Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.10
      1  1.10    dante /* $NetBSD: adwlib.c,v 1.10 2000/04/30 18:52:15 dante Exp $        */
      2   1.1    dante 
      3   1.1    dante /*
      4   1.1    dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5   1.1    dante  *
      6   1.7    dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7   1.1    dante  * All rights reserved.
      8   1.1    dante  *
      9   1.1    dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10   1.1    dante  *
     11   1.1    dante  * Redistribution and use in source and binary forms, with or without
     12   1.1    dante  * modification, are permitted provided that the following conditions
     13   1.1    dante  * are met:
     14   1.1    dante  * 1. Redistributions of source code must retain the above copyright
     15   1.1    dante  *    notice, this list of conditions and the following disclaimer.
     16   1.1    dante  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1    dante  *    notice, this list of conditions and the following disclaimer in the
     18   1.1    dante  *    documentation and/or other materials provided with the distribution.
     19   1.1    dante  * 3. All advertising materials mentioning features or use of this software
     20   1.1    dante  *    must display the following acknowledgement:
     21   1.1    dante  *        This product includes software developed by the NetBSD
     22   1.1    dante  *        Foundation, Inc. and its contributors.
     23   1.1    dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.1    dante  *    contributors may be used to endorse or promote products derived
     25   1.1    dante  *    from this software without specific prior written permission.
     26   1.1    dante  *
     27   1.1    dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.1    dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.1    dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.1    dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.1    dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.1    dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.1    dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.1    dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.1    dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.1    dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.1    dante  * POSSIBILITY OF SUCH DAMAGE.
     38   1.1    dante  */
     39   1.1    dante /*
     40   1.1    dante  * Ported from:
     41   1.1    dante  */
     42   1.1    dante /*
     43   1.1    dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44   1.7    dante  *
     45  1.10    dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46   1.1    dante  * All Rights Reserved.
     47   1.1    dante  *
     48   1.1    dante  * Redistribution and use in source and binary forms, with or without
     49   1.1    dante  * modification, are permitted provided that redistributions of source
     50   1.1    dante  * code retain the above copyright notice and this comment without
     51   1.1    dante  * modification.
     52   1.1    dante  */
     53   1.1    dante 
     54   1.1    dante #include <sys/types.h>
     55   1.1    dante #include <sys/param.h>
     56   1.1    dante #include <sys/systm.h>
     57   1.1    dante #include <sys/malloc.h>
     58   1.1    dante #include <sys/kernel.h>
     59   1.1    dante #include <sys/queue.h>
     60   1.1    dante #include <sys/device.h>
     61   1.1    dante 
     62   1.1    dante #include <machine/bus.h>
     63   1.1    dante #include <machine/intr.h>
     64   1.1    dante 
     65   1.1    dante #include <dev/scsipi/scsi_all.h>
     66   1.1    dante #include <dev/scsipi/scsipi_all.h>
     67   1.1    dante #include <dev/scsipi/scsiconf.h>
     68   1.1    dante 
     69   1.7    dante #include <dev/pci/pcidevs.h>
     70   1.7    dante 
     71   1.1    dante #include <vm/vm.h>
     72   1.1    dante #include <vm/vm_param.h>
     73   1.1    dante #include <vm/pmap.h>
     74   1.1    dante 
     75   1.1    dante #include <dev/ic/adwlib.h>
     76   1.1    dante #include <dev/ic/adw.h>
     77   1.1    dante #include <dev/ic/adwmcode.h>
     78   1.1    dante 
     79   1.1    dante 
     80   1.1    dante /* Static Functions */
     81   1.1    dante 
     82   1.7    dante static u_int16_t AdvGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83   1.7    dante      							ADW_EEP_3550_CONFIG *));
     84   1.7    dante static u_int16_t AdvGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85   1.7    dante      							ADW_EEP_38C0800_CONFIG *));
     86  1.10    dante static u_int16_t AdvGet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     87  1.10    dante      							ADW_EEP_38C1600_CONFIG *));
     88   1.7    dante static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     89   1.1    dante static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     90   1.7    dante static void AdvSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91   1.7    dante 					                 ADW_EEP_3550_CONFIG *));
     92   1.7    dante static void AdvSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     93   1.7    dante 					                 ADW_EEP_38C0800_CONFIG *));
     94  1.10    dante static void AdvSet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     95  1.10    dante 					                 ADW_EEP_38C1600_CONFIG *));
     96   1.1    dante static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97   1.1    dante 
     98   1.7    dante static void AdvSleepMilliSecond __P((u_int32_t));
     99   1.7    dante static void AdvDelayMicroSecond __P((u_int32_t));
    100   1.1    dante 
    101   1.1    dante 
    102   1.1    dante /*
    103   1.1    dante  * EEPROM Configuration.
    104   1.1    dante  *
    105   1.1    dante  * All drivers should use this structure to set the default EEPROM
    106   1.1    dante  * configuration. The BIOS now uses this structure when it is built.
    107   1.1    dante  * Additional structure information can be found in advlib.h where
    108   1.1    dante  * the structure is defined.
    109   1.1    dante  */
    110   1.7    dante static ADW_EEP_3550_CONFIG
    111   1.7    dante Default_3550_EEPROM_Config = {
    112   1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    113   1.7    dante 	0x0000,			/* cfg_msw */
    114   1.7    dante 	0xFFFF,			/* disc_enable */
    115   1.7    dante 	0xFFFF,			/* wdtr_able */
    116   1.7    dante 	0xFFFF,			/* sdtr_able */
    117   1.7    dante 	0xFFFF,			/* start_motor */
    118   1.7    dante 	0xFFFF,			/* tagqng_able */
    119   1.7    dante 	0xFFFF,			/* bios_scan */
    120   1.7    dante 	0,			/* scam_tolerant */
    121   1.7    dante 	7,			/* adapter_scsi_id */
    122   1.7    dante 	0,			/* bios_boot_delay */
    123   1.7    dante 	3,			/* scsi_reset_delay */
    124   1.7    dante 	0,			/* bios_id_lun */
    125   1.7    dante 	0,			/* termination */
    126   1.7    dante 	0,			/* reserved1 */
    127   1.7    dante 	0xFFE7,			/* bios_ctrl */
    128   1.7    dante 	0xFFFF,			/* ultra_able */
    129   1.7    dante 	0,			/* reserved2 */
    130   1.2    dante 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
    131   1.2    dante 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    132   1.7    dante 	0,			/* dvc_cntl */
    133   1.7    dante 	0,			/* bug_fix */
    134   1.7    dante 	0,			/* serial_number_word1 */
    135   1.7    dante 	0,			/* serial_number_word2 */
    136   1.7    dante 	0,			/* serial_number_word3 */
    137   1.7    dante 	0,			/* check_sum */
    138   1.2    dante 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* oem_name[16] */
    139   1.7    dante 	0,			/* dvc_err_code */
    140   1.7    dante 	0,			/* adv_err_code */
    141   1.7    dante 	0,			/* adv_err_addr */
    142   1.7    dante 	0,			/* saved_dvc_err_code */
    143   1.7    dante 	0,			/* saved_adv_err_code */
    144   1.7    dante 	0,			/* saved_adv_err_addr */
    145   1.7    dante 	0			/* num_of_err */
    146   1.7    dante };
    147   1.7    dante 
    148   1.7    dante static ADW_EEP_38C0800_CONFIG
    149   1.7    dante Default_38C0800_EEPROM_Config = {
    150   1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151   1.7    dante 	0x0000,			/* 01 cfg_msw */
    152   1.7    dante 	0xFFFF,			/* 02 disc_enable */
    153   1.7    dante 	0xFFFF,			/* 03 wdtr_able */
    154   1.7    dante 	0x4444,			/* 04 sdtr_speed1 */
    155   1.7    dante 	0xFFFF,			/* 05 start_motor */
    156   1.7    dante 	0xFFFF,			/* 06 tagqng_able */
    157   1.7    dante 	0xFFFF,			/* 07 bios_scan */
    158   1.7    dante 	0,			/* 08 scam_tolerant */
    159   1.7    dante 	7,			/* 09 adapter_scsi_id */
    160   1.7    dante 	0,			/*    bios_boot_delay */
    161   1.7    dante 	3,			/* 10 scsi_reset_delay */
    162   1.7    dante 	0,			/*    bios_id_lun */
    163   1.7    dante 	0,			/* 11 termination_se */
    164   1.7    dante 	0,			/*    termination_lvd */
    165   1.7    dante 	0xFFE7,			/* 12 bios_ctrl */
    166   1.7    dante 	0x4444,			/* 13 sdtr_speed2 */
    167   1.7    dante 	0x4444,			/* 14 sdtr_speed3 */
    168   1.7    dante 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169   1.7    dante 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170   1.7    dante 	0,			/* 16 dvc_cntl */
    171   1.7    dante 	0x4444,			/* 17 sdtr_speed4 */
    172   1.7    dante 	0,			/* 18 serial_number_word1 */
    173   1.7    dante 	0,			/* 19 serial_number_word2 */
    174   1.7    dante 	0,			/* 20 serial_number_word3 */
    175   1.7    dante 	0,			/* 21 check_sum */
    176   1.7    dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    177   1.7    dante 	0,			/* 30 dvc_err_code */
    178   1.7    dante 	0,			/* 31 adv_err_code */
    179   1.7    dante 	0,			/* 32 adv_err_addr */
    180   1.7    dante 	0,			/* 33 saved_dvc_err_code */
    181   1.7    dante 	0,			/* 34 saved_adv_err_code */
    182   1.7    dante 	0,			/* 35 saved_adv_err_addr */
    183   1.7    dante 	0,			/* 36 reserved */
    184   1.7    dante 	0,			/* 37 reserved */
    185   1.7    dante 	0,			/* 38 reserved */
    186   1.7    dante 	0,			/* 39 reserved */
    187   1.7    dante 	0,			/* 40 reserved */
    188   1.7    dante 	0,			/* 41 reserved */
    189   1.7    dante 	0,			/* 42 reserved */
    190   1.7    dante 	0,			/* 43 reserved */
    191   1.7    dante 	0,			/* 44 reserved */
    192   1.7    dante 	0,			/* 45 reserved */
    193   1.7    dante 	0,			/* 46 reserved */
    194   1.7    dante 	0,			/* 47 reserved */
    195   1.7    dante 	0,			/* 48 reserved */
    196   1.7    dante 	0,			/* 49 reserved */
    197   1.7    dante 	0,			/* 50 reserved */
    198   1.7    dante 	0,			/* 51 reserved */
    199   1.7    dante 	0,			/* 52 reserved */
    200   1.7    dante 	0,			/* 53 reserved */
    201   1.7    dante 	0,			/* 54 reserved */
    202   1.7    dante 	0,			/* 55 reserved */
    203   1.7    dante 	0,			/* 56 cisptr_lsw */
    204   1.7    dante 	0,			/* 57 cisprt_msw */
    205   1.7    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    206   1.7    dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    207   1.7    dante 	0,			/* 60 reserved */
    208   1.7    dante 	0,			/* 61 reserved */
    209   1.7    dante 	0,			/* 62 reserved */
    210   1.7    dante 	0			/* 63 reserved */
    211   1.1    dante };
    212   1.1    dante 
    213  1.10    dante static ADW_EEP_38C1600_CONFIG
    214  1.10    dante Default_38C1600_EEPROM_Config = {
    215  1.10    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    216  1.10    dante 	0x0000,			/* 01 cfg_msw */
    217  1.10    dante 	0xFFFF,			/* 02 disc_enable */
    218  1.10    dante 	0xFFFF,			/* 03 wdtr_able */
    219  1.10    dante 	0x5555,			/* 04 sdtr_speed1 */
    220  1.10    dante 	0xFFFF,			/* 05 start_motor */
    221  1.10    dante 	0xFFFF,			/* 06 tagqng_able */
    222  1.10    dante 	0xFFFF,			/* 07 bios_scan */
    223  1.10    dante 	0,			/* 08 scam_tolerant */
    224  1.10    dante 	7,			/* 09 adapter_scsi_id */
    225  1.10    dante 	0,			/*    bios_boot_delay */
    226  1.10    dante 	3,			/* 10 scsi_reset_delay */
    227  1.10    dante 	0,			/*    bios_id_lun */
    228  1.10    dante 	0,			/* 11 termination_se */
    229  1.10    dante 	0,			/*    termination_lvd */
    230  1.10    dante 	0xFFE7,			/* 12 bios_ctrl */
    231  1.10    dante 	0x5555,			/* 13 sdtr_speed2 */
    232  1.10    dante 	0x5555,			/* 14 sdtr_speed3 */
    233  1.10    dante 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    234  1.10    dante 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    235  1.10    dante 	0,			/* 16 dvc_cntl */
    236  1.10    dante 	0x5555,			/* 17 sdtr_speed4 */
    237  1.10    dante 	0,			/* 18 serial_number_word1 */
    238  1.10    dante 	0,			/* 19 serial_number_word2 */
    239  1.10    dante 	0,			/* 20 serial_number_word3 */
    240  1.10    dante 	0,			/* 21 check_sum */
    241  1.10    dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    242  1.10    dante 	0,			/* 30 dvc_err_code */
    243  1.10    dante 	0,			/* 31 adv_err_code */
    244  1.10    dante 	0,			/* 32 adv_err_addr */
    245  1.10    dante 	0,			/* 33 saved_dvc_err_code */
    246  1.10    dante 	0,			/* 34 saved_adv_err_code */
    247  1.10    dante 	0,			/* 35 saved_adv_err_addr */
    248  1.10    dante 	0,			/* 36 reserved */
    249  1.10    dante 	0,			/* 37 reserved */
    250  1.10    dante 	0,			/* 38 reserved */
    251  1.10    dante 	0,			/* 39 reserved */
    252  1.10    dante 	0,			/* 40 reserved */
    253  1.10    dante 	0,			/* 41 reserved */
    254  1.10    dante 	0,			/* 42 reserved */
    255  1.10    dante 	0,			/* 43 reserved */
    256  1.10    dante 	0,			/* 44 reserved */
    257  1.10    dante 	0,			/* 45 reserved */
    258  1.10    dante 	0,			/* 46 reserved */
    259  1.10    dante 	0,			/* 47 reserved */
    260  1.10    dante 	0,			/* 48 reserved */
    261  1.10    dante 	0,			/* 49 reserved */
    262  1.10    dante 	0,			/* 50 reserved */
    263  1.10    dante 	0,			/* 51 reserved */
    264  1.10    dante 	0,			/* 52 reserved */
    265  1.10    dante 	0,			/* 53 reserved */
    266  1.10    dante 	0,			/* 54 reserved */
    267  1.10    dante 	0,			/* 55 reserved */
    268  1.10    dante 	0,			/* 56 cisptr_lsw */
    269  1.10    dante 	0,			/* 57 cisprt_msw */
    270  1.10    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    271  1.10    dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    272  1.10    dante 	0,			/* 60 reserved */
    273  1.10    dante 	0,			/* 61 reserved */
    274  1.10    dante 	0,			/* 62 reserved */
    275  1.10    dante 	0			/* 63 reserved */
    276  1.10    dante };
    277  1.10    dante 
    278   1.1    dante /*
    279   1.1    dante  * Initialize the ASC3550.
    280   1.1    dante  *
    281   1.1    dante  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    282   1.1    dante  *
    283   1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    284   1.1    dante  * then 0 is returned.
    285   1.1    dante  */
    286   1.1    dante int
    287   1.1    dante AdvInitAsc3550Driver(sc)
    288   1.2    dante ADW_SOFTC      *sc;
    289   1.1    dante {
    290   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    291   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    292   1.7    dante 	u_int16_t	warn_code;
    293   1.7    dante 	u_int32_t	sum;
    294   1.7    dante 	int		begin_addr;
    295   1.7    dante 	int		end_addr;
    296   1.7    dante 	u_int16_t	code_sum;
    297   1.7    dante 	int		word;
    298   1.7    dante 	int		i, j;
    299   1.7    dante 	int		adv_asc3550_expanded_size;
    300   1.7    dante 	u_int16_t	scsi_cfg1;
    301   1.7    dante 	u_int8_t	tid;
    302   1.7    dante 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    303   1.7    dante 								0x40-0x8F. */
    304   1.7    dante 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    305   1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    306   1.1    dante 
    307   1.1    dante 
    308   1.1    dante 	warn_code = 0;
    309   1.1    dante 
    310   1.1    dante 	/*
    311   1.1    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    312   1.1    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    313   1.1    dante 	 * so its region must be saved and restored.
    314   1.1    dante 	 *
    315   1.1    dante 	 * Note: This code makes the assumption, which is currently true,
    316   1.1    dante 	 * that a chip reset does not clear RISC LRAM.
    317   1.1    dante 	 */
    318   1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    319  1.10    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM+(2*i), bios_mem[i]);
    320   1.7    dante 	}
    321   1.7    dante 
    322   1.7    dante 	/*
    323   1.7    dante 	 * Save current per TID negotiated values.
    324   1.7    dante 	 */
    325   1.7    dante 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] == 0x55AA) {
    326   1.7    dante 
    327   1.7    dante 		u_int16_t  bios_version, major, minor;
    328   1.7    dante 
    329   1.7    dante 		bios_version = bios_mem[(ASC_MC_BIOS_VERSION-ASC_MC_BIOSMEM)/2];
    330   1.7    dante 		major = (bios_version  >> 12) & 0xF;
    331   1.7    dante 		minor = (bios_version  >> 8) & 0xF;
    332   1.7    dante 		if (major < 3 || (major == 3 && minor == 1)) {
    333   1.7    dante 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    334   1.7    dante 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    335   1.7    dante 		} else {
    336   1.7    dante 		    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    337   1.7    dante 		}
    338   1.7    dante 	}
    339   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    340   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    341   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    342   1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    343   1.7    dante 			max_cmd[tid]);
    344   1.1    dante 	}
    345   1.1    dante 
    346   1.1    dante 	/*
    347   1.1    dante 	 * Load the Microcode
    348   1.1    dante 	 *
    349   1.1    dante 	 * Write the microcode image to RISC memory starting at address 0.
    350   1.1    dante 	 */
    351   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    352   1.7    dante 
    353   1.7    dante 	/* Assume the following compressed format of the microcode buffer:
    354   1.7    dante 	 *
    355   1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
    356   1.7    dante 	 *  by the following byte codes:
    357   1.7    dante 	 *
    358   1.7    dante 	 *    1-Byte Code:
    359   1.7    dante 	 *	00: Emit word 0 in table.
    360   1.7    dante 	 *	01: Emit word 1 in table.
    361   1.7    dante 	 *	.
    362   1.7    dante 	 *	FD: Emit word 253 in table.
    363   1.7    dante 	 *
    364   1.7    dante 	 *    Multi-Byte Code:
    365   1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    366   1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    367   1.7    dante 	 */
    368   1.7    dante 	word = 0;
    369   1.7    dante 	for (i = 253 * 2; i < adv_asc3550_mcode_size; i++) {
    370   1.7    dante 		if (adv_asc3550_mcode[i] == 0xff) {
    371   1.7    dante 			for (j = 0; j < adv_asc3550_mcode[i + 1]; j++) {
    372   1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    373   1.7    dante 				  (((u_int16_t)adv_asc3550_mcode[i + 3] << 8) |
    374   1.7    dante 				  adv_asc3550_mcode[i + 2]));
    375   1.7    dante 				word++;
    376   1.7    dante 			}
    377   1.7    dante 			i += 3;
    378   1.7    dante 		} else if (adv_asc3550_mcode[i] == 0xfe) {
    379   1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    380   1.7    dante 			    (((u_int16_t)adv_asc3550_mcode[i + 2] << 8) |
    381   1.7    dante 			    adv_asc3550_mcode[i + 1]));
    382   1.7    dante 			i += 2;
    383   1.7    dante 			word++;
    384   1.7    dante 		} else {
    385   1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    386  1.10    dante 			 adv_asc3550_mcode[(adv_asc3550_mcode[i] * 2) + 1] <<8)|
    387   1.7    dante 			 adv_asc3550_mcode[adv_asc3550_mcode[i] * 2]));
    388   1.7    dante 			word++;
    389   1.7    dante 		}
    390   1.1    dante 	}
    391   1.1    dante 
    392   1.1    dante 	/*
    393   1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
    394   1.7    dante 	 * the expanded mcode size.
    395   1.7    dante 	 */
    396   1.7    dante 	word *= 2;
    397   1.7    dante 	adv_asc3550_expanded_size = word;
    398   1.7    dante 
    399   1.7    dante 	/*
    400   1.7    dante 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    401   1.1    dante 	 */
    402   1.7    dante 	for (; word < ADV_3550_MEMSIZE; word += 2) {
    403   1.1    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    404   1.1    dante 	}
    405   1.1    dante 
    406   1.1    dante 	/*
    407   1.1    dante 	 * Verify the microcode checksum.
    408   1.1    dante 	 */
    409   1.1    dante 	sum = 0;
    410   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    411   1.7    dante 
    412   1.7    dante 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    413   1.1    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    414   1.1    dante 	}
    415   1.1    dante 
    416   1.7    dante 	if (sum != adv_asc3550_mcode_chksum) {
    417   1.1    dante 		return ASC_IERR_MCODE_CHKSUM;
    418   1.7    dante 	}
    419   1.1    dante 
    420   1.1    dante 	/*
    421   1.1    dante 	 * Restore the RISC memory BIOS region.
    422   1.1    dante 	 */
    423   1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    424   1.7    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    425   1.7    dante 				bios_mem[i]);
    426   1.1    dante 	}
    427   1.1    dante 
    428   1.1    dante 	/*
    429   1.1    dante 	 * Calculate and write the microcode code checksum to the microcode
    430   1.2    dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    431   1.1    dante 	 */
    432   1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    433   1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    434   1.1    dante 	code_sum = 0;
    435   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    436   1.1    dante 	for (word = begin_addr; word < end_addr; word += 2) {
    437   1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    438   1.1    dante 	}
    439   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    440   1.1    dante 
    441   1.1    dante 	/*
    442   1.7    dante 	 * Read and save microcode version and date.
    443   1.1    dante 	 */
    444   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    445   1.7    dante 			sc->cfg.mcode_date);
    446   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    447   1.7    dante 			sc->cfg.mcode_version);
    448   1.1    dante 
    449   1.1    dante 	/*
    450   1.7    dante 	 * Set the chip type to indicate the ASC3550.
    451   1.1    dante 	 */
    452   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
    453   1.1    dante 
    454   1.1    dante 	/*
    455   1.1    dante 	 * If the PCI Configuration Command Register "Parity Error Response
    456   1.1    dante 	 * Control" Bit was clear (0), then set the microcode variable
    457   1.1    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    458   1.1    dante 	 * to ignore DMA parity errors.
    459   1.1    dante 	 */
    460   1.1    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    461   1.1    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    462   1.1    dante 		word |= CONTROL_FLAG_IGNORE_PERR;
    463   1.1    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    464   1.1    dante 	}
    465   1.7    dante 
    466   1.1    dante 	/*
    467   1.7    dante 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    468   1.7    dante 	 * threshold of 128 bytes. This register is only accessible to the host.
    469   1.1    dante 	 */
    470   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    471   1.7    dante 			START_CTL_EMFU | READ_CMD_MRM);
    472   1.7    dante 
    473   1.7    dante 	/*
    474   1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    475   1.7    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    476   1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
    477   1.7    dante 	 *
    478   1.7    dante 	 * If SCSI Bus Resets haev been disabled, then directly set
    479   1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    480   1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    481   1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
    482   1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    483   1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
    484   1.7    dante 	 */
    485   1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    486   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    487   1.7    dante 				sc->wdtr_able);
    488   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    489   1.7    dante 				sc->sdtr_able);
    490   1.7    dante 	}
    491   1.7    dante 
    492   1.7    dante 	/*
    493   1.7    dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    494   1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    495   1.7    dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    496   1.7    dante 	 * with a device.
    497   1.7    dante 	 *
    498   1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    499   1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    500   1.7    dante 	 * without determining here whether the device supports SDTR.
    501   1.7    dante 	 *
    502   1.7    dante 	 * 4-bit speed  SDTR speed name
    503   1.7    dante 	 * ===========  ===============
    504   1.7    dante 	 * 0000b (0x0)  SDTR disabled
    505   1.7    dante 	 * 0001b (0x1)  5 Mhz
    506   1.7    dante 	 * 0010b (0x2)  10 Mhz
    507   1.7    dante 	 * 0011b (0x3)  20 Mhz (Ultra)
    508   1.7    dante 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    509   1.7    dante 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    510   1.7    dante 	 * 0110b (0x6)  Undefined
    511   1.7    dante 	 * .
    512   1.7    dante 	 * 1111b (0xF)  Undefined
    513   1.7    dante 	 */
    514   1.7    dante 	word = 0;
    515   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    516   1.7    dante 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    517   1.7    dante 			/* Set Ultra speed for TID 'tid'. */
    518   1.7    dante 			word |= (0x3 << (4 * (tid % 4)));
    519   1.7    dante 		} else {
    520   1.7    dante 			/* Set Fast speed for TID 'tid'. */
    521   1.7    dante 			word |= (0x2 << (4 * (tid % 4)));
    522   1.7    dante 		}
    523   1.7    dante 		/* Check if done with sdtr_speed1. */
    524   1.7    dante 		if (tid == 3) {
    525   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, word);
    526   1.7    dante 			word = 0;
    527   1.7    dante 		/* Check if done with sdtr_speed2. */
    528   1.7    dante 		} else if (tid == 7) {
    529   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, word);
    530   1.7    dante 			word = 0;
    531   1.7    dante 		/* Check if done with sdtr_speed3. */
    532   1.7    dante 		} else if (tid == 11) {
    533   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, word);
    534   1.7    dante 			word = 0;
    535   1.7    dante 		/* Check if done with sdtr_speed4. */
    536   1.7    dante 		} else if (tid == 15) {
    537   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, word);
    538   1.7    dante 			/* End of loop. */
    539   1.7    dante 		}
    540   1.7    dante 	}
    541   1.1    dante 
    542   1.1    dante 	/*
    543   1.7    dante 	 * Set microcode operating variable for the disconnect per TID bitmask.
    544   1.1    dante 	 */
    545   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
    546   1.1    dante 
    547   1.1    dante 
    548   1.1    dante 	/*
    549   1.1    dante 	 * Set SCSI_CFG0 Microcode Default Value.
    550   1.1    dante 	 *
    551   1.1    dante 	 * The microcode will set the SCSI_CFG0 register using this value
    552   1.1    dante 	 * after it is started below.
    553   1.1    dante 	 */
    554   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
    555  1.10    dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    556  1.10    dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    557   1.2    dante 
    558   1.1    dante 	/*
    559   1.1    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
    560   1.1    dante 	 *
    561   1.1    dante 	 * The microcode will set the SCSI_CFG1 register using this value
    562   1.1    dante 	 * after it is started below.
    563   1.1    dante 	 */
    564   1.1    dante 
    565   1.1    dante 	/* Read current SCSI_CFG1 Register value. */
    566   1.1    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    567   1.1    dante 
    568   1.1    dante 	/*
    569   1.1    dante 	 * If all three connectors are in use, return an error.
    570   1.1    dante 	 */
    571   1.1    dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    572  1.10    dante 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    573   1.1    dante 		return ASC_IERR_ILLEGAL_CONNECTION;
    574   1.1    dante 	}
    575   1.7    dante 
    576   1.1    dante 	/*
    577   1.1    dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    578   1.1    dante 	 * register signals will be set. Check for and return an error if
    579   1.1    dante 	 * this condition is found.
    580   1.1    dante 	 */
    581   1.2    dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    582   1.2    dante 			0x3F07) {
    583   1.1    dante 		return ASC_IERR_REVERSED_CABLE;
    584   1.2    dante 	}
    585   1.1    dante 
    586   1.1    dante 	/*
    587   1.1    dante 	 * If this is a differential board and a single-ended device
    588   1.1    dante 	 * is attached to one of the connectors, return an error.
    589   1.1    dante 	 */
    590   1.7    dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    591   1.1    dante 		return ASC_IERR_SINGLE_END_DEVICE;
    592   1.7    dante 	}
    593   1.1    dante 
    594   1.1    dante 	/*
    595   1.1    dante 	 * If automatic termination control is enabled, then set the
    596   1.7    dante 	 * termination value based on a table listed in a_condor.h.
    597   1.1    dante 	 *
    598   1.1    dante 	 * If manual termination was specified with an EEPROM setting
    599   1.7    dante 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
    600   1.1    dante 	 * is ready to be 'ored' into SCSI_CFG1.
    601   1.1    dante 	 */
    602   1.1    dante 	if (sc->cfg.termination == 0) {
    603   1.1    dante 		/*
    604  1.10    dante 		 * The software always controls termination by setting
    605  1.10    dante 		 * TERM_CTL_SEL.
    606  1.10    dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
    607  1.10    dante 		 * termination.
    608   1.1    dante 		 */
    609   1.1    dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    610   1.1    dante 
    611   1.7    dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    612   1.7    dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    613  1.10    dante 			case 0x3: case 0x7: case 0xB:
    614  1.10    dante 			case 0xD: case 0xE: case 0xF:
    615  1.10    dante 				sc->cfg.termination |=
    616  1.10    dante 					(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    617   1.7    dante 				break;
    618   1.7    dante 
    619   1.7    dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    620   1.7    dante 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    621   1.7    dante 				sc->cfg.termination |= ADW_TERM_CTL_H;
    622   1.7    dante 				break;
    623   1.7    dante 
    624   1.7    dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    625   1.7    dante 			case 0x2: case 0x6:
    626   1.7    dante 				break;
    627   1.1    dante 		}
    628   1.1    dante 	}
    629   1.7    dante 
    630   1.1    dante 	/*
    631   1.7    dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    632   1.1    dante 	 */
    633   1.1    dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
    634   1.1    dante 
    635   1.1    dante 	/*
    636   1.7    dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    637   1.7    dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    638   1.1    dante 	 * referenced, because the hardware internally inverts
    639   1.7    dante 	 * the Termination High and Low bits if TERM_POL is set.
    640   1.1    dante 	 */
    641   1.1    dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    642   1.1    dante 
    643   1.1    dante 	/*
    644   1.1    dante 	 * Set SCSI_CFG1 Microcode Default Value
    645   1.1    dante 	 *
    646   1.1    dante 	 * Set filter value and possibly modified termination control
    647   1.1    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
    648   1.1    dante 	 *
    649   1.1    dante 	 * The microcode will set the SCSI_CFG1 register using this value
    650   1.1    dante 	 * after it is started below.
    651   1.1    dante 	 */
    652   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
    653   1.7    dante 		ADW_FLTR_DISABLE | scsi_cfg1);
    654   1.7    dante 
    655   1.7    dante 	/*
    656   1.7    dante 	 * Set MEM_CFG Microcode Default Value
    657   1.7    dante 	 *
    658   1.7    dante 	 * The microcode will set the MEM_CFG register using this value
    659   1.7    dante 	 * after it is started below.
    660   1.7    dante 	 *
    661   1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    662   1.7    dante 	 * are defined.
    663   1.7    dante 	 *
    664   1.7    dante 	 * ASC-3550 has 8KB internal memory.
    665   1.7    dante 	 */
    666   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
    667   1.7    dante 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    668   1.1    dante 
    669   1.1    dante 	/*
    670   1.1    dante 	 * Set SEL_MASK Microcode Default Value
    671   1.1    dante 	 *
    672   1.1    dante 	 * The microcode will set the SEL_MASK register using this value
    673   1.1    dante 	 * after it is started below.
    674   1.1    dante 	 */
    675   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
    676   1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    677   1.7    dante 
    678   1.7    dante 
    679   1.7    dante 	/*
    680   1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    681   1.7    dante 	 */
    682   1.7    dante 
    683   1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    684   1.7    dante 		return ASC_IERR_NO_CARRIER;
    685   1.7    dante 	}
    686   1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    687   1.7    dante 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
    688   1.7    dante 
    689   1.7    dante 	/*
    690   1.7    dante 	 * The first command issued will be placed in the stopper carrier.
    691   1.7    dante 	 */
    692   1.7    dante 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
    693   1.1    dante 
    694   1.1    dante 	/*
    695   1.7    dante 	 * Set RISC ICQ physical address start value.
    696   1.7    dante 	 */
    697   1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
    698   1.7    dante 
    699   1.7    dante 	/*
    700   1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    701   1.1    dante 	 */
    702   1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    703   1.7    dante 		return ASC_IERR_NO_CARRIER;
    704   1.1    dante 	}
    705   1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    706   1.7    dante 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
    707   1.1    dante 
    708   1.1    dante 	/*
    709   1.7    dante 	 * The first command completed by the RISC will be placed in
    710   1.7    dante 	 * the stopper.
    711   1.1    dante 	 *
    712   1.7    dante 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
    713   1.7    dante 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
    714   1.1    dante 	 */
    715   1.7    dante 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
    716   1.1    dante 
    717   1.1    dante 	/*
    718   1.7    dante 	 * Set RISC IRQ physical address start value.
    719   1.1    dante 	 */
    720   1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
    721   1.7    dante 	sc->carr_pending_cnt = 0;
    722   1.1    dante 
    723   1.1    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    724   1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    725   1.1    dante 
    726   1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
    727   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    728   1.1    dante 
    729   1.1    dante 	/* finally, finally, gentlemen, start your engine */
    730   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    731   1.2    dante 
    732   1.7    dante 	/*
    733   1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    734   1.7    dante 	 * Resets should be performed. The RISC has to be running
    735   1.7    dante 	 * to issue a SCSI Bus Reset.
    736   1.7    dante 	 */
    737   1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    738   1.7    dante 	{
    739   1.7    dante 		/*
    740   1.7    dante 		 * If the BIOS Signature is present in memory, restore the
    741   1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
    742   1.7    dante 		 * a SCSI Bus Reset.
    743   1.7    dante 		 */
    744   1.7    dante 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
    745   1.7    dante 				0x55AA) {
    746   1.7    dante 			/*
    747   1.7    dante 			 * Restore per TID negotiated values.
    748   1.7    dante 			 */
    749   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    750   1.7    dante 					wdtr_able);
    751   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    752   1.7    dante 					sdtr_able);
    753   1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
    754   1.7    dante 					tagqng_able);
    755   1.7    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    756   1.7    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    757   1.7    dante 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
    758   1.7    dante 					max_cmd[tid]);
    759   1.7    dante 			}
    760   1.7    dante 		} else {
    761   1.7    dante 			if (AdvResetCCB(sc) != ADW_TRUE) {
    762   1.7    dante 				warn_code = ASC_WARN_BUSRESET_ERROR;
    763   1.7    dante 			}
    764   1.7    dante 		}
    765   1.7    dante 	}
    766   1.7    dante 
    767   1.7    dante     return warn_code;
    768   1.1    dante }
    769   1.1    dante 
    770   1.1    dante /*
    771   1.7    dante  * Initialize the ASC-38C0800.
    772   1.1    dante  *
    773   1.7    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    774   1.1    dante  *
    775   1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    776   1.1    dante  * then 0 is returned.
    777   1.1    dante  */
    778   1.1    dante int
    779   1.7    dante AdvInitAsc38C0800Driver(sc)
    780   1.7    dante ADW_SOFTC      *sc;
    781   1.1    dante {
    782   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    783   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    784   1.7    dante 	u_int16_t	warn_code;
    785   1.7    dante 	u_int32_t	sum;
    786   1.7    dante 	int	  	begin_addr;
    787   1.7    dante 	int	   	end_addr;
    788   1.7    dante 	u_int16_t	code_sum;
    789   1.7    dante 	int	   	word;
    790   1.7    dante 	int	   	i, j;
    791   1.7    dante 	int	   	adv_asc38C0800_expanded_size;
    792   1.7    dante 	u_int16_t	scsi_cfg1;
    793   1.7    dante 	u_int8_t	byte;
    794   1.7    dante 	u_int8_t	tid;
    795   1.7    dante 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    796   1.7    dante 								0x40-0x8F. */
    797   1.7    dante 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    798   1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    799   1.1    dante 
    800   1.1    dante 
    801   1.1    dante 	warn_code = 0;
    802   1.1    dante 
    803   1.1    dante 	/*
    804   1.7    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    805   1.7    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    806   1.7    dante 	 * so its region must be saved and restored.
    807   1.1    dante 	 *
    808   1.7    dante 	 * Note: This code makes the assumption, which is currently true,
    809   1.7    dante 	 * that a chip reset does not clear RISC LRAM.
    810   1.7    dante 	 */
    811   1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    812   1.7    dante 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
    813   1.7    dante 	}
    814   1.7    dante 
    815   1.7    dante 	/*
    816   1.7    dante 	 * Save current per TID negotiated values.
    817   1.1    dante 	 */
    818   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    819   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    820   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    821   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    822   1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    823   1.7    dante 			max_cmd[tid]);
    824   1.7    dante 	}
    825   1.2    dante 
    826   1.7    dante 	/*
    827   1.7    dante 	 * RAM BIST (RAM Built-In Self Test)
    828   1.7    dante 	 *
    829   1.7    dante 	 * Address : I/O base + offset 0x38h register (byte).
    830   1.7    dante 	 * Function: Bit 7-6(RW) : RAM mode
    831   1.7    dante 	 *			    Normal Mode   : 0x00
    832   1.7    dante 	 *			    Pre-test Mode : 0x40
    833   1.7    dante 	 *			    RAM Test Mode : 0x80
    834   1.7    dante 	 *	     Bit 5	 : unused
    835   1.7    dante 	 *	     Bit 4(RO)   : Done bit
    836   1.7    dante 	 *	     Bit 3-0(RO) : Status
    837   1.7    dante 	 *			    Host Error    : 0x08
    838   1.7    dante 	 *			    Int_RAM Error : 0x04
    839   1.7    dante 	 *			    RISC Error    : 0x02
    840   1.7    dante 	 *			    SCSI Error    : 0x01
    841   1.7    dante 	 *			    No Error	  : 0x00
    842   1.7    dante 	 *
    843   1.7    dante 	 * Note: RAM BIST code should be put right here, before loading the
    844   1.7    dante 	 * microcode and after saving the RISC memory BIOS region.
    845   1.7    dante 	 */
    846   1.1    dante 
    847   1.7    dante 	/*
    848   1.7    dante 	 * LRAM Pre-test
    849   1.7    dante 	 *
    850   1.7    dante 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    851   1.7    dante 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    852   1.7    dante 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    853   1.7    dante 	 * to NORMAL_MODE, return an error too.
    854   1.7    dante 	 */
    855   1.7    dante 	for (i = 0; i < 2; i++) {
    856   1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    857   1.7    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    858   1.7    dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    859   1.7    dante 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    860   1.7    dante 				PRE_TEST_VALUE) {
    861   1.7    dante 			return ASC_IERR_BIST_PRE_TEST;
    862   1.1    dante 		}
    863   1.1    dante 
    864   1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    865   1.7    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    866   1.7    dante 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    867   1.7    dante 		    != NORMAL_VALUE) {
    868   1.7    dante 			return ASC_IERR_BIST_PRE_TEST;
    869   1.7    dante 		}
    870   1.1    dante 	}
    871   1.7    dante 
    872   1.1    dante 	/*
    873   1.7    dante 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    874   1.1    dante 	 *
    875   1.7    dante 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    876   1.7    dante 	 * If Done bit not set or Status not 0, save register byte, set the
    877   1.7    dante 	 * err_code, and return an error.
    878   1.1    dante 	 */
    879   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    880   1.7    dante 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    881   1.7    dante 
    882   1.7    dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    883   1.7    dante 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    884   1.7    dante 		/* Get here if Done bit not set or Status not 0. */
    885   1.7    dante 		return ASC_IERR_BIST_RAM_TEST;
    886   1.7    dante 	}
    887   1.7    dante 
    888   1.7    dante 	/* We need to reset back to normal mode after LRAM test passes. */
    889   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    890   1.1    dante 
    891   1.1    dante 	/*
    892   1.7    dante 	 * Load the Microcode
    893   1.7    dante 	 *
    894   1.7    dante 	 * Write the microcode image to RISC memory starting at address 0.
    895   1.7    dante 	 *
    896   1.1    dante 	 */
    897   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    898   1.7    dante 
    899   1.7    dante 	/* Assume the following compressed format of the microcode buffer:
    900   1.7    dante 	 *
    901   1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
    902   1.7    dante 	 *  by the following byte codes:
    903   1.7    dante 	 *
    904   1.7    dante 	 *    1-Byte Code:
    905   1.7    dante 	 *	00: Emit word 0 in table.
    906   1.7    dante 	 *	01: Emit word 1 in table.
    907   1.7    dante 	 *	.
    908   1.7    dante 	 *	FD: Emit word 253 in table.
    909   1.7    dante 	 *
    910   1.7    dante 	 *    Multi-Byte Code:
    911   1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    912   1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    913   1.7    dante 	 */
    914   1.7    dante 	word = 0;
    915   1.7    dante 	for (i = 253 * 2; i < adv_asc38C0800_mcode_size; i++) {
    916   1.7    dante 		if (adv_asc38C0800_mcode[i] == 0xff) {
    917   1.7    dante 			for (j = 0; j < adv_asc38C0800_mcode[i + 1]; j++) {
    918   1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    919   1.7    dante 				    (((u_int16_t)
    920   1.7    dante 				    adv_asc38C0800_mcode[i + 3] << 8) |
    921   1.7    dante 				    adv_asc38C0800_mcode[i + 2]));
    922   1.7    dante 				word++;
    923   1.7    dante 			}
    924   1.7    dante 			i += 3;
    925   1.7    dante 		} else if (adv_asc38C0800_mcode[i] == 0xfe) {
    926   1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    927   1.7    dante 			    adv_asc38C0800_mcode[i + 2] << 8) |
    928   1.7    dante 			    adv_asc38C0800_mcode[i + 1]));
    929   1.7    dante 			i += 2;
    930   1.7    dante 			word++;
    931   1.1    dante 		} else {
    932   1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    933   1.7    dante 			  adv_asc38C0800_mcode[(adv_asc38C0800_mcode[i] * 2) + 1] << 8) |
    934   1.7    dante 			  adv_asc38C0800_mcode[adv_asc38C0800_mcode[i] * 2]));
    935   1.7    dante 			word++;
    936   1.1    dante 		}
    937   1.1    dante 	}
    938   1.7    dante 
    939   1.7    dante 	/*
    940   1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
    941   1.7    dante 	 * the expanded mcode size.
    942   1.7    dante 	 */
    943   1.7    dante 	word *= 2;
    944   1.7    dante 	adv_asc38C0800_expanded_size = word;
    945   1.7    dante 
    946   1.1    dante 	/*
    947   1.7    dante 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    948   1.1    dante 	 */
    949   1.7    dante 	for (; word < ADV_38C0800_MEMSIZE; word += 2) {
    950   1.7    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    951   1.1    dante 	}
    952   1.7    dante 
    953   1.1    dante 	/*
    954   1.7    dante 	 * Verify the microcode checksum.
    955   1.1    dante 	 */
    956   1.7    dante 	sum = 0;
    957   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    958   1.7    dante 
    959   1.7    dante 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    960   1.7    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    961   1.7    dante 	}
    962   1.1    dante 
    963   1.7    dante 	if (sum != adv_asc38C0800_mcode_chksum) {
    964   1.7    dante 	    return ASC_IERR_MCODE_CHKSUM;
    965   1.7    dante 	}
    966   1.1    dante 
    967   1.1    dante 	/*
    968   1.7    dante 	 * Restore the RISC memory BIOS region.
    969   1.1    dante 	 */
    970   1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    971   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    972   1.7    dante 				bios_mem[i]);
    973   1.7    dante 	}
    974   1.1    dante 
    975   1.7    dante 	/*
    976   1.7    dante 	 * Calculate and write the microcode code checksum to the microcode
    977   1.7    dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    978   1.7    dante 	 */
    979   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    980   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    981   1.7    dante 	code_sum = 0;
    982   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    983   1.7    dante 	for (word = begin_addr; word < end_addr; word += 2) {
    984   1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    985   1.1    dante 	}
    986   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    987   1.1    dante 
    988   1.7    dante 	/*
    989   1.7    dante 	 * Read microcode version and date.
    990   1.7    dante 	 */
    991   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    992   1.7    dante 			sc->cfg.mcode_date);
    993   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    994   1.7    dante 			sc->cfg.mcode_version);
    995   1.1    dante 
    996   1.7    dante 	/*
    997   1.7    dante 	 * Set the chip type to indicate the ASC38C0800.
    998   1.7    dante 	 */
    999   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
   1000   1.1    dante 
   1001   1.7    dante 	/*
   1002   1.7    dante 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1003   1.7    dante 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1004   1.7    dante 	 * cable detection and then we are able to read C_DET[3:0].
   1005   1.7    dante 	 *
   1006   1.7    dante 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1007   1.7    dante 	 * Microcode Default Value' section below.
   1008   1.7    dante 	 */
   1009   1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1010   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1011   1.7    dante 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1012   1.7    dante 
   1013   1.7    dante 	/*
   1014   1.7    dante 	 * If the PCI Configuration Command Register "Parity Error Response
   1015   1.7    dante 	 * Control" Bit was clear (0), then set the microcode variable
   1016   1.7    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1017   1.7    dante 	 * to ignore DMA parity errors.
   1018   1.7    dante 	 */
   1019   1.7    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1020   1.7    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1021   1.7    dante 		word |= CONTROL_FLAG_IGNORE_PERR;
   1022   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1023   1.7    dante 	}
   1024   1.7    dante 
   1025   1.7    dante 	/*
   1026   1.7    dante 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
   1027   1.7    dante 	 * bits for the default FIFO threshold.
   1028   1.7    dante 	 *
   1029   1.7    dante 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   1030   1.7    dante 	 *
   1031   1.7    dante 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   1032   1.7    dante 	 */
   1033   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1034   1.7    dante 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1035   1.7    dante 
   1036   1.7    dante 	/*
   1037   1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1038   1.7    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
   1039   1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
   1040   1.7    dante 	 *
   1041   1.7    dante 	 * If SCSI Bus Resets have been disabled, then directly set
   1042   1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1043   1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1044   1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
   1045   1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1046   1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
   1047   1.7    dante 	 */
   1048   1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1049   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1050   1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1051   1.7    dante 	}
   1052   1.7    dante 
   1053   1.7    dante 	/*
   1054   1.7    dante 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1055   1.7    dante 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1056   1.7    dante 	 * configuration values.
   1057   1.7    dante 	 *
   1058   1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1059   1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1060   1.7    dante 	 * without determining here whether the device supports SDTR.
   1061   1.7    dante 	 */
   1062   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1063   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1064   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1065   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1066   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1067   1.7    dante 
   1068   1.7    dante 	/*
   1069   1.7    dante 	 * Set SCSI_CFG0 Microcode Default Value.
   1070   1.7    dante 	 *
   1071   1.7    dante 	 * The microcode will set the SCSI_CFG0 register using this value
   1072   1.7    dante 	 * after it is started below.
   1073   1.7    dante 	 */
   1074   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1075  1.10    dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1076  1.10    dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1077   1.7    dante 
   1078   1.7    dante 	/*
   1079   1.7    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1080   1.7    dante 	 *
   1081   1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1082   1.7    dante 	 * after it is started below.
   1083   1.7    dante 	 */
   1084   1.7    dante 
   1085   1.7    dante 	/* Read current SCSI_CFG1 Register value. */
   1086   1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1087   1.7    dante 
   1088   1.7    dante 	/*
   1089   1.7    dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1090   1.7    dante 	 * register signals will be set. Check for and return an error if
   1091   1.7    dante 	 * this condition is found.
   1092   1.7    dante 	 */
   1093   1.7    dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1094   1.7    dante 			0x3F07) {
   1095   1.7    dante 		return ASC_IERR_REVERSED_CABLE;
   1096   1.7    dante 	}
   1097   1.7    dante 
   1098   1.7    dante 	/*
   1099   1.7    dante 	 * All kind of combinations of devices attached to one of four connectors
   1100   1.7    dante 	 * are acceptable except HVD device attached. For example, LVD device can
   1101   1.7    dante 	 * be attached to SE connector while SE device attached to LVD connector.
   1102   1.7    dante 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1103   1.7    dante 	 *
   1104   1.7    dante 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1105   1.7    dante 	 * However, there is no way to detect HVD device attached to SE connectors.
   1106   1.7    dante 	 */
   1107   1.7    dante 	if (scsi_cfg1 & ADW_HVD) {
   1108   1.7    dante 		return ASC_IERR_HVD_DEVICE;
   1109   1.7    dante 	}
   1110   1.7    dante 
   1111   1.7    dante 	/*
   1112   1.7    dante 	 * If either SE or LVD automatic termination control is enabled, then
   1113   1.7    dante 	 * set the termination value based on a table listed in a_condor.h.
   1114   1.7    dante 	 *
   1115   1.7    dante 	 * If manual termination was specified with an EEPROM setting then
   1116   1.7    dante 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready to
   1117   1.7    dante 	 * be 'ored' into SCSI_CFG1.
   1118   1.7    dante 	 */
   1119   1.7    dante 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1120   1.7    dante 		/* SE automatic termination control is enabled. */
   1121   1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1122   1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1123   1.7    dante 			case 0x1: case 0x2: case 0x3:
   1124   1.7    dante 				sc->cfg.termination |= ADW_TERM_SE;
   1125   1.7    dante 				break;
   1126   1.7    dante 
   1127   1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1128   1.7    dante 			case 0x0:
   1129   1.7    dante 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1130   1.7    dante 				break;
   1131   1.7    dante 		}
   1132   1.7    dante 	}
   1133   1.7    dante 
   1134   1.7    dante 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1135   1.7    dante 		/* LVD automatic termination control is enabled. */
   1136   1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1137   1.7    dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1138   1.7    dante 			case 0x4: case 0x8: case 0xC:
   1139   1.7    dante 				sc->cfg.termination |= ADW_TERM_LVD;
   1140   1.7    dante 				break;
   1141   1.7    dante 
   1142   1.7    dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1143   1.7    dante 			case 0x0:
   1144   1.7    dante 				break;
   1145   1.7    dante 		}
   1146   1.7    dante 	}
   1147   1.7    dante 
   1148   1.7    dante 	/*
   1149   1.7    dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1150   1.7    dante 	 */
   1151   1.7    dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1152   1.7    dante 
   1153   1.7    dante 	/*
   1154   1.7    dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1155   1.7    dante 	 */
   1156   1.7    dante 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1157   1.7    dante 
   1158   1.7    dante 	/*
   1159   1.7    dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1160   1.7    dante 	 * and set possibly modified termination control bits in the Microcode
   1161   1.7    dante 	 * SCSI_CFG1 Register Value.
   1162   1.7    dante 	 */
   1163   1.7    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1164   1.7    dante 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1165   1.7    dante 
   1166   1.7    dante 	/*
   1167   1.7    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1168   1.7    dante 	 *
   1169   1.7    dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1170   1.7    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1171   1.7    dante 	 *
   1172   1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1173   1.7    dante 	 * after it is started below.
   1174   1.7    dante 	 */
   1175   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1176   1.7    dante 
   1177   1.7    dante 	/*
   1178   1.7    dante 	 * Set MEM_CFG Microcode Default Value
   1179   1.7    dante 	 *
   1180   1.7    dante 	 * The microcode will set the MEM_CFG register using this value
   1181   1.7    dante 	 * after it is started below.
   1182   1.7    dante 	 *
   1183   1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1184   1.7    dante 	 * are defined.
   1185   1.7    dante 	 *
   1186   1.7    dante 	 * ASC-38C0800 has 16KB internal memory.
   1187   1.7    dante 	 */
   1188   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1189   1.7    dante 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1190   1.7    dante 
   1191   1.7    dante 	/*
   1192   1.7    dante 	 * Set SEL_MASK Microcode Default Value
   1193   1.7    dante 	 *
   1194   1.7    dante 	 * The microcode will set the SEL_MASK register using this value
   1195   1.7    dante 	 * after it is started below.
   1196   1.7    dante 	 */
   1197   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1198   1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1199   1.7    dante 
   1200   1.7    dante 
   1201   1.7    dante 	/*
   1202   1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1203   1.7    dante 	 */
   1204   1.7    dante 
   1205   1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1206   1.7    dante 		return ASC_IERR_NO_CARRIER;
   1207   1.7    dante 	}
   1208   1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1209   1.7    dante 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
   1210   1.7    dante 
   1211   1.7    dante 
   1212   1.7    dante 	/*
   1213   1.7    dante 	 * The first command issued will be placed in the stopper carrier.
   1214   1.7    dante 	 */
   1215   1.7    dante 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
   1216   1.7    dante 
   1217   1.7    dante 	/*
   1218   1.7    dante 	 * Set RISC ICQ physical address start value.
   1219   1.7    dante 	 */
   1220   1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
   1221   1.7    dante 
   1222   1.7    dante 	/*
   1223   1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1224   1.7    dante 	 */
   1225   1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1226   1.7    dante 		return ASC_IERR_NO_CARRIER;
   1227   1.7    dante 	}
   1228   1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1229   1.7    dante 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
   1230   1.7    dante 
   1231   1.7    dante 	/*
   1232   1.7    dante 	 * The first command completed by the RISC will be placed in
   1233   1.7    dante 	 * the stopper.
   1234   1.7    dante 	 *
   1235   1.7    dante 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
   1236   1.7    dante 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1237   1.7    dante 	 */
   1238   1.7    dante 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
   1239   1.7    dante 
   1240   1.7    dante 	/*
   1241   1.7    dante 	 * Set RISC IRQ physical address start value.
   1242   1.7    dante 	 */
   1243   1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
   1244   1.7    dante 	sc->carr_pending_cnt = 0;
   1245   1.7    dante 
   1246   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1247   1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1248   1.7    dante 	/*
   1249   1.7    dante 	 * Note: Don't remove the use of a temporary variable in
   1250   1.7    dante 	 * the following code, otherwise some C compiler
   1251   1.7    dante 	 * might turn the following lines into a no-op.
   1252   1.7    dante 	 */
   1253   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1254   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1255   1.7    dante 
   1256   1.7    dante 	/* finally, finally, gentlemen, start your engine */
   1257   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1258   1.7    dante 
   1259   1.7    dante 	/*
   1260   1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1261   1.7    dante 	 * Resets should be performed. The RISC has to be running
   1262   1.7    dante 	 * to issue a SCSI Bus Reset.
   1263   1.7    dante 	 */
   1264   1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1265   1.7    dante 		/*
   1266   1.7    dante 		 * If the BIOS Signature is present in memory, restore the
   1267   1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
   1268   1.7    dante 		 * a SCSI Bus Reset.
   1269   1.7    dante 		 */
   1270   1.7    dante 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1271   1.7    dante 				0x55AA) {
   1272   1.7    dante 			/*
   1273   1.7    dante 			 * Restore per TID negotiated values.
   1274   1.7    dante 			 */
   1275  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1276  1.10    dante 					wdtr_able);
   1277  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1278  1.10    dante 					sdtr_able);
   1279  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1280  1.10    dante 					tagqng_able);
   1281  1.10    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1282  1.10    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1283  1.10    dante 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1284  1.10    dante 						max_cmd[tid]);
   1285  1.10    dante 			}
   1286  1.10    dante 		} else {
   1287  1.10    dante 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1288  1.10    dante 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1289  1.10    dante 			}
   1290  1.10    dante 		}
   1291  1.10    dante 	}
   1292  1.10    dante 
   1293  1.10    dante 	return warn_code;
   1294  1.10    dante }
   1295  1.10    dante 
   1296  1.10    dante 
   1297  1.10    dante /*
   1298  1.10    dante  * Initialize the ASC-38C1600.
   1299  1.10    dante  *
   1300  1.10    dante  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   1301  1.10    dante  *
   1302  1.10    dante  * For a non-fatal error return a warning code. If there are no warnings
   1303  1.10    dante  * then 0 is returned.
   1304  1.10    dante  */
   1305  1.10    dante int
   1306  1.10    dante AdvInitAsc38C1600Driver(sc)
   1307  1.10    dante ADW_SOFTC      *sc;
   1308  1.10    dante {
   1309  1.10    dante 	bus_space_tag_t iot = sc->sc_iot;
   1310  1.10    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1311  1.10    dante 	u_int16_t	warn_code;
   1312  1.10    dante 	u_int32_t	sum;
   1313  1.10    dante 	int	  	begin_addr;
   1314  1.10    dante 	int	   	end_addr;
   1315  1.10    dante 	u_int16_t	code_sum;
   1316  1.10    dante 	int	   	word;
   1317  1.10    dante 	int	   	i, j;
   1318  1.10    dante 	int		adv_asc38C1600_expanded_size;
   1319  1.10    dante 	u_int16_t	scsi_cfg1;
   1320  1.10    dante 	u_int8_t	byte;
   1321  1.10    dante 	u_int8_t	tid;
   1322  1.10    dante 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
   1323  1.10    dante 								0x40-0x8F. */
   1324  1.10    dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1325  1.10    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
   1326  1.10    dante 
   1327  1.10    dante 
   1328  1.10    dante 	warn_code = 0;
   1329  1.10    dante 
   1330  1.10    dante 
   1331  1.10    dante 	/*
   1332  1.10    dante 	 * Save the RISC memory BIOS region before writing the microcode.
   1333  1.10    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
   1334  1.10    dante 	 * so its region must be saved and restored.
   1335  1.10    dante 	 *
   1336  1.10    dante 	 * Note: This code makes the assumption, which is currently true,
   1337  1.10    dante 	 * that a chip reset does not clear RISC LRAM.
   1338  1.10    dante 	 */
   1339  1.10    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1340  1.10    dante 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
   1341  1.10    dante 	}
   1342  1.10    dante 
   1343  1.10    dante 	/*
   1344  1.10    dante 	 * Save current per TID negotiated values.
   1345  1.10    dante 	 */
   1346  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   1347  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   1348  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   1349  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   1350  1.10    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1351  1.10    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1352  1.10    dante 			max_cmd[tid]);
   1353  1.10    dante 	}
   1354  1.10    dante 
   1355  1.10    dante 	/*
   1356  1.10    dante 	 * RAM BIST (RAM Built-In Self Test)
   1357  1.10    dante 	 *
   1358  1.10    dante 	 * Address : I/O base + offset 0x38h register (byte).
   1359  1.10    dante 	 * Function: Bit 7-6(RW) : RAM mode
   1360  1.10    dante 	 *			    Normal Mode   : 0x00
   1361  1.10    dante 	 *			    Pre-test Mode : 0x40
   1362  1.10    dante 	 *			    RAM Test Mode : 0x80
   1363  1.10    dante 	 *	     Bit 5	 : unused
   1364  1.10    dante 	 *	     Bit 4(RO)   : Done bit
   1365  1.10    dante 	 *	     Bit 3-0(RO) : Status
   1366  1.10    dante 	 *			    Host Error    : 0x08
   1367  1.10    dante 	 *			    Int_RAM Error : 0x04
   1368  1.10    dante 	 *			    RISC Error    : 0x02
   1369  1.10    dante 	 *			    SCSI Error    : 0x01
   1370  1.10    dante 	 *			    No Error	  : 0x00
   1371  1.10    dante 	 *
   1372  1.10    dante 	 * Note: RAM BIST code should be put right here, before loading the
   1373  1.10    dante 	 * microcode and after saving the RISC memory BIOS region.
   1374  1.10    dante 	 */
   1375  1.10    dante 
   1376  1.10    dante 	/*
   1377  1.10    dante 	 * LRAM Pre-test
   1378  1.10    dante 	 *
   1379  1.10    dante 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   1380  1.10    dante 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   1381  1.10    dante 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   1382  1.10    dante 	 * to NORMAL_MODE, return an error too.
   1383  1.10    dante 	 */
   1384  1.10    dante 	for (i = 0; i < 2; i++) {
   1385  1.10    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
   1386  1.10    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1387  1.10    dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1388  1.10    dante 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1389  1.10    dante 				PRE_TEST_VALUE) {
   1390  1.10    dante 			return ASC_IERR_BIST_PRE_TEST;
   1391  1.10    dante 		}
   1392  1.10    dante 
   1393  1.10    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1394  1.10    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1395  1.10    dante 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1396  1.10    dante 		    != NORMAL_VALUE) {
   1397  1.10    dante 			return ASC_IERR_BIST_PRE_TEST;
   1398  1.10    dante 		}
   1399  1.10    dante 	}
   1400  1.10    dante 
   1401  1.10    dante 	/*
   1402  1.10    dante 	 * LRAM Test - It takes about 1.5 ms to run through the test.
   1403  1.10    dante 	 *
   1404  1.10    dante 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   1405  1.10    dante 	 * If Done bit not set or Status not 0, save register byte, set the
   1406  1.10    dante 	 * err_code, and return an error.
   1407  1.10    dante 	 */
   1408  1.10    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1409  1.10    dante 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
   1410  1.10    dante 
   1411  1.10    dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1412  1.10    dante 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   1413  1.10    dante 		/* Get here if Done bit not set or Status not 0. */
   1414  1.10    dante 		return ASC_IERR_BIST_RAM_TEST;
   1415  1.10    dante 	}
   1416  1.10    dante 
   1417  1.10    dante 	/* We need to reset back to normal mode after LRAM test passes. */
   1418  1.10    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1419  1.10    dante 
   1420  1.10    dante 
   1421  1.10    dante 	/*
   1422  1.10    dante 	 * Load the Microcode
   1423  1.10    dante 	 *
   1424  1.10    dante 	 * Write the microcode image to RISC memory starting at address 0.
   1425  1.10    dante 	 *
   1426  1.10    dante 	 */
   1427  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1428  1.10    dante 
   1429  1.10    dante 	/* Assume the following compressed format of the microcode buffer:
   1430  1.10    dante 	 *
   1431  1.10    dante 	 *  254 word (508 byte) table indexed by byte code followed
   1432  1.10    dante 	 *  by the following byte codes:
   1433  1.10    dante 	 *
   1434  1.10    dante 	 *    1-Byte Code:
   1435  1.10    dante 	 *	00: Emit word 0 in table.
   1436  1.10    dante 	 *	01: Emit word 1 in table.
   1437  1.10    dante 	 *	.
   1438  1.10    dante 	 *	FD: Emit word 253 in table.
   1439  1.10    dante 	 *
   1440  1.10    dante 	 *    Multi-Byte Code:
   1441  1.10    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1442  1.10    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1443  1.10    dante 	 */
   1444  1.10    dante 	word = 0;
   1445  1.10    dante 	for (i = 253 * 2; i < adv_asc38C1600_mcode_size; i++) {
   1446  1.10    dante 		if (adv_asc38C1600_mcode[i] == 0xff) {
   1447  1.10    dante 			for (j = 0; j < adv_asc38C1600_mcode[i + 1]; j++) {
   1448  1.10    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1449  1.10    dante 				    (((u_int16_t)
   1450  1.10    dante 				    adv_asc38C1600_mcode[i + 3] << 8) |
   1451  1.10    dante 				    adv_asc38C1600_mcode[i + 2]));
   1452  1.10    dante 				word++;
   1453  1.10    dante 			}
   1454  1.10    dante 			i += 3;
   1455  1.10    dante 		} else if (adv_asc38C1600_mcode[i] == 0xfe) {
   1456  1.10    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1457  1.10    dante 			    adv_asc38C1600_mcode[i + 2] << 8) |
   1458  1.10    dante 			    adv_asc38C1600_mcode[i + 1]));
   1459  1.10    dante 			i += 2;
   1460  1.10    dante 			word++;
   1461  1.10    dante 		} else {
   1462  1.10    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1463  1.10    dante 			  adv_asc38C1600_mcode[(adv_asc38C1600_mcode[i] * 2) + 1] << 8) |
   1464  1.10    dante 			  adv_asc38C1600_mcode[adv_asc38C1600_mcode[i] * 2]));
   1465  1.10    dante 			word++;
   1466  1.10    dante 		}
   1467  1.10    dante 	}
   1468  1.10    dante 
   1469  1.10    dante 	/*
   1470  1.10    dante 	 * Set 'word' for later use to clear the rest of memory and save
   1471  1.10    dante 	 * the expanded mcode size.
   1472  1.10    dante 	 */
   1473  1.10    dante 	word *= 2;
   1474  1.10    dante 	adv_asc38C1600_expanded_size = word;
   1475  1.10    dante 
   1476  1.10    dante 	/*
   1477  1.10    dante 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
   1478  1.10    dante 	 */
   1479  1.10    dante 	for (; word < ADV_38C1600_MEMSIZE; word += 2) {
   1480  1.10    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1481  1.10    dante 	}
   1482  1.10    dante 
   1483  1.10    dante 	/*
   1484  1.10    dante 	 * Verify the microcode checksum.
   1485  1.10    dante 	 */
   1486  1.10    dante 	sum = 0;
   1487  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1488  1.10    dante 
   1489  1.10    dante 	for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
   1490  1.10    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1491  1.10    dante 	}
   1492  1.10    dante 
   1493  1.10    dante 	if (sum != adv_asc38C1600_mcode_chksum) {
   1494  1.10    dante 	    return ASC_IERR_MCODE_CHKSUM;
   1495  1.10    dante 	}
   1496  1.10    dante 
   1497  1.10    dante 	/*
   1498  1.10    dante 	 * Restore the RISC memory BIOS region.
   1499  1.10    dante 	 */
   1500  1.10    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1501  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
   1502  1.10    dante 				bios_mem[i]);
   1503  1.10    dante 	}
   1504  1.10    dante 
   1505  1.10    dante 	/*
   1506  1.10    dante 	 * Calculate and write the microcode code checksum to the microcode
   1507  1.10    dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   1508  1.10    dante 	 */
   1509  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   1510  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
   1511  1.10    dante 	code_sum = 0;
   1512  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1513  1.10    dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1514  1.10    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1515  1.10    dante 	}
   1516  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
   1517  1.10    dante 
   1518  1.10    dante 	/*
   1519  1.10    dante 	 * Read microcode version and date.
   1520  1.10    dante 	 */
   1521  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
   1522  1.10    dante 			sc->cfg.mcode_date);
   1523  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
   1524  1.10    dante 			sc->cfg.mcode_version);
   1525  1.10    dante 
   1526  1.10    dante 	/*
   1527  1.10    dante 	 * Set the chip type to indicate the ASC38C1600.
   1528  1.10    dante 	 */
   1529  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
   1530  1.10    dante 
   1531  1.10    dante 	/*
   1532  1.10    dante 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1533  1.10    dante 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1534  1.10    dante 	 * cable detection and then we are able to read C_DET[3:0].
   1535  1.10    dante 	 *
   1536  1.10    dante 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1537  1.10    dante 	 * Microcode Default Value' section below.
   1538  1.10    dante 	 */
   1539  1.10    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1540  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1541  1.10    dante 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1542  1.10    dante 
   1543  1.10    dante 	/*
   1544  1.10    dante 	 * If the PCI Configuration Command Register "Parity Error Response
   1545  1.10    dante 	 * Control" Bit was clear (0), then set the microcode variable
   1546  1.10    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1547  1.10    dante 	 * to ignore DMA parity errors.
   1548  1.10    dante 	 */
   1549  1.10    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1550  1.10    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1551  1.10    dante 		word |= CONTROL_FLAG_IGNORE_PERR;
   1552  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1553  1.10    dante 	}
   1554  1.10    dante 
   1555  1.10    dante 	/*
   1556  1.10    dante 	 * If the BIOS control flag AIPP (Asynchronous Information
   1557  1.10    dante 	 * Phase Protection) disable bit is not set, then set the firmware
   1558  1.10    dante 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   1559  1.10    dante 	 * AIPP checking and encoding.
   1560  1.10    dante 	 */
   1561  1.10    dante 	if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   1562  1.10    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1563  1.10    dante 		word |= CONTROL_FLAG_ENABLE_AIPP;
   1564  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1565  1.10    dante 	}
   1566  1.10    dante 
   1567  1.10    dante 	/*
   1568  1.10    dante 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   1569  1.10    dante 	 * and START_CTL_TH [3:2].
   1570  1.10    dante 	 */
   1571  1.10    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1572  1.10    dante 		FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1573  1.10    dante 
   1574  1.10    dante 	/*
   1575  1.10    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1576  1.10    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
   1577  1.10    dante 	 * device reports it is capable of in Inquiry byte 7.
   1578  1.10    dante 	 *
   1579  1.10    dante 	 * If SCSI Bus Resets have been disabled, then directly set
   1580  1.10    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1581  1.10    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1582  1.10    dante 	 * the Inquiry caused by host and target mismatched DTR values.
   1583  1.10    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1584  1.10    dante 	 * be assumed to be in Asynchronous, Narrow mode.
   1585  1.10    dante 	 */
   1586  1.10    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1587  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1588  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1589  1.10    dante 	}
   1590  1.10    dante 
   1591  1.10    dante 	/*
   1592  1.10    dante 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1593  1.10    dante 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1594  1.10    dante 	 * configuration values.
   1595  1.10    dante 	 *
   1596  1.10    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1597  1.10    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1598  1.10    dante 	 * without determining here whether the device supports SDTR.
   1599  1.10    dante 	 */
   1600  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1601  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1602  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1603  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1604  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1605  1.10    dante 
   1606  1.10    dante 	/*
   1607  1.10    dante 	 * Set SCSI_CFG0 Microcode Default Value.
   1608  1.10    dante 	 *
   1609  1.10    dante 	 * The microcode will set the SCSI_CFG0 register using this value
   1610  1.10    dante 	 * after it is started below.
   1611  1.10    dante 	 */
   1612  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1613  1.10    dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1614  1.10    dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1615  1.10    dante 
   1616  1.10    dante 	/*
   1617  1.10    dante 	 * Calculate SCSI_CFG1 Microcode Default Value.
   1618  1.10    dante 	 *
   1619  1.10    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1620  1.10    dante 	 * after it is started below.
   1621  1.10    dante 	 *
   1622  1.10    dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1623  1.10    dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1624  1.10    dante 	 */
   1625  1.10    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1626  1.10    dante 
   1627  1.10    dante 	/*
   1628  1.10    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1629  1.10    dante 	 * will be set. Check for and return an error if this condition is
   1630  1.10    dante 	 * found.
   1631  1.10    dante 	 */
   1632  1.10    dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1633  1.10    dante 			0x3F07) {
   1634  1.10    dante 		return ASC_IERR_REVERSED_CABLE;
   1635  1.10    dante 	}
   1636  1.10    dante 
   1637  1.10    dante 	/*
   1638  1.10    dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1639  1.10    dante 	 * can not be connected to either connector. An LVD device or SE device
   1640  1.10    dante 	 * may be connected to either connecor. If an SE device is connected,
   1641  1.10    dante 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1642  1.10    dante 	 *
   1643  1.10    dante 	 * If an HVD device is attached, return an error.
   1644  1.10    dante 	 */
   1645  1.10    dante 	if (scsi_cfg1 & ADW_HVD) {
   1646  1.10    dante 		return ASC_IERR_HVD_DEVICE;
   1647  1.10    dante 	}
   1648  1.10    dante 
   1649  1.10    dante 	/*
   1650  1.10    dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1651  1.10    dante 	 * termination because there are two connectors for each function. Each
   1652  1.10    dante 	 * function may use either LVD or SE mode. Corresponding the SE automatic
   1653  1.10    dante 	 * termination control EEPROM bits are used for each function. Each
   1654  1.10    dante 	 * function has its own EEPROM. If SE automatic control is enabled for
   1655  1.10    dante 	 * the function, then set the termination value based on a table listed
   1656  1.10    dante 	 * in a_condor.h.
   1657  1.10    dante 	 *
   1658  1.10    dante 	 * If manual termination is specified in the EEPROM for the function,
   1659  1.10    dante 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   1660  1.10    dante 	 * ready to be 'ored' into SCSI_CFG1.
   1661  1.10    dante 	 */
   1662  1.10    dante 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1663  1.10    dante 		/* SE automatic termination control is enabled. */
   1664  1.10    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1665  1.10    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1666  1.10    dante 			case 0x1: case 0x2: case 0x3:
   1667  1.10    dante 				sc->cfg.termination |= ADW_TERM_SE;
   1668  1.10    dante 				break;
   1669  1.10    dante 
   1670  1.10    dante 			case 0x0:
   1671  1.10    dante 	/* !!!!TODO!!!! */
   1672  1.10    dante //				if (ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info) == 0) {
   1673  1.10    dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1674  1.10    dante //				}
   1675  1.10    dante //				else
   1676  1.10    dante //				{
   1677  1.10    dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1678  1.10    dante 					sc->cfg.termination |= ADW_TERM_SE_HI;
   1679  1.10    dante //				}
   1680  1.10    dante 				break;
   1681  1.10    dante 			}
   1682  1.10    dante 	}
   1683  1.10    dante 
   1684  1.10    dante 	/*
   1685  1.10    dante 	 * Clear any set TERM_SE bits.
   1686  1.10    dante 	 */
   1687  1.10    dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1688  1.10    dante 
   1689  1.10    dante 	/*
   1690  1.10    dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1691  1.10    dante 	 */
   1692  1.10    dante 	scsi_cfg1 |= (~sc->cfg.termination & ADW_TERM_SE);
   1693  1.10    dante 
   1694  1.10    dante 	/*
   1695  1.10    dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1696  1.10    dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1697  1.10    dante 	 * Register Value.
   1698  1.10    dante 	 */
   1699  1.10    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1700  1.10    dante 
   1701  1.10    dante 	/*
   1702  1.10    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1703  1.10    dante 	 *
   1704  1.10    dante 	 * Set possibly modified termination control bits in the Microcode
   1705  1.10    dante 	 * SCSI_CFG1 Register Value.
   1706  1.10    dante 	 *
   1707  1.10    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1708  1.10    dante 	 * after it is started below.
   1709  1.10    dante 	 */
   1710  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1711  1.10    dante 
   1712  1.10    dante 	/*
   1713  1.10    dante 	 * Set MEM_CFG Microcode Default Value
   1714  1.10    dante 	 *
   1715  1.10    dante 	 * The microcode will set the MEM_CFG register using this value
   1716  1.10    dante 	 * after it is started below.
   1717  1.10    dante 	 *
   1718  1.10    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1719  1.10    dante 	 * are defined.
   1720  1.10    dante 	 *
   1721  1.10    dante 	 * ASC-38C1600 has 32KB internal memory.
   1722  1.10    dante 	 */
   1723  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1724  1.10    dante 		ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1725  1.10    dante 
   1726  1.10    dante 	/*
   1727  1.10    dante 	 * Set SEL_MASK Microcode Default Value
   1728  1.10    dante 	 *
   1729  1.10    dante 	 * The microcode will set the SEL_MASK register using this value
   1730  1.10    dante 	 * after it is started below.
   1731  1.10    dante 	 */
   1732  1.10    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1733  1.10    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1734  1.10    dante 
   1735  1.10    dante 	/*
   1736  1.10    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1737  1.10    dante 	 */
   1738  1.10    dante 
   1739  1.10    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1740  1.10    dante 		return ASC_IERR_NO_CARRIER;
   1741  1.10    dante 	}
   1742  1.10    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1743  1.10    dante 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
   1744  1.10    dante 
   1745  1.10    dante 	/*
   1746  1.10    dante 	 * The first command issued will be placed in the stopper carrier.
   1747  1.10    dante 	 */
   1748  1.10    dante 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
   1749  1.10    dante 
   1750  1.10    dante 	/*
   1751  1.10    dante 	 * Set RISC ICQ physical address start value. Initialize the
   1752  1.10    dante 	 * COMMA register to the same value otherwise the RISC will
   1753  1.10    dante 	 * prematurely detect a command is available.
   1754  1.10    dante 	 */
   1755  1.10    dante     ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
   1756  1.10    dante     ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, sc->icq_sp->carr_pa);
   1757  1.10    dante 
   1758  1.10    dante 	/*
   1759  1.10    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1760  1.10    dante 	 */
   1761  1.10    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1762  1.10    dante 		return ASC_IERR_NO_CARRIER;
   1763  1.10    dante 	}
   1764  1.10    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1765  1.10    dante 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
   1766  1.10    dante 
   1767  1.10    dante 	/*
   1768  1.10    dante 	 * The first command completed by the RISC will be placed in
   1769  1.10    dante 	 * the stopper.
   1770  1.10    dante 	 *
   1771  1.10    dante 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
   1772  1.10    dante 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1773  1.10    dante 	 */
   1774  1.10    dante 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
   1775  1.10    dante 
   1776  1.10    dante 	/*
   1777  1.10    dante 	 * Set RISC IRQ physical address start value.
   1778  1.10    dante 	 */
   1779  1.10    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
   1780  1.10    dante 	sc->carr_pending_cnt = 0;
   1781  1.10    dante 
   1782  1.10    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1783  1.10    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1784  1.10    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1785  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1786  1.10    dante 
   1787  1.10    dante 	/* finally, finally, gentlemen, start your engine */
   1788  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1789  1.10    dante 
   1790  1.10    dante 	/*
   1791  1.10    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1792  1.10    dante 	 * Resets should be performed. The RISC has to be running
   1793  1.10    dante 	 * to issue a SCSI Bus Reset.
   1794  1.10    dante 	 */
   1795  1.10    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1796  1.10    dante 		/*
   1797  1.10    dante 		 * If the BIOS Signature is present in memory, restore the
   1798  1.10    dante 		 * per TID microcode operating variables.
   1799  1.10    dante 		 */
   1800  1.10    dante 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1801  1.10    dante 				0x55AA) {
   1802  1.10    dante 			/*
   1803  1.10    dante 			 * Restore per TID negotiated values.
   1804  1.10    dante 			 */
   1805  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1806  1.10    dante 					wdtr_able);
   1807  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1808  1.10    dante 					sdtr_able);
   1809  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   1810  1.10    dante 					ppr_able);
   1811  1.10    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1812  1.10    dante 					tagqng_able);
   1813  1.10    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1814  1.10    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1815  1.10    dante 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1816  1.10    dante 						max_cmd[tid]);
   1817  1.10    dante 			}
   1818  1.10    dante 		} else {
   1819  1.10    dante 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1820  1.10    dante 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1821  1.10    dante 			}
   1822  1.10    dante 		}
   1823  1.10    dante 	}
   1824  1.10    dante 
   1825  1.10    dante 	return warn_code;
   1826  1.10    dante }
   1827  1.10    dante 
   1828  1.10    dante 
   1829  1.10    dante /*
   1830  1.10    dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1831  1.10    dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1832  1.10    dante  * all of this is done.
   1833  1.10    dante  *
   1834  1.10    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1835  1.10    dante  *
   1836  1.10    dante  * For a non-fatal error return a warning code. If there are no warnings
   1837  1.10    dante  * then 0 is returned.
   1838  1.10    dante  *
   1839  1.10    dante  * Note: Chip is stopped on entry.
   1840  1.10    dante  */
   1841  1.10    dante int
   1842  1.10    dante AdvInitFrom3550EEP(sc)
   1843  1.10    dante ADW_SOFTC      *sc;
   1844  1.10    dante {
   1845  1.10    dante 	bus_space_tag_t iot = sc->sc_iot;
   1846  1.10    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1847  1.10    dante 	u_int16_t		warn_code;
   1848  1.10    dante 	ADW_EEP_3550_CONFIG	eep_config;
   1849  1.10    dante 	int			i;
   1850  1.10    dante 
   1851  1.10    dante 
   1852  1.10    dante 	warn_code = 0;
   1853  1.10    dante 
   1854  1.10    dante 	/*
   1855  1.10    dante 	 * Read the board's EEPROM configuration.
   1856  1.10    dante 	 *
   1857  1.10    dante 	 * Set default values if a bad checksum is found.
   1858  1.10    dante 	 *
   1859  1.10    dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
   1860  1.10    dante 	 */
   1861  1.10    dante 	if (AdvGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1862  1.10    dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   1863  1.10    dante 
   1864  1.10    dante 		/*
   1865  1.10    dante 		 * Set EEPROM default values.
   1866  1.10    dante 		 */
   1867  1.10    dante 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1868  1.10    dante 			*((u_int8_t *) &eep_config + i) =
   1869  1.10    dante 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1870  1.10    dante 		}
   1871  1.10    dante 
   1872  1.10    dante 		/*
   1873  1.10    dante 		 * Assume the 6 byte board serial number that was read
   1874  1.10    dante 		 * from EEPROM is correct even if the EEPROM checksum
   1875  1.10    dante 		 * failed.
   1876  1.10    dante 		 */
   1877  1.10    dante 		eep_config.serial_number_word3 =
   1878  1.10    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1879  1.10    dante 
   1880  1.10    dante 		eep_config.serial_number_word2 =
   1881  1.10    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1882  1.10    dante 
   1883  1.10    dante 		eep_config.serial_number_word1 =
   1884  1.10    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1885  1.10    dante 
   1886  1.10    dante 		AdvSet3550EEPConfig(iot, ioh, &eep_config);
   1887  1.10    dante 	}
   1888  1.10    dante 	/*
   1889  1.10    dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
   1890  1.10    dante 	 * that was read.
   1891  1.10    dante 	 *
   1892  1.10    dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
   1893  1.10    dante 	 */
   1894  1.10    dante 	sc->wdtr_able = eep_config.wdtr_able;
   1895  1.10    dante 	sc->sdtr_able = eep_config.sdtr_able;
   1896  1.10    dante 	sc->ultra_able = eep_config.ultra_able;
   1897  1.10    dante 	sc->tagqng_able = eep_config.tagqng_able;
   1898  1.10    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   1899  1.10    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1900  1.10    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1901  1.10    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1902  1.10    dante 	sc->start_motor = eep_config.start_motor;
   1903  1.10    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1904  1.10    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   1905  1.10    dante 	sc->no_scam = eep_config.scam_tolerant;
   1906  1.10    dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1907  1.10    dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1908  1.10    dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1909  1.10    dante 
   1910  1.10    dante 	/*
   1911  1.10    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1912  1.10    dante 	 * maximum queuing (max. 63, min. 4).
   1913  1.10    dante 	 */
   1914  1.10    dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   1915  1.10    dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1916  1.10    dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG)
   1917  1.10    dante 	{
   1918  1.10    dante 		/* If the value is zero, assume it is uninitialized. */
   1919  1.10    dante 		if (eep_config.max_host_qng == 0) {
   1920  1.10    dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1921  1.10    dante 		} else {
   1922  1.10    dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   1923  1.10    dante 		}
   1924  1.10    dante 	}
   1925  1.10    dante 
   1926  1.10    dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   1927  1.10    dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1928  1.10    dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   1929  1.10    dante 		/* If the value is zero, assume it is uninitialized. */
   1930  1.10    dante 		if (eep_config.max_dvc_qng == 0) {
   1931  1.10    dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1932  1.10    dante 		} else {
   1933  1.10    dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   1934  1.10    dante 		}
   1935  1.10    dante 	}
   1936  1.10    dante 
   1937  1.10    dante 	/*
   1938  1.10    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1939  1.10    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1940  1.10    dante 	 */
   1941  1.10    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1942  1.10    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1943  1.10    dante 	}
   1944  1.10    dante 
   1945  1.10    dante 	/*
   1946  1.10    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1947  1.10    dante 	 * values based on possibly adjusted EEPROM values.
   1948  1.10    dante 	 */
   1949  1.10    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1950  1.10    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1951  1.10    dante 
   1952  1.10    dante 
   1953  1.10    dante 	/*
   1954  1.10    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1955  1.10    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1956  1.10    dante 	 *
   1957  1.10    dante 	 * If the termination is specified with a non-zero 'termination'
   1958  1.10    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1959  1.10    dante 	 * 'termination' field appropriately.
   1960  1.10    dante 	 */
   1961  1.10    dante 
   1962  1.10    dante 	sc->cfg.termination = 0;	/* auto termination */
   1963  1.10    dante 	switch(eep_config.termination) {
   1964  1.10    dante 	case 3:
   1965  1.10    dante 		/* Enable manual control with low on / high on. */
   1966  1.10    dante 		sc->cfg.termination |= ADW_TERM_CTL_L;
   1967  1.10    dante 	case 2:
   1968  1.10    dante 		/* Enable manual control with low off / high on. */
   1969  1.10    dante 		sc->cfg.termination |= ADW_TERM_CTL_H;
   1970  1.10    dante 	case 1:
   1971  1.10    dante 		/* Enable manual control with low off / high off. */
   1972  1.10    dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
   1973  1.10    dante 	case 0:
   1974  1.10    dante 		break;
   1975  1.10    dante 	default:
   1976  1.10    dante 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1977   1.7    dante 	}
   1978   1.7    dante 
   1979   1.7    dante 	return warn_code;
   1980   1.7    dante }
   1981   1.7    dante 
   1982   1.7    dante 
   1983   1.7    dante /*
   1984   1.7    dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1985   1.7    dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1986   1.7    dante  * all of this is done.
   1987   1.7    dante  *
   1988   1.7    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1989   1.7    dante  *
   1990   1.7    dante  * For a non-fatal error return a warning code. If there are no warnings
   1991   1.7    dante  * then 0 is returned.
   1992   1.7    dante  *
   1993   1.7    dante  * Note: Chip is stopped on entry.
   1994   1.7    dante  */
   1995   1.7    dante int
   1996  1.10    dante AdvInitFrom38C0800EEP(sc)
   1997   1.7    dante ADW_SOFTC      *sc;
   1998   1.7    dante {
   1999   1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   2000   1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2001   1.7    dante 	u_int16_t		warn_code;
   2002  1.10    dante 	ADW_EEP_38C0800_CONFIG	eep_config;
   2003   1.7    dante 	int			i;
   2004  1.10    dante 	u_int8_t		tid, termination;
   2005  1.10    dante 	u_int16_t		sdtr_speed = 0;
   2006   1.7    dante 
   2007   1.7    dante 
   2008   1.7    dante 	warn_code = 0;
   2009   1.7    dante 
   2010   1.7    dante 	/*
   2011   1.7    dante 	 * Read the board's EEPROM configuration.
   2012   1.7    dante 	 *
   2013   1.7    dante 	 * Set default values if a bad checksum is found.
   2014   1.7    dante 	 */
   2015  1.10    dante 	if (AdvGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   2016  1.10    dante 			eep_config.check_sum) {
   2017   1.7    dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2018   1.7    dante 
   2019   1.7    dante 		/*
   2020   1.7    dante 		 * Set EEPROM default values.
   2021   1.7    dante 		 */
   2022  1.10    dante 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   2023   1.7    dante 			*((u_int8_t *) &eep_config + i) =
   2024  1.10    dante 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   2025   1.7    dante 		}
   2026   1.7    dante 
   2027   1.7    dante 		/*
   2028   1.7    dante 		 * Assume the 6 byte board serial number that was read
   2029   1.7    dante 		 * from EEPROM is correct even if the EEPROM checksum
   2030   1.7    dante 		 * failed.
   2031   1.7    dante 		 */
   2032   1.7    dante 		eep_config.serial_number_word3 =
   2033   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2034   1.7    dante 
   2035   1.7    dante 		eep_config.serial_number_word2 =
   2036   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2037   1.7    dante 
   2038   1.7    dante 		eep_config.serial_number_word1 =
   2039   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2040   1.7    dante 
   2041  1.10    dante 		AdvSet38C0800EEPConfig(iot, ioh, &eep_config);
   2042   1.7    dante 	}
   2043   1.7    dante 	/*
   2044  1.10    dante 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   2045   1.7    dante 	 * EEPROM configuration that was read.
   2046   1.7    dante 	 *
   2047   1.7    dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2048   1.7    dante 	 */
   2049   1.7    dante 	sc->wdtr_able = eep_config.wdtr_able;
   2050  1.10    dante 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2051  1.10    dante 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2052  1.10    dante 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2053  1.10    dante 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2054   1.7    dante 	sc->tagqng_able = eep_config.tagqng_able;
   2055   1.7    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   2056   1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   2057   1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2058   1.7    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2059   1.7    dante 	sc->start_motor = eep_config.start_motor;
   2060   1.7    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2061   1.7    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   2062   1.7    dante 	sc->no_scam = eep_config.scam_tolerant;
   2063   1.7    dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   2064   1.7    dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   2065   1.7    dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   2066   1.7    dante 
   2067   1.7    dante 	/*
   2068  1.10    dante 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2069  1.10    dante 	 * are set, then set an 'sdtr_able' bit for it.
   2070  1.10    dante 	 */
   2071  1.10    dante 	sc->sdtr_able = 0;
   2072  1.10    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2073  1.10    dante 		if (tid == 0) {
   2074  1.10    dante 			sdtr_speed = sc->sdtr_speed1;
   2075  1.10    dante 		} else if (tid == 4) {
   2076  1.10    dante 			sdtr_speed = sc->sdtr_speed2;
   2077  1.10    dante 		} else if (tid == 8) {
   2078  1.10    dante 			sdtr_speed = sc->sdtr_speed3;
   2079  1.10    dante 		} else if (tid == 12) {
   2080  1.10    dante 			sdtr_speed = sc->sdtr_speed4;
   2081  1.10    dante 		}
   2082  1.10    dante 		if (sdtr_speed & ADW_MAX_TID) {
   2083  1.10    dante 			sc->sdtr_able |= (1 << tid);
   2084  1.10    dante 		}
   2085  1.10    dante 		sdtr_speed >>= 4;
   2086  1.10    dante 	}
   2087  1.10    dante 
   2088  1.10    dante 	/*
   2089   1.7    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2090   1.7    dante 	 * maximum queuing (max. 63, min. 4).
   2091   1.7    dante 	 */
   2092   1.7    dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2093   1.7    dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2094  1.10    dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2095   1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   2096   1.7    dante 		if (eep_config.max_host_qng == 0) {
   2097   1.7    dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2098   1.7    dante 		} else {
   2099   1.7    dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2100   1.7    dante 		}
   2101   1.7    dante 	}
   2102   1.7    dante 
   2103   1.7    dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2104   1.7    dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2105   1.7    dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2106   1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   2107   1.7    dante 		if (eep_config.max_dvc_qng == 0) {
   2108   1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2109   1.7    dante 		} else {
   2110   1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2111   1.7    dante 		}
   2112   1.7    dante 	}
   2113   1.7    dante 
   2114   1.7    dante 	/*
   2115   1.7    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2116   1.7    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2117   1.7    dante 	 */
   2118   1.7    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2119   1.7    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2120   1.7    dante 	}
   2121   1.7    dante 
   2122   1.7    dante 	/*
   2123   1.7    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   2124   1.7    dante 	 * values based on possibly adjusted EEPROM values.
   2125   1.7    dante 	 */
   2126   1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   2127   1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2128   1.7    dante 
   2129   1.7    dante 	/*
   2130   1.7    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2131   1.7    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   2132   1.7    dante 	 *
   2133   1.7    dante 	 * If the termination is specified with a non-zero 'termination'
   2134   1.7    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   2135   1.7    dante 	 * 'termination' field appropriately.
   2136   1.7    dante 	 */
   2137  1.10    dante 
   2138  1.10    dante 	switch(eep_config.termination_se) {
   2139  1.10    dante 	case 0:
   2140  1.10    dante 		/* auto termination for SE */
   2141  1.10    dante 		termination = 0;
   2142  1.10    dante 		break;
   2143  1.10    dante 	case 1:
   2144   1.7    dante 		/* Enable manual control with low off / high off. */
   2145  1.10    dante 		termination = 0;
   2146  1.10    dante 		break;
   2147  1.10    dante 	case 2:
   2148  1.10    dante 		/* Enable manual control with low off / high on. */
   2149  1.10    dante 		termination = ADW_TERM_SE_HI;
   2150  1.10    dante 		break;
   2151  1.10    dante 	case 3:
   2152  1.10    dante 		/* Enable manual control with low on / high on. */
   2153  1.10    dante 		termination = ADW_TERM_SE;
   2154  1.10    dante 		break;
   2155  1.10    dante 	default:
   2156  1.10    dante 		/*
   2157  1.10    dante 		 * The EEPROM 'termination_se' field contains a bad value.
   2158  1.10    dante 		 * Use automatic termination instead.
   2159  1.10    dante 		 */
   2160  1.10    dante 		termination = 0;
   2161  1.10    dante 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2162  1.10    dante 	}
   2163   1.7    dante 
   2164  1.10    dante 	switch(eep_config.termination_lvd) {
   2165  1.10    dante 	case 0:
   2166  1.10    dante 		/* auto termination for LVD */
   2167  1.10    dante 		sc->cfg.termination = termination;
   2168  1.10    dante 		break;
   2169  1.10    dante 	case 1:
   2170  1.10    dante 		/* Enable manual control with low off / high off. */
   2171  1.10    dante 		sc->cfg.termination = termination;
   2172  1.10    dante 		break;
   2173  1.10    dante 	case 2:
   2174   1.7    dante 		/* Enable manual control with low off / high on. */
   2175  1.10    dante 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2176  1.10    dante 		break;
   2177  1.10    dante 	case 3:
   2178   1.7    dante 		/* Enable manual control with low on / high on. */
   2179  1.10    dante 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2180  1.10    dante 		break;
   2181  1.10    dante 	default:
   2182  1.10    dante 		/*
   2183  1.10    dante 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2184  1.10    dante 		 * Use automatic termination instead.
   2185  1.10    dante 		 */
   2186  1.10    dante 		sc->cfg.termination = termination;
   2187  1.10    dante 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2188   1.7    dante 	}
   2189   1.7    dante 
   2190   1.7    dante 	return warn_code;
   2191   1.7    dante }
   2192   1.7    dante 
   2193   1.7    dante 
   2194   1.7    dante /*
   2195  1.10    dante  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
   2196  1.10    dante  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2197   1.7    dante  * all of this is done.
   2198   1.7    dante  *
   2199  1.10    dante  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   2200   1.7    dante  *
   2201   1.7    dante  * For a non-fatal error return a warning code. If there are no warnings
   2202   1.7    dante  * then 0 is returned.
   2203   1.7    dante  *
   2204   1.7    dante  * Note: Chip is stopped on entry.
   2205   1.7    dante  */
   2206   1.7    dante int
   2207  1.10    dante AdvInitFrom38C1600EEP(sc)
   2208   1.7    dante ADW_SOFTC      *sc;
   2209   1.7    dante {
   2210   1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   2211   1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2212   1.7    dante 	u_int16_t		warn_code;
   2213  1.10    dante 	ADW_EEP_38C1600_CONFIG	eep_config;
   2214   1.7    dante 	int			i;
   2215   1.7    dante 	u_int8_t		tid, termination;
   2216   1.7    dante 	u_int16_t		sdtr_speed = 0;
   2217   1.7    dante 
   2218   1.7    dante 
   2219   1.7    dante 	warn_code = 0;
   2220   1.7    dante 
   2221   1.7    dante 	/*
   2222   1.7    dante 	 * Read the board's EEPROM configuration.
   2223   1.7    dante 	 *
   2224   1.7    dante 	 * Set default values if a bad checksum is found.
   2225   1.7    dante 	 */
   2226  1.10    dante 	if (AdvGet38C1600EEPConfig(iot, ioh, &eep_config) !=
   2227   1.7    dante 			eep_config.check_sum) {
   2228   1.7    dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2229   1.7    dante 
   2230   1.7    dante 		/*
   2231   1.7    dante 		 * Set EEPROM default values.
   2232   1.7    dante 		 */
   2233  1.10    dante  		for (i = 0; i < sizeof(ADW_EEP_38C1600_CONFIG); i++) {
   2234  1.10    dante 	/* !!!!TODO!!!! */
   2235  1.10    dante //			if (i == 1 && ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
   2236  1.10    dante 			if (i == 1 ) {
   2237  1.10    dante 				/*
   2238  1.10    dante 				 * Set Function 1 EEPROM Word 0 MSB
   2239  1.10    dante 				 *
   2240  1.10    dante 				 * Clear the BIOS_ENABLE (bit 14) and INTAB (bit 11)
   2241  1.10    dante 				 * EEPROM bits.
   2242  1.10    dante 				 *
   2243  1.10    dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 and
   2244  1.10    dante 				 * old Mac system booting problem. The Expansion ROM must
   2245  1.10    dante 				 * be disabled in Function 1 for these systems.
   2246  1.10    dante 				 *
   2247  1.10    dante 				 */
   2248  1.10    dante 				*((u_int8_t *) &eep_config + i) =
   2249  1.10    dante 					((*((u_int8_t *) &Default_38C1600_EEPROM_Config + i)) &
   2250  1.10    dante 					(~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) &
   2251  1.10    dante 					0xFF)));
   2252  1.10    dante 
   2253  1.10    dante 				/*
   2254  1.10    dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
   2255  1.10    dante 				 * indicates the Function 1 interrupt line is
   2256  1.10    dante 				 * wired to INTA.
   2257  1.10    dante 				 *
   2258  1.10    dante 				 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
   2259  1.10    dante 				 *   1 - Function 1 interrupt line wired to INT A.
   2260  1.10    dante 				 *   0 - Function 1 interrupt line wired to INT B.
   2261  1.10    dante 				 *
   2262  1.10    dante 				 * Note: Adapter boards always have Function 0
   2263  1.10    dante 				 * wired to INTA.
   2264  1.10    dante 				 * Put all 5 GPIO bits in input mode and then
   2265  1.10    dante 				 * read their input values.
   2266  1.10    dante 				 */
   2267  1.10    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2268  1.10    dante 					IOPB_GPIO_CNTL, 0);
   2269  1.10    dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
   2270  1.10    dante 						IOPB_GPIO_DATA) & 0x01) {
   2271  1.10    dante 					/* Function 1 interrupt wired to INTA;
   2272  1.10    dante 					   Set EEPROM bit. */
   2273  1.10    dante 					*((u_int8_t *) &eep_config + i) |=
   2274  1.10    dante 						((ADW_EEPROM_INTAB >> 8) &0xFF);
   2275  1.10    dante 				}
   2276  1.10    dante 			} else {
   2277  1.10    dante 				*((u_int8_t *)&eep_config + i) =
   2278  1.10    dante 				*((u_int8_t *)&Default_38C1600_EEPROM_Config+i);
   2279  1.10    dante 			}
   2280   1.7    dante 		}
   2281   1.7    dante 
   2282   1.7    dante 		/*
   2283   1.7    dante 		 * Assume the 6 byte board serial number that was read
   2284   1.7    dante 		 * from EEPROM is correct even if the EEPROM checksum
   2285   1.7    dante 		 * failed.
   2286   1.7    dante 		 */
   2287   1.7    dante 		eep_config.serial_number_word3 =
   2288   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2289   1.7    dante 
   2290   1.7    dante 		eep_config.serial_number_word2 =
   2291   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2292   1.7    dante 
   2293   1.7    dante 		eep_config.serial_number_word1 =
   2294   1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2295   1.7    dante 
   2296  1.10    dante 		AdvSet38C1600EEPConfig(iot, ioh, &eep_config);
   2297   1.7    dante 	}
   2298  1.10    dante 
   2299   1.7    dante 	/*
   2300  1.10    dante 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   2301   1.7    dante 	 * EEPROM configuration that was read.
   2302   1.7    dante 	 *
   2303   1.7    dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2304   1.7    dante 	 */
   2305   1.7    dante 	sc->wdtr_able = eep_config.wdtr_able;
   2306   1.7    dante 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2307   1.7    dante 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2308   1.7    dante 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2309   1.7    dante 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2310  1.10    dante 	sc->ppr_able = 0;
   2311   1.7    dante 	sc->tagqng_able = eep_config.tagqng_able;
   2312   1.7    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   2313   1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   2314   1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2315   1.7    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2316   1.7    dante 	sc->start_motor = eep_config.start_motor;
   2317   1.7    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2318   1.7    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   2319   1.7    dante 	sc->no_scam = eep_config.scam_tolerant;
   2320   1.7    dante 
   2321   1.7    dante 	/*
   2322   1.7    dante 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2323   1.7    dante 	 * are set, then set an 'sdtr_able' bit for it.
   2324   1.7    dante 	 */
   2325   1.7    dante 	sc->sdtr_able = 0;
   2326   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2327   1.7    dante 		if (tid == 0) {
   2328   1.7    dante 			sdtr_speed = sc->sdtr_speed1;
   2329   1.7    dante 		} else if (tid == 4) {
   2330   1.7    dante 			sdtr_speed = sc->sdtr_speed2;
   2331   1.7    dante 		} else if (tid == 8) {
   2332   1.7    dante 			sdtr_speed = sc->sdtr_speed3;
   2333   1.7    dante 		} else if (tid == 12) {
   2334   1.7    dante 			sdtr_speed = sc->sdtr_speed4;
   2335   1.7    dante 		}
   2336   1.7    dante 		if (sdtr_speed & ADW_MAX_TID) {
   2337   1.7    dante 			sc->sdtr_able |= (1 << tid);
   2338   1.7    dante 		}
   2339   1.7    dante 		sdtr_speed >>= 4;
   2340   1.7    dante 	}
   2341   1.7    dante 
   2342   1.7    dante 	/*
   2343   1.7    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2344   1.7    dante 	 * maximum queuing (max. 63, min. 4).
   2345   1.7    dante 	 */
   2346   1.7    dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2347   1.7    dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2348   1.7    dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2349   1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   2350   1.7    dante 		if (eep_config.max_host_qng == 0) {
   2351   1.7    dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2352   1.7    dante 		} else {
   2353   1.7    dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2354   1.7    dante 		}
   2355   1.7    dante 	}
   2356   1.7    dante 
   2357   1.7    dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2358   1.7    dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2359   1.7    dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2360   1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   2361   1.7    dante 		if (eep_config.max_dvc_qng == 0) {
   2362   1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2363   1.7    dante 		} else {
   2364   1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2365   1.7    dante 		}
   2366   1.7    dante 	}
   2367   1.7    dante 
   2368   1.7    dante 	/*
   2369   1.7    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2370   1.7    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2371   1.7    dante 	 */
   2372   1.7    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2373   1.7    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2374   1.7    dante 	}
   2375   1.7    dante 
   2376   1.7    dante 	/*
   2377  1.10    dante 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
   2378   1.7    dante 	 * values based on possibly adjusted EEPROM values.
   2379   1.7    dante 	 */
   2380   1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   2381   1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2382   1.7    dante 
   2383   1.7    dante 	/*
   2384   1.7    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2385  1.10    dante 	 * the ASC_DVC_CFG 'termination' field to automatic also.
   2386   1.7    dante 	 *
   2387   1.7    dante 	 * If the termination is specified with a non-zero 'termination'
   2388  1.10    dante 	 * value check that a legal value is set and set the ASC_DVC_CFG
   2389   1.7    dante 	 * 'termination' field appropriately.
   2390   1.7    dante 	 */
   2391   1.7    dante 
   2392  1.10    dante 	switch(eep_config.termination_se) {
   2393  1.10    dante 	case 0:	/* auto termination for SE */
   2394  1.10    dante 		termination = 0;
   2395  1.10    dante 		break;
   2396  1.10    dante 	case 1:	/* Enable manual control with low off / high off. */
   2397  1.10    dante 		termination = 0;
   2398  1.10    dante 		break;
   2399  1.10    dante 	case 2:	/* Enable manual control with low off / high on. */
   2400  1.10    dante 		termination = ADW_TERM_SE_HI;
   2401  1.10    dante 		break;
   2402  1.10    dante 	case 3:	/* Enable manual control with low on / high on. */
   2403  1.10    dante 		termination = ADW_TERM_SE;
   2404  1.10    dante 		break;
   2405  1.10    dante 	default:
   2406  1.10    dante 		/*
   2407  1.10    dante 		 * The EEPROM 'termination_se' field contains a bad value.
   2408  1.10    dante 		 * Use automatic termination instead.
   2409  1.10    dante 		 */
   2410  1.10    dante 		termination = 0;
   2411  1.10    dante 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2412   1.7    dante 	}
   2413   1.7    dante 
   2414  1.10    dante 	switch(eep_config.termination_lvd) {
   2415  1.10    dante 	case 0:	/* auto termination for LVD */
   2416  1.10    dante 		sc->cfg.termination = termination;
   2417  1.10    dante 		break;
   2418  1.10    dante 	case 1:	/* Enable manual control with low off / high off. */
   2419  1.10    dante 		sc->cfg.termination = termination;
   2420  1.10    dante 		break;
   2421  1.10    dante 	case 2:	/* Enable manual control with low off / high on. */
   2422  1.10    dante 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2423  1.10    dante 		break;
   2424  1.10    dante 	case 3:	/* Enable manual control with low on / high on. */
   2425  1.10    dante 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2426  1.10    dante 		break;
   2427  1.10    dante 	default:
   2428  1.10    dante 		/*
   2429  1.10    dante 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2430  1.10    dante 		 * Use automatic termination instead.
   2431  1.10    dante 		 */
   2432   1.7    dante 		sc->cfg.termination = termination;
   2433  1.10    dante 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2434   1.7    dante 	}
   2435   1.7    dante 
   2436   1.7    dante 	return warn_code;
   2437   1.7    dante }
   2438   1.7    dante 
   2439   1.7    dante 
   2440   1.7    dante /*
   2441   1.7    dante  * Read EEPROM configuration into the specified buffer.
   2442   1.7    dante  *
   2443   1.7    dante  * Return a checksum based on the EEPROM configuration read.
   2444   1.7    dante  */
   2445   1.7    dante static u_int16_t
   2446   1.7    dante AdvGet3550EEPConfig(iot, ioh, cfg_buf)
   2447   1.7    dante 	bus_space_tag_t		iot;
   2448   1.7    dante 	bus_space_handle_t	ioh;
   2449   1.7    dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2450   1.7    dante {
   2451   1.7    dante 	u_int16_t	       wval, chksum;
   2452   1.7    dante 	u_int16_t	       *wbuf;
   2453   1.7    dante 	int		    eep_addr;
   2454   1.7    dante 
   2455   1.7    dante 
   2456   1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   2457   1.7    dante 	chksum = 0;
   2458   1.7    dante 
   2459   1.7    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2460  1.10    dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2461  1.10    dante 		eep_addr++, wbuf++) {
   2462   1.7    dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2463   1.7    dante 		chksum += wval;
   2464   1.7    dante 		*wbuf = wval;
   2465   1.7    dante 	}
   2466   1.7    dante 
   2467   1.7    dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2468   1.7    dante 	wbuf++;
   2469   1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2470   1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2471   1.7    dante 			eep_addr++, wbuf++) {
   2472   1.7    dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2473   1.7    dante 	}
   2474   1.7    dante 
   2475   1.7    dante 	return chksum;
   2476   1.7    dante }
   2477   1.7    dante 
   2478   1.7    dante 
   2479   1.7    dante /*
   2480   1.7    dante  * Read EEPROM configuration into the specified buffer.
   2481   1.7    dante  *
   2482   1.7    dante  * Return a checksum based on the EEPROM configuration read.
   2483   1.7    dante  */
   2484   1.7    dante static u_int16_t
   2485   1.7    dante AdvGet38C0800EEPConfig(iot, ioh, cfg_buf)
   2486   1.7    dante 	bus_space_tag_t		iot;
   2487   1.7    dante 	bus_space_handle_t	ioh;
   2488   1.7    dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2489   1.7    dante {
   2490   1.7    dante 	u_int16_t	wval, chksum;
   2491   1.7    dante 	u_int16_t	*wbuf;
   2492   1.7    dante 	int		eep_addr;
   2493   1.7    dante 
   2494   1.7    dante 
   2495   1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   2496   1.7    dante 	chksum = 0;
   2497   1.1    dante 
   2498   1.1    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2499  1.10    dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2500  1.10    dante 		eep_addr++, wbuf++) {
   2501  1.10    dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2502  1.10    dante 		chksum += wval;
   2503  1.10    dante 		*wbuf = wval;
   2504  1.10    dante 	}
   2505  1.10    dante 
   2506  1.10    dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2507  1.10    dante 	wbuf++;
   2508  1.10    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2509  1.10    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2510   1.7    dante 			eep_addr++, wbuf++) {
   2511  1.10    dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2512  1.10    dante 	}
   2513  1.10    dante 
   2514  1.10    dante 	return chksum;
   2515  1.10    dante }
   2516  1.10    dante 
   2517  1.10    dante 
   2518  1.10    dante /*
   2519  1.10    dante  * Read EEPROM configuration into the specified buffer.
   2520  1.10    dante  *
   2521  1.10    dante  * Return a checksum based on the EEPROM configuration read.
   2522  1.10    dante  */
   2523  1.10    dante static u_int16_t
   2524  1.10    dante AdvGet38C1600EEPConfig(iot, ioh, cfg_buf)
   2525  1.10    dante 	bus_space_tag_t		iot;
   2526  1.10    dante 	bus_space_handle_t	ioh;
   2527  1.10    dante 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2528  1.10    dante {
   2529  1.10    dante 	u_int16_t	wval, chksum;
   2530  1.10    dante 	u_int16_t	*wbuf;
   2531  1.10    dante 	int		eep_addr;
   2532  1.10    dante 
   2533  1.10    dante 
   2534  1.10    dante 	wbuf = (u_int16_t *) cfg_buf;
   2535  1.10    dante 	chksum = 0;
   2536  1.10    dante 
   2537  1.10    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2538  1.10    dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2539  1.10    dante 		eep_addr++, wbuf++) {
   2540   1.1    dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2541   1.1    dante 		chksum += wval;
   2542   1.1    dante 		*wbuf = wval;
   2543   1.1    dante 	}
   2544   1.7    dante 
   2545   1.1    dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2546   1.1    dante 	wbuf++;
   2547   1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2548   1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2549   1.7    dante 			eep_addr++, wbuf++) {
   2550   1.7    dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2551   1.7    dante 	}
   2552   1.7    dante 
   2553   1.7    dante 	return chksum;
   2554   1.7    dante }
   2555   1.7    dante 
   2556   1.7    dante 
   2557   1.7    dante /*
   2558   1.7    dante  * Read the EEPROM from specified location
   2559   1.7    dante  */
   2560   1.7    dante static u_int16_t
   2561   1.7    dante AdvReadEEPWord(iot, ioh, eep_word_addr)
   2562   1.7    dante 	bus_space_tag_t		iot;
   2563   1.7    dante 	bus_space_handle_t	ioh;
   2564   1.7    dante 	int			eep_word_addr;
   2565   1.7    dante {
   2566   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2567   1.7    dante 		ASC_EEP_CMD_READ | eep_word_addr);
   2568   1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   2569   1.7    dante 
   2570   1.7    dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   2571   1.7    dante }
   2572   1.7    dante 
   2573   1.7    dante 
   2574   1.7    dante /*
   2575   1.7    dante  * Wait for EEPROM command to complete
   2576   1.7    dante  */
   2577   1.7    dante static void
   2578   1.7    dante AdvWaitEEPCmd(iot, ioh)
   2579   1.7    dante 	bus_space_tag_t		iot;
   2580   1.7    dante 	bus_space_handle_t	ioh;
   2581   1.7    dante {
   2582   1.7    dante 	int eep_delay_ms;
   2583   1.7    dante 
   2584   1.7    dante 
   2585   1.7    dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   2586   1.7    dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   2587   1.7    dante 				ASC_EEP_CMD_DONE) {
   2588   1.7    dante 			break;
   2589   1.7    dante 		}
   2590   1.7    dante 		AdvSleepMilliSecond(1);
   2591   1.7    dante 	}
   2592   1.7    dante 
   2593   1.7    dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   2594   1.7    dante }
   2595   1.7    dante 
   2596   1.7    dante 
   2597   1.7    dante /*
   2598   1.7    dante  * Write the EEPROM from 'cfg_buf'.
   2599   1.7    dante  */
   2600   1.7    dante static void
   2601   1.7    dante AdvSet3550EEPConfig(iot, ioh, cfg_buf)
   2602   1.7    dante 	bus_space_tag_t		iot;
   2603   1.7    dante 	bus_space_handle_t	ioh;
   2604   1.7    dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2605   1.7    dante {
   2606   1.7    dante 	u_int16_t *wbuf;
   2607   1.7    dante 	u_int16_t addr, chksum;
   2608   1.7    dante 
   2609   1.7    dante 
   2610   1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   2611   1.7    dante 	chksum = 0;
   2612   1.7    dante 
   2613   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2614   1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   2615   1.7    dante 
   2616   1.7    dante 	/*
   2617   1.7    dante 	 * Write EEPROM from word 0 to word 20
   2618   1.7    dante 	 */
   2619   1.7    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2620   1.7    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2621   1.7    dante 		chksum += *wbuf;
   2622   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2623   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2624   1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   2625   1.7    dante 		AdvWaitEEPCmd(iot, ioh);
   2626   1.7    dante 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2627   1.7    dante 	}
   2628   1.7    dante 
   2629   1.7    dante 	/*
   2630   1.7    dante 	 * Write EEPROM checksum at word 21
   2631   1.7    dante 	 */
   2632   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2633   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2634   1.7    dante 			ASC_EEP_CMD_WRITE | addr);
   2635   1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   2636   1.7    dante 	wbuf++;        /* skip over check_sum */
   2637   1.7    dante 
   2638   1.7    dante 	/*
   2639   1.7    dante 	 * Write EEPROM OEM name at words 22 to 29
   2640   1.7    dante 	 */
   2641   1.7    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2642   1.7    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2643   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2644   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2645   1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   2646   1.7    dante 		AdvWaitEEPCmd(iot, ioh);
   2647   1.1    dante 	}
   2648   1.1    dante 
   2649   1.2    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2650   1.7    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2651   1.4  thorpej 	AdvWaitEEPCmd(iot, ioh);
   2652   1.1    dante 
   2653   1.1    dante 	return;
   2654   1.1    dante }
   2655   1.1    dante 
   2656   1.7    dante 
   2657   1.1    dante /*
   2658   1.1    dante  * Write the EEPROM from 'cfg_buf'.
   2659   1.1    dante  */
   2660   1.1    dante static void
   2661   1.7    dante AdvSet38C0800EEPConfig(iot, ioh, cfg_buf)
   2662   1.7    dante 	bus_space_tag_t		iot;
   2663   1.7    dante 	bus_space_handle_t	ioh;
   2664   1.7    dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2665   1.1    dante {
   2666   1.7    dante 	u_int16_t *wbuf;
   2667   1.7    dante 	u_int16_t addr, chksum;
   2668   1.7    dante 
   2669   1.1    dante 
   2670   1.1    dante 	wbuf = (u_int16_t *) cfg_buf;
   2671   1.1    dante 	chksum = 0;
   2672   1.1    dante 
   2673   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2674   1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   2675   1.1    dante 
   2676   1.1    dante 	/*
   2677   1.7    dante 	 * Write EEPROM from word 0 to word 20
   2678   1.1    dante 	 */
   2679   1.1    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2680   1.2    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2681   1.1    dante 		chksum += *wbuf;
   2682   1.1    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2683   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2684   1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   2685   1.1    dante 		AdvWaitEEPCmd(iot, ioh);
   2686   1.7    dante 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2687   1.1    dante 	}
   2688   1.1    dante 
   2689   1.1    dante 	/*
   2690   1.7    dante 	 * Write EEPROM checksum at word 21
   2691   1.1    dante 	 */
   2692   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2693   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2694   1.7    dante 			ASC_EEP_CMD_WRITE | addr);
   2695   1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   2696   1.7    dante 	wbuf++;        /* skip over check_sum */
   2697   1.1    dante 
   2698   1.1    dante 	/*
   2699   1.7    dante 	 * Write EEPROM OEM name at words 22 to 29
   2700   1.1    dante 	 */
   2701   1.1    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2702   1.2    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2703   1.1    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2704   1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2705   1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   2706   1.1    dante 		AdvWaitEEPCmd(iot, ioh);
   2707   1.1    dante 	}
   2708   1.7    dante 
   2709   1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2710   1.7    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2711   1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   2712   1.7    dante 
   2713   1.1    dante 	return;
   2714   1.1    dante }
   2715   1.1    dante 
   2716   1.7    dante 
   2717   1.1    dante /*
   2718  1.10    dante  * Write the EEPROM from 'cfg_buf'.
   2719  1.10    dante  */
   2720  1.10    dante static void
   2721  1.10    dante AdvSet38C1600EEPConfig(iot, ioh, cfg_buf)
   2722  1.10    dante 	bus_space_tag_t		iot;
   2723  1.10    dante 	bus_space_handle_t	ioh;
   2724  1.10    dante 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2725  1.10    dante {
   2726  1.10    dante 	u_int16_t *wbuf;
   2727  1.10    dante 	u_int16_t addr, chksum;
   2728  1.10    dante 
   2729  1.10    dante 
   2730  1.10    dante 	wbuf = (u_int16_t *) cfg_buf;
   2731  1.10    dante 	chksum = 0;
   2732  1.10    dante 
   2733  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2734  1.10    dante 	AdvWaitEEPCmd(iot, ioh);
   2735  1.10    dante 
   2736  1.10    dante 	/*
   2737  1.10    dante 	 * Write EEPROM from word 0 to word 20
   2738  1.10    dante 	 */
   2739  1.10    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2740  1.10    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2741  1.10    dante 		chksum += *wbuf;
   2742  1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2743  1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2744  1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   2745  1.10    dante 		AdvWaitEEPCmd(iot, ioh);
   2746  1.10    dante 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2747  1.10    dante 	}
   2748  1.10    dante 
   2749  1.10    dante 	/*
   2750  1.10    dante 	 * Write EEPROM checksum at word 21
   2751  1.10    dante 	 */
   2752  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2753  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2754  1.10    dante 			ASC_EEP_CMD_WRITE | addr);
   2755  1.10    dante 	AdvWaitEEPCmd(iot, ioh);
   2756  1.10    dante 	wbuf++;        /* skip over check_sum */
   2757  1.10    dante 
   2758  1.10    dante 	/*
   2759  1.10    dante 	 * Write EEPROM OEM name at words 22 to 29
   2760  1.10    dante 	 */
   2761  1.10    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2762  1.10    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2763  1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2764  1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2765  1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   2766  1.10    dante 		AdvWaitEEPCmd(iot, ioh);
   2767  1.10    dante 	}
   2768  1.10    dante 
   2769  1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2770  1.10    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2771  1.10    dante 	AdvWaitEEPCmd(iot, ioh);
   2772  1.10    dante 
   2773  1.10    dante 	return;
   2774  1.10    dante }
   2775  1.10    dante 
   2776  1.10    dante 
   2777  1.10    dante /*
   2778   1.7    dante  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
   2779   1.7    dante  *
   2780   1.7    dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   2781   1.7    dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   2782   1.7    dante  *   RISC to notify it a new command is ready to be executed.
   2783   1.1    dante  *
   2784   1.7    dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   2785   1.7    dante  * set to SCSI_MAX_RETRY.
   2786   1.1    dante  *
   2787   1.7    dante  * Return:
   2788   1.7    dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   2789   1.7    dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   2790   1.7    dante  *                       request completes.
   2791   1.7    dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   2792   1.7    dante  *                       host IC error.
   2793   1.1    dante  */
   2794   1.7    dante int
   2795   1.7    dante AdvExeScsiQueue(sc, scsiq)
   2796   1.7    dante ADW_SOFTC	*sc;
   2797   1.7    dante ADW_SCSI_REQ_Q	*scsiq;
   2798   1.1    dante {
   2799   1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   2800   1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2801   1.7    dante 	ADW_CCB		*ccb;
   2802   1.7    dante 	long		req_size;
   2803   1.7    dante 	u_int32_t	req_paddr;
   2804  1.10    dante 	ADW_CARRIER	*new_carrp;
   2805   1.7    dante 
   2806   1.7    dante 	/*
   2807   1.7    dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   2808   1.7    dante 	 */
   2809   1.7    dante 	if (scsiq->target_id > ADW_MAX_TID) {
   2810   1.7    dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   2811   1.7    dante 		scsiq->done_status = QD_WITH_ERROR;
   2812   1.7    dante 		return ADW_ERROR;
   2813   1.7    dante 	}
   2814   1.7    dante 
   2815  1.10    dante 	/*
   2816  1.10    dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   2817  1.10    dante 	 */
   2818  1.10    dante 
   2819   1.7    dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   2820  1.10    dante //	ccb->carr_list = sc->icq_sp;
   2821   1.7    dante 
   2822   1.7    dante 	/*
   2823   1.7    dante 	 * Allocate a carrier ensuring at least one carrier always
   2824   1.7    dante 	 * remains on the freelist and initialize fields.
   2825   1.7    dante 	 */
   2826   1.7    dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   2827   1.7    dante 		return ADW_BUSY;
   2828   1.7    dante 	}
   2829   1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   2830   1.7    dante 			ASC_GET_CARRP(new_carrp->next_vpa));
   2831   1.7    dante 	sc->carr_pending_cnt++;
   2832   1.7    dante 
   2833   1.7    dante 	/*
   2834   1.7    dante 	 * Set the carrier to be a stopper by setting 'next_vpa'
   2835   1.7    dante 	 * to the stopper value. The current stopper will be changed
   2836   1.7    dante 	 * below to point to the new stopper.
   2837   1.7    dante 	 */
   2838   1.7    dante 	new_carrp->next_vpa = ASC_CQ_STOPPER;
   2839   1.7    dante 
   2840   1.7    dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   2841   1.7    dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   2842   1.7    dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   2843   1.7    dante 
   2844   1.7    dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   2845   1.7    dante 	scsiq->scsiq_rptr = req_paddr;
   2846   1.7    dante 
   2847   1.7    dante 	/*
   2848   1.7    dante 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
   2849   1.7    dante 	 * order during initialization.
   2850   1.7    dante 	 */
   2851   1.7    dante 	scsiq->carr_pa = sc->icq_sp->carr_pa;
   2852   1.7    dante 	scsiq->carr_va = sc->icq_sp->carr_pa;
   2853   1.1    dante 
   2854   1.7    dante 	/*
   2855   1.7    dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   2856   1.7    dante 	 * the microcode. The newly allocated stopper will become the new
   2857   1.7    dante 	 * stopper.
   2858   1.7    dante 	 */
   2859   1.7    dante 	sc->icq_sp->areq_vpa = req_paddr;
   2860   1.1    dante 
   2861   1.1    dante 	/*
   2862   1.7    dante 	 * Set the 'next_vpa' pointer for the old stopper to be the
   2863   1.7    dante 	 * physical address of the new stopper. The RISC can only
   2864   1.7    dante 	 * follow physical addresses.
   2865   1.1    dante 	 */
   2866   1.7    dante 	sc->icq_sp->next_vpa = new_carrp->carr_pa;
   2867   1.1    dante 
   2868   1.1    dante 	/*
   2869   1.7    dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   2870   1.1    dante 	 */
   2871   1.7    dante 	sc->icq_sp = new_carrp;
   2872  1.10    dante /*
   2873   1.7    dante 	bus_dmamap_load(sc->sc_dmat, sc->sc_control->dmamap_xfer,
   2874  1.10    dante 			sc->sc_control->carriers,
   2875  1.10    dante 			ADW_CARRIER_SIZE * ADW_MAX_CARRIER,
   2876   1.7    dante 			NULL, BUS_DMA_NOWAIT);
   2877   1.7    dante 	bus_dmamap_sync(sc->sc_dmat, sc->sc_control->dmamap_xfer, 0,
   2878   1.7    dante 			sc->sc_control->dmamap_xfer->dm_mapsize,
   2879   1.7    dante 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2880  1.10    dante */
   2881  1.10    dante 	if (sc->chip_type == ADV_CHIP_ASC3550 ||
   2882  1.10    dante 	    sc->chip_type == ADV_CHIP_ASC38C0800)
   2883   1.7    dante 	{
   2884   1.7    dante 		/*
   2885  1.10    dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   2886  1.10    dante 		 * pointer.
   2887  1.10    dante 		 */
   2888  1.10    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2889  1.10    dante 		if (sc->chip_type == ADV_CHIP_ASC3550)
   2890  1.10    dante 		{
   2891  1.10    dante 			/*
   2892  1.10    dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   2893  1.10    dante 			 * command 'clr_tickle_a' does not work unless the host
   2894  1.10    dante 			 * value is cleared.
   2895  1.10    dante 			 */
   2896  1.10    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   2897  1.10    dante 					ADV_TICKLE_NOP);
   2898  1.10    dante 		}
   2899  1.10    dante 	} else if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   2900  1.10    dante 		/*
   2901  1.10    dante 		 * Notify the RISC a carrier is ready by writing the physical
   2902  1.10    dante 		 * address of the new carrier stopper to the COMMA register.
   2903   1.7    dante 		 */
   2904  1.10    dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   2905  1.10    dante 				new_carrp->carr_pa);
   2906   1.7    dante 	}
   2907   1.7    dante 
   2908  1.10    dante 	/*
   2909  1.10    dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   2910  1.10    dante 	 */
   2911  1.10    dante 
   2912   1.7    dante 	return ADW_SUCCESS;
   2913   1.1    dante }
   2914   1.1    dante 
   2915   1.7    dante 
   2916   1.7    dante void
   2917   1.7    dante AdvResetChip(iot, ioh)
   2918   1.7    dante 	bus_space_tag_t iot;
   2919   1.7    dante 	bus_space_handle_t ioh;
   2920   1.1    dante {
   2921   1.7    dante 
   2922   1.7    dante 	/*
   2923   1.7    dante 	 * Reset Chip.
   2924   1.7    dante 	 */
   2925   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2926   1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   2927   1.7    dante 	AdvSleepMilliSecond(100);
   2928   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2929   1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2930   1.1    dante }
   2931   1.1    dante 
   2932   1.7    dante 
   2933   1.1    dante /*
   2934   1.1    dante  * Reset SCSI Bus and purge all outstanding requests.
   2935   1.1    dante  *
   2936   1.1    dante  * Return Value:
   2937   1.7    dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2938   1.7    dante  *      ADW_FALSE(0) -  Microcode command failed.
   2939   1.7    dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2940   1.7    dante  *                      may be hung which requires driver recovery.
   2941   1.1    dante  */
   2942   1.1    dante int
   2943   1.1    dante AdvResetCCB(sc)
   2944   1.7    dante ADW_SOFTC	*sc;
   2945   1.1    dante {
   2946   1.7    dante 	int	    status;
   2947   1.7    dante 
   2948   1.7    dante 	/*
   2949   1.7    dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2950   1.7    dante 	 * the SCSI Bus Reset signal.
   2951   1.7    dante 	 */
   2952   1.7    dante 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2953   1.7    dante 	if (status != ADW_TRUE)
   2954   1.7    dante 	{
   2955   1.7    dante 		return status;
   2956   1.7    dante 	}
   2957   1.7    dante 
   2958   1.7    dante 	/*
   2959   1.7    dante 	 * Delay for the specified SCSI Bus Reset hold time.
   2960   1.7    dante 	 *
   2961   1.7    dante 	 * The hold time delay is done on the host because the RISC has no
   2962   1.7    dante 	 * microsecond accurate timer.
   2963   1.7    dante 	 */
   2964   1.7    dante 	AdvDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2965   1.1    dante 
   2966   1.7    dante 	/*
   2967   1.7    dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2968   1.7    dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   2969   1.7    dante 	 */
   2970   1.7    dante 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2971   1.7    dante 	if (status != ADW_TRUE)
   2972   1.7    dante 	{
   2973   1.7    dante 		return status;
   2974   1.7    dante 	}
   2975   1.1    dante 
   2976   1.7    dante 	AdvSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2977   1.1    dante 
   2978   1.1    dante 	return status;
   2979   1.1    dante }
   2980   1.1    dante 
   2981   1.7    dante 
   2982   1.1    dante /*
   2983   1.7    dante  * Reset chip and SCSI Bus.
   2984   1.7    dante  *
   2985   1.7    dante  * Return Value:
   2986   1.7    dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   2987   1.7    dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   2988   1.1    dante  */
   2989   1.7    dante int
   2990   1.1    dante AdvResetSCSIBus(sc)
   2991   1.7    dante ADW_SOFTC	*sc;
   2992   1.1    dante {
   2993   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2994   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2995   1.7    dante 	int		status;
   2996  1.10    dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   2997   1.7    dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   2998   1.7    dante 	u_int16_t	bios_sig;
   2999   1.7    dante 
   3000   1.7    dante 
   3001   1.7    dante 	/*
   3002   1.7    dante 	 * Save current per TID negotiated values.
   3003   1.7    dante 	 */
   3004   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   3005   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   3006  1.10    dante 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3007  1.10    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   3008  1.10    dante 	}
   3009   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   3010   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++)
   3011   1.7    dante 	{
   3012   1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3013   1.7    dante 			max_cmd[tid]);
   3014   1.7    dante 	}
   3015   1.7    dante 
   3016   1.7    dante 	/*
   3017   1.7    dante 	 * Force the AdvInitAsc3550/38C0800Driver() function to
   3018   1.7    dante 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   3019   1.7    dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   3020   1.7    dante 	 * needed if the BIOS signature word is present.
   3021   1.7    dante 	 */
   3022   1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3023   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, 0);
   3024   1.7    dante 
   3025   1.7    dante 	/*
   3026   1.7    dante 	 * Stop chip and reset it.
   3027   1.7    dante 	 */
   3028   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   3029   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3030   1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   3031   1.7    dante 	AdvSleepMilliSecond(100);
   3032   1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3033   1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   3034   1.7    dante 
   3035   1.7    dante 	/*
   3036   1.7    dante 	 * Reset Adv Library error code, if any, and try
   3037   1.7    dante 	 * re-initializing the chip.
   3038   1.7    dante 	 */
   3039  1.10    dante 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3040  1.10    dante 	    status = AdvInitAsc38C1600Driver(sc);
   3041  1.10    dante 	} else if (sc->chip_type == ADV_CHIP_ASC38C0800) {
   3042   1.7    dante 		status = AdvInitAsc38C0800Driver(sc);
   3043   1.7    dante 	} else {
   3044   1.7    dante 		status = AdvInitAsc3550Driver(sc);
   3045   1.7    dante 	}
   3046   1.1    dante 
   3047   1.7    dante 	/* Translate initialization return value to status value. */
   3048   1.7    dante 	if (status == 0) {
   3049   1.7    dante 		status = ADW_TRUE;
   3050   1.7    dante 	} else {
   3051   1.7    dante 		status = ADW_FALSE;
   3052   1.7    dante 	}
   3053   1.1    dante 
   3054   1.7    dante 	/*
   3055   1.7    dante 	 * Restore the BIOS signature word.
   3056   1.7    dante 	 */
   3057   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3058   1.1    dante 
   3059   1.1    dante 	/*
   3060   1.7    dante 	 * Restore per TID negotiated values.
   3061   1.1    dante 	 */
   3062   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   3063   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   3064  1.10    dante 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3065  1.10    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   3066  1.10    dante 	}
   3067   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   3068   1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3069   1.7    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3070   1.7    dante 			max_cmd[tid]);
   3071   1.7    dante 	}
   3072   1.1    dante 
   3073   1.7    dante 	return status;
   3074   1.1    dante }
   3075   1.1    dante 
   3076   1.1    dante 
   3077   1.1    dante /*
   3078   1.1    dante  * Adv Library Interrupt Service Routine
   3079   1.1    dante  *
   3080   1.1    dante  *  This function is called by a driver's interrupt service routine.
   3081   1.1    dante  *  The function disables and re-enables interrupts.
   3082   1.1    dante  *
   3083   1.7    dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   3084   1.1    dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   3085   1.1    dante  *
   3086   1.1    dante  *  Note: AdvISR() can be called when interrupts are disabled or even
   3087   1.1    dante  *  when there is no hardware interrupt condition present. It will
   3088   1.1    dante  *  always check for completed idle commands and microcode requests.
   3089   1.1    dante  *  This is an important feature that shouldn't be changed because it
   3090   1.1    dante  *  allows commands to be completed from polling mode loops.
   3091   1.1    dante  *
   3092   1.1    dante  * Return:
   3093   1.1    dante  *   ADW_TRUE(1) - interrupt was pending
   3094   1.1    dante  *   ADW_FALSE(0) - no interrupt was pending
   3095   1.1    dante  */
   3096   1.1    dante int
   3097   1.1    dante AdvISR(sc)
   3098   1.7    dante ADW_SOFTC	*sc;
   3099   1.1    dante {
   3100   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   3101   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3102   1.7    dante 	u_int8_t	int_stat;
   3103   1.7    dante 	u_int16_t	target_bit;
   3104   1.7    dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   3105   1.7    dante 	u_int32_t	irq_next_pa;
   3106   1.7    dante 	ADW_SCSI_REQ_Q	*scsiq;
   3107   1.7    dante 	ADW_CCB		*ccb;
   3108   1.1    dante 
   3109   1.1    dante 
   3110   1.1    dante 	/* Reading the register clears the interrupt. */
   3111   1.1    dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   3112   1.1    dante 
   3113   1.7    dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   3114   1.7    dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   3115   1.7    dante 		return ADW_FALSE;
   3116   1.1    dante 	}
   3117   1.7    dante 
   3118   1.7    dante 	bus_dmamap_sync(sc->sc_dmat, sc->sc_control->dmamap_xfer, 0,
   3119   1.7    dante 		sc->sc_control->dmamap_xfer->dm_mapsize,
   3120   1.7    dante 		BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   3121   1.7    dante 	bus_dmamap_unload(sc->sc_dmat, sc->sc_control->dmamap_xfer);
   3122   1.7    dante 
   3123   1.7    dante 	/*
   3124   1.7    dante 	 * Notify the driver of an asynchronous microcode condition by
   3125   1.7    dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   3126   1.7    dante 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
   3127   1.1    dante 	 */
   3128   1.7    dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   3129   1.7    dante 		u_int8_t intrb_code;
   3130   1.7    dante 
   3131   1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_INTRB_CODE, intrb_code);
   3132  1.10    dante 
   3133  1.10    dante 		if (sc->chip_type == ADV_CHIP_ASC3550 ||
   3134  1.10    dante 	    	    sc->chip_type == ADV_CHIP_ASC38C0800) {
   3135  1.10    dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   3136  1.10    dante 				sc->carr_pending_cnt != 0) {
   3137  1.10    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3138  1.10    dante 					IOPB_TICKLE, ADV_TICKLE_A);
   3139  1.10    dante 				if (sc->chip_type == ADV_CHIP_ASC3550) {
   3140  1.10    dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3141  1.10    dante 						IOPB_TICKLE, ADV_TICKLE_NOP);
   3142  1.10    dante 				}
   3143  1.10    dante 			}
   3144   1.7    dante 		}
   3145   1.7    dante 
   3146   1.7    dante 		if (sc->async_callback != 0) {
   3147   1.7    dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   3148   1.1    dante 		}
   3149   1.1    dante 	}
   3150   1.7    dante 
   3151   1.1    dante 	/*
   3152   1.7    dante 	 * Check if the IRQ stopper carrier contains a completed request.
   3153   1.1    dante 	 */
   3154   1.7    dante 	while (((irq_next_pa = sc->irq_sp->next_vpa) & ASC_RQ_DONE) != 0)
   3155   1.7    dante 	{
   3156   1.7    dante 		/*
   3157  1.10    dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   3158  1.10    dante 		 * structure.
   3159   1.7    dante 		 * The RISC will have set 'areq_vpa' to a virtual address.
   3160   1.7    dante 		 *
   3161   1.7    dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   3162  1.10    dante 		 * field to the carrier ADV_CARR_T.areq_vpa field.
   3163  1.10    dante 		 * The conversion below complements the conversion of
   3164  1.10    dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdvExeScsiQueue().
   3165   1.7    dante 		 */
   3166   1.7    dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_vpa);
   3167   1.7    dante 		scsiq = &ccb->scsiq;
   3168   1.7    dante 		scsiq->ccb_ptr = sc->irq_sp->areq_vpa;
   3169   1.7    dante 
   3170  1.10    dante 		/*
   3171  1.10    dante 		 * Request finished with good status and the queue was not
   3172  1.10    dante 		 * DMAed to host memory by the firmware. Set all status fields
   3173  1.10    dante 		 * to indicate good status.
   3174  1.10    dante 		 */
   3175  1.10    dante 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   3176  1.10    dante 			scsiq->done_status = QD_NO_ERROR;
   3177  1.10    dante 			scsiq->host_status = scsiq->scsi_status = 0;
   3178  1.10    dante 			scsiq->data_cnt = 0L;
   3179   1.7    dante 		}
   3180   1.1    dante 
   3181   1.1    dante 		/*
   3182   1.7    dante 		 * Advance the stopper pointer to the next carrier
   3183   1.7    dante 		 * ignoring the lower four bits. Free the previous
   3184   1.7    dante 		 * stopper carrier.
   3185   1.1    dante 		 */
   3186   1.7    dante 		free_carrp = sc->irq_sp;
   3187   1.7    dante 		sc->irq_sp = adw_carrier_phys_kv(sc, ASC_GET_CARRP(irq_next_pa));
   3188   1.7    dante 
   3189   1.7    dante 		free_carrp->next_vpa = sc->carr_freelist->carr_pa;
   3190   1.7    dante 		sc->carr_freelist = free_carrp;
   3191   1.7    dante 		sc->carr_pending_cnt--;
   3192   1.1    dante 
   3193   1.1    dante 
   3194   1.1    dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   3195   1.1    dante 
   3196   1.1    dante 		/*
   3197   1.1    dante 		 * Clear request microcode control flag.
   3198   1.1    dante 		 */
   3199   1.1    dante 		scsiq->cntl = 0;
   3200   1.1    dante 
   3201   1.1    dante 		/*
   3202   1.1    dante 		 * Check Condition handling
   3203   1.1    dante 		 */
   3204   1.1    dante 		/*
   3205   1.1    dante 		 * If the command that completed was a SCSI INQUIRY and
   3206   1.1    dante 		 * LUN 0 was sent the command, then process the INQUIRY
   3207   1.1    dante 		 * command information for the device.
   3208   1.1    dante 		 */
   3209   1.7    dante 		if (scsiq->done_status == QD_NO_ERROR &&
   3210  1.10    dante 		    scsiq->cdb[0] == INQUIRY &&
   3211  1.10    dante 		    scsiq->target_lun == 0) {
   3212   1.1    dante 			AdvInquiryHandling(sc, scsiq);
   3213   1.1    dante 		}
   3214   1.1    dante 
   3215   1.1    dante 		/*
   3216   1.1    dante 		 * Notify the driver of the completed request by passing
   3217   1.1    dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   3218   1.1    dante 		 */
   3219   1.7    dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   3220   1.1    dante 		/*
   3221   1.1    dante 		 * Note: After the driver callback function is called, 'scsiq'
   3222   1.1    dante 		 * can no longer be referenced.
   3223   1.1    dante 		 *
   3224   1.1    dante 		 * Fall through and continue processing other completed
   3225   1.1    dante 		 * requests...
   3226   1.1    dante 		 */
   3227   1.1    dante 	}
   3228   1.7    dante 
   3229   1.7    dante 	return ADW_TRUE;
   3230   1.1    dante }
   3231   1.1    dante 
   3232   1.7    dante 
   3233   1.1    dante /*
   3234   1.1    dante  * Send an idle command to the chip and wait for completion.
   3235   1.1    dante  *
   3236   1.7    dante  * Command completion is polled for once per microsecond.
   3237   1.7    dante  *
   3238   1.7    dante  * The function can be called from anywhere including an interrupt handler.
   3239  1.10    dante  * But the function is not re-entrant, so it uses the splbio/splx()
   3240   1.7    dante  * functions to prevent reentrancy.
   3241   1.1    dante  *
   3242   1.1    dante  * Return Values:
   3243   1.1    dante  *   ADW_TRUE - command completed successfully
   3244   1.1    dante  *   ADW_FALSE - command failed
   3245   1.7    dante  *   ADW_ERROR - command timed out
   3246   1.1    dante  */
   3247   1.1    dante int
   3248   1.7    dante AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   3249   1.7    dante ADW_SOFTC      *sc;
   3250   1.7    dante u_int16_t       idle_cmd;
   3251   1.7    dante u_int32_t       idle_cmd_parameter;
   3252   1.1    dante {
   3253   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   3254   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3255   1.7    dante 	int		result;
   3256  1.10    dante 	u_int32_t	i, j, s;
   3257   1.1    dante 
   3258  1.10    dante 	s = splbio();
   3259   1.7    dante 
   3260   1.7    dante 	/*
   3261   1.7    dante 	 * Clear the idle command status which is set by the microcode
   3262   1.7    dante 	 * to a non-zero value to indicate when the command is completed.
   3263   1.7    dante 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
   3264   1.7    dante 	 * defined in a_advlib.h.
   3265   1.7    dante 	 */
   3266   1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   3267   1.1    dante 
   3268   1.1    dante 	/*
   3269   1.1    dante 	 * Write the idle command value after the idle command parameter
   3270   1.1    dante 	 * has been written to avoid a race condition. If the order is not
   3271   1.1    dante 	 * followed, the microcode may process the idle command before the
   3272   1.1    dante 	 * parameters have been written to LRAM.
   3273   1.1    dante 	 */
   3274   1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_PARAMETER,
   3275   1.7    dante 	    idle_cmd_parameter);
   3276   1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
   3277   1.1    dante 
   3278   1.1    dante 	/*
   3279   1.7    dante 	 * Tickle the RISC to tell it to process the idle command.
   3280   1.1    dante 	 */
   3281   1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   3282   1.7    dante 	if (sc->chip_type == ADV_CHIP_ASC3550) {
   3283   1.1    dante 		/*
   3284   1.7    dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   3285   1.7    dante 		 * command 'clr_tickle_b' does not work unless the host
   3286   1.7    dante 		 * value is cleared.
   3287   1.1    dante 		 */
   3288   1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   3289   1.7    dante 	}
   3290   1.1    dante 
   3291   1.7    dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   3292   1.7    dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   3293   1.7    dante 		/* Poll once each microsecond for command completion. */
   3294   1.7    dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   3295   1.7    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, result);
   3296   1.7    dante 			if (result != 0) {
   3297  1.10    dante 				splx(s);
   3298   1.7    dante 				return result;
   3299   1.7    dante 			}
   3300   1.7    dante 			AdvDelayMicroSecond(1);
   3301   1.7    dante 		}
   3302   1.1    dante 	}
   3303   1.1    dante 
   3304  1.10    dante 	splx(s);
   3305   1.7    dante 	return ADW_ERROR;
   3306   1.1    dante }
   3307   1.1    dante 
   3308   1.1    dante 
   3309   1.1    dante /*
   3310   1.1    dante  * Inquiry Information Byte 7 Handling
   3311   1.1    dante  *
   3312   1.1    dante  * Handle SCSI Inquiry Command information for a device by setting
   3313   1.2    dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   3314   1.1    dante  * Queuing.
   3315   1.1    dante  */
   3316   1.1    dante static void
   3317   1.1    dante AdvInquiryHandling(sc, scsiq)
   3318   1.7    dante ADW_SOFTC	*sc;
   3319   1.7    dante ADW_SCSI_REQ_Q *scsiq;
   3320   1.1    dante {
   3321   1.9    dante #ifndef FAILSAFE
   3322   1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   3323   1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3324   1.7    dante 	u_int8_t		tid;
   3325   1.7    dante 	ADW_SCSI_INQUIRY	*inq;
   3326   1.7    dante 	u_int16_t		tidmask;
   3327   1.7    dante 	u_int16_t		cfg_word;
   3328   1.7    dante 
   3329   1.1    dante 
   3330   1.1    dante 	/*
   3331   1.1    dante 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
   3332   1.1    dante 	 * to be available.
   3333   1.1    dante 	 *
   3334   1.1    dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   3335   1.1    dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   3336   1.1    dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   3337   1.1    dante 	 * microcode to the transfer residual count.
   3338   1.1    dante 	 */
   3339   1.7    dante 
   3340   1.2    dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   3341   1.1    dante 		return;
   3342   1.1    dante 	}
   3343   1.7    dante 
   3344   1.1    dante 	tid = scsiq->target_id;
   3345   1.7    dante 
   3346   1.7    dante 	inq = (ADW_SCSI_INQUIRY *) scsiq->vdata_addr;
   3347   1.1    dante 
   3348   1.1    dante 	/*
   3349   1.1    dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   3350   1.1    dante 	 */
   3351   1.7    dante 	if (inq->rsp_data_fmt < 2 && inq->ansi_apr_ver < 2) {
   3352   1.1    dante 		return;
   3353   1.2    dante 	} else {
   3354   1.1    dante 		/*
   3355   1.1    dante 		 * INQUIRY Byte 7 Handling
   3356   1.1    dante 		 *
   3357   1.1    dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   3358   1.1    dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   3359   1.1    dante 		 * is enabled in the EEPROM and the device supports the
   3360   1.1    dante 		 * feature, then enable it in the microcode.
   3361   1.1    dante 		 */
   3362   1.1    dante 
   3363   1.1    dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   3364   1.7    dante 
   3365   1.1    dante 		/*
   3366   1.1    dante 		 * Wide Transfers
   3367   1.1    dante 		 *
   3368   1.1    dante 		 * If the EEPROM enabled WDTR for the device and the device
   3369   1.1    dante 		 * supports wide bus (16 bit) transfers, then turn on the
   3370   1.1    dante 		 * device's 'wdtr_able' bit and write the new value to the
   3371   1.1    dante 		 * microcode.
   3372   1.1    dante 		 */
   3373   1.7    dante #ifdef SCSI_ADW_WDTR_DISABLE
   3374   1.8    dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   3375   1.7    dante #endif /* SCSI_ADW_WDTR_DISABLE */
   3376   1.7    dante 		if ((sc->wdtr_able & tidmask) && inq->WBus16) {
   3377   1.1    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3378   1.7    dante 					cfg_word);
   3379   1.2    dante 			if ((cfg_word & tidmask) == 0) {
   3380   1.1    dante 				cfg_word |= tidmask;
   3381   1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3382   1.7    dante 						cfg_word);
   3383   1.1    dante 
   3384   1.1    dante 				/*
   3385   1.7    dante 				 * Clear the microcode "SDTR negotiation" and "WDTR
   3386   1.7    dante 				 * negotiation" done indicators for the target to cause
   3387   1.7    dante 				 * it to negotiate with the new setting set above.
   3388   1.7    dante 				 * WDTR when accepted causes the target to enter
   3389   1.7    dante 				 * asynchronous mode, so SDTR must be negotiated.
   3390   1.1    dante 				 */
   3391   1.7    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3392   1.7    dante 						cfg_word);
   3393   1.7    dante 				cfg_word &= ~tidmask;
   3394   1.7    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3395   1.7    dante 						cfg_word);
   3396   1.1    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3397   1.7    dante 						cfg_word);
   3398   1.1    dante 				cfg_word &= ~tidmask;
   3399   1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3400   1.7    dante 						cfg_word);
   3401   1.1    dante 			}
   3402   1.1    dante 		}
   3403   1.7    dante 
   3404   1.1    dante 		/*
   3405   1.1    dante 		 * Synchronous Transfers
   3406   1.1    dante 		 *
   3407   1.1    dante 		 * If the EEPROM enabled SDTR for the device and the device
   3408   1.1    dante 		 * supports synchronous transfers, then turn on the device's
   3409   1.1    dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   3410   1.1    dante 		 */
   3411   1.7    dante #ifdef SCSI_ADW_SDTR_DISABLE
   3412   1.8    dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   3413   1.7    dante #endif /* SCSI_ADW_SDTR_DISABLE */
   3414   1.7    dante 		if ((sc->sdtr_able & tidmask) && inq->Sync) {
   3415   1.7    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, cfg_word);
   3416   1.2    dante 			if ((cfg_word & tidmask) == 0) {
   3417   1.1    dante 				cfg_word |= tidmask;
   3418   1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   3419   1.7    dante 						cfg_word);
   3420   1.1    dante 
   3421   1.1    dante 				/*
   3422   1.7    dante 				 * Clear the microcode "SDTR negotiation" done indicator
   3423   1.7    dante 				 * for the target to cause it to negotiate with the new
   3424   1.7    dante 				 * setting set above.
   3425   1.1    dante 				 */
   3426   1.1    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3427   1.7    dante 						cfg_word);
   3428   1.1    dante 				cfg_word &= ~tidmask;
   3429   1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3430   1.7    dante 						cfg_word);
   3431  1.10    dante 			}
   3432  1.10    dante 		}
   3433  1.10    dante 		/*
   3434  1.10    dante 		 * If the Inquiry data included enough space for the SPI-3
   3435  1.10    dante 		 * Clocking field, then check if DT mode is supported.
   3436  1.10    dante 		 */
   3437  1.10    dante 		if (sc->chip_type == ADV_CHIP_ASC38C1600 &&
   3438  1.10    dante 			(scsiq->cdb[4] >= 57 ||
   3439  1.10    dante 				(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   3440  1.10    dante 			/*
   3441  1.10    dante 			 * PPR (Parallel Protocol Request) Capable
   3442  1.10    dante 			 *
   3443  1.10    dante 			 * If the device supports DT mode, then it must be
   3444  1.10    dante 			 * PPR capable.
   3445  1.10    dante 			 * The PPR message will be used in place of the SDTR
   3446  1.10    dante 			 * and WDTR messages to negotiate synchronous speed
   3447  1.10    dante 			 * and offset, transfer width, and protocol options.
   3448  1.10    dante 			 */
   3449  1.10    dante 			if (inq->Clocking & INQ_CLOCKING_DT_ONLY)
   3450  1.10    dante 			{
   3451  1.10    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3452  1.10    dante 						sc->ppr_able);
   3453  1.10    dante 				sc->ppr_able |= tidmask;
   3454  1.10    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3455  1.10    dante 						sc->ppr_able);
   3456   1.1    dante 			}
   3457   1.1    dante 		}
   3458   1.7    dante 
   3459   1.1    dante 		/*
   3460   1.7    dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   3461   1.7    dante 		 * device supports Tag Queueing, then turn on the device's
   3462   1.1    dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   3463   1.7    dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   3464   1.1    dante 		 * value.
   3465   1.1    dante 		 *
   3466   1.1    dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   3467   1.1    dante 		 * mode and would see no benefit from Tag Queuing. Also by
   3468   1.1    dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   3469   1.1    dante 		 * bugs will at least work with the BIOS.
   3470   1.1    dante 		 */
   3471   1.7    dante #ifdef SCSI_ADW_TAGQ_DISABLE
   3472   1.8    dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   3473   1.7    dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   3474   1.7    dante 		if ((sc->tagqng_able & tidmask) && inq->CmdQue) {
   3475   1.1    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3476   1.7    dante 					cfg_word);
   3477   1.1    dante 			cfg_word |= tidmask;
   3478   1.1    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3479   1.7    dante 					cfg_word);
   3480   1.7    dante 
   3481   1.1    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   3482   1.7    dante 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3483   1.7    dante 					sc->max_dvc_qng);
   3484   1.1    dante 		}
   3485   1.9    dante 	}
   3486   1.7    dante #endif /* FAILSAFE */
   3487   1.1    dante }
   3488   1.1    dante 
   3489   1.7    dante 
   3490   1.1    dante static void
   3491   1.7    dante AdvSleepMilliSecond(n)
   3492   1.7    dante u_int32_t	n;
   3493   1.1    dante {
   3494   1.1    dante 
   3495   1.1    dante 	DELAY(n * 1000);
   3496   1.1    dante }
   3497   1.1    dante 
   3498   1.7    dante 
   3499   1.1    dante static void
   3500   1.7    dante AdvDelayMicroSecond(n)
   3501   1.7    dante u_int32_t	n;
   3502   1.1    dante {
   3503   1.1    dante 
   3504   1.1    dante 	DELAY(n);
   3505   1.1    dante }
   3506   1.7    dante 
   3507