21 12:59:33 briggs Exp $");
81 1.1 ad
82 1.1 ad #include <sys/param.h>
83 1.1 ad #include <sys/systm.h>
84 1.1 ad #include <sys/buf.h>
85 1.1 ad #include <sys/device.h>
86 1.1 ad #include <sys/kernel.h>
87 1.1 ad #include <sys/malloc.h>
88 1.35 ad #include <sys/proc.h>
89 1.1 ad
90 1.36 ad #include <sys/bus.h>
91 1.1 ad
92 1.1 ad #include <uvm/uvm_extern.h>
93 1.1 ad
94 1.1 ad #include <dev/ic/aacreg.h>
95 1.1 ad #include <dev/ic/aacvar.h>
96 1.1 ad #include <dev/ic/aac_tables.h>
97 1.1 ad
98 1.13 drochner #include "locators.h"
99 1.13 drochner
100 1.34 briggs static int aac_new_intr(void *);
101 1.34 briggs static int aac_alloc_commands(struct aac_softc *);
102 1.34 briggs #ifdef notyet
103 1.34 briggs static void aac_free_commands(struct aac_softc *);
104 1.34 briggs #endif
105 1.12 thorpej static int aac_check_firmware(struct aac_softc *);
106 1.12 thorpej static void aac_describe_controller(struct aac_softc *);
107 1.12 thorpej static int aac_dequeue_fib(struct aac_softc *, int, u_int32_t *,
108 1.12 thorpej struct aac_fib **);
109 1.34 briggs static int aac_enqueue_fib(struct aac_softc *, int, struct aac_ccb *);
110 1.31 briggs static int aac_enqueue_response(struct aac_softc *, int, struct aac_fib *);
111 1.12 thorpej static void aac_host_command(struct aac_softc *);
112 1.12 thorpej static void aac_host_response(struct aac_softc *);
113 1.12 thorpej static int aac_init(struct aac_softc *);
114 1.12 thorpej static int aac_print(void *, const char *);
115 1.12 thorpej static void aac_shutdown(void *);
116 1.12 thorpej static void aac_startup(struct aac_softc *);
117 1.12 thorpej static int aac_sync_command(struct aac_softc *, u_int32_t, u_int32_t,
118 1.12 thorpej u_int32_t, u_int32_t, u_int32_t, u_int32_t *);
119 1.12 thorpej static int aac_sync_fib(struct aac_softc *, u_int32_t, u_int32_t, void *,
120 1.12 thorpej u_int16_t, void *, u_int16_t *);
121 1.1 ad
122 1.1 ad #ifdef AAC_DEBUG
123 1.24 jdolecek static void aac_print_fib(struct aac_softc *, struct aac_fib *, const char *);
124 1.1 ad #endif
125 1.1 ad
126 1.1 ad /*
127 1.1 ad * Adapter-space FIB queue manipulation.
128 1.1 ad *
129 1.1 ad * Note that the queue implementation here is a little funky; neither the PI or
130 1.1 ad * CI will ever be zero. This behaviour is a controller feature.
131 1.1 ad */
132 1.1 ad static struct {
133 1.1 ad int size;
134 1.1 ad int notify;
135 1.1 ad } const aac_qinfo[] = {
136 1.1 ad { AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL },
137 1.1 ad { AAC_HOST_HIGH_CMD_ENTRIES, 0 },
138 1.1 ad { AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY },
139 1.1 ad { AAC_ADAP_HIGH_CMD_ENTRIES, 0 },
140 1.1 ad { AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL },
141 1.1 ad { AAC_HOST_HIGH_RESP_ENTRIES, 0 },
142 1.1 ad { AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY },
143 1.1 ad { AAC_ADAP_HIGH_RESP_ENTRIES, 0 }
144 1.1 ad };
145 1.1 ad
146 1.1 ad #ifdef AAC_DEBUG
147 1.1 ad int aac_debug = AAC_DEBUG;
148 1.1 ad #endif
149 1.1 ad
150 1.34 briggs MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for aac(4)");
151 1.34 briggs
152 1.12 thorpej static void *aac_sdh;
153 1.1 ad
154 1.1 ad extern struct cfdriver aac_cd;
155 1.1 ad
156 1.1 ad int
157 1.1 ad aac_attach(struct aac_softc *sc)
158 1.1 ad {
159 1.1 ad struct aac_attach_args aaca;
160 1.34 briggs int i, rv;
161 1.22 drochner int locs[AACCF_NLOCS];
162 1.1 ad
163 1.1 ad SIMPLEQ_INIT(&sc->sc_ccb_free);
164 1.1 ad SIMPLEQ_INIT(&sc->sc_ccb_queue);
165 1.1 ad SIMPLEQ_INIT(&sc->sc_ccb_complete);
166 1.1 ad
167 1.1 ad /*
168 1.1 ad * Disable interrupts before we do anything.
169 1.1 ad */
170 1.1 ad AAC_MASK_INTERRUPTS(sc);
171 1.1 ad
172 1.1 ad /*
173 1.1 ad * Initialise the adapter.
174 1.1 ad */
175 1.1 ad if (aac_check_firmware(sc))
176 1.1 ad return (EINVAL);
177 1.1 ad
178 1.1 ad if ((rv = aac_init(sc)) != 0)
179 1.1 ad return (rv);
180 1.34 briggs
181 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
182 1.34 briggs rv = sc->sc_intr_set(sc, aac_new_intr, sc);
183 1.34 briggs if (rv)
184 1.34 briggs return (rv);
185 1.34 briggs }
186 1.34 briggs
187 1.1 ad aac_startup(sc);
188 1.1 ad
189 1.16 perry /*
190 1.1 ad * Print a little information about the controller.
191 1.1 ad */
192 1.1 ad aac_describe_controller(sc);
193 1.1 ad
194 1.1 ad /*
195 1.34 briggs * Attach devices.
196 1.1 ad */
197 1.34 briggs for (i = 0; i < AAC_MAX_CONTAINERS; i++) {
198 1.34 briggs if (!sc->sc_hdr[i].hd_present)
199 1.34 briggs continue;
200 1.34 briggs aaca.aaca_unit = i;
201 1.34 briggs
202 1.34 briggs locs[AACCF_UNIT] = i;
203 1.34 briggs
204 1.34 briggs config_found_sm_loc(&sc->sc_dv, "aac", locs, &aaca,
205 1.34 briggs aac_print, config_stdsubmatch);
206 1.1 ad }
207 1.34 briggs
208 1.34 briggs /*
209 1.34 briggs * Enable interrupts, and register our shutdown hook.
210 1.34 briggs */
211 1.34 briggs sc->sc_flags |= AAC_ONLINE;
212 1.34 briggs AAC_UNMASK_INTERRUPTS(sc);
213 1.34 briggs if (aac_sdh != NULL)
214 1.34 briggs shutdownhook_establish(aac_shutdown, NULL);
215 1.34 briggs return (0);
216 1.34 briggs }
217 1.34 briggs
218 1.34 briggs static int
219 1.34 briggs aac_alloc_commands(struct aac_softc *sc)
220 1.34 briggs {
221 1.34 briggs struct aac_fibmap *fm;
222 1.34 briggs struct aac_ccb *ac;
223 1.34 briggs bus_addr_t fibpa;
224 1.34 briggs int size, nsegs;
225 1.34 briggs int i, error;
226 1.34 briggs int state;
227 1.34 briggs
228 1.34 briggs if (sc->sc_total_fibs + sc->sc_max_fibs_alloc > sc->sc_max_fibs)
229 1.34 briggs return ENOMEM;
230 1.34 briggs
231 1.34 briggs fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
232 1.34 briggs if (fm == NULL)
233 1.34 briggs return ENOMEM;
234 1.34 briggs
235 1.34 briggs size = sc->sc_max_fibs_alloc * sc->sc_max_fib_size;
236 1.34 briggs
237 1.1 ad state = 0;
238 1.34 briggs error = bus_dmamap_create(sc->sc_dmat, size, 1, size,
239 1.34 briggs 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &fm->fm_fibmap);
240 1.34 briggs if (error != 0) {
241 1.34 briggs aprint_error("%s: cannot create fibs dmamap (%d)\n",
242 1.34 briggs sc->sc_dv.dv_xname, error);
243 1.1 ad goto bail_out;
244 1.1 ad }
245 1.1 ad state++;
246 1.34 briggs error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
247 1.34 briggs &fm->fm_fibseg, 1, &nsegs, BUS_DMA_NOWAIT);
248 1.34 briggs if (error != 0) {
249 1.34 briggs aprint_error("%s: can't allocate fibs structure (%d)\n",
250 1.34 briggs sc->sc_dv.dv_xname, error);
251 1.1 ad goto bail_out;
252 1.1 ad }
253 1.1 ad state++;
254 1.34 briggs error = bus_dmamem_map(sc->sc_dmat, &fm->fm_fibseg, nsegs, size,
255 1.34 briggs (void **)&fm->fm_fibs, 0);
256 1.34 briggs if (error != 0) {
257 1.34 briggs aprint_error("%s: can't map fibs structure (%d)\n",
258 1.34 briggs sc->sc_dv.dv_xname, error);
259 1.1 ad goto bail_out;
260 1.1 ad }
261 1.1 ad state++;
262 1.34 briggs error = bus_dmamap_load(sc->sc_dmat, fm->fm_fibmap, fm->fm_fibs,
263 1.34 briggs size, NULL, BUS_DMA_NOWAIT);
264 1.34 briggs if (error != 0) {
265 1.34 briggs aprint_error("%s: cannot load fibs dmamap (%d)\n",
266 1.34 briggs sc->sc_dv.dv_xname, error);
267 1.1 ad goto bail_out;
268 1.1 ad }
269 1.1 ad
270 1.34 briggs fm->fm_ccbs = sc->sc_ccbs + sc->sc_total_fibs;
271 1.34 briggs fibpa = fm->fm_fibseg.ds_addr;
272 1.34 briggs
273 1.34 briggs memset(fm->fm_fibs, 0, size);
274 1.34 briggs for (i = 0; i < sc->sc_max_fibs_alloc; i++) {
275 1.34 briggs ac = fm->fm_ccbs + i;
276 1.34 briggs
277 1.34 briggs error = bus_dmamap_create(sc->sc_dmat, AAC_MAX_XFER(sc),
278 1.34 briggs sc->sc_max_sgs, AAC_MAX_XFER(sc), 0,
279 1.1 ad BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_dmamap_xfer);
280 1.34 briggs if (error) {
281 1.34 briggs while (--i >= 0) {
282 1.34 briggs ac = fm->fm_ccbs + i;
283 1.1 ad bus_dmamap_destroy(sc->sc_dmat,
284 1.1 ad ac->ac_dmamap_xfer);
285 1.34 briggs sc->sc_total_fibs--;
286 1.34 briggs }
287 1.8 thorpej aprint_error("%s: cannot create ccb dmamap (%d)",
288 1.34 briggs sc->sc_dv.dv_xname, error);
289 1.1 ad goto bail_out;
290 1.1 ad }
291 1.1 ad
292 1.34 briggs ac->ac_fibmap = fm;
293 1.34 briggs ac->ac_fib = (struct aac_fib *)
294 1.34 briggs ((char *) fm->fm_fibs + i * sc->sc_max_fib_size);
295 1.34 briggs ac->ac_fibphys = fibpa + i * sc->sc_max_fib_size;
296 1.1 ad aac_ccb_free(sc, ac);
297 1.34 briggs sc->sc_total_fibs++;
298 1.1 ad }
299 1.1 ad
300 1.34 briggs TAILQ_INSERT_TAIL(&sc->sc_fibmap_tqh, fm, fm_link);
301 1.13 drochner
302 1.34 briggs return 0;
303 1.34 briggs bail_out:
304 1.34 briggs if (state > 3)
305 1.34 briggs bus_dmamap_unload(sc->sc_dmat, fm->fm_fibmap);
306 1.34 briggs if (state > 2)
307 1.34 briggs bus_dmamem_unmap(sc->sc_dmat, (void *) fm->fm_fibs, size);
308 1.34 briggs if (state > 1)
309 1.34 briggs bus_dmamem_free(sc->sc_dmat, &fm->fm_fibseg, 1);
310 1.1 ad
311 1.34 briggs bus_dmamap_destroy(sc->sc_dmat, fm->fm_fibmap);
312 1.1 ad
313 1.34 briggs free(fm, M_AACBUF);
314 1.1 ad
315 1.34 briggs return error;
316 1.34 briggs }
317 1.1 ad
318 1.34 briggs #ifdef notyet
319 1.34 briggs static void
320 1.34 briggs aac_free_commands(struct aac_softc *sc)
321 1.34 briggs {
322 1.1 ad }
323 1.34 briggs #endif
324 1.1 ad
325 1.1 ad /*
326 1.1 ad * Print autoconfiguration message for a sub-device.
327 1.1 ad */
328 1.12 thorpej static int
329 1.1 ad aac_print(void *aux, const char *pnp)
330 1.1 ad {
331 1.1 ad struct aac_attach_args *aaca;
332 1.1 ad
333 1.1 ad aaca = aux;
334 1.1 ad
335 1.1 ad if (pnp != NULL)
336 1.7 thorpej aprint_normal("block device at %s", pnp);
337 1.7 thorpej aprint_normal(" unit %d", aaca->aaca_unit);
338 1.1 ad return (UNCONF);
339 1.1 ad }
340 1.1 ad
341 1.1 ad /*
342 1.1 ad * Look up a text description of a numeric error code and return a pointer to
343 1.1 ad * same.
344 1.1 ad */
345 1.1 ad const char *
346 1.1 ad aac_describe_code(const struct aac_code_lookup *table, u_int32_t code)
347 1.1 ad {
348 1.1 ad int i;
349 1.1 ad
350 1.1 ad for (i = 0; table[i].string != NULL; i++)
351 1.1 ad if (table[i].code == code)
352 1.1 ad return (table[i].string);
353 1.1 ad
354 1.1 ad return (table[i + 1].string);
355 1.1 ad }
356 1.1 ad
357 1.17 briggs /*
358 1.17 briggs * bitmask_snprintf(9) format string for the adapter options.
359 1.17 briggs */
360 1.19 christos static const char *optfmt =
361 1.17 briggs "\20\1SNAPSHOT\2CLUSTERS\3WCACHE\4DATA64\5HOSTTIME\6RAID50"
362 1.17 briggs "\7WINDOW4GB"
363 1.17 briggs "\10SCSIUPGD\11SOFTERR\12NORECOND\13SGMAP64\14ALARM\15NONDASD";
364 1.17 briggs
365 1.12 thorpej static void
366 1.1 ad aac_describe_controller(struct aac_softc *sc)
367 1.1 ad {
368 1.17 briggs u_int8_t fmtbuf[256];
369 1.19 christos u_int8_t tbuf[AAC_FIB_DATASIZE];
370 1.1 ad u_int16_t bufsize;
371 1.1 ad struct aac_adapter_info *info;
372 1.1 ad u_int8_t arg;
373 1.1 ad
374 1.1 ad arg = 0;
375 1.19 christos if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &tbuf,
376 1.1 ad &bufsize)) {
377 1.8 thorpej aprint_error("%s: RequestAdapterInfo failed\n",
378 1.8 thorpej sc->sc_dv.dv_xname);
379 1.1 ad return;
380 1.1 ad }
381 1.1 ad if (bufsize != sizeof(*info)) {
382 1.8 thorpej aprint_error("%s: "
383 1.26 chs "RequestAdapterInfo returned wrong data size (%d != %zu)\n",
384 1.26 chs sc->sc_dv.dv_xname, bufsize, sizeof(*info));
385 1.1 ad return;
386 1.1 ad }
387 1.19 christos info = (struct aac_adapter_info *)&tbuf[0];
388 1.1 ad
389 1.15 briggs aprint_normal("%s: %s at %dMHz, %dMB mem (%dMB cache), %s\n",
390 1.1 ad sc->sc_dv.dv_xname,
391 1.1 ad aac_describe_code(aac_cpu_variant, le32toh(info->CpuVariant)),
392 1.1 ad le32toh(info->ClockSpeed),
393 1.15 briggs le32toh(info->TotalMem) / (1024 * 1024),
394 1.1 ad le32toh(info->BufferMem) / (1024 * 1024),
395 1.1 ad aac_describe_code(aac_battery_platform,
396 1.15 briggs le32toh(info->batteryPlatform)));
397 1.15 briggs
398 1.15 briggs aprint_verbose("%s: Kernel %d.%d-%d [Build %d], ",
399 1.15 briggs sc->sc_dv.dv_xname,
400 1.1 ad info->KernelRevision.external.comp.major,
401 1.1 ad info->KernelRevision.external.comp.minor,
402 1.15 briggs info->KernelRevision.external.comp.dash,
403 1.15 briggs info->KernelRevision.buildNumber);
404 1.15 briggs
405 1.15 briggs aprint_verbose("Monitor %d.%d-%d [Build %d], S/N %6X\n",
406 1.15 briggs info->MonitorRevision.external.comp.major,
407 1.15 briggs info->MonitorRevision.external.comp.minor,
408 1.15 briggs info->MonitorRevision.external.comp.dash,
409 1.15 briggs info->MonitorRevision.buildNumber,
410 1.15 briggs ((u_int32_t)info->SerialNumber & 0xffffff));
411 1.1 ad
412 1.17 briggs aprint_verbose("%s: Controller supports: %s\n",
413 1.17 briggs sc->sc_dv.dv_xname,
414 1.17 briggs bitmask_snprintf(sc->sc_supported_options, optfmt, fmtbuf,
415 1.17 briggs sizeof(fmtbuf)));
416 1.17 briggs
417 1.1 ad /* Save the kernel revision structure for later use. */
418 1.1 ad sc->sc_revision = info->KernelRevision;
419 1.1 ad }
420 1.1 ad
421 1.1 ad /*
422 1.1 ad * Retrieve the firmware version numbers. Dell PERC2/QC cards with firmware
423 1.1 ad * version 1.x are not compatible with this driver.
424 1.1 ad */
425 1.12 thorpej static int
426 1.1 ad aac_check_firmware(struct aac_softc *sc)
427 1.1 ad {
428 1.34 briggs u_int32_t major, minor, opts, atusize = 0, status = 0;
429 1.34 briggs u_int32_t calcsgs;
430 1.1 ad
431 1.1 ad if ((sc->sc_quirks & AAC_QUIRK_PERC2QC) != 0) {
432 1.1 ad if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
433 1.1 ad NULL)) {
434 1.8 thorpej aprint_error("%s: error reading firmware version\n",
435 1.1 ad sc->sc_dv.dv_xname);
436 1.1 ad return (1);
437 1.1 ad }
438 1.1 ad
439 1.1 ad /* These numbers are stored as ASCII! */
440 1.17 briggs major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
441 1.17 briggs minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
442 1.1 ad if (major == 1) {
443 1.8 thorpej aprint_error(
444 1.8 thorpej "%s: firmware version %d.%d not supported.\n",
445 1.1 ad sc->sc_dv.dv_xname, major, minor);
446 1.1 ad return (1);
447 1.1 ad }
448 1.1 ad }
449 1.1 ad
450 1.34 briggs if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
451 1.34 briggs if (status != AAC_SRB_STS_INVALID_REQUEST) {
452 1.34 briggs aprint_error("%s: GETINFO failed, status 0x%08x\n",
453 1.34 briggs sc->sc_dv.dv_xname, status);
454 1.34 briggs return (1);
455 1.34 briggs }
456 1.34 briggs } else {
457 1.34 briggs opts = AAC_GET_MAILBOX(sc, 1);
458 1.34 briggs atusize = AAC_GET_MAILBOX(sc, 2);
459 1.34 briggs sc->sc_supported_options = opts;
460 1.34 briggs
461 1.34 briggs if (((opts & AAC_SUPPORTED_4GB_WINDOW) != 0) &&
462 1.34 briggs ((sc->sc_quirks & AAC_QUIRK_NO4GB) == 0) )
463 1.34 briggs sc->sc_quirks |= AAC_QUIRK_4GB_WINDOW;
464 1.34 briggs
465 1.34 briggs if (((opts & AAC_SUPPORTED_SGMAP_HOST64) != 0) &&
466 1.34 briggs (sizeof(bus_addr_t) > 4)) {
467 1.34 briggs aprint_normal("%s: Enabling 64-bit address support\n",
468 1.34 briggs sc->sc_dv.dv_xname);
469 1.34 briggs sc->sc_quirks |= AAC_QUIRK_SG_64BIT;
470 1.34 briggs }
471 1.34 briggs if ((opts & AAC_SUPPORTED_NEW_COMM) &&
472 1.34 briggs (sc->sc_if.aif_send_command != NULL)) {
473 1.34 briggs sc->sc_quirks |= AAC_QUIRK_NEW_COMM;
474 1.34 briggs }
475 1.34 briggs #ifdef notyet
476 1.34 briggs if (opts & AAC_SUPPORTED_64BIT_ARRAYSIZE)
477 1.34 briggs sc->sc_quirks |= AAC_QUIRK_ARRAY_64BIT;
478 1.34 briggs #endif
479 1.17 briggs }
480 1.17 briggs
481 1.34 briggs sc->sc_max_fibs = (sc->sc_quirks & AAC_QUIRK_256FIBS) ? 256 : 512;
482 1.34 briggs
483 1.34 briggs if ( (sc->sc_quirks & AAC_QUIRK_NEW_COMM)
484 1.34 briggs && (sc->sc_regsize < atusize)) {
485 1.34 briggs aprint_error("%s: Not enabling new comm i/f -- "
486 1.34 briggs "atusize 0x%08x, regsize 0x%08x\n",
487 1.34 briggs sc->sc_dv.dv_xname, atusize,
488 1.34 briggs (u_int32_t) sc->sc_regsize);
489 1.34 briggs sc->sc_quirks &= ~AAC_QUIRK_NEW_COMM;
490 1.34 briggs }
491 1.34 briggs #if 0
492 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
493 1.34 briggs aprint_error("%s: Not enabling new comm i/f -- "
494 1.34 briggs "driver not ready yet\n",
495 1.34 briggs sc->sc_dv.dv_xname);
496 1.34 briggs sc->sc_quirks &= ~AAC_QUIRK_NEW_COMM;
497 1.34 briggs }
498 1.34 briggs #endif
499 1.34 briggs
500 1.34 briggs sc->sc_max_fib_size = sizeof(struct aac_fib);
501 1.34 briggs sc->sc_max_sectors = 128; /* 64KB */
502 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_SG_64BIT)
503 1.34 briggs sc->sc_max_sgs = (sc->sc_max_fib_size
504 1.34 briggs - sizeof(struct aac_blockwrite64)
505 1.34 briggs + sizeof(struct aac_sg_table64))
506 1.34 briggs / sizeof(struct aac_sg_table64);
507 1.34 briggs else
508 1.34 briggs sc->sc_max_sgs = (sc->sc_max_fib_size
509 1.34 briggs - sizeof(struct aac_blockwrite)
510 1.34 briggs + sizeof(struct aac_sg_table))
511 1.34 briggs / sizeof(struct aac_sg_table);
512 1.34 briggs
513 1.34 briggs if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
514 1.34 briggs u_int32_t opt1, opt2, opt3;
515 1.34 briggs u_int32_t tmpval;
516 1.34 briggs
517 1.34 briggs opt1 = AAC_GET_MAILBOX(sc, 1);
518 1.34 briggs opt2 = AAC_GET_MAILBOX(sc, 2);
519 1.34 briggs opt3 = AAC_GET_MAILBOX(sc, 3);
520 1.34 briggs if (!opt1 || !opt2 || !opt3) {
521 1.34 briggs aprint_verbose("%s: GETCOMMPREF appears untrustworthy."
522 1.34 briggs " Ignoring.\n", sc->sc_dv.dv_xname);
523 1.34 briggs } else {
524 1.34 briggs sc->sc_max_fib_size = le32toh(opt1) & 0xffff;
525 1.34 briggs sc->sc_max_sectors = (le32toh(opt1) >> 16) << 1;
526 1.34 briggs tmpval = (le32toh(opt2) >> 16);
527 1.34 briggs if (tmpval < sc->sc_max_sgs) {
528 1.34 briggs sc->sc_max_sgs = tmpval;
529 1.34 briggs }
530 1.34 briggs tmpval = (le32toh(opt3) & 0xffff);
531 1.34 briggs if (tmpval < sc->sc_max_fibs) {
532 1.34 briggs sc->sc_max_fibs = tmpval;
533 1.34 briggs }
534 1.34 briggs }
535 1.34 briggs }
536 1.34 briggs if (sc->sc_max_fib_size > PAGE_SIZE)
537 1.34 briggs sc->sc_max_fib_size = PAGE_SIZE;
538 1.34 briggs
539 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_SG_64BIT)
540 1.34 briggs calcsgs = (sc->sc_max_fib_size
541 1.34 briggs - sizeof(struct aac_blockwrite64)
542 1.34 briggs + sizeof(struct aac_sg_table64))
543 1.34 briggs / sizeof(struct aac_sg_table64);
544 1.34 briggs else
545 1.34 briggs calcsgs = (sc->sc_max_fib_size
546 1.34 briggs - sizeof(struct aac_blockwrite)
547 1.34 briggs + sizeof(struct aac_sg_table))
548 1.34 briggs / sizeof(struct aac_sg_table);
549 1.34 briggs
550 1.34 briggs if (calcsgs < sc->sc_max_sgs) {
551 1.34 briggs sc->sc_max_sgs = calcsgs;
552 1.34 briggs }
553 1.34 briggs
554 1.34 briggs sc->sc_max_fibs_alloc = PAGE_SIZE / sc->sc_max_fib_size;
555 1.17 briggs
556 1.1 ad return (0);
557 1.1 ad }
558 1.1 ad
559 1.12 thorpej static int
560 1.1 ad aac_init(struct aac_softc *sc)
561 1.1 ad {
562 1.1 ad int nsegs, i, rv, state, norm, high;
563 1.1 ad struct aac_adapter_init *ip;
564 1.21 darcy u_int32_t code, qoff;
565 1.1 ad
566 1.1 ad state = 0;
567 1.1 ad
568 1.1 ad /*
569 1.1 ad * First wait for the adapter to come ready.
570 1.1 ad */
571 1.1 ad for (i = 0; i < AAC_BOOT_TIMEOUT * 1000; i++) {
572 1.1 ad code = AAC_GET_FWSTATUS(sc);
573 1.1 ad if ((code & AAC_SELF_TEST_FAILED) != 0) {
574 1.8 thorpej aprint_error("%s: FATAL: selftest failed\n",
575 1.1 ad sc->sc_dv.dv_xname);
576 1.1 ad return (ENXIO);
577 1.1 ad }
578 1.1 ad if ((code & AAC_KERNEL_PANIC) != 0) {
579 1.8 thorpej aprint_error("%s: FATAL: controller kernel panic\n",
580 1.1 ad sc->sc_dv.dv_xname);
581 1.1 ad return (ENXIO);
582 1.1 ad }
583 1.1 ad if ((code & AAC_UP_AND_RUNNING) != 0)
584 1.1 ad break;
585 1.1 ad DELAY(1000);
586 1.1 ad }
587 1.1 ad if (i == AAC_BOOT_TIMEOUT * 1000) {
588 1.8 thorpej aprint_error(
589 1.8 thorpej "%s: FATAL: controller not coming ready, status %x\n",
590 1.1 ad sc->sc_dv.dv_xname, code);
591 1.1 ad return (ENXIO);
592 1.1 ad }
593 1.1 ad
594 1.34 briggs sc->sc_aif_fib = malloc(sizeof(struct aac_fib), M_AACBUF,
595 1.34 briggs M_NOWAIT | M_ZERO);
596 1.34 briggs if (sc->sc_aif_fib == NULL) {
597 1.34 briggs aprint_error("%s: cannot alloc fib structure\n",
598 1.34 briggs sc->sc_dv.dv_xname);
599 1.34 briggs return (ENOMEM);
600 1.34 briggs }
601 1.1 ad if ((rv = bus_dmamap_create(sc->sc_dmat, sizeof(*sc->sc_common), 1,
602 1.1 ad sizeof(*sc->sc_common), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
603 1.1 ad &sc->sc_common_dmamap)) != 0) {
604 1.8 thorpej aprint_error("%s: cannot create common dmamap\n",
605 1.1 ad sc->sc_dv.dv_xname);
606 1.34 briggs goto bail_out;
607 1.1 ad }
608 1.34 briggs state++;
609 1.1 ad if ((rv = bus_dmamem_alloc(sc->sc_dmat, sizeof(*sc->sc_common),
610 1.1 ad PAGE_SIZE, 0, &sc->sc_common_seg, 1, &nsegs,
611 1.1 ad BUS_DMA_NOWAIT)) != 0) {
612 1.8 thorpej aprint_error("%s: can't allocate common structure\n",
613 1.1 ad sc->sc_dv.dv_xname);
614 1.1 ad goto bail_out;
615 1.1 ad }
616 1.1 ad state++;
617 1.1 ad if ((rv = bus_dmamem_map(sc->sc_dmat, &sc->sc_common_seg, nsegs,
618 1.30 christos sizeof(*sc->sc_common), (void **)&sc->sc_common, 0)) != 0) {
619 1.8 thorpej aprint_error("%s: can't map common structure\n",
620 1.1 ad sc->sc_dv.dv_xname);
621 1.1 ad goto bail_out;
622 1.1 ad }
623 1.1 ad state++;
624 1.1 ad if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_common_dmamap,
625 1.1 ad sc->sc_common, sizeof(*sc->sc_common), NULL,
626 1.1 ad BUS_DMA_NOWAIT)) != 0) {
627 1.8 thorpej aprint_error("%s: cannot load common dmamap\n",
628 1.8 thorpej sc->sc_dv.dv_xname);
629 1.1 ad goto bail_out;
630 1.1 ad }
631 1.1 ad state++;
632 1.1 ad
633 1.1 ad memset(sc->sc_common, 0, sizeof(*sc->sc_common));
634 1.1 ad
635 1.34 briggs TAILQ_INIT(&sc->sc_fibmap_tqh);
636 1.34 briggs sc->sc_ccbs = malloc(sizeof(struct aac_ccb) * sc->sc_max_fibs, M_AACBUF,
637 1.34 briggs M_NOWAIT | M_ZERO);
638 1.34 briggs if (sc->sc_ccbs == NULL) {
639 1.34 briggs aprint_error("%s: memory allocation failure getting ccbs\n",
640 1.34 briggs sc->sc_dv.dv_xname);
641 1.34 briggs rv = ENOMEM;
642 1.34 briggs goto bail_out;
643 1.34 briggs }
644 1.34 briggs state++;
645 1.37 briggs while (sc->sc_total_fibs < AAC_PREALLOCATE_FIBS(sc)) {
646 1.34 briggs if (aac_alloc_commands(sc) != 0)
647 1.34 briggs break;
648 1.34 briggs }
649 1.34 briggs if (sc->sc_total_fibs == 0)
650 1.34 briggs goto bail_out;
651 1.34 briggs
652 1.1 ad /*
653 1.1 ad * Fill in the init structure. This tells the adapter about the
654 1.1 ad * physical location of various important shared data structures.
655 1.1 ad */
656 1.1 ad ip = &sc->sc_common->ac_init;
657 1.1 ad ip->InitStructRevision = htole32(AAC_INIT_STRUCT_REVISION);
658 1.34 briggs if (sc->sc_max_fib_size > sizeof(struct aac_fib)) {
659 1.34 briggs ip->InitStructRevision = htole32(AAC_INIT_STRUCT_REVISION_4);
660 1.34 briggs sc->sc_quirks |= AAC_QUIRK_RAW_IO;
661 1.34 briggs }
662 1.34 briggs ip->MiniPortRevision = htole32(AAC_INIT_STRUCT_MINIPORT_REVISION);
663 1.1 ad
664 1.1 ad ip->AdapterFibsPhysicalAddress = htole32(sc->sc_common_seg.ds_addr +
665 1.1 ad offsetof(struct aac_common, ac_fibs));
666 1.31 briggs ip->AdapterFibsVirtualAddress = 0;
667 1.1 ad ip->AdapterFibsSize =
668 1.1 ad htole32(AAC_ADAPTER_FIBS * sizeof(struct aac_fib));
669 1.1 ad ip->AdapterFibAlign = htole32(sizeof(struct aac_fib));
670 1.1 ad
671 1.1 ad ip->PrintfBufferAddress = htole32(sc->sc_common_seg.ds_addr +
672 1.1 ad offsetof(struct aac_common, ac_printf));
673 1.1 ad ip->PrintfBufferSize = htole32(AAC_PRINTF_BUFSIZE);
674 1.1 ad
675 1.32 briggs /*
676 1.32 briggs * The adapter assumes that pages are 4K in size, except on some
677 1.32 briggs * broken firmware versions that do the page->byte conversion twice,
678 1.32 briggs * therefore 'assuming' that this value is in 16MB units (2^24).
679 1.32 briggs * Round up since the granularity is so high.
680 1.32 briggs */
681 1.32 briggs ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
682 1.32 briggs if (sc->sc_quirks & AAC_QUIRK_BROKEN_MMAP) {
683 1.32 briggs ip->HostPhysMemPages =
684 1.32 briggs (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
685 1.32 briggs }
686 1.1 ad ip->HostElapsedSeconds = 0; /* reset later if invalid */
687 1.1 ad
688 1.34 briggs ip->InitFlags = 0;
689 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
690 1.34 briggs ip->InitFlags = htole32(AAC_INITFLAGS_NEW_COMM_SUPPORTED);
691 1.34 briggs aprint_normal("%s: New comm. interface enabled\n",
692 1.34 briggs sc->sc_dv.dv_xname);
693 1.34 briggs }
694 1.34 briggs
695 1.34 briggs ip->MaxIoCommands = htole32(sc->sc_max_fibs);
696 1.34 briggs ip->MaxIoSize = htole32(sc->sc_max_sectors << 9);
697 1.34 briggs ip->MaxFibSize = htole32(sc->sc_max_fib_size);
698 1.34 briggs
699 1.1 ad /*
700 1.1 ad * Initialise FIB queues. Note that it appears that the layout of
701 1.1 ad * the indexes and the segmentation of the entries is mandated by
702 1.1 ad * the adapter, which is only told about the base of the queue index
703 1.1 ad * fields.
704 1.1 ad *
705 1.1 ad * The initial values of the indices are assumed to inform the
706 1.1 ad * adapter of the sizes of the respective queues.
707 1.1 ad *
708 1.1 ad * The Linux driver uses a much more complex scheme whereby several
709 1.1 ad * header records are kept for each queue. We use a couple of
710 1.1 ad * generic list manipulation functions which 'know' the size of each
711 1.1 ad * list by virtue of a table.
712 1.1 ad */
713 1.21 darcy qoff = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
714 1.21 darcy qoff &= ~(AAC_QUEUE_ALIGN - 1);
715 1.21 darcy sc->sc_queues = (struct aac_queue_table *)((uintptr_t)sc->sc_common + qoff);
716 1.1 ad ip->CommHeaderAddress = htole32(sc->sc_common_seg.ds_addr +
717 1.30 christos ((char *)sc->sc_queues - (char *)sc->sc_common));
718 1.1 ad memset(sc->sc_queues, 0, sizeof(struct aac_queue_table));
719 1.1 ad
720 1.1 ad norm = htole32(AAC_HOST_NORM_CMD_ENTRIES);
721 1.1 ad high = htole32(AAC_HOST_HIGH_CMD_ENTRIES);
722 1.1 ad
723 1.1 ad sc->sc_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
724 1.1 ad norm;
725 1.1 ad sc->sc_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
726 1.1 ad norm;
727 1.1 ad sc->sc_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
728 1.1 ad high;
729 1.1 ad sc->sc_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
730 1.1 ad high;
731 1.1 ad
732 1.1 ad norm = htole32(AAC_ADAP_NORM_CMD_ENTRIES);
733 1.1 ad high = htole32(AAC_ADAP_HIGH_CMD_ENTRIES);
734 1.1 ad
735 1.1 ad sc->sc_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
736 1.1 ad norm;
737 1.1 ad sc->sc_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
738 1.1 ad norm;
739 1.1 ad sc->sc_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
740 1.1 ad high;
741 1.1 ad sc->sc_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
742 1.1 ad high;
743 1.1 ad
744 1.1 ad norm = htole32(AAC_HOST_NORM_RESP_ENTRIES);
745 1.1 ad high = htole32(AAC_HOST_HIGH_RESP_ENTRIES);
746 1.1 ad
747 1.1 ad sc->sc_queues->
748 1.1 ad qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = norm;
749 1.1 ad sc->sc_queues->
750 1.1 ad qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = norm;
751 1.1 ad sc->sc_queues->
752 1.1 ad qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = high;
753 1.1 ad sc->sc_queues->
754 1.1 ad qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = high;
755 1.1 ad
756 1.1 ad norm = htole32(AAC_ADAP_NORM_RESP_ENTRIES);
757 1.1 ad high = htole32(AAC_ADAP_HIGH_RESP_ENTRIES);
758 1.1 ad
759 1.1 ad sc->sc_queues->
760 1.1 ad qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = norm;
761 1.1 ad sc->sc_queues->
762 1.1 ad qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = norm;
763 1.1 ad sc->sc_queues->
764 1.1 ad qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = high;
765 1.1 ad sc->sc_queues->
766 1.1 ad qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = high;
767 1.1 ad
768 1.1 ad sc->sc_qentries[AAC_HOST_NORM_CMD_QUEUE] =
769 1.1 ad &sc->sc_queues->qt_HostNormCmdQueue[0];
770 1.1 ad sc->sc_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
771 1.1 ad &sc->sc_queues->qt_HostHighCmdQueue[0];
772 1.1 ad sc->sc_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
773 1.1 ad &sc->sc_queues->qt_AdapNormCmdQueue[0];
774 1.1 ad sc->sc_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
775 1.1 ad &sc->sc_queues->qt_AdapHighCmdQueue[0];
776 1.1 ad sc->sc_qentries[AAC_HOST_NORM_RESP_QUEUE] =
777 1.1 ad &sc->sc_queues->qt_HostNormRespQueue[0];
778 1.1 ad sc->sc_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
779 1.1 ad &sc->sc_queues->qt_HostHighRespQueue[0];
780 1.1 ad sc->sc_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
781 1.1 ad &sc->sc_queues->qt_AdapNormRespQueue[0];
782 1.1 ad sc->sc_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
783 1.1 ad &sc->sc_queues->qt_AdapHighRespQueue[0];
784 1.1 ad
785 1.1 ad /*
786 1.1 ad * Do controller-type-specific initialisation
787 1.1 ad */
788 1.1 ad switch (sc->sc_hwif) {
789 1.1 ad case AAC_HWIF_I960RX:
790 1.1 ad AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
791 1.1 ad break;
792 1.1 ad }
793 1.1 ad
794 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap, 0,
795 1.1 ad sizeof(*sc->sc_common),
796 1.1 ad BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
797 1.1 ad
798 1.1 ad /*
799 1.1 ad * Give the init structure to the controller.
800 1.1 ad */
801 1.16 perry if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
802 1.1 ad sc->sc_common_seg.ds_addr + offsetof(struct aac_common, ac_init),
803 1.1 ad 0, 0, 0, NULL)) {
804 1.8 thorpej aprint_error("%s: error establishing init structure\n",
805 1.1 ad sc->sc_dv.dv_xname);
806 1.1 ad rv = EIO;
807 1.1 ad goto bail_out;
808 1.1 ad }
809 1.1 ad
810 1.1 ad return (0);
811 1.1 ad
812 1.1 ad bail_out:
813 1.34 briggs if (state > 4)
814 1.34 briggs free(sc->sc_ccbs, M_AACBUF);
815 1.34 briggs if (state > 3)
816 1.1 ad bus_dmamap_unload(sc->sc_dmat, sc->sc_common_dmamap);
817 1.34 briggs if (state > 2)
818 1.30 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_common,
819 1.1 ad sizeof(*sc->sc_common));
820 1.34 briggs if (state > 1)
821 1.34 briggs bus_dmamem_free(sc->sc_dmat, &sc->sc_common_seg, 1);
822 1.1 ad if (state > 0)
823 1.34 briggs bus_dmamap_destroy(sc->sc_dmat, sc->sc_common_dmamap);
824 1.34 briggs
825 1.34 briggs free(sc->sc_aif_fib, M_AACBUF);
826 1.1 ad
827 1.1 ad return (rv);
828 1.1 ad }
829 1.1 ad
830 1.1 ad /*
831 1.1 ad * Probe for containers, create disks.
832 1.1 ad */
833 1.12 thorpej static void
834 1.1 ad aac_startup(struct aac_softc *sc)
835 1.1 ad {
836 1.1 ad struct aac_mntinfo mi;
837 1.1 ad struct aac_mntinforesponse mir;
838 1.1 ad struct aac_drive *hd;
839 1.1 ad u_int16_t rsize;
840 1.1 ad int i;
841 1.1 ad
842 1.1 ad /*
843 1.1 ad * Loop over possible containers.
844 1.1 ad */
845 1.1 ad hd = sc->sc_hdr;
846 1.1 ad
847 1.1 ad for (i = 0; i < AAC_MAX_CONTAINERS; i++, hd++) {
848 1.1 ad /*
849 1.1 ad * Request information on this container.
850 1.1 ad */
851 1.10 ad memset(&mi, 0, sizeof(mi));
852 1.10 ad mi.Command = htole32(VM_NameServe);
853 1.10 ad mi.MntType = htole32(FT_FILESYS);
854 1.1 ad mi.MntCount = htole32(i);
855 1.1 ad if (aac_sync_fib(sc, ContainerCommand, 0, &mi, sizeof(mi), &mir,
856 1.1 ad &rsize)) {
857 1.8 thorpej aprint_error("%s: error probing container %d\n",
858 1.1 ad sc->sc_dv.dv_xname, i);
859 1.1 ad continue;
860 1.1 ad }
861 1.1 ad if (rsize != sizeof(mir)) {
862 1.8 thorpej aprint_error("%s: container info response wrong size "
863 1.26 chs "(%d should be %zu)\n",
864 1.26 chs sc->sc_dv.dv_xname, rsize, sizeof(mir));
865 1.1 ad continue;
866 1.1 ad }
867 1.1 ad
868 1.16 perry /*
869 1.1 ad * Check container volume type for validity. Note that many
870 1.1 ad * of the possible types may never show up.
871 1.1 ad */
872 1.1 ad if (le32toh(mir.Status) != ST_OK ||
873 1.1 ad le32toh(mir.MntTable[0].VolType) == CT_NONE)
874 1.1 ad continue;
875 1.1 ad
876 1.1 ad hd->hd_present = 1;
877 1.1 ad hd->hd_size = le32toh(mir.MntTable[0].Capacity);
878 1.1 ad hd->hd_devtype = le32toh(mir.MntTable[0].VolType);
879 1.1 ad hd->hd_size &= ~0x1f;
880 1.1 ad sc->sc_nunits++;
881 1.1 ad }
882 1.1 ad }
883 1.1 ad
884 1.12 thorpej static void
885 1.29 christos aac_shutdown(void *cookie)
886 1.1 ad {
887 1.1 ad struct aac_softc *sc;
888 1.1 ad struct aac_close_command cc;
889 1.1 ad u_int32_t i;
890 1.1 ad
891 1.1 ad for (i = 0; i < aac_cd.cd_ndevs; i++) {
892 1.1 ad if ((sc = device_lookup(&aac_cd, i)) == NULL)
893 1.1 ad continue;
894 1.1 ad if ((sc->sc_flags & AAC_ONLINE) == 0)
895 1.1 ad continue;
896 1.1 ad
897 1.1 ad AAC_MASK_INTERRUPTS(sc);
898 1.1 ad
899 1.16 perry /*
900 1.1 ad * Send a Container shutdown followed by a HostShutdown FIB
901 1.1 ad * to the controller to convince it that we don't want to
902 1.1 ad * talk to it anymore. We've been closed and all I/O
903 1.1 ad * completed already
904 1.1 ad */
905 1.10 ad memset(&cc, 0, sizeof(cc));
906 1.1 ad cc.Command = htole32(VM_CloseAll);
907 1.1 ad cc.ContainerId = 0xffffffff;
908 1.1 ad if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc),
909 1.1 ad NULL, NULL)) {
910 1.1 ad printf("%s: unable to halt controller\n",
911 1.1 ad sc->sc_dv.dv_xname);
912 1.1 ad continue;
913 1.1 ad }
914 1.1 ad
915 1.1 ad /*
916 1.1 ad * Note that issuing this command to the controller makes it
917 1.1 ad * shut down but also keeps it from coming back up without a
918 1.1 ad * reset of the PCI bus.
919 1.1 ad */
920 1.1 ad if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
921 1.1 ad &i, sizeof(i), NULL, NULL))
922 1.1 ad printf("%s: unable to halt controller\n",
923 1.1 ad sc->sc_dv.dv_xname);
924 1.17 briggs
925 1.17 briggs sc->sc_flags &= ~AAC_ONLINE;
926 1.1 ad }
927 1.1 ad }
928 1.1 ad
929 1.34 briggs static int
930 1.34 briggs aac_new_intr(void *cookie)
931 1.34 briggs {
932 1.34 briggs struct aac_softc *sc;
933 1.34 briggs u_int32_t index, fast;
934 1.34 briggs struct aac_ccb *ac;
935 1.34 briggs struct aac_fib *fib;
936 1.34 briggs struct aac_fibmap *fm;
937 1.34 briggs int i;
938 1.34 briggs
939 1.34 briggs sc = (struct aac_softc *) cookie;
940 1.34 briggs
941 1.34 briggs for (;;) {
942 1.34 briggs index = AAC_GET_OUTB_QUEUE(sc);
943 1.34 briggs if (index == 0xffffffff)
944 1.34 briggs index = AAC_GET_OUTB_QUEUE(sc);
945 1.34 briggs if (index == 0xffffffff)
946 1.34 briggs break;
947 1.34 briggs if (index & 2) {
948 1.34 briggs if (index == 0xfffffffe) {
949 1.34 briggs /* XXX This means that the controller wants
950 1.34 briggs * more work. Ignore it for now.
951 1.34 briggs */
952 1.34 briggs continue;
953 1.34 briggs }
954 1.34 briggs /* AIF */
955 1.34 briggs index &= ~2;
956 1.34 briggs fib = sc->sc_aif_fib;
957 1.34 briggs for (i = 0; i < sizeof(struct aac_fib)/4; i++) {
958 1.34 briggs ((u_int32_t*)fib)[i] =
959 1.34 briggs AAC_GETREG4(sc, index + i*4);
960 1.34 briggs }
961 1.34 briggs #ifdef notyet
962 1.34 briggs aac_handle_aif(sc, &fib);
963 1.34 briggs #endif
964 1.34 briggs
965 1.34 briggs AAC_SET_OUTB_QUEUE(sc, index);
966 1.34 briggs AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
967 1.34 briggs } else {
968 1.34 briggs fast = index & 1;
969 1.34 briggs ac = sc->sc_ccbs + (index >> 2);
970 1.34 briggs fib = ac->ac_fib;
971 1.34 briggs fm = ac->ac_fibmap;
972 1.34 briggs if (fast) {
973 1.34 briggs bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
974 1.34 briggs (char *)fib - (char *)fm->fm_fibs,
975 1.34 briggs sc->sc_max_fib_size,
976 1.34 briggs BUS_DMASYNC_POSTWRITE |
977 1.34 briggs BUS_DMASYNC_POSTREAD);
978 1.34 briggs fib->Header.XferState |=
979 1.34 briggs htole32(AAC_FIBSTATE_DONEADAP);
980 1.34 briggs *((u_int32_t *)(fib->data)) =
981 1.34 briggs htole32(AAC_ERROR_NORMAL);
982 1.34 briggs }
983 1.34 briggs ac->ac_flags |= AAC_CCB_COMPLETED;
984 1.34 briggs
985 1.34 briggs if (ac->ac_intr != NULL)
986 1.34 briggs (*ac->ac_intr)(ac);
987 1.34 briggs else
988 1.34 briggs wakeup(ac);
989 1.34 briggs }
990 1.34 briggs }
991 1.34 briggs
992 1.34 briggs /*
993 1.34 briggs * Try to submit more commands.
994 1.34 briggs */
995 1.34 briggs if (! SIMPLEQ_EMPTY(&sc->sc_ccb_queue))
996 1.34 briggs aac_ccb_enqueue(sc, NULL);
997 1.34 briggs
998 1.34 briggs return 1;
999 1.34 briggs }
1000 1.34 briggs
1001 1.1 ad /*
1002 1.1 ad * Take an interrupt.
1003 1.1 ad */
1004 1.1 ad int
1005 1.1 ad aac_intr(void *cookie)
1006 1.1 ad {
1007 1.1 ad struct aac_softc *sc;
1008 1.1 ad u_int16_t reason;
1009 1.1 ad int claimed;
1010 1.1 ad
1011 1.1 ad sc = cookie;
1012 1.1 ad claimed = 0;
1013 1.1 ad
1014 1.1 ad AAC_DPRINTF(AAC_D_INTR, ("aac_intr(%p) ", sc));
1015 1.1 ad
1016 1.1 ad reason = AAC_GET_ISTATUS(sc);
1017 1.33 briggs AAC_CLEAR_ISTATUS(sc, reason);
1018 1.33 briggs
1019 1.1 ad AAC_DPRINTF(AAC_D_INTR, ("istatus 0x%04x ", reason));
1020 1.1 ad
1021 1.1 ad /*
1022 1.1 ad * Controller wants to talk to the log. XXX Should we defer this?
1023 1.1 ad */
1024 1.1 ad if ((reason & AAC_DB_PRINTF) != 0) {
1025 1.31 briggs if (sc->sc_common->ac_printf[0] == '\0')
1026 1.31 briggs sc->sc_common->ac_printf[0] = ' ';
1027 1.31 briggs printf("%s: WARNING: adapter logged message:\n",
1028 1.31 briggs sc->sc_dv.dv_xname);
1029 1.31 briggs printf("%s: %.*s", sc->sc_dv.dv_xname,
1030 1.31 briggs AAC_PRINTF_BUFSIZE, sc->sc_common->ac_printf);
1031 1.31 briggs sc->sc_common->ac_printf[0] = '\0';
1032 1.1 ad AAC_QNOTIFY(sc, AAC_DB_PRINTF);
1033 1.1 ad claimed = 1;
1034 1.1 ad }
1035 1.1 ad
1036 1.1 ad /*
1037 1.1 ad * Controller has a message for us?
1038 1.1 ad */
1039 1.1 ad if ((reason & AAC_DB_COMMAND_READY) != 0) {
1040 1.1 ad aac_host_command(sc);
1041 1.1 ad claimed = 1;
1042 1.1 ad }
1043 1.1 ad
1044 1.1 ad /*
1045 1.1 ad * Controller has a response for us?
1046 1.1 ad */
1047 1.1 ad if ((reason & AAC_DB_RESPONSE_READY) != 0) {
1048 1.1 ad aac_host_response(sc);
1049 1.1 ad claimed = 1;
1050 1.1 ad }
1051 1.1 ad
1052 1.1 ad /*
1053 1.1 ad * Spurious interrupts that we don't use - reset the mask and clear
1054 1.1 ad * the interrupts.
1055 1.1 ad */
1056 1.1 ad if ((reason & (AAC_DB_SYNC_COMMAND | AAC_DB_COMMAND_NOT_FULL |
1057 1.1 ad AAC_DB_RESPONSE_NOT_FULL)) != 0) {
1058 1.1 ad AAC_UNMASK_INTERRUPTS(sc);
1059 1.1 ad AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND |
1060 1.1 ad AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL);
1061 1.1 ad claimed = 1;
1062 1.1 ad }
1063 1.1 ad
1064 1.1 ad return (claimed);
1065 1.1 ad }
1066 1.1 ad
1067 1.1 ad /*
1068 1.1 ad * Handle notification of one or more FIBs coming from the controller.
1069 1.1 ad */
1070 1.12 thorpej static void
1071 1.1 ad aac_host_command(struct aac_softc *sc)
1072 1.1 ad {
1073 1.1 ad struct aac_fib *fib;
1074 1.1 ad u_int32_t fib_size;
1075 1.1 ad
1076 1.1 ad for (;;) {
1077 1.1 ad if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, &fib_size,
1078 1.1 ad &fib))
1079 1.1 ad break; /* nothing to do */
1080 1.1 ad
1081 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1082 1.30 christos (char *)fib - (char *)sc->sc_common, sizeof(*fib),
1083 1.1 ad BUS_DMASYNC_POSTREAD);
1084 1.1 ad
1085 1.1 ad switch (le16toh(fib->Header.Command)) {
1086 1.1 ad case AifRequest:
1087 1.1 ad #ifdef notyet
1088 1.1 ad aac_handle_aif(sc,
1089 1.1 ad (struct aac_aif_command *)&fib->data[0]);
1090 1.1 ad #endif
1091 1.31 briggs AAC_PRINT_FIB(sc, fib);
1092 1.1 ad break;
1093 1.1 ad default:
1094 1.1 ad printf("%s: unknown command from controller\n",
1095 1.1 ad sc->sc_dv.dv_xname);
1096 1.1 ad AAC_PRINT_FIB(sc, fib);
1097 1.1 ad break;
1098 1.1 ad }
1099 1.1 ad
1100 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1101 1.30 christos (char *)fib - (char *)sc->sc_common, sizeof(*fib),
1102 1.1 ad BUS_DMASYNC_PREREAD);
1103 1.1 ad
1104 1.31 briggs if ((fib->Header.XferState == 0) ||
1105 1.31 briggs (fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
1106 1.31 briggs break; // continue; ???
1107 1.31 briggs }
1108 1.31 briggs
1109 1.1 ad /* XXX reply to FIBs requesting responses ?? */
1110 1.31 briggs
1111 1.31 briggs /* Return the AIF/FIB to the controller */
1112 1.31 briggs if (le32toh(fib->Header.XferState) & AAC_FIBSTATE_FROMADAP) {
1113 1.31 briggs u_int16_t size;
1114 1.31 briggs
1115 1.31 briggs fib->Header.XferState |=
1116 1.31 briggs htole32(AAC_FIBSTATE_DONEHOST);
1117 1.31 briggs *(u_int32_t*)fib->data = htole32(ST_OK);
1118 1.31 briggs
1119 1.31 briggs /* XXX Compute the Size field? */
1120 1.31 briggs size = le16toh(fib->Header.Size);
1121 1.31 briggs if (size > sizeof(struct aac_fib)) {
1122 1.31 briggs size = sizeof(struct aac_fib);
1123 1.31 briggs fib->Header.Size = htole16(size);
1124 1.31 briggs }
1125 1.31 briggs
1126 1.31 briggs /*
1127 1.31 briggs * Since we didn't generate this command, it can't
1128 1.31 briggs * go through the normal process.
1129 1.31 briggs */
1130 1.31 briggs aac_enqueue_response(sc,
1131 1.31 briggs AAC_ADAP_NORM_RESP_QUEUE, fib);
1132 1.31 briggs }
1133 1.1 ad }
1134 1.1 ad }
1135 1.1 ad
1136 1.1 ad /*
1137 1.1 ad * Handle notification of one or more FIBs completed by the controller
1138 1.1 ad */
1139 1.12 thorpej static void
1140 1.1 ad aac_host_response(struct aac_softc *sc)
1141 1.1 ad {
1142 1.1 ad struct aac_ccb *ac;
1143 1.1 ad struct aac_fib *fib;
1144 1.1 ad u_int32_t fib_size;
1145 1.1 ad
1146 1.1 ad /*
1147 1.1 ad * Look for completed FIBs on our queue.
1148 1.1 ad */
1149 1.1 ad for (;;) {
1150 1.1 ad if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
1151 1.1 ad &fib))
1152 1.1 ad break; /* nothing to do */
1153 1.1 ad
1154 1.1 ad if ((fib->Header.SenderData & 0x80000000) == 0) {
1155 1.1 ad /* Not valid; not sent by us. */
1156 1.1 ad AAC_PRINT_FIB(sc, fib);
1157 1.1 ad } else {
1158 1.34 briggs ac = (struct aac_ccb *)(sc->sc_ccbs +
1159 1.1 ad (fib->Header.SenderData & 0x7fffffff));
1160 1.1 ad fib->Header.SenderData = 0;
1161 1.1 ad SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_complete, ac, ac_chain);
1162 1.1 ad }
1163 1.1 ad }
1164 1.1 ad
1165 1.1 ad /*
1166 1.1 ad * Deal with any completed commands.
1167 1.1 ad */
1168 1.1 ad while ((ac = SIMPLEQ_FIRST(&sc->sc_ccb_complete)) != NULL) {
1169 1.3 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_complete, ac_chain);
1170 1.1 ad ac->ac_flags |= AAC_CCB_COMPLETED;
1171 1.1 ad
1172 1.1 ad if (ac->ac_intr != NULL)
1173 1.1 ad (*ac->ac_intr)(ac);
1174 1.34 briggs else
1175 1.34 briggs wakeup(ac);
1176 1.1 ad }
1177 1.1 ad
1178 1.1 ad /*
1179 1.1 ad * Try to submit more commands.
1180 1.1 ad */
1181 1.3 lukem if (! SIMPLEQ_EMPTY(&sc->sc_ccb_queue))
1182 1.1 ad aac_ccb_enqueue(sc, NULL);
1183 1.1 ad }
1184 1.1 ad
1185 1.1 ad /*
1186 1.1 ad * Send a synchronous command to the controller and wait for a result.
1187 1.1 ad */
1188 1.12 thorpej static int
1189 1.1 ad aac_sync_command(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
1190 1.1 ad u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, u_int32_t *sp)
1191 1.1 ad {
1192 1.1 ad int i;
1193 1.1 ad u_int32_t status;
1194 1.1 ad int s;
1195 1.1 ad
1196 1.1 ad s = splbio();
1197 1.1 ad
1198 1.1 ad /* Populate the mailbox. */
1199 1.1 ad AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1200 1.1 ad
1201 1.1 ad /* Ensure the sync command doorbell flag is cleared. */
1202 1.1 ad AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1203 1.1 ad
1204 1.1 ad /* ... then set it to signal the adapter. */
1205 1.1 ad AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1206 1.1 ad DELAY(AAC_SYNC_DELAY);
1207 1.1 ad
1208 1.1 ad /* Spin waiting for the command to complete. */
1209 1.1 ad for (i = 0; i < AAC_IMMEDIATE_TIMEOUT * 1000; i++) {
1210 1.11 christos if (AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)
1211 1.1 ad break;
1212 1.1 ad DELAY(1000);
1213 1.1 ad }
1214 1.1 ad if (i == AAC_IMMEDIATE_TIMEOUT * 1000) {
1215 1.1 ad splx(s);
1216 1.1 ad return (EIO);
1217 1.1 ad }
1218 1.1 ad
1219 1.1 ad /* Clear the completion flag. */
1220 1.1 ad AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1221 1.1 ad
1222 1.1 ad /* Get the command status. */
1223 1.1 ad status = AAC_GET_MAILBOXSTATUS(sc);
1224 1.1 ad splx(s);
1225 1.1 ad if (sp != NULL)
1226 1.1 ad *sp = status;
1227 1.1 ad
1228 1.1 ad return (0); /* XXX Check command return status? */
1229 1.1 ad }
1230 1.1 ad
1231 1.1 ad /*
1232 1.1 ad * Send a synchronous FIB to the controller and wait for a result.
1233 1.1 ad */
1234 1.12 thorpej static int
1235 1.1 ad aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1236 1.1 ad void *data, u_int16_t datasize, void *result,
1237 1.1 ad u_int16_t *resultsize)
1238 1.1 ad {
1239 1.1 ad struct aac_fib *fib;
1240 1.1 ad u_int32_t fibpa, status;
1241 1.1 ad
1242 1.1 ad fib = &sc->sc_common->ac_sync_fib;
1243 1.1 ad fibpa = sc->sc_common_seg.ds_addr +
1244 1.1 ad offsetof(struct aac_common, ac_sync_fib);
1245 1.1 ad
1246 1.1 ad if (datasize > AAC_FIB_DATASIZE)
1247 1.1 ad return (EINVAL);
1248 1.1 ad
1249 1.1 ad /*
1250 1.1 ad * Set up the sync FIB.
1251 1.1 ad */
1252 1.1 ad fib->Header.XferState = htole32(AAC_FIBSTATE_HOSTOWNED |
1253 1.1 ad AAC_FIBSTATE_INITIALISED | AAC_FIBSTATE_EMPTY | xferstate);
1254 1.1 ad fib->Header.Command = htole16(command);
1255 1.1 ad fib->Header.StructType = AAC_FIBTYPE_TFIB;
1256 1.1 ad fib->Header.Size = htole16(sizeof(*fib) + datasize);
1257 1.1 ad fib->Header.SenderSize = htole16(sizeof(*fib));
1258 1.31 briggs fib->Header.SenderFibAddress = 0; /* not needed */
1259 1.1 ad fib->Header.ReceiverFibAddress = htole32(fibpa);
1260 1.1 ad
1261 1.1 ad /*
1262 1.1 ad * Copy in data.
1263 1.1 ad */
1264 1.1 ad if (data != NULL) {
1265 1.1 ad memcpy(fib->data, data, datasize);
1266 1.1 ad fib->Header.XferState |=
1267 1.1 ad htole32(AAC_FIBSTATE_FROMHOST | AAC_FIBSTATE_NORM);
1268 1.1 ad }
1269 1.1 ad
1270 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1271 1.30 christos (char *)fib - (char *)sc->sc_common, sizeof(*fib),
1272 1.1 ad BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1273 1.1 ad
1274 1.1 ad /*
1275 1.1 ad * Give the FIB to the controller, wait for a response.
1276 1.1 ad */
1277 1.1 ad if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, fibpa, 0, 0, 0, &status))
1278 1.1 ad return (EIO);
1279 1.17 briggs if (status != 1) {
1280 1.17 briggs printf("%s: syncfib command %04x status %08x\n",
1281 1.17 briggs sc->sc_dv.dv_xname, command, status);
1282 1.17 briggs }
1283 1.1 ad
1284 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1285 1.30 christos (char *)fib - (char *)sc->sc_common, sizeof(*fib),
1286 1.1 ad BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1287 1.1 ad
1288 1.16 perry /*
1289 1.1 ad * Copy out the result
1290 1.1 ad */
1291 1.1 ad if (result != NULL) {
1292 1.1 ad *resultsize = le16toh(fib->Header.Size) - sizeof(fib->Header);
1293 1.1 ad memcpy(result, fib->data, *resultsize);
1294 1.1 ad }
1295 1.1 ad
1296 1.1 ad return (0);
1297 1.1 ad }
1298 1.1 ad
1299 1.1 ad struct aac_ccb *
1300 1.1 ad aac_ccb_alloc(struct aac_softc *sc, int flags)
1301 1.1 ad {
1302 1.1 ad struct aac_ccb *ac;
1303 1.1 ad int s;
1304 1.1 ad
1305 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_alloc(%p, 0x%x) ", sc, flags));
1306 1.1 ad
1307 1.1 ad s = splbio();
1308 1.1 ad ac = SIMPLEQ_FIRST(&sc->sc_ccb_free);
1309 1.34 briggs if (ac == NULL) {
1310 1.34 briggs if (aac_alloc_commands(sc)) {
1311 1.34 briggs splx(s);
1312 1.34 briggs return NULL;
1313 1.34 briggs }
1314 1.34 briggs ac = SIMPLEQ_FIRST(&sc->sc_ccb_free);
1315 1.34 briggs }
1316 1.1 ad #ifdef DIAGNOSTIC
1317 1.1 ad if (ac == NULL)
1318 1.1 ad panic("aac_ccb_get: no free CCBS");
1319 1.1 ad #endif
1320 1.3 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ac_chain);
1321 1.1 ad splx(s);
1322 1.1 ad
1323 1.1 ad ac->ac_flags = flags;
1324 1.1 ad return (ac);
1325 1.1 ad }
1326 1.1 ad
1327 1.1 ad void
1328 1.1 ad aac_ccb_free(struct aac_softc *sc, struct aac_ccb *ac)
1329 1.1 ad {
1330 1.1 ad int s;
1331 1.1 ad
1332 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_free(%p, %p) ", sc, ac));
1333 1.1 ad
1334 1.1 ad ac->ac_flags = 0;
1335 1.1 ad ac->ac_intr = NULL;
1336 1.1 ad ac->ac_fib->Header.XferState = htole32(AAC_FIBSTATE_EMPTY);
1337 1.1 ad ac->ac_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1338 1.1 ad ac->ac_fib->Header.Flags = 0;
1339 1.34 briggs ac->ac_fib->Header.SenderSize = htole16(sc->sc_max_fib_size);
1340 1.1 ad
1341 1.1 ad #ifdef AAC_DEBUG
1342 1.16 perry /*
1343 1.1 ad * These are duplicated in aac_ccb_submit() to cover the case where
1344 1.1 ad * an intermediate stage may have destroyed them. They're left
1345 1.1 ad * initialised here for debugging purposes only.
1346 1.1 ad */
1347 1.34 briggs ac->ac_fib->Header.SenderFibAddress =
1348 1.34 briggs htole32(((u_int32_t) (ac - sc->sc_ccbs)) << 2);
1349 1.1 ad ac->ac_fib->Header.ReceiverFibAddress = htole32(ac->ac_fibphys);
1350 1.1 ad #endif
1351 1.1 ad
1352 1.1 ad s = splbio();
1353 1.1 ad SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ac, ac_chain);
1354 1.1 ad splx(s);
1355 1.1 ad }
1356 1.1 ad
1357 1.1 ad int
1358 1.1 ad aac_ccb_map(struct aac_softc *sc, struct aac_ccb *ac)
1359 1.1 ad {
1360 1.1 ad int error;
1361 1.1 ad
1362 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_map(%p, %p) ", sc, ac));
1363 1.1 ad
1364 1.1 ad #ifdef DIAGNOSTIC
1365 1.1 ad if ((ac->ac_flags & AAC_CCB_MAPPED) != 0)
1366 1.1 ad panic("aac_ccb_map: already mapped");
1367 1.1 ad #endif
1368 1.1 ad
1369 1.1 ad error = bus_dmamap_load(sc->sc_dmat, ac->ac_dmamap_xfer, ac->ac_data,
1370 1.1 ad ac->ac_datalen, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1371 1.1 ad ((ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMA_READ : BUS_DMA_WRITE));
1372 1.1 ad if (error) {
1373 1.1 ad printf("%s: aac_ccb_map: ", sc->sc_dv.dv_xname);
1374 1.1 ad if (error == EFBIG)
1375 1.34 briggs printf("more than %d DMA segs\n", sc->sc_max_sgs);
1376 1.1 ad else
1377 1.9 wiz printf("error %d loading DMA map\n", error);
1378 1.1 ad return (error);
1379 1.1 ad }
1380 1.1 ad
1381 1.1 ad bus_dmamap_sync(sc->sc_dmat, ac->ac_dmamap_xfer, 0, ac->ac_datalen,
1382 1.1 ad (ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMASYNC_PREREAD :
1383 1.1 ad BUS_DMASYNC_PREWRITE);
1384 1.1 ad
1385 1.1 ad #ifdef DIAGNOSTIC
1386 1.1 ad ac->ac_flags |= AAC_CCB_MAPPED;
1387 1.1 ad #endif
1388 1.1 ad return (0);
1389 1.1 ad }
1390 1.1 ad
1391 1.1 ad void
1392 1.1 ad aac_ccb_unmap(struct aac_softc *sc, struct aac_ccb *ac)
1393 1.1 ad {
1394 1.1 ad
1395 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_unmap(%p, %p) ", sc, ac));
1396 1.1 ad
1397 1.1 ad #ifdef DIAGNOSTIC
1398 1.1 ad if ((ac->ac_flags & AAC_CCB_MAPPED) == 0)
1399 1.1 ad panic("aac_ccb_unmap: not mapped");
1400 1.1 ad #endif
1401 1.1 ad
1402 1.1 ad bus_dmamap_sync(sc->sc_dmat, ac->ac_dmamap_xfer, 0, ac->ac_datalen,
1403 1.1 ad (ac->ac_flags & AAC_CCB_DATA_IN) ? BUS_DMASYNC_POSTREAD :
1404 1.1 ad BUS_DMASYNC_POSTWRITE);
1405 1.1 ad bus_dmamap_unload(sc->sc_dmat, ac->ac_dmamap_xfer);
1406 1.1 ad
1407 1.1 ad #ifdef DIAGNOSTIC
1408 1.1 ad ac->ac_flags &= ~AAC_CCB_MAPPED;
1409 1.1 ad #endif
1410 1.1 ad }
1411 1.1 ad
1412 1.1 ad void
1413 1.1 ad aac_ccb_enqueue(struct aac_softc *sc, struct aac_ccb *ac)
1414 1.1 ad {
1415 1.1 ad int s;
1416 1.1 ad
1417 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_enqueue(%p, %p) ", sc, ac));
1418 1.1 ad
1419 1.1 ad s = splbio();
1420 1.1 ad
1421 1.1 ad if (ac != NULL)
1422 1.1 ad SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ac, ac_chain);
1423 1.1 ad
1424 1.1 ad while ((ac = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1425 1.1 ad if (aac_ccb_submit(sc, ac))
1426 1.1 ad break;
1427 1.3 lukem SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ac_chain);
1428 1.1 ad }
1429 1.1 ad
1430 1.1 ad splx(s);
1431 1.1 ad }
1432 1.1 ad
1433 1.1 ad int
1434 1.1 ad aac_ccb_submit(struct aac_softc *sc, struct aac_ccb *ac)
1435 1.1 ad {
1436 1.34 briggs struct aac_fibmap *fm;
1437 1.34 briggs u_int32_t acidx;
1438 1.1 ad
1439 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_submit(%p, %p) ", sc, ac));
1440 1.1 ad
1441 1.34 briggs acidx = (u_int32_t) (ac - sc->sc_ccbs);
1442 1.1 ad /* Fix up the address values. */
1443 1.31 briggs ac->ac_fib->Header.SenderFibAddress = htole32(acidx << 2);
1444 1.1 ad ac->ac_fib->Header.ReceiverFibAddress = htole32(ac->ac_fibphys);
1445 1.1 ad
1446 1.1 ad /* Save a pointer to the command for speedy reverse-lookup. */
1447 1.31 briggs ac->ac_fib->Header.SenderData = acidx | 0x80000000;
1448 1.1 ad
1449 1.34 briggs fm = ac->ac_fibmap;
1450 1.34 briggs bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
1451 1.34 briggs (char *)ac->ac_fib - (char *)fm->fm_fibs, sc->sc_max_fib_size,
1452 1.1 ad BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1453 1.1 ad
1454 1.1 ad /* Put the FIB on the outbound queue. */
1455 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_NEW_COMM) {
1456 1.34 briggs int count = 10000000L;
1457 1.34 briggs while (AAC_SEND_COMMAND(sc, ac) != 0) {
1458 1.34 briggs if (--count == 0) {
1459 1.34 briggs panic("aac: fixme!");
1460 1.34 briggs return EAGAIN;
1461 1.34 briggs }
1462 1.34 briggs DELAY(5);
1463 1.34 briggs }
1464 1.34 briggs return 0;
1465 1.34 briggs } else {
1466 1.34 briggs return (aac_enqueue_fib(sc, AAC_ADAP_NORM_CMD_QUEUE, ac));
1467 1.34 briggs }
1468 1.1 ad }
1469 1.1 ad
1470 1.1 ad int
1471 1.1 ad aac_ccb_poll(struct aac_softc *sc, struct aac_ccb *ac, int timo)
1472 1.1 ad {
1473 1.1 ad int rv, s;
1474 1.1 ad
1475 1.1 ad AAC_DPRINTF(AAC_D_QUEUE, ("aac_ccb_poll(%p, %p, %d) ", sc, ac, timo));
1476 1.1 ad
1477 1.1 ad s = splbio();
1478 1.1 ad
1479 1.1 ad if ((rv = aac_ccb_submit(sc, ac)) != 0) {
1480 1.1 ad splx(s);
1481 1.1 ad return (rv);
1482 1.1 ad }
1483 1.1 ad
1484 1.1 ad for (timo *= 1000; timo != 0; timo--) {
1485 1.34 briggs if (sc->sc_quirks & AAC_QUIRK_NEW_COMM)
1486 1.34 briggs aac_new_intr(sc);
1487 1.34 briggs else
1488 1.34 briggs aac_intr(sc);
1489 1.1 ad if ((ac->ac_flags & AAC_CCB_COMPLETED) != 0)
1490 1.1 ad break;
1491 1.1 ad DELAY(100);
1492 1.1 ad }
1493 1.1 ad
1494 1.1 ad splx(s);
1495 1.1 ad return (timo == 0);
1496 1.1 ad }
1497 1.1 ad
1498 1.1 ad /*
1499 1.1 ad * Atomically insert an entry into the nominated queue, returns 0 on success
1500 1.1 ad * or EBUSY if the queue is full.
1501 1.1 ad *
1502 1.1 ad * XXX Note that it would be more efficient to defer notifying the
1503 1.1 ad * controller in the case where we may be inserting several entries in rapid
1504 1.1 ad * succession, but implementing this usefully is difficult.
1505 1.1 ad */
1506 1.12 thorpej static int
1507 1.34 briggs aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_ccb *ac)
1508 1.1 ad {
1509 1.1 ad u_int32_t fib_size, fib_addr, pi, ci;
1510 1.1 ad
1511 1.34 briggs fib_size = le16toh(ac->ac_fib->Header.Size);
1512 1.34 briggs fib_addr = le32toh(ac->ac_fib->Header.ReceiverFibAddress);
1513 1.1 ad
1514 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1515 1.30 christos (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1516 1.1 ad sizeof(sc->sc_common->ac_qbuf),
1517 1.1 ad BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1518 1.1 ad
1519 1.1 ad /* Get the producer/consumer indices. */
1520 1.1 ad pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
1521 1.1 ad ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
1522 1.1 ad
1523 1.1 ad /* Wrap the queue? */
1524 1.1 ad if (pi >= aac_qinfo[queue].size)
1525 1.1 ad pi = 0;
1526 1.1 ad
1527 1.1 ad /* Check for queue full. */
1528 1.1 ad if ((pi + 1) == ci)
1529 1.1 ad return (EAGAIN);
1530 1.1 ad
1531 1.1 ad /* Populate queue entry. */
1532 1.1 ad (sc->sc_qentries[queue] + pi)->aq_fib_size = htole32(fib_size);
1533 1.1 ad (sc->sc_qentries[queue] + pi)->aq_fib_addr = htole32(fib_addr);
1534 1.1 ad
1535 1.1 ad /* Update producer index. */
1536 1.1 ad sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = htole32(pi + 1);
1537 1.1 ad
1538 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1539 1.30 christos (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1540 1.1 ad sizeof(sc->sc_common->ac_qbuf),
1541 1.1 ad BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1542 1.1 ad
1543 1.1 ad /* Notify the adapter if we know how. */
1544 1.1 ad if (aac_qinfo[queue].notify != 0)
1545 1.1 ad AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1546 1.1 ad
1547 1.1 ad return (0);
1548 1.1 ad }
1549 1.1 ad
1550 1.1 ad /*
1551 1.1 ad * Atomically remove one entry from the nominated queue, returns 0 on success
1552 1.1 ad * or ENOENT if the queue is empty.
1553 1.1 ad */
1554 1.12 thorpej static int
1555 1.1 ad aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1556 1.1 ad struct aac_fib **fib_addr)
1557 1.1 ad {
1558 1.34 briggs struct aac_fibmap *fm;
1559 1.31 briggs struct aac_ccb *ac;
1560 1.31 briggs u_int32_t pi, ci, idx;
1561 1.1 ad int notify;
1562 1.1 ad
1563 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1564 1.30 christos (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1565 1.1 ad sizeof(sc->sc_common->ac_qbuf),
1566 1.1 ad BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1567 1.1 ad
1568 1.1 ad /* Get the producer/consumer indices. */
1569 1.1 ad pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
1570 1.1 ad ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
1571 1.1 ad
1572 1.1 ad /* Check for queue empty. */
1573 1.1 ad if (ci == pi)
1574 1.1 ad return (ENOENT);
1575 1.1 ad
1576 1.1 ad notify = 0;
1577 1.1 ad if (ci == pi + 1)
1578 1.1 ad notify = 1;
1579 1.1 ad
1580 1.1 ad /* Wrap the queue? */
1581 1.1 ad if (ci >= aac_qinfo[queue].size)
1582 1.1 ad ci = 0;
1583 1.1 ad
1584 1.1 ad /* Fetch the entry. */
1585 1.1 ad *fib_size = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_size);
1586 1.31 briggs
1587 1.31 briggs switch (queue) {
1588 1.31 briggs case AAC_HOST_NORM_CMD_QUEUE:
1589 1.31 briggs case AAC_HOST_HIGH_CMD_QUEUE:
1590 1.31 briggs idx = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_addr);
1591 1.31 briggs idx /= sizeof(struct aac_fib);
1592 1.31 briggs *fib_addr = &sc->sc_common->ac_fibs[idx];
1593 1.31 briggs break;
1594 1.31 briggs case AAC_HOST_NORM_RESP_QUEUE:
1595 1.31 briggs case AAC_HOST_HIGH_RESP_QUEUE:
1596 1.31 briggs idx = le32toh((sc->sc_qentries[queue] + ci)->aq_fib_addr);
1597 1.34 briggs ac = sc->sc_ccbs + (idx >> 2);
1598 1.31 briggs *fib_addr = ac->ac_fib;
1599 1.33 briggs if (idx & 0x01) {
1600 1.34 briggs fm = ac->ac_fibmap;
1601 1.34 briggs bus_dmamap_sync(sc->sc_dmat, fm->fm_fibmap,
1602 1.34 briggs (char *)ac->ac_fib - (char *)fm->fm_fibs,
1603 1.34 briggs sc->sc_max_fib_size,
1604 1.34 briggs BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1605 1.33 briggs ac->ac_fib->Header.XferState |=
1606 1.33 briggs htole32(AAC_FIBSTATE_DONEADAP);
1607 1.33 briggs *((u_int32_t*)(ac->ac_fib->data)) =
1608 1.33 briggs htole32(AAC_ERROR_NORMAL);
1609 1.33 briggs }
1610 1.31 briggs break;
1611 1.31 briggs default:
1612 1.31 briggs panic("Invalid queue in aac_dequeue_fib()");
1613 1.31 briggs break;
1614 1.31 briggs }
1615 1.1 ad
1616 1.1 ad /* Update consumer index. */
1617 1.1 ad sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1618 1.1 ad
1619 1.1 ad bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1620 1.30 christos (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1621 1.1 ad sizeof(sc->sc_common->ac_qbuf),
1622 1.1 ad BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1623 1.1 ad
1624 1.1 ad /* If we have made the queue un-full, notify the adapter. */
1625 1.1 ad if (notify && (aac_qinfo[queue].notify != 0))
1626 1.1 ad AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1627 1.1 ad
1628 1.1 ad return (0);
1629 1.1 ad }
1630 1.1 ad
1631 1.31 briggs /*
1632 1.31 briggs * Put our response to an adapter-initiated fib (AIF) on the response queue.
1633 1.31 briggs */
1634 1.31 briggs static int
1635 1.31 briggs aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1636 1.31 briggs {
1637 1.31 briggs u_int32_t fib_size, fib_addr, pi, ci;
1638 1.31 briggs
1639 1.31 briggs fib_size = le16toh(fib->Header.Size);
1640 1.31 briggs fib_addr = fib->Header.SenderFibAddress;
1641 1.31 briggs fib->Header.ReceiverFibAddress = fib_addr;
1642 1.31 briggs
1643 1.31 briggs bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1644 1.31 briggs (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1645 1.31 briggs sizeof(sc->sc_common->ac_qbuf),
1646 1.31 briggs BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
1647 1.31 briggs
1648 1.31 briggs /* Get the producer/consumer indices. */
1649 1.31 briggs pi = le32toh(sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]);
1650 1.31 briggs ci = le32toh(sc->sc_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]);
1651 1.31 briggs
1652 1.31 briggs /* Wrap the queue? */
1653 1.31 briggs if (pi >= aac_qinfo[queue].size)
1654 1.31 briggs pi = 0;
1655 1.31 briggs
1656 1.31 briggs /* Check for queue full. */
1657 1.31 briggs if ((pi + 1) == ci)
1658 1.31 briggs return (EAGAIN);
1659 1.31 briggs
1660 1.31 briggs /* Populate queue entry. */
1661 1.31 briggs (sc->sc_qentries[queue] + pi)->aq_fib_size = htole32(fib_size);
1662 1.31 briggs (sc->sc_qentries[queue] + pi)->aq_fib_addr = htole32(fib_addr);
1663 1.31 briggs
1664 1.31 briggs /* Update producer index. */
1665 1.31 briggs sc->sc_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = htole32(pi + 1);
1666 1.31 briggs
1667 1.31 briggs bus_dmamap_sync(sc->sc_dmat, sc->sc_common_dmamap,
1668 1.31 briggs (char *)sc->sc_common->ac_qbuf - (char *)sc->sc_common,
1669 1.31 briggs sizeof(sc->sc_common->ac_qbuf),
1670 1.31 briggs BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1671 1.31 briggs
1672 1.31 briggs /* Notify the adapter if we know how. */
1673 1.31 briggs if (aac_qinfo[queue].notify != 0)
1674 1.31 briggs AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1675 1.31 briggs
1676 1.31 briggs return (0);
1677 1.31 briggs }
1678 1.31 briggs
1679 1.1 ad #ifdef AAC_DEBUG
1680 1.1 ad /*
1681 1.1 ad * Print a FIB
1682 1.1 ad */
1683 1.12 thorpej static void
1684 1.29 christos aac_print_fib(struct aac_softc *sc, struct aac_fib *fib,
1685 1.28 christos const char *caller)
1686 1.1 ad {
1687 1.1 ad struct aac_blockread *br;
1688 1.1 ad struct aac_blockwrite *bw;
1689 1.1 ad struct aac_sg_table *sg;
1690 1.19 christos char tbuf[512];
1691 1.1 ad int i;
1692 1.1 ad
1693 1.1 ad printf("%s: FIB @ %p\n", caller, fib);
1694 1.1 ad bitmask_snprintf(le32toh(fib->Header.XferState),
1695 1.1 ad "\20"
1696 1.1 ad "\1HOSTOWNED"
1697 1.1 ad "\2ADAPTEROWNED"
1698 1.1 ad "\3INITIALISED"
1699 1.1 ad "\4EMPTY"
1700 1.1 ad "\5FROMPOOL"
1701 1.1 ad "\6FROMHOST"
1702 1.1 ad "\7FROMADAP"
1703 1.1 ad "\10REXPECTED"
1704 1.1 ad "\11RNOTEXPECTED"
1705 1.1 ad "\12DONEADAP"
1706 1.1 ad "\13DONEHOST"
1707 1.1 ad "\14HIGH"
1708 1.1 ad "\15NORM"
1709 1.1 ad "\16ASYNC"
1710 1.1 ad "\17PAGEFILEIO"
1711 1.1 ad "\20SHUTDOWN"
1712 1.1 ad "\21LAZYWRITE"
1713 1.1 ad "\22ADAPMICROFIB"
1714 1.1 ad "\23BIOSFIB"
1715 1.1 ad "\24FAST_RESPONSE"
1716 1.1 ad "\25APIFIB\n",
1717 1.19 christos tbuf,
1718 1.19 christos sizeof(tbuf));
1719 1.1 ad
1720 1.19 christos printf(" XferState %s\n", tbuf);
1721 1.1 ad printf(" Command %d\n", le16toh(fib->Header.Command));
1722 1.1 ad printf(" StructType %d\n", fib->Header.StructType);
1723 1.1 ad printf(" Flags 0x%x\n", fib->Header.Flags);
1724 1.1 ad printf(" Size %d\n", le16toh(fib->Header.Size));
1725 1.1 ad printf(" SenderSize %d\n", le16toh(fib->Header.SenderSize));
1726 1.1 ad printf(" SenderAddress 0x%x\n",
1727 1.1 ad le32toh(fib->Header.SenderFibAddress));
1728 1.1 ad printf(" ReceiverAddress 0x%x\n",
1729 1.1 ad le32toh(fib->Header.ReceiverFibAddress));
1730 1.1 ad printf(" SenderData 0x%x\n", fib->Header.SenderData);
1731 1.1 ad
1732 1.1 ad switch (fib->Header.Command) {
1733 1.1 ad case ContainerCommand: {
1734 1.1 ad br = (struct aac_blockread *)fib->data;
1735 1.1 ad bw = (struct aac_blockwrite *)fib->data;
1736 1.1 ad sg = NULL;
1737 1.1 ad
1738 1.1 ad if (le32toh(br->Command) == VM_CtBlockRead) {
1739 1.16 perry printf(" BlockRead: container %d 0x%x/%d\n",
1740 1.1 ad le32toh(br->ContainerId), le32toh(br->BlockNumber),
1741 1.1 ad le32toh(br->ByteCount));
1742 1.1 ad sg = &br->SgMap;
1743 1.1 ad }
1744 1.1 ad if (le32toh(bw->Command) == VM_CtBlockWrite) {
1745 1.16 perry printf(" BlockWrite: container %d 0x%x/%d (%s)\n",
1746 1.1 ad le32toh(bw->ContainerId), le32toh(bw->BlockNumber),
1747 1.1 ad le32toh(bw->ByteCount),
1748 1.1 ad le32toh(bw->Stable) == CSTABLE ?
1749 1.1 ad "stable" : "unstable");
1750 1.1 ad sg = &bw->SgMap;
1751 1.1 ad }
1752 1.1 ad if (sg != NULL) {
1753 1.1 ad printf(" %d s/g entries\n", le32toh(sg->SgCount));
1754 1.1 ad for (i = 0; i < le32toh(sg->SgCount); i++)
1755 1.1 ad printf(" 0x%08x/%d\n",
1756 1.1 ad le32toh(sg->SgEntry[i].SgAddress),
1757 1.1 ad le32toh(sg->SgEntry[i].SgByteCount));
1758 1.1 ad }
1759 1.1 ad break;
1760 1.1 ad }
1761 1.1 ad default:
1762 1.24 jdolecek // dump first 32 bytes of fib->data
1763 1.24 jdolecek printf(" Raw data:");
1764 1.24 jdolecek for (i = 0; i < 32; i++)
1765 1.24 jdolecek printf(" %02x", fib->data[i]);
1766 1.24 jdolecek printf("\n");
1767 1.1 ad break;
1768 1.1 ad }
1769 1.1 ad }
1770 1.12 thorpej #endif /* AAC_DEBUG */
1771