Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.16
      1  1.16  dante /* $NetBSD: adwlib.c,v 1.16 2000/05/26 15:13:43 dante Exp $        */
      2   1.1  dante 
      3   1.1  dante /*
      4   1.1  dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5   1.1  dante  *
      6   1.7  dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7   1.1  dante  * All rights reserved.
      8   1.1  dante  *
      9   1.1  dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10   1.1  dante  *
     11   1.1  dante  * Redistribution and use in source and binary forms, with or without
     12   1.1  dante  * modification, are permitted provided that the following conditions
     13   1.1  dante  * are met:
     14   1.1  dante  * 1. Redistributions of source code must retain the above copyright
     15   1.1  dante  *    notice, this list of conditions and the following disclaimer.
     16   1.1  dante  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1  dante  *    notice, this list of conditions and the following disclaimer in the
     18   1.1  dante  *    documentation and/or other materials provided with the distribution.
     19   1.1  dante  * 3. All advertising materials mentioning features or use of this software
     20   1.1  dante  *    must display the following acknowledgement:
     21   1.1  dante  *        This product includes software developed by the NetBSD
     22   1.1  dante  *        Foundation, Inc. and its contributors.
     23   1.1  dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.1  dante  *    contributors may be used to endorse or promote products derived
     25   1.1  dante  *    from this software without specific prior written permission.
     26   1.1  dante  *
     27   1.1  dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.1  dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.1  dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.1  dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.1  dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.1  dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.1  dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.1  dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.1  dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.1  dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.1  dante  * POSSIBILITY OF SUCH DAMAGE.
     38   1.1  dante  */
     39   1.1  dante /*
     40   1.1  dante  * Ported from:
     41   1.1  dante  */
     42   1.1  dante /*
     43   1.1  dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44   1.7  dante  *
     45  1.10  dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46   1.1  dante  * All Rights Reserved.
     47   1.1  dante  *
     48   1.1  dante  * Redistribution and use in source and binary forms, with or without
     49   1.1  dante  * modification, are permitted provided that redistributions of source
     50   1.1  dante  * code retain the above copyright notice and this comment without
     51   1.1  dante  * modification.
     52   1.1  dante  */
     53   1.1  dante 
     54   1.1  dante #include <sys/types.h>
     55   1.1  dante #include <sys/param.h>
     56   1.1  dante #include <sys/systm.h>
     57   1.1  dante #include <sys/malloc.h>
     58   1.1  dante #include <sys/kernel.h>
     59   1.1  dante #include <sys/queue.h>
     60   1.1  dante #include <sys/device.h>
     61   1.1  dante 
     62   1.1  dante #include <machine/bus.h>
     63   1.1  dante #include <machine/intr.h>
     64   1.1  dante 
     65   1.1  dante #include <dev/scsipi/scsi_all.h>
     66   1.1  dante #include <dev/scsipi/scsipi_all.h>
     67   1.1  dante #include <dev/scsipi/scsiconf.h>
     68   1.1  dante 
     69   1.7  dante #include <dev/pci/pcidevs.h>
     70   1.7  dante 
     71   1.1  dante #include <vm/vm.h>
     72   1.1  dante #include <vm/vm_param.h>
     73   1.1  dante #include <vm/pmap.h>
     74   1.1  dante 
     75   1.1  dante #include <dev/ic/adwlib.h>
     76  1.16  dante #include <dev/ic/adwmcode.h>
     77   1.1  dante #include <dev/ic/adw.h>
     78   1.1  dante 
     79   1.1  dante 
     80   1.1  dante /* Static Functions */
     81   1.1  dante 
     82  1.16  dante static u_int16_t AdwGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83   1.7  dante      							ADW_EEP_3550_CONFIG *));
     84  1.16  dante static u_int16_t AdwGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85   1.7  dante      							ADW_EEP_38C0800_CONFIG *));
     86  1.16  dante static u_int16_t AdwGet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     87  1.10  dante      							ADW_EEP_38C1600_CONFIG *));
     88  1.16  dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     89  1.16  dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     90  1.16  dante static void AdwSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91   1.7  dante 					                 ADW_EEP_3550_CONFIG *));
     92  1.16  dante static void AdwSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     93   1.7  dante 					                 ADW_EEP_38C0800_CONFIG *));
     94  1.16  dante static void AdwSet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     95  1.10  dante 					                 ADW_EEP_38C1600_CONFIG *));
     96  1.16  dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97   1.1  dante 
     98  1.16  dante static void AdwSleepMilliSecond __P((u_int32_t));
     99  1.16  dante static void AdwDelayMicroSecond __P((u_int32_t));
    100   1.1  dante 
    101   1.1  dante 
    102   1.1  dante /*
    103   1.1  dante  * EEPROM Configuration.
    104   1.1  dante  *
    105   1.1  dante  * All drivers should use this structure to set the default EEPROM
    106   1.1  dante  * configuration. The BIOS now uses this structure when it is built.
    107  1.16  dante  * Additional structure information can be found in adwlib.h where
    108   1.1  dante  * the structure is defined.
    109   1.1  dante  */
    110   1.7  dante static ADW_EEP_3550_CONFIG
    111   1.7  dante Default_3550_EEPROM_Config = {
    112   1.7  dante 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    113   1.7  dante 	0x0000,			/* cfg_msw */
    114   1.7  dante 	0xFFFF,			/* disc_enable */
    115   1.7  dante 	0xFFFF,			/* wdtr_able */
    116   1.7  dante 	0xFFFF,			/* sdtr_able */
    117   1.7  dante 	0xFFFF,			/* start_motor */
    118   1.7  dante 	0xFFFF,			/* tagqng_able */
    119   1.7  dante 	0xFFFF,			/* bios_scan */
    120   1.7  dante 	0,			/* scam_tolerant */
    121   1.7  dante 	7,			/* adapter_scsi_id */
    122   1.7  dante 	0,			/* bios_boot_delay */
    123   1.7  dante 	3,			/* scsi_reset_delay */
    124   1.7  dante 	0,			/* bios_id_lun */
    125   1.7  dante 	0,			/* termination */
    126   1.7  dante 	0,			/* reserved1 */
    127   1.7  dante 	0xFFE7,			/* bios_ctrl */
    128   1.7  dante 	0xFFFF,			/* ultra_able */
    129   1.7  dante 	0,			/* reserved2 */
    130  1.16  dante 	ADW_DEF_MAX_HOST_QNG,	/* max_host_qng */
    131  1.16  dante 	ADW_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    132   1.7  dante 	0,			/* dvc_cntl */
    133   1.7  dante 	0,			/* bug_fix */
    134   1.7  dante 	0,			/* serial_number_word1 */
    135   1.7  dante 	0,			/* serial_number_word2 */
    136   1.7  dante 	0,			/* serial_number_word3 */
    137   1.7  dante 	0,			/* check_sum */
    138  1.11  dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* oem_name[16] */
    139   1.7  dante 	0,			/* dvc_err_code */
    140   1.7  dante 	0,			/* adv_err_code */
    141   1.7  dante 	0,			/* adv_err_addr */
    142   1.7  dante 	0,			/* saved_dvc_err_code */
    143   1.7  dante 	0,			/* saved_adv_err_code */
    144   1.7  dante 	0,			/* saved_adv_err_addr */
    145   1.7  dante 	0			/* num_of_err */
    146   1.7  dante };
    147   1.7  dante 
    148   1.7  dante static ADW_EEP_38C0800_CONFIG
    149   1.7  dante Default_38C0800_EEPROM_Config = {
    150   1.7  dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151   1.7  dante 	0x0000,			/* 01 cfg_msw */
    152   1.7  dante 	0xFFFF,			/* 02 disc_enable */
    153   1.7  dante 	0xFFFF,			/* 03 wdtr_able */
    154   1.7  dante 	0x4444,			/* 04 sdtr_speed1 */
    155   1.7  dante 	0xFFFF,			/* 05 start_motor */
    156   1.7  dante 	0xFFFF,			/* 06 tagqng_able */
    157   1.7  dante 	0xFFFF,			/* 07 bios_scan */
    158   1.7  dante 	0,			/* 08 scam_tolerant */
    159   1.7  dante 	7,			/* 09 adapter_scsi_id */
    160   1.7  dante 	0,			/*    bios_boot_delay */
    161   1.7  dante 	3,			/* 10 scsi_reset_delay */
    162   1.7  dante 	0,			/*    bios_id_lun */
    163   1.7  dante 	0,			/* 11 termination_se */
    164   1.7  dante 	0,			/*    termination_lvd */
    165   1.7  dante 	0xFFE7,			/* 12 bios_ctrl */
    166   1.7  dante 	0x4444,			/* 13 sdtr_speed2 */
    167   1.7  dante 	0x4444,			/* 14 sdtr_speed3 */
    168  1.16  dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169  1.16  dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170   1.7  dante 	0,			/* 16 dvc_cntl */
    171   1.7  dante 	0x4444,			/* 17 sdtr_speed4 */
    172   1.7  dante 	0,			/* 18 serial_number_word1 */
    173   1.7  dante 	0,			/* 19 serial_number_word2 */
    174   1.7  dante 	0,			/* 20 serial_number_word3 */
    175   1.7  dante 	0,			/* 21 check_sum */
    176   1.7  dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    177   1.7  dante 	0,			/* 30 dvc_err_code */
    178   1.7  dante 	0,			/* 31 adv_err_code */
    179   1.7  dante 	0,			/* 32 adv_err_addr */
    180   1.7  dante 	0,			/* 33 saved_dvc_err_code */
    181   1.7  dante 	0,			/* 34 saved_adv_err_code */
    182   1.7  dante 	0,			/* 35 saved_adv_err_addr */
    183   1.7  dante 	0,			/* 36 reserved */
    184   1.7  dante 	0,			/* 37 reserved */
    185   1.7  dante 	0,			/* 38 reserved */
    186   1.7  dante 	0,			/* 39 reserved */
    187   1.7  dante 	0,			/* 40 reserved */
    188   1.7  dante 	0,			/* 41 reserved */
    189   1.7  dante 	0,			/* 42 reserved */
    190   1.7  dante 	0,			/* 43 reserved */
    191   1.7  dante 	0,			/* 44 reserved */
    192   1.7  dante 	0,			/* 45 reserved */
    193   1.7  dante 	0,			/* 46 reserved */
    194   1.7  dante 	0,			/* 47 reserved */
    195   1.7  dante 	0,			/* 48 reserved */
    196   1.7  dante 	0,			/* 49 reserved */
    197   1.7  dante 	0,			/* 50 reserved */
    198   1.7  dante 	0,			/* 51 reserved */
    199   1.7  dante 	0,			/* 52 reserved */
    200   1.7  dante 	0,			/* 53 reserved */
    201   1.7  dante 	0,			/* 54 reserved */
    202   1.7  dante 	0,			/* 55 reserved */
    203   1.7  dante 	0,			/* 56 cisptr_lsw */
    204   1.7  dante 	0,			/* 57 cisprt_msw */
    205   1.7  dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    206   1.7  dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    207   1.7  dante 	0,			/* 60 reserved */
    208   1.7  dante 	0,			/* 61 reserved */
    209   1.7  dante 	0,			/* 62 reserved */
    210   1.7  dante 	0			/* 63 reserved */
    211   1.1  dante };
    212   1.1  dante 
    213  1.10  dante static ADW_EEP_38C1600_CONFIG
    214  1.10  dante Default_38C1600_EEPROM_Config = {
    215  1.10  dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    216  1.10  dante 	0x0000,			/* 01 cfg_msw */
    217  1.10  dante 	0xFFFF,			/* 02 disc_enable */
    218  1.10  dante 	0xFFFF,			/* 03 wdtr_able */
    219  1.10  dante 	0x5555,			/* 04 sdtr_speed1 */
    220  1.10  dante 	0xFFFF,			/* 05 start_motor */
    221  1.10  dante 	0xFFFF,			/* 06 tagqng_able */
    222  1.10  dante 	0xFFFF,			/* 07 bios_scan */
    223  1.10  dante 	0,			/* 08 scam_tolerant */
    224  1.10  dante 	7,			/* 09 adapter_scsi_id */
    225  1.10  dante 	0,			/*    bios_boot_delay */
    226  1.10  dante 	3,			/* 10 scsi_reset_delay */
    227  1.10  dante 	0,			/*    bios_id_lun */
    228  1.10  dante 	0,			/* 11 termination_se */
    229  1.10  dante 	0,			/*    termination_lvd */
    230  1.10  dante 	0xFFE7,			/* 12 bios_ctrl */
    231  1.10  dante 	0x5555,			/* 13 sdtr_speed2 */
    232  1.10  dante 	0x5555,			/* 14 sdtr_speed3 */
    233  1.16  dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    234  1.16  dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    235  1.10  dante 	0,			/* 16 dvc_cntl */
    236  1.10  dante 	0x5555,			/* 17 sdtr_speed4 */
    237  1.10  dante 	0,			/* 18 serial_number_word1 */
    238  1.10  dante 	0,			/* 19 serial_number_word2 */
    239  1.10  dante 	0,			/* 20 serial_number_word3 */
    240  1.10  dante 	0,			/* 21 check_sum */
    241  1.10  dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    242  1.10  dante 	0,			/* 30 dvc_err_code */
    243  1.10  dante 	0,			/* 31 adv_err_code */
    244  1.10  dante 	0,			/* 32 adv_err_addr */
    245  1.10  dante 	0,			/* 33 saved_dvc_err_code */
    246  1.10  dante 	0,			/* 34 saved_adv_err_code */
    247  1.10  dante 	0,			/* 35 saved_adv_err_addr */
    248  1.10  dante 	0,			/* 36 reserved */
    249  1.10  dante 	0,			/* 37 reserved */
    250  1.10  dante 	0,			/* 38 reserved */
    251  1.10  dante 	0,			/* 39 reserved */
    252  1.10  dante 	0,			/* 40 reserved */
    253  1.10  dante 	0,			/* 41 reserved */
    254  1.10  dante 	0,			/* 42 reserved */
    255  1.10  dante 	0,			/* 43 reserved */
    256  1.10  dante 	0,			/* 44 reserved */
    257  1.10  dante 	0,			/* 45 reserved */
    258  1.10  dante 	0,			/* 46 reserved */
    259  1.10  dante 	0,			/* 47 reserved */
    260  1.10  dante 	0,			/* 48 reserved */
    261  1.10  dante 	0,			/* 49 reserved */
    262  1.10  dante 	0,			/* 50 reserved */
    263  1.10  dante 	0,			/* 51 reserved */
    264  1.10  dante 	0,			/* 52 reserved */
    265  1.10  dante 	0,			/* 53 reserved */
    266  1.10  dante 	0,			/* 54 reserved */
    267  1.10  dante 	0,			/* 55 reserved */
    268  1.10  dante 	0,			/* 56 cisptr_lsw */
    269  1.10  dante 	0,			/* 57 cisprt_msw */
    270  1.10  dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    271  1.10  dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    272  1.10  dante 	0,			/* 60 reserved */
    273  1.10  dante 	0,			/* 61 reserved */
    274  1.10  dante 	0,			/* 62 reserved */
    275  1.10  dante 	0			/* 63 reserved */
    276  1.10  dante };
    277  1.10  dante 
    278   1.1  dante /*
    279   1.1  dante  * Initialize the ASC3550.
    280   1.1  dante  *
    281   1.1  dante  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    282   1.1  dante  *
    283   1.1  dante  * For a non-fatal error return a warning code. If there are no warnings
    284   1.1  dante  * then 0 is returned.
    285   1.1  dante  */
    286   1.1  dante int
    287  1.16  dante AdwInitAsc3550Driver(sc)
    288   1.2  dante ADW_SOFTC      *sc;
    289   1.1  dante {
    290   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    291   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    292   1.7  dante 	u_int16_t	warn_code;
    293   1.7  dante 	u_int32_t	sum;
    294   1.7  dante 	int		begin_addr;
    295   1.7  dante 	int		end_addr;
    296   1.7  dante 	u_int16_t	code_sum;
    297   1.7  dante 	int		word;
    298   1.7  dante 	int		i, j;
    299   1.7  dante 	int		adv_asc3550_expanded_size;
    300   1.7  dante 	u_int16_t	scsi_cfg1;
    301   1.7  dante 	u_int8_t	tid;
    302  1.16  dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    303   1.7  dante 								0x40-0x8F. */
    304   1.7  dante 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    305   1.7  dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    306   1.1  dante 
    307   1.1  dante 
    308   1.1  dante 	warn_code = 0;
    309   1.1  dante 
    310   1.1  dante 	/*
    311   1.1  dante 	 * Save the RISC memory BIOS region before writing the microcode.
    312   1.1  dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    313   1.1  dante 	 * so its region must be saved and restored.
    314   1.1  dante 	 *
    315   1.1  dante 	 * Note: This code makes the assumption, which is currently true,
    316   1.1  dante 	 * that a chip reset does not clear RISC LRAM.
    317   1.1  dante 	 */
    318  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    319  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    320   1.7  dante 	}
    321   1.7  dante 
    322   1.7  dante 	/*
    323   1.7  dante 	 * Save current per TID negotiated values.
    324   1.7  dante 	 */
    325  1.16  dante 	if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] == 0x55AA) {
    326   1.7  dante 
    327   1.7  dante 		u_int16_t  bios_version, major, minor;
    328   1.7  dante 
    329  1.16  dante 		bios_version = bios_mem[(ADW_MC_BIOS_VERSION-ADW_MC_BIOSMEM)/2];
    330   1.7  dante 		major = (bios_version  >> 12) & 0xF;
    331   1.7  dante 		minor = (bios_version  >> 8) & 0xF;
    332   1.7  dante 		if (major < 3 || (major == 3 && minor == 1)) {
    333   1.7  dante 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    334   1.7  dante 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    335   1.7  dante 		} else {
    336  1.16  dante 		    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    337   1.7  dante 		}
    338   1.7  dante 	}
    339  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    340  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    341   1.7  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    342  1.16  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    343   1.7  dante 			max_cmd[tid]);
    344   1.1  dante 	}
    345   1.1  dante 
    346   1.1  dante 	/*
    347   1.1  dante 	 * Load the Microcode
    348   1.1  dante 	 *
    349   1.1  dante 	 * Write the microcode image to RISC memory starting at address 0.
    350   1.1  dante 	 */
    351   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    352   1.7  dante 
    353   1.7  dante 	/* Assume the following compressed format of the microcode buffer:
    354   1.7  dante 	 *
    355   1.7  dante 	 *  254 word (508 byte) table indexed by byte code followed
    356   1.7  dante 	 *  by the following byte codes:
    357   1.7  dante 	 *
    358   1.7  dante 	 *    1-Byte Code:
    359   1.7  dante 	 *	00: Emit word 0 in table.
    360   1.7  dante 	 *	01: Emit word 1 in table.
    361   1.7  dante 	 *	.
    362   1.7  dante 	 *	FD: Emit word 253 in table.
    363   1.7  dante 	 *
    364   1.7  dante 	 *    Multi-Byte Code:
    365   1.7  dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    366   1.7  dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    367   1.7  dante 	 */
    368   1.7  dante 	word = 0;
    369  1.16  dante 	for (i = 253 * 2; i < adw_asc3550_mcode_data.mcode_size; i++) {
    370  1.16  dante 		if (adw_asc3550_mcode_data.mcode_data[i] == 0xff) {
    371  1.16  dante 			for (j = 0; j < adw_asc3550_mcode_data.mcode_data[i + 1]; j++) {
    372   1.7  dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    373  1.16  dante 				  (((u_int16_t)adw_asc3550_mcode_data.mcode_data[i + 3] << 8) |
    374  1.16  dante 				  adw_asc3550_mcode_data.mcode_data[i + 2]));
    375   1.7  dante 				word++;
    376   1.7  dante 			}
    377   1.7  dante 			i += 3;
    378  1.16  dante 		} else if (adw_asc3550_mcode_data.mcode_data[i] == 0xfe) {
    379   1.7  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    380  1.16  dante 			    (((u_int16_t)adw_asc3550_mcode_data.mcode_data[i + 2] << 8) |
    381  1.16  dante 			    adw_asc3550_mcode_data.mcode_data[i + 1]));
    382   1.7  dante 			i += 2;
    383   1.7  dante 			word++;
    384   1.7  dante 		} else {
    385   1.7  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    386  1.16  dante 			 adw_asc3550_mcode_data.mcode_data[(adw_asc3550_mcode_data.mcode_data[i] * 2) + 1] <<8)|
    387  1.16  dante 			 adw_asc3550_mcode_data.mcode_data[adw_asc3550_mcode_data.mcode_data[i] * 2]));
    388   1.7  dante 			word++;
    389   1.7  dante 		}
    390   1.1  dante 	}
    391   1.1  dante 
    392   1.1  dante 	/*
    393   1.7  dante 	 * Set 'word' for later use to clear the rest of memory and save
    394   1.7  dante 	 * the expanded mcode size.
    395   1.7  dante 	 */
    396   1.7  dante 	word *= 2;
    397   1.7  dante 	adv_asc3550_expanded_size = word;
    398   1.7  dante 
    399   1.7  dante 	/*
    400   1.7  dante 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    401   1.1  dante 	 */
    402  1.16  dante 	for (; word < ADW_3550_MEMSIZE; word += 2) {
    403   1.1  dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    404   1.1  dante 	}
    405   1.1  dante 
    406   1.1  dante 	/*
    407   1.1  dante 	 * Verify the microcode checksum.
    408   1.1  dante 	 */
    409   1.1  dante 	sum = 0;
    410   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    411   1.7  dante 
    412   1.7  dante 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    413   1.1  dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    414   1.1  dante 	}
    415   1.1  dante 
    416  1.16  dante 	if (sum != adw_asc3550_mcode_data.mcode_chksum) {
    417  1.16  dante 		return ADW_IERR_MCODE_CHKSUM;
    418   1.7  dante 	}
    419   1.1  dante 
    420   1.1  dante 	/*
    421   1.1  dante 	 * Restore the RISC memory BIOS region.
    422   1.1  dante 	 */
    423  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    424  1.16  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
    425   1.7  dante 				bios_mem[i]);
    426   1.1  dante 	}
    427   1.1  dante 
    428   1.1  dante 	/*
    429   1.1  dante 	 * Calculate and write the microcode code checksum to the microcode
    430  1.16  dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
    431   1.1  dante 	 */
    432  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
    433  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
    434   1.1  dante 	code_sum = 0;
    435   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    436   1.1  dante 	for (word = begin_addr; word < end_addr; word += 2) {
    437   1.7  dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    438   1.1  dante 	}
    439  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
    440   1.1  dante 
    441   1.1  dante 	/*
    442   1.7  dante 	 * Read and save microcode version and date.
    443   1.1  dante 	 */
    444  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
    445   1.7  dante 			sc->cfg.mcode_date);
    446  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
    447   1.7  dante 			sc->cfg.mcode_version);
    448   1.1  dante 
    449   1.1  dante 	/*
    450   1.7  dante 	 * Set the chip type to indicate the ASC3550.
    451   1.1  dante 	 */
    452  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC3550);
    453   1.1  dante 
    454   1.1  dante 	/*
    455   1.1  dante 	 * If the PCI Configuration Command Register "Parity Error Response
    456   1.1  dante 	 * Control" Bit was clear (0), then set the microcode variable
    457   1.1  dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    458   1.1  dante 	 * to ignore DMA parity errors.
    459   1.1  dante 	 */
    460   1.1  dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    461  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    462   1.1  dante 		word |= CONTROL_FLAG_IGNORE_PERR;
    463  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    464   1.1  dante 	}
    465   1.7  dante 
    466   1.1  dante 	/*
    467   1.7  dante 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    468   1.7  dante 	 * threshold of 128 bytes. This register is only accessible to the host.
    469   1.1  dante 	 */
    470   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    471   1.7  dante 			START_CTL_EMFU | READ_CMD_MRM);
    472   1.7  dante 
    473   1.7  dante 	/*
    474   1.7  dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    475  1.16  dante 	 * queuing will be set in AdwInquiryHandling() based on what a
    476   1.7  dante 	 * device reports it is capable of in Inquiry byte 7.
    477   1.7  dante 	 *
    478  1.16  dante 	 * If SCSI Bus Resets have been disabled, then directly set
    479   1.7  dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    480   1.7  dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    481   1.7  dante 	 * the Inquiry caused by host and target mismatched DTR values.
    482   1.7  dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    483   1.7  dante 	 * be assumed to be in Asynchronous, Narrow mode.
    484   1.7  dante 	 */
    485   1.7  dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    486  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    487   1.7  dante 				sc->wdtr_able);
    488  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    489   1.7  dante 				sc->sdtr_able);
    490   1.7  dante 	}
    491   1.7  dante 
    492   1.7  dante 	/*
    493   1.7  dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    494   1.7  dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    495   1.7  dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    496   1.7  dante 	 * with a device.
    497   1.7  dante 	 *
    498   1.7  dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    499   1.7  dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    500   1.7  dante 	 * without determining here whether the device supports SDTR.
    501   1.7  dante 	 *
    502   1.7  dante 	 * 4-bit speed  SDTR speed name
    503   1.7  dante 	 * ===========  ===============
    504   1.7  dante 	 * 0000b (0x0)  SDTR disabled
    505   1.7  dante 	 * 0001b (0x1)  5 Mhz
    506   1.7  dante 	 * 0010b (0x2)  10 Mhz
    507   1.7  dante 	 * 0011b (0x3)  20 Mhz (Ultra)
    508   1.7  dante 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    509   1.7  dante 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    510   1.7  dante 	 * 0110b (0x6)  Undefined
    511   1.7  dante 	 * .
    512   1.7  dante 	 * 1111b (0xF)  Undefined
    513   1.7  dante 	 */
    514   1.7  dante 	word = 0;
    515   1.7  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    516   1.7  dante 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    517   1.7  dante 			/* Set Ultra speed for TID 'tid'. */
    518   1.7  dante 			word |= (0x3 << (4 * (tid % 4)));
    519   1.7  dante 		} else {
    520   1.7  dante 			/* Set Fast speed for TID 'tid'. */
    521   1.7  dante 			word |= (0x2 << (4 * (tid % 4)));
    522   1.7  dante 		}
    523   1.7  dante 		/* Check if done with sdtr_speed1. */
    524   1.7  dante 		if (tid == 3) {
    525  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, word);
    526   1.7  dante 			word = 0;
    527   1.7  dante 		/* Check if done with sdtr_speed2. */
    528   1.7  dante 		} else if (tid == 7) {
    529  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, word);
    530   1.7  dante 			word = 0;
    531   1.7  dante 		/* Check if done with sdtr_speed3. */
    532   1.7  dante 		} else if (tid == 11) {
    533  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, word);
    534   1.7  dante 			word = 0;
    535   1.7  dante 		/* Check if done with sdtr_speed4. */
    536   1.7  dante 		} else if (tid == 15) {
    537  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, word);
    538   1.7  dante 			/* End of loop. */
    539   1.7  dante 		}
    540   1.7  dante 	}
    541   1.1  dante 
    542   1.1  dante 	/*
    543   1.7  dante 	 * Set microcode operating variable for the disconnect per TID bitmask.
    544   1.1  dante 	 */
    545  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
    546   1.1  dante 
    547   1.1  dante 
    548   1.1  dante 	/*
    549   1.1  dante 	 * Set SCSI_CFG0 Microcode Default Value.
    550   1.1  dante 	 *
    551   1.1  dante 	 * The microcode will set the SCSI_CFG0 register using this value
    552   1.1  dante 	 * after it is started below.
    553   1.1  dante 	 */
    554  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    555  1.10  dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    556  1.10  dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    557   1.2  dante 
    558   1.1  dante 	/*
    559   1.1  dante 	 * Determine SCSI_CFG1 Microcode Default Value.
    560   1.1  dante 	 *
    561   1.1  dante 	 * The microcode will set the SCSI_CFG1 register using this value
    562   1.1  dante 	 * after it is started below.
    563   1.1  dante 	 */
    564   1.1  dante 
    565   1.1  dante 	/* Read current SCSI_CFG1 Register value. */
    566   1.1  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    567   1.1  dante 
    568   1.1  dante 	/*
    569   1.1  dante 	 * If all three connectors are in use, return an error.
    570   1.1  dante 	 */
    571   1.1  dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    572  1.10  dante 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    573  1.16  dante 		return ADW_IERR_ILLEGAL_CONNECTION;
    574   1.1  dante 	}
    575   1.7  dante 
    576   1.1  dante 	/*
    577   1.1  dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    578   1.1  dante 	 * register signals will be set. Check for and return an error if
    579   1.1  dante 	 * this condition is found.
    580   1.1  dante 	 */
    581   1.2  dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    582   1.2  dante 			0x3F07) {
    583  1.16  dante 		return ADW_IERR_REVERSED_CABLE;
    584   1.2  dante 	}
    585   1.1  dante 
    586   1.1  dante 	/*
    587   1.1  dante 	 * If this is a differential board and a single-ended device
    588   1.1  dante 	 * is attached to one of the connectors, return an error.
    589   1.1  dante 	 */
    590   1.7  dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    591  1.16  dante 		return ADW_IERR_SINGLE_END_DEVICE;
    592   1.7  dante 	}
    593   1.1  dante 
    594   1.1  dante 	/*
    595   1.1  dante 	 * If automatic termination control is enabled, then set the
    596   1.7  dante 	 * termination value based on a table listed in a_condor.h.
    597   1.1  dante 	 *
    598   1.1  dante 	 * If manual termination was specified with an EEPROM setting
    599  1.16  dante 	 * then 'termination' was set-up in AdwInitFrom3550EEPROM() and
    600   1.1  dante 	 * is ready to be 'ored' into SCSI_CFG1.
    601   1.1  dante 	 */
    602   1.1  dante 	if (sc->cfg.termination == 0) {
    603   1.1  dante 		/*
    604  1.10  dante 		 * The software always controls termination by setting
    605  1.10  dante 		 * TERM_CTL_SEL.
    606  1.10  dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
    607  1.10  dante 		 * termination.
    608   1.1  dante 		 */
    609   1.1  dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    610   1.1  dante 
    611   1.7  dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    612   1.7  dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    613  1.10  dante 			case 0x3: case 0x7: case 0xB:
    614  1.10  dante 			case 0xD: case 0xE: case 0xF:
    615  1.10  dante 				sc->cfg.termination |=
    616  1.10  dante 					(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    617   1.7  dante 				break;
    618   1.7  dante 
    619   1.7  dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    620   1.7  dante 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    621   1.7  dante 				sc->cfg.termination |= ADW_TERM_CTL_H;
    622   1.7  dante 				break;
    623   1.7  dante 
    624   1.7  dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    625   1.7  dante 			case 0x2: case 0x6:
    626   1.7  dante 				break;
    627   1.1  dante 		}
    628   1.1  dante 	}
    629   1.7  dante 
    630   1.1  dante 	/*
    631   1.7  dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    632   1.1  dante 	 */
    633   1.1  dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
    634   1.1  dante 
    635   1.1  dante 	/*
    636   1.7  dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    637   1.7  dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    638   1.1  dante 	 * referenced, because the hardware internally inverts
    639   1.7  dante 	 * the Termination High and Low bits if TERM_POL is set.
    640   1.1  dante 	 */
    641   1.1  dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    642   1.1  dante 
    643   1.1  dante 	/*
    644   1.1  dante 	 * Set SCSI_CFG1 Microcode Default Value
    645   1.1  dante 	 *
    646   1.1  dante 	 * Set filter value and possibly modified termination control
    647   1.1  dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
    648   1.1  dante 	 *
    649   1.1  dante 	 * The microcode will set the SCSI_CFG1 register using this value
    650   1.1  dante 	 * after it is started below.
    651   1.1  dante 	 */
    652  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
    653   1.7  dante 		ADW_FLTR_DISABLE | scsi_cfg1);
    654   1.7  dante 
    655   1.7  dante 	/*
    656   1.7  dante 	 * Set MEM_CFG Microcode Default Value
    657   1.7  dante 	 *
    658   1.7  dante 	 * The microcode will set the MEM_CFG register using this value
    659   1.7  dante 	 * after it is started below.
    660   1.7  dante 	 *
    661   1.7  dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    662   1.7  dante 	 * are defined.
    663   1.7  dante 	 *
    664   1.7  dante 	 * ASC-3550 has 8KB internal memory.
    665   1.7  dante 	 */
    666  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
    667   1.7  dante 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    668   1.1  dante 
    669   1.1  dante 	/*
    670   1.1  dante 	 * Set SEL_MASK Microcode Default Value
    671   1.1  dante 	 *
    672   1.1  dante 	 * The microcode will set the SEL_MASK register using this value
    673   1.1  dante 	 * after it is started below.
    674   1.1  dante 	 */
    675  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    676   1.7  dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    677   1.7  dante 
    678   1.7  dante 
    679  1.16  dante 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
    680  1.16  dante 			sc->sc_control->carriers, &sc->carr_freelist);
    681  1.16  dante 	if (i == 0) {
    682  1.16  dante 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
    683  1.16  dante 	} else if (i != ADW_MAX_CARRIER) {
    684  1.16  dante 		printf("%s: WARNING: only %d of %d Carriers created\n",
    685  1.16  dante 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
    686  1.16  dante 	}
    687  1.16  dante 
    688   1.7  dante 	/*
    689   1.7  dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    690   1.7  dante 	 */
    691   1.7  dante 
    692   1.7  dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    693  1.16  dante 		return ADW_IERR_NO_CARRIER;
    694   1.7  dante 	}
    695  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    696  1.12  dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    697   1.7  dante 
    698   1.7  dante 	/*
    699   1.7  dante 	 * The first command issued will be placed in the stopper carrier.
    700   1.7  dante 	 */
    701  1.12  dante 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
    702   1.1  dante 
    703   1.1  dante 	/*
    704   1.7  dante 	 * Set RISC ICQ physical address start value.
    705   1.7  dante 	 */
    706  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
    707   1.7  dante 
    708   1.7  dante 	/*
    709   1.7  dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    710   1.1  dante 	 */
    711   1.7  dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    712  1.16  dante 		return ADW_IERR_NO_CARRIER;
    713   1.1  dante 	}
    714  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    715  1.12  dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    716   1.1  dante 
    717   1.1  dante 	/*
    718   1.7  dante 	 * The first command completed by the RISC will be placed in
    719   1.7  dante 	 * the stopper.
    720   1.1  dante 	 *
    721  1.12  dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    722  1.16  dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    723   1.1  dante 	 */
    724  1.12  dante 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
    725   1.1  dante 
    726   1.1  dante 	/*
    727   1.7  dante 	 * Set RISC IRQ physical address start value.
    728   1.1  dante 	 */
    729  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
    730   1.7  dante 	sc->carr_pending_cnt = 0;
    731   1.1  dante 
    732   1.1  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    733   1.7  dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    734   1.1  dante 
    735  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    736   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    737   1.1  dante 
    738   1.1  dante 	/* finally, finally, gentlemen, start your engine */
    739   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    740   1.2  dante 
    741   1.7  dante 	/*
    742   1.7  dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    743   1.7  dante 	 * Resets should be performed. The RISC has to be running
    744   1.7  dante 	 * to issue a SCSI Bus Reset.
    745   1.7  dante 	 */
    746   1.7  dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    747   1.7  dante 	{
    748   1.7  dante 		/*
    749   1.7  dante 		 * If the BIOS Signature is present in memory, restore the
    750   1.7  dante 		 * BIOS Handshake Configuration Table and do not perform
    751   1.7  dante 		 * a SCSI Bus Reset.
    752   1.7  dante 		 */
    753  1.16  dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    754   1.7  dante 				0x55AA) {
    755   1.7  dante 			/*
    756   1.7  dante 			 * Restore per TID negotiated values.
    757   1.7  dante 			 */
    758  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    759   1.7  dante 					wdtr_able);
    760  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    761   1.7  dante 					sdtr_able);
    762  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    763   1.7  dante 					tagqng_able);
    764   1.7  dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    765   1.7  dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    766  1.16  dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
    767   1.7  dante 					max_cmd[tid]);
    768   1.7  dante 			}
    769   1.7  dante 		} else {
    770  1.16  dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    771  1.16  dante 				warn_code = ADW_WARN_BUSRESET_ERROR;
    772   1.7  dante 			}
    773   1.7  dante 		}
    774   1.7  dante 	}
    775   1.7  dante 
    776   1.7  dante     return warn_code;
    777   1.1  dante }
    778   1.1  dante 
    779   1.1  dante /*
    780   1.7  dante  * Initialize the ASC-38C0800.
    781   1.1  dante  *
    782   1.7  dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    783   1.1  dante  *
    784   1.1  dante  * For a non-fatal error return a warning code. If there are no warnings
    785   1.1  dante  * then 0 is returned.
    786   1.1  dante  */
    787   1.1  dante int
    788  1.16  dante AdwInitAsc38C0800Driver(sc)
    789   1.7  dante ADW_SOFTC      *sc;
    790   1.1  dante {
    791   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    792   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    793   1.7  dante 	u_int16_t	warn_code;
    794   1.7  dante 	u_int32_t	sum;
    795   1.7  dante 	int	  	begin_addr;
    796   1.7  dante 	int	   	end_addr;
    797   1.7  dante 	u_int16_t	code_sum;
    798   1.7  dante 	int	   	word;
    799   1.7  dante 	int	   	i, j;
    800   1.7  dante 	int	   	adv_asc38C0800_expanded_size;
    801   1.7  dante 	u_int16_t	scsi_cfg1;
    802   1.7  dante 	u_int8_t	byte;
    803   1.7  dante 	u_int8_t	tid;
    804  1.16  dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    805   1.7  dante 								0x40-0x8F. */
    806   1.7  dante 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    807   1.7  dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    808   1.1  dante 
    809   1.1  dante 
    810   1.1  dante 	warn_code = 0;
    811   1.1  dante 
    812   1.1  dante 	/*
    813   1.7  dante 	 * Save the RISC memory BIOS region before writing the microcode.
    814   1.7  dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    815   1.7  dante 	 * so its region must be saved and restored.
    816   1.1  dante 	 *
    817   1.7  dante 	 * Note: This code makes the assumption, which is currently true,
    818   1.7  dante 	 * that a chip reset does not clear RISC LRAM.
    819   1.7  dante 	 */
    820  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    821  1.16  dante 	    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]);
    822   1.7  dante 	}
    823   1.7  dante 
    824   1.7  dante 	/*
    825   1.7  dante 	 * Save current per TID negotiated values.
    826   1.1  dante 	 */
    827  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    828  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    829  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    830   1.7  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    831  1.16  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    832   1.7  dante 			max_cmd[tid]);
    833   1.7  dante 	}
    834   1.2  dante 
    835   1.7  dante 	/*
    836   1.7  dante 	 * RAM BIST (RAM Built-In Self Test)
    837   1.7  dante 	 *
    838   1.7  dante 	 * Address : I/O base + offset 0x38h register (byte).
    839   1.7  dante 	 * Function: Bit 7-6(RW) : RAM mode
    840   1.7  dante 	 *			    Normal Mode   : 0x00
    841   1.7  dante 	 *			    Pre-test Mode : 0x40
    842   1.7  dante 	 *			    RAM Test Mode : 0x80
    843   1.7  dante 	 *	     Bit 5	 : unused
    844   1.7  dante 	 *	     Bit 4(RO)   : Done bit
    845   1.7  dante 	 *	     Bit 3-0(RO) : Status
    846   1.7  dante 	 *			    Host Error    : 0x08
    847   1.7  dante 	 *			    Int_RAM Error : 0x04
    848   1.7  dante 	 *			    RISC Error    : 0x02
    849   1.7  dante 	 *			    SCSI Error    : 0x01
    850   1.7  dante 	 *			    No Error	  : 0x00
    851   1.7  dante 	 *
    852   1.7  dante 	 * Note: RAM BIST code should be put right here, before loading the
    853   1.7  dante 	 * microcode and after saving the RISC memory BIOS region.
    854   1.7  dante 	 */
    855   1.1  dante 
    856   1.7  dante 	/*
    857   1.7  dante 	 * LRAM Pre-test
    858   1.7  dante 	 *
    859   1.7  dante 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    860   1.7  dante 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    861   1.7  dante 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    862   1.7  dante 	 * to NORMAL_MODE, return an error too.
    863   1.7  dante 	 */
    864   1.7  dante 	for (i = 0; i < 2; i++) {
    865   1.7  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    866  1.16  dante 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    867   1.7  dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    868   1.7  dante 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    869   1.7  dante 				PRE_TEST_VALUE) {
    870  1.16  dante 			return ADW_IERR_BIST_PRE_TEST;
    871   1.1  dante 		}
    872   1.1  dante 
    873   1.7  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    874  1.16  dante 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    875   1.7  dante 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    876   1.7  dante 		    != NORMAL_VALUE) {
    877  1.16  dante 			return ADW_IERR_BIST_PRE_TEST;
    878   1.7  dante 		}
    879   1.1  dante 	}
    880   1.7  dante 
    881   1.1  dante 	/*
    882   1.7  dante 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    883   1.1  dante 	 *
    884   1.7  dante 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    885   1.7  dante 	 * If Done bit not set or Status not 0, save register byte, set the
    886   1.7  dante 	 * err_code, and return an error.
    887   1.1  dante 	 */
    888   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    889  1.16  dante 	AdwSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    890   1.7  dante 
    891   1.7  dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    892   1.7  dante 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    893   1.7  dante 		/* Get here if Done bit not set or Status not 0. */
    894  1.16  dante 		return ADW_IERR_BIST_RAM_TEST;
    895   1.7  dante 	}
    896   1.7  dante 
    897   1.7  dante 	/* We need to reset back to normal mode after LRAM test passes. */
    898   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    899   1.1  dante 
    900   1.1  dante 	/*
    901   1.7  dante 	 * Load the Microcode
    902   1.7  dante 	 *
    903   1.7  dante 	 * Write the microcode image to RISC memory starting at address 0.
    904   1.7  dante 	 *
    905   1.1  dante 	 */
    906   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    907   1.7  dante 
    908   1.7  dante 	/* Assume the following compressed format of the microcode buffer:
    909   1.7  dante 	 *
    910   1.7  dante 	 *  254 word (508 byte) table indexed by byte code followed
    911   1.7  dante 	 *  by the following byte codes:
    912   1.7  dante 	 *
    913   1.7  dante 	 *    1-Byte Code:
    914   1.7  dante 	 *	00: Emit word 0 in table.
    915   1.7  dante 	 *	01: Emit word 1 in table.
    916   1.7  dante 	 *	.
    917   1.7  dante 	 *	FD: Emit word 253 in table.
    918   1.7  dante 	 *
    919   1.7  dante 	 *    Multi-Byte Code:
    920   1.7  dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    921   1.7  dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    922   1.7  dante 	 */
    923   1.7  dante 	word = 0;
    924  1.16  dante 	for (i = 253 * 2; i < adw_asc38C0800_mcode_data.mcode_size; i++) {
    925  1.16  dante 		if (adw_asc38C0800_mcode_data.mcode_data[i] == 0xff) {
    926  1.16  dante 			for (j = 0; j < adw_asc38C0800_mcode_data.mcode_data[i + 1]; j++) {
    927   1.7  dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    928   1.7  dante 				    (((u_int16_t)
    929  1.16  dante 				    adw_asc38C0800_mcode_data.mcode_data[i + 3] << 8) |
    930  1.16  dante 				    adw_asc38C0800_mcode_data.mcode_data[i + 2]));
    931   1.7  dante 				word++;
    932   1.7  dante 			}
    933   1.7  dante 			i += 3;
    934  1.16  dante 		} else if (adw_asc38C0800_mcode_data.mcode_data[i] == 0xfe) {
    935   1.7  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    936  1.16  dante 			    adw_asc38C0800_mcode_data.mcode_data[i + 2] << 8) |
    937  1.16  dante 			    adw_asc38C0800_mcode_data.mcode_data[i + 1]));
    938   1.7  dante 			i += 2;
    939   1.7  dante 			word++;
    940   1.1  dante 		} else {
    941   1.7  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    942  1.16  dante 			  adw_asc38C0800_mcode_data.mcode_data[(adw_asc38C0800_mcode_data.mcode_data[i] * 2) + 1] << 8) |
    943  1.16  dante 			  adw_asc38C0800_mcode_data.mcode_data[adw_asc38C0800_mcode_data.mcode_data[i] * 2]));
    944   1.7  dante 			word++;
    945   1.1  dante 		}
    946   1.1  dante 	}
    947   1.7  dante 
    948   1.7  dante 	/*
    949   1.7  dante 	 * Set 'word' for later use to clear the rest of memory and save
    950   1.7  dante 	 * the expanded mcode size.
    951   1.7  dante 	 */
    952   1.7  dante 	word *= 2;
    953   1.7  dante 	adv_asc38C0800_expanded_size = word;
    954   1.7  dante 
    955   1.1  dante 	/*
    956   1.7  dante 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    957   1.1  dante 	 */
    958  1.16  dante 	for (; word < ADW_38C0800_MEMSIZE; word += 2) {
    959   1.7  dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    960   1.1  dante 	}
    961   1.7  dante 
    962   1.1  dante 	/*
    963   1.7  dante 	 * Verify the microcode checksum.
    964   1.1  dante 	 */
    965   1.7  dante 	sum = 0;
    966   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    967   1.7  dante 
    968   1.7  dante 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    969   1.7  dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    970   1.7  dante 	}
    971   1.1  dante 
    972  1.16  dante 	if (sum != adw_asc38C0800_mcode_data.mcode_chksum) {
    973  1.16  dante 	    return ADW_IERR_MCODE_CHKSUM;
    974   1.7  dante 	}
    975   1.1  dante 
    976   1.1  dante 	/*
    977   1.7  dante 	 * Restore the RISC memory BIOS region.
    978   1.1  dante 	 */
    979  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    980  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
    981   1.7  dante 				bios_mem[i]);
    982   1.7  dante 	}
    983   1.1  dante 
    984   1.7  dante 	/*
    985   1.7  dante 	 * Calculate and write the microcode code checksum to the microcode
    986  1.16  dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
    987   1.7  dante 	 */
    988  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
    989  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
    990   1.7  dante 	code_sum = 0;
    991   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    992   1.7  dante 	for (word = begin_addr; word < end_addr; word += 2) {
    993   1.7  dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    994   1.1  dante 	}
    995  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
    996   1.1  dante 
    997   1.7  dante 	/*
    998   1.7  dante 	 * Read microcode version and date.
    999   1.7  dante 	 */
   1000  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
   1001   1.7  dante 			sc->cfg.mcode_date);
   1002  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
   1003   1.7  dante 			sc->cfg.mcode_version);
   1004   1.1  dante 
   1005   1.7  dante 	/*
   1006   1.7  dante 	 * Set the chip type to indicate the ASC38C0800.
   1007   1.7  dante 	 */
   1008  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC38C0800);
   1009   1.1  dante 
   1010   1.7  dante 	/*
   1011   1.7  dante 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1012   1.7  dante 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1013   1.7  dante 	 * cable detection and then we are able to read C_DET[3:0].
   1014   1.7  dante 	 *
   1015   1.7  dante 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1016   1.7  dante 	 * Microcode Default Value' section below.
   1017   1.7  dante 	 */
   1018   1.7  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1019   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1020   1.7  dante 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1021   1.7  dante 
   1022   1.7  dante 	/*
   1023   1.7  dante 	 * If the PCI Configuration Command Register "Parity Error Response
   1024   1.7  dante 	 * Control" Bit was clear (0), then set the microcode variable
   1025   1.7  dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1026   1.7  dante 	 * to ignore DMA parity errors.
   1027   1.7  dante 	 */
   1028   1.7  dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1029  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1030   1.7  dante 		word |= CONTROL_FLAG_IGNORE_PERR;
   1031  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1032   1.7  dante 	}
   1033   1.7  dante 
   1034   1.7  dante 	/*
   1035  1.11  dante 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
   1036  1.11  dante 	 * START_CTL_TH [3:2] bits for the default FIFO threshold.
   1037   1.7  dante 	 *
   1038   1.7  dante 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   1039   1.7  dante 	 *
   1040   1.7  dante 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   1041   1.7  dante 	 */
   1042   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1043   1.7  dante 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1044   1.7  dante 
   1045   1.7  dante 	/*
   1046   1.7  dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1047  1.16  dante 	 * queuing will be set in AdwInquiryHandling() based on what a
   1048   1.7  dante 	 * device reports it is capable of in Inquiry byte 7.
   1049   1.7  dante 	 *
   1050   1.7  dante 	 * If SCSI Bus Resets have been disabled, then directly set
   1051   1.7  dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1052   1.7  dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1053   1.7  dante 	 * the Inquiry caused by host and target mismatched DTR values.
   1054   1.7  dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1055   1.7  dante 	 * be assumed to be in Asynchronous, Narrow mode.
   1056   1.7  dante 	 */
   1057   1.7  dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1058  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
   1059  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
   1060   1.7  dante 	}
   1061   1.7  dante 
   1062   1.7  dante 	/*
   1063   1.7  dante 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1064   1.7  dante 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1065   1.7  dante 	 * configuration values.
   1066   1.7  dante 	 *
   1067   1.7  dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1068   1.7  dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1069   1.7  dante 	 * without determining here whether the device supports SDTR.
   1070   1.7  dante 	 */
   1071  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1072  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1073  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1074  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1075  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1076   1.7  dante 
   1077   1.7  dante 	/*
   1078   1.7  dante 	 * Set SCSI_CFG0 Microcode Default Value.
   1079   1.7  dante 	 *
   1080   1.7  dante 	 * The microcode will set the SCSI_CFG0 register using this value
   1081   1.7  dante 	 * after it is started below.
   1082   1.7  dante 	 */
   1083  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
   1084  1.10  dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1085  1.10  dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1086   1.7  dante 
   1087   1.7  dante 	/*
   1088   1.7  dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1089   1.7  dante 	 *
   1090   1.7  dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1091   1.7  dante 	 * after it is started below.
   1092   1.7  dante 	 */
   1093   1.7  dante 
   1094   1.7  dante 	/* Read current SCSI_CFG1 Register value. */
   1095   1.7  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1096   1.7  dante 
   1097   1.7  dante 	/*
   1098   1.7  dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1099   1.7  dante 	 * register signals will be set. Check for and return an error if
   1100   1.7  dante 	 * this condition is found.
   1101   1.7  dante 	 */
   1102   1.7  dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1103   1.7  dante 			0x3F07) {
   1104  1.16  dante 		return ADW_IERR_REVERSED_CABLE;
   1105   1.7  dante 	}
   1106   1.7  dante 
   1107   1.7  dante 	/*
   1108   1.7  dante 	 * All kind of combinations of devices attached to one of four connectors
   1109   1.7  dante 	 * are acceptable except HVD device attached. For example, LVD device can
   1110   1.7  dante 	 * be attached to SE connector while SE device attached to LVD connector.
   1111   1.7  dante 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1112   1.7  dante 	 *
   1113   1.7  dante 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1114   1.7  dante 	 * However, there is no way to detect HVD device attached to SE connectors.
   1115   1.7  dante 	 */
   1116   1.7  dante 	if (scsi_cfg1 & ADW_HVD) {
   1117  1.16  dante 		return ADW_IERR_HVD_DEVICE;
   1118   1.7  dante 	}
   1119   1.7  dante 
   1120   1.7  dante 	/*
   1121   1.7  dante 	 * If either SE or LVD automatic termination control is enabled, then
   1122   1.7  dante 	 * set the termination value based on a table listed in a_condor.h.
   1123   1.7  dante 	 *
   1124   1.7  dante 	 * If manual termination was specified with an EEPROM setting then
   1125  1.16  dante 	 * 'termination' was set-up in AdwInitFrom38C0800EEPROM() and is ready to
   1126   1.7  dante 	 * be 'ored' into SCSI_CFG1.
   1127   1.7  dante 	 */
   1128   1.7  dante 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1129   1.7  dante 		/* SE automatic termination control is enabled. */
   1130   1.7  dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1131   1.7  dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1132   1.7  dante 			case 0x1: case 0x2: case 0x3:
   1133   1.7  dante 				sc->cfg.termination |= ADW_TERM_SE;
   1134   1.7  dante 				break;
   1135   1.7  dante 
   1136   1.7  dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1137   1.7  dante 			case 0x0:
   1138   1.7  dante 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1139   1.7  dante 				break;
   1140   1.7  dante 		}
   1141   1.7  dante 	}
   1142   1.7  dante 
   1143   1.7  dante 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1144   1.7  dante 		/* LVD automatic termination control is enabled. */
   1145   1.7  dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1146   1.7  dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1147   1.7  dante 			case 0x4: case 0x8: case 0xC:
   1148   1.7  dante 				sc->cfg.termination |= ADW_TERM_LVD;
   1149   1.7  dante 				break;
   1150   1.7  dante 
   1151   1.7  dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1152   1.7  dante 			case 0x0:
   1153   1.7  dante 				break;
   1154   1.7  dante 		}
   1155   1.7  dante 	}
   1156   1.7  dante 
   1157   1.7  dante 	/*
   1158   1.7  dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1159   1.7  dante 	 */
   1160   1.7  dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1161   1.7  dante 
   1162   1.7  dante 	/*
   1163   1.7  dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1164   1.7  dante 	 */
   1165   1.7  dante 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1166   1.7  dante 
   1167   1.7  dante 	/*
   1168   1.7  dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1169   1.7  dante 	 * and set possibly modified termination control bits in the Microcode
   1170   1.7  dante 	 * SCSI_CFG1 Register Value.
   1171   1.7  dante 	 */
   1172   1.7  dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1173   1.7  dante 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1174   1.7  dante 
   1175   1.7  dante 	/*
   1176   1.7  dante 	 * Set SCSI_CFG1 Microcode Default Value
   1177   1.7  dante 	 *
   1178   1.7  dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1179   1.7  dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1180   1.7  dante 	 *
   1181   1.7  dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1182   1.7  dante 	 * after it is started below.
   1183   1.7  dante 	 */
   1184  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1185   1.7  dante 
   1186   1.7  dante 	/*
   1187   1.7  dante 	 * Set MEM_CFG Microcode Default Value
   1188   1.7  dante 	 *
   1189   1.7  dante 	 * The microcode will set the MEM_CFG register using this value
   1190   1.7  dante 	 * after it is started below.
   1191   1.7  dante 	 *
   1192   1.7  dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1193   1.7  dante 	 * are defined.
   1194   1.7  dante 	 *
   1195   1.7  dante 	 * ASC-38C0800 has 16KB internal memory.
   1196   1.7  dante 	 */
   1197  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1198   1.7  dante 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1199   1.7  dante 
   1200   1.7  dante 	/*
   1201   1.7  dante 	 * Set SEL_MASK Microcode Default Value
   1202   1.7  dante 	 *
   1203   1.7  dante 	 * The microcode will set the SEL_MASK register using this value
   1204   1.7  dante 	 * after it is started below.
   1205   1.7  dante 	 */
   1206  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
   1207   1.7  dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1208   1.7  dante 
   1209   1.7  dante 
   1210  1.16  dante 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
   1211  1.16  dante 			sc->sc_control->carriers, &sc->carr_freelist);
   1212  1.16  dante 	if (i == 0) {
   1213  1.16  dante 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
   1214  1.16  dante 	} else if (i != ADW_MAX_CARRIER) {
   1215  1.16  dante 		printf("%s: WARNING: only %d of %d Carriers created\n",
   1216  1.16  dante 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
   1217  1.16  dante 	}
   1218  1.16  dante 
   1219   1.7  dante 	/*
   1220   1.7  dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1221   1.7  dante 	 */
   1222   1.7  dante 
   1223   1.7  dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1224  1.16  dante 		return ADW_IERR_NO_CARRIER;
   1225   1.7  dante 	}
   1226  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1227  1.12  dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1228   1.7  dante 
   1229   1.7  dante 	/*
   1230   1.7  dante 	 * The first command issued will be placed in the stopper carrier.
   1231   1.7  dante 	 */
   1232  1.12  dante 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1233   1.7  dante 
   1234   1.7  dante 	/*
   1235   1.7  dante 	 * Set RISC ICQ physical address start value.
   1236   1.7  dante 	 */
   1237  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
   1238   1.7  dante 
   1239   1.7  dante 	/*
   1240   1.7  dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1241   1.7  dante 	 */
   1242   1.7  dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1243  1.16  dante 		return ADW_IERR_NO_CARRIER;
   1244   1.7  dante 	}
   1245  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1246  1.12  dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1247   1.7  dante 
   1248   1.7  dante 	/*
   1249   1.7  dante 	 * The first command completed by the RISC will be placed in
   1250   1.7  dante 	 * the stopper.
   1251   1.7  dante 	 *
   1252  1.12  dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1253  1.16  dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
   1254   1.7  dante 	 */
   1255  1.12  dante 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1256   1.7  dante 
   1257   1.7  dante 	/*
   1258   1.7  dante 	 * Set RISC IRQ physical address start value.
   1259   1.7  dante 	 */
   1260  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
   1261   1.7  dante 	sc->carr_pending_cnt = 0;
   1262   1.7  dante 
   1263   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1264   1.7  dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1265  1.12  dante 
   1266  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
   1267   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1268   1.7  dante 
   1269   1.7  dante 	/* finally, finally, gentlemen, start your engine */
   1270   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1271   1.7  dante 
   1272   1.7  dante 	/*
   1273   1.7  dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1274   1.7  dante 	 * Resets should be performed. The RISC has to be running
   1275   1.7  dante 	 * to issue a SCSI Bus Reset.
   1276   1.7  dante 	 */
   1277   1.7  dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1278   1.7  dante 		/*
   1279   1.7  dante 		 * If the BIOS Signature is present in memory, restore the
   1280   1.7  dante 		 * BIOS Handshake Configuration Table and do not perform
   1281   1.7  dante 		 * a SCSI Bus Reset.
   1282   1.7  dante 		 */
   1283  1.16  dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
   1284   1.7  dante 				0x55AA) {
   1285   1.7  dante 			/*
   1286   1.7  dante 			 * Restore per TID negotiated values.
   1287   1.7  dante 			 */
   1288  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   1289  1.10  dante 					wdtr_able);
   1290  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   1291  1.10  dante 					sdtr_able);
   1292  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   1293  1.10  dante 					tagqng_able);
   1294  1.10  dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1295  1.10  dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1296  1.16  dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1297  1.10  dante 						max_cmd[tid]);
   1298  1.10  dante 			}
   1299  1.10  dante 		} else {
   1300  1.16  dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
   1301  1.16  dante 				warn_code = ADW_WARN_BUSRESET_ERROR;
   1302  1.10  dante 			}
   1303  1.10  dante 		}
   1304  1.10  dante 	}
   1305  1.10  dante 
   1306  1.10  dante 	return warn_code;
   1307  1.10  dante }
   1308  1.10  dante 
   1309  1.10  dante 
   1310  1.10  dante /*
   1311  1.10  dante  * Initialize the ASC-38C1600.
   1312  1.10  dante  *
   1313  1.10  dante  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   1314  1.10  dante  *
   1315  1.10  dante  * For a non-fatal error return a warning code. If there are no warnings
   1316  1.10  dante  * then 0 is returned.
   1317  1.10  dante  */
   1318  1.10  dante int
   1319  1.16  dante AdwInitAsc38C1600Driver(sc)
   1320  1.10  dante ADW_SOFTC      *sc;
   1321  1.10  dante {
   1322  1.10  dante 	bus_space_tag_t iot = sc->sc_iot;
   1323  1.10  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1324  1.10  dante 	u_int16_t	warn_code;
   1325  1.10  dante 	u_int32_t	sum;
   1326  1.10  dante 	int	  	begin_addr;
   1327  1.10  dante 	int	   	end_addr;
   1328  1.10  dante 	u_int16_t	code_sum;
   1329  1.10  dante 	int	   	word;
   1330  1.10  dante 	int	   	i, j;
   1331  1.10  dante 	int		adv_asc38C1600_expanded_size;
   1332  1.10  dante 	u_int16_t	scsi_cfg1;
   1333  1.10  dante 	u_int8_t	byte;
   1334  1.10  dante 	u_int8_t	tid;
   1335  1.16  dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
   1336  1.10  dante 								0x40-0x8F. */
   1337  1.10  dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1338  1.10  dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
   1339  1.10  dante 
   1340  1.10  dante 
   1341  1.10  dante 	warn_code = 0;
   1342  1.10  dante 
   1343  1.10  dante 
   1344  1.10  dante 	/*
   1345  1.10  dante 	 * Save the RISC memory BIOS region before writing the microcode.
   1346  1.10  dante 	 * The BIOS may already be loaded and using its RISC LRAM region
   1347  1.10  dante 	 * so its region must be saved and restored.
   1348  1.10  dante 	 *
   1349  1.10  dante 	 * Note: This code makes the assumption, which is currently true,
   1350  1.10  dante 	 * that a chip reset does not clear RISC LRAM.
   1351  1.10  dante 	 */
   1352  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1353  1.16  dante 	    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i), bios_mem[i]);
   1354  1.10  dante 	}
   1355  1.10  dante 
   1356  1.10  dante 	/*
   1357  1.10  dante 	 * Save current per TID negotiated values.
   1358  1.10  dante 	 */
   1359  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1360  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1361  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1362  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1363  1.10  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1364  1.16  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1365  1.10  dante 			max_cmd[tid]);
   1366  1.10  dante 	}
   1367  1.10  dante 
   1368  1.10  dante 	/*
   1369  1.10  dante 	 * RAM BIST (RAM Built-In Self Test)
   1370  1.10  dante 	 *
   1371  1.10  dante 	 * Address : I/O base + offset 0x38h register (byte).
   1372  1.10  dante 	 * Function: Bit 7-6(RW) : RAM mode
   1373  1.10  dante 	 *			    Normal Mode   : 0x00
   1374  1.10  dante 	 *			    Pre-test Mode : 0x40
   1375  1.10  dante 	 *			    RAM Test Mode : 0x80
   1376  1.10  dante 	 *	     Bit 5	 : unused
   1377  1.10  dante 	 *	     Bit 4(RO)   : Done bit
   1378  1.10  dante 	 *	     Bit 3-0(RO) : Status
   1379  1.10  dante 	 *			    Host Error    : 0x08
   1380  1.10  dante 	 *			    Int_RAM Error : 0x04
   1381  1.10  dante 	 *			    RISC Error    : 0x02
   1382  1.10  dante 	 *			    SCSI Error    : 0x01
   1383  1.10  dante 	 *			    No Error	  : 0x00
   1384  1.10  dante 	 *
   1385  1.10  dante 	 * Note: RAM BIST code should be put right here, before loading the
   1386  1.10  dante 	 * microcode and after saving the RISC memory BIOS region.
   1387  1.10  dante 	 */
   1388  1.10  dante 
   1389  1.10  dante 	/*
   1390  1.10  dante 	 * LRAM Pre-test
   1391  1.10  dante 	 *
   1392  1.10  dante 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   1393  1.10  dante 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   1394  1.10  dante 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   1395  1.10  dante 	 * to NORMAL_MODE, return an error too.
   1396  1.10  dante 	 */
   1397  1.10  dante 	for (i = 0; i < 2; i++) {
   1398  1.10  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
   1399  1.16  dante 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1400  1.10  dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1401  1.10  dante 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1402  1.10  dante 				PRE_TEST_VALUE) {
   1403  1.16  dante 			return ADW_IERR_BIST_PRE_TEST;
   1404  1.10  dante 		}
   1405  1.10  dante 
   1406  1.10  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1407  1.16  dante 		AdwSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1408  1.10  dante 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1409  1.10  dante 		    != NORMAL_VALUE) {
   1410  1.16  dante 			return ADW_IERR_BIST_PRE_TEST;
   1411  1.10  dante 		}
   1412  1.10  dante 	}
   1413  1.10  dante 
   1414  1.10  dante 	/*
   1415  1.10  dante 	 * LRAM Test - It takes about 1.5 ms to run through the test.
   1416  1.10  dante 	 *
   1417  1.10  dante 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   1418  1.10  dante 	 * If Done bit not set or Status not 0, save register byte, set the
   1419  1.10  dante 	 * err_code, and return an error.
   1420  1.10  dante 	 */
   1421  1.10  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1422  1.16  dante 	AdwSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
   1423  1.10  dante 
   1424  1.10  dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1425  1.10  dante 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   1426  1.10  dante 		/* Get here if Done bit not set or Status not 0. */
   1427  1.16  dante 		return ADW_IERR_BIST_RAM_TEST;
   1428  1.10  dante 	}
   1429  1.10  dante 
   1430  1.10  dante 	/* We need to reset back to normal mode after LRAM test passes. */
   1431  1.10  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1432  1.10  dante 
   1433  1.10  dante 
   1434  1.10  dante 	/*
   1435  1.10  dante 	 * Load the Microcode
   1436  1.10  dante 	 *
   1437  1.10  dante 	 * Write the microcode image to RISC memory starting at address 0.
   1438  1.10  dante 	 *
   1439  1.10  dante 	 */
   1440  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1441  1.10  dante 
   1442  1.10  dante 	/* Assume the following compressed format of the microcode buffer:
   1443  1.10  dante 	 *
   1444  1.10  dante 	 *  254 word (508 byte) table indexed by byte code followed
   1445  1.10  dante 	 *  by the following byte codes:
   1446  1.10  dante 	 *
   1447  1.10  dante 	 *    1-Byte Code:
   1448  1.10  dante 	 *	00: Emit word 0 in table.
   1449  1.10  dante 	 *	01: Emit word 1 in table.
   1450  1.10  dante 	 *	.
   1451  1.10  dante 	 *	FD: Emit word 253 in table.
   1452  1.10  dante 	 *
   1453  1.10  dante 	 *    Multi-Byte Code:
   1454  1.10  dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1455  1.10  dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1456  1.10  dante 	 */
   1457  1.10  dante 	word = 0;
   1458  1.16  dante 	for (i = 253 * 2; i < adw_asc38C1600_mcode_data.mcode_size; i++) {
   1459  1.16  dante 		if (adw_asc38C1600_mcode_data.mcode_data[i] == 0xff) {
   1460  1.16  dante 			for (j = 0; j < adw_asc38C1600_mcode_data.mcode_data[i + 1]; j++) {
   1461  1.10  dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1462  1.10  dante 				    (((u_int16_t)
   1463  1.16  dante 				    adw_asc38C1600_mcode_data.mcode_data[i + 3] << 8) |
   1464  1.16  dante 				    adw_asc38C1600_mcode_data.mcode_data[i + 2]));
   1465  1.10  dante 				word++;
   1466  1.10  dante 			}
   1467  1.10  dante 			i += 3;
   1468  1.16  dante 		} else if (adw_asc38C1600_mcode_data.mcode_data[i] == 0xfe) {
   1469  1.10  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1470  1.16  dante 			    adw_asc38C1600_mcode_data.mcode_data[i + 2] << 8) |
   1471  1.16  dante 			    adw_asc38C1600_mcode_data.mcode_data[i + 1]));
   1472  1.10  dante 			i += 2;
   1473  1.10  dante 			word++;
   1474  1.10  dante 		} else {
   1475  1.10  dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1476  1.16  dante 			  adw_asc38C1600_mcode_data.mcode_data[(adw_asc38C1600_mcode_data.mcode_data[i] * 2) + 1] << 8) |
   1477  1.16  dante 			  adw_asc38C1600_mcode_data.mcode_data[adw_asc38C1600_mcode_data.mcode_data[i] * 2]));
   1478  1.10  dante 			word++;
   1479  1.10  dante 		}
   1480  1.10  dante 	}
   1481  1.10  dante 
   1482  1.10  dante 	/*
   1483  1.10  dante 	 * Set 'word' for later use to clear the rest of memory and save
   1484  1.10  dante 	 * the expanded mcode size.
   1485  1.10  dante 	 */
   1486  1.10  dante 	word *= 2;
   1487  1.10  dante 	adv_asc38C1600_expanded_size = word;
   1488  1.10  dante 
   1489  1.10  dante 	/*
   1490  1.10  dante 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
   1491  1.10  dante 	 */
   1492  1.16  dante 	for (; word < ADW_38C1600_MEMSIZE; word += 2) {
   1493  1.10  dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1494  1.10  dante 	}
   1495  1.10  dante 
   1496  1.10  dante 	/*
   1497  1.10  dante 	 * Verify the microcode checksum.
   1498  1.10  dante 	 */
   1499  1.10  dante 	sum = 0;
   1500  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1501  1.10  dante 
   1502  1.10  dante 	for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
   1503  1.10  dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1504  1.10  dante 	}
   1505  1.10  dante 
   1506  1.16  dante 	if (sum != adw_asc38C1600_mcode_data.mcode_chksum) {
   1507  1.16  dante 	    return ADW_IERR_MCODE_CHKSUM;
   1508  1.10  dante 	}
   1509  1.10  dante 
   1510  1.10  dante 	/*
   1511  1.10  dante 	 * Restore the RISC memory BIOS region.
   1512  1.10  dante 	 */
   1513  1.16  dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1514  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1515  1.10  dante 				bios_mem[i]);
   1516  1.10  dante 	}
   1517  1.10  dante 
   1518  1.10  dante 	/*
   1519  1.10  dante 	 * Calculate and write the microcode code checksum to the microcode
   1520  1.16  dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1521  1.10  dante 	 */
   1522  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1523  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1524  1.10  dante 	code_sum = 0;
   1525  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1526  1.10  dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1527  1.10  dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1528  1.10  dante 	}
   1529  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1530  1.10  dante 
   1531  1.10  dante 	/*
   1532  1.10  dante 	 * Read microcode version and date.
   1533  1.10  dante 	 */
   1534  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE,
   1535  1.10  dante 			sc->cfg.mcode_date);
   1536  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM,
   1537  1.10  dante 			sc->cfg.mcode_version);
   1538  1.10  dante 
   1539  1.10  dante 	/*
   1540  1.10  dante 	 * Set the chip type to indicate the ASC38C1600.
   1541  1.10  dante 	 */
   1542  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, ADW_CHIP_ASC38C1600);
   1543  1.10  dante 
   1544  1.10  dante 	/*
   1545  1.10  dante 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1546  1.10  dante 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1547  1.10  dante 	 * cable detection and then we are able to read C_DET[3:0].
   1548  1.10  dante 	 *
   1549  1.10  dante 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1550  1.10  dante 	 * Microcode Default Value' section below.
   1551  1.10  dante 	 */
   1552  1.10  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1553  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1554  1.10  dante 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1555  1.10  dante 
   1556  1.10  dante 	/*
   1557  1.10  dante 	 * If the PCI Configuration Command Register "Parity Error Response
   1558  1.10  dante 	 * Control" Bit was clear (0), then set the microcode variable
   1559  1.10  dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1560  1.10  dante 	 * to ignore DMA parity errors.
   1561  1.10  dante 	 */
   1562  1.10  dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1563  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1564  1.10  dante 		word |= CONTROL_FLAG_IGNORE_PERR;
   1565  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1566  1.10  dante 	}
   1567  1.10  dante 
   1568  1.10  dante 	/*
   1569  1.10  dante 	 * If the BIOS control flag AIPP (Asynchronous Information
   1570  1.10  dante 	 * Phase Protection) disable bit is not set, then set the firmware
   1571  1.10  dante 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   1572  1.10  dante 	 * AIPP checking and encoding.
   1573  1.10  dante 	 */
   1574  1.10  dante 	if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   1575  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1576  1.10  dante 		word |= CONTROL_FLAG_ENABLE_AIPP;
   1577  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
   1578  1.10  dante 	}
   1579  1.10  dante 
   1580  1.10  dante 	/*
   1581  1.10  dante 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   1582  1.10  dante 	 * and START_CTL_TH [3:2].
   1583  1.10  dante 	 */
   1584  1.10  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1585  1.10  dante 		FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1586  1.10  dante 
   1587  1.10  dante 	/*
   1588  1.10  dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1589  1.16  dante 	 * queuing will be set in AdwInquiryHandling() based on what a
   1590  1.10  dante 	 * device reports it is capable of in Inquiry byte 7.
   1591  1.10  dante 	 *
   1592  1.10  dante 	 * If SCSI Bus Resets have been disabled, then directly set
   1593  1.10  dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1594  1.10  dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1595  1.10  dante 	 * the Inquiry caused by host and target mismatched DTR values.
   1596  1.10  dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1597  1.10  dante 	 * be assumed to be in Asynchronous, Narrow mode.
   1598  1.10  dante 	 */
   1599  1.10  dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1600  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
   1601  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
   1602  1.10  dante 	}
   1603  1.10  dante 
   1604  1.10  dante 	/*
   1605  1.10  dante 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1606  1.10  dante 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1607  1.10  dante 	 * configuration values.
   1608  1.10  dante 	 *
   1609  1.10  dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1610  1.10  dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1611  1.10  dante 	 * without determining here whether the device supports SDTR.
   1612  1.10  dante 	 */
   1613  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1614  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1615  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1616  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1617  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1618  1.10  dante 
   1619  1.10  dante 	/*
   1620  1.10  dante 	 * Set SCSI_CFG0 Microcode Default Value.
   1621  1.10  dante 	 *
   1622  1.10  dante 	 * The microcode will set the SCSI_CFG0 register using this value
   1623  1.10  dante 	 * after it is started below.
   1624  1.10  dante 	 */
   1625  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
   1626  1.10  dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1627  1.10  dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1628  1.10  dante 
   1629  1.10  dante 	/*
   1630  1.10  dante 	 * Calculate SCSI_CFG1 Microcode Default Value.
   1631  1.10  dante 	 *
   1632  1.10  dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1633  1.10  dante 	 * after it is started below.
   1634  1.10  dante 	 *
   1635  1.10  dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1636  1.10  dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1637  1.10  dante 	 */
   1638  1.10  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1639  1.10  dante 
   1640  1.10  dante 	/*
   1641  1.10  dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1642  1.10  dante 	 * will be set. Check for and return an error if this condition is
   1643  1.10  dante 	 * found.
   1644  1.10  dante 	 */
   1645  1.10  dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1646  1.10  dante 			0x3F07) {
   1647  1.16  dante 		return ADW_IERR_REVERSED_CABLE;
   1648  1.10  dante 	}
   1649  1.10  dante 
   1650  1.10  dante 	/*
   1651  1.10  dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1652  1.10  dante 	 * can not be connected to either connector. An LVD device or SE device
   1653  1.10  dante 	 * may be connected to either connecor. If an SE device is connected,
   1654  1.10  dante 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1655  1.10  dante 	 *
   1656  1.10  dante 	 * If an HVD device is attached, return an error.
   1657  1.10  dante 	 */
   1658  1.10  dante 	if (scsi_cfg1 & ADW_HVD) {
   1659  1.16  dante 		return ADW_IERR_HVD_DEVICE;
   1660  1.10  dante 	}
   1661  1.10  dante 
   1662  1.10  dante 	/*
   1663  1.10  dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1664  1.10  dante 	 * termination because there are two connectors for each function. Each
   1665  1.10  dante 	 * function may use either LVD or SE mode. Corresponding the SE automatic
   1666  1.10  dante 	 * termination control EEPROM bits are used for each function. Each
   1667  1.10  dante 	 * function has its own EEPROM. If SE automatic control is enabled for
   1668  1.10  dante 	 * the function, then set the termination value based on a table listed
   1669  1.10  dante 	 * in a_condor.h.
   1670  1.10  dante 	 *
   1671  1.10  dante 	 * If manual termination is specified in the EEPROM for the function,
   1672  1.10  dante 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   1673  1.10  dante 	 * ready to be 'ored' into SCSI_CFG1.
   1674  1.10  dante 	 */
   1675  1.10  dante 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1676  1.10  dante 		/* SE automatic termination control is enabled. */
   1677  1.10  dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1678  1.10  dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1679  1.10  dante 			case 0x1: case 0x2: case 0x3:
   1680  1.10  dante 				sc->cfg.termination |= ADW_TERM_SE;
   1681  1.10  dante 				break;
   1682  1.10  dante 
   1683  1.10  dante 			case 0x0:
   1684  1.10  dante 	/* !!!!TODO!!!! */
   1685  1.10  dante //				if (ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info) == 0) {
   1686  1.10  dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1687  1.10  dante //				}
   1688  1.10  dante //				else
   1689  1.10  dante //				{
   1690  1.10  dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1691  1.10  dante 					sc->cfg.termination |= ADW_TERM_SE_HI;
   1692  1.10  dante //				}
   1693  1.10  dante 				break;
   1694  1.10  dante 			}
   1695  1.10  dante 	}
   1696  1.10  dante 
   1697  1.10  dante 	/*
   1698  1.10  dante 	 * Clear any set TERM_SE bits.
   1699  1.10  dante 	 */
   1700  1.10  dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1701  1.10  dante 
   1702  1.10  dante 	/*
   1703  1.10  dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1704  1.10  dante 	 */
   1705  1.10  dante 	scsi_cfg1 |= (~sc->cfg.termination & ADW_TERM_SE);
   1706  1.10  dante 
   1707  1.10  dante 	/*
   1708  1.10  dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1709  1.10  dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1710  1.10  dante 	 * Register Value.
   1711  1.10  dante 	 */
   1712  1.10  dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1713  1.10  dante 
   1714  1.10  dante 	/*
   1715  1.10  dante 	 * Set SCSI_CFG1 Microcode Default Value
   1716  1.10  dante 	 *
   1717  1.10  dante 	 * Set possibly modified termination control bits in the Microcode
   1718  1.10  dante 	 * SCSI_CFG1 Register Value.
   1719  1.10  dante 	 *
   1720  1.10  dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1721  1.10  dante 	 * after it is started below.
   1722  1.10  dante 	 */
   1723  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1724  1.10  dante 
   1725  1.10  dante 	/*
   1726  1.10  dante 	 * Set MEM_CFG Microcode Default Value
   1727  1.10  dante 	 *
   1728  1.10  dante 	 * The microcode will set the MEM_CFG register using this value
   1729  1.10  dante 	 * after it is started below.
   1730  1.10  dante 	 *
   1731  1.10  dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1732  1.10  dante 	 * are defined.
   1733  1.10  dante 	 *
   1734  1.10  dante 	 * ASC-38C1600 has 32KB internal memory.
   1735  1.10  dante 	 */
   1736  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1737  1.10  dante 		ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1738  1.10  dante 
   1739  1.10  dante 	/*
   1740  1.10  dante 	 * Set SEL_MASK Microcode Default Value
   1741  1.10  dante 	 *
   1742  1.10  dante 	 * The microcode will set the SEL_MASK register using this value
   1743  1.10  dante 	 * after it is started below.
   1744  1.10  dante 	 */
   1745  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
   1746  1.10  dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1747  1.10  dante 
   1748  1.16  dante 
   1749  1.16  dante 	i = AdwInitCarriers(sc->sc_dmamap_carrier,
   1750  1.16  dante 			sc->sc_control->carriers, &sc->carr_freelist);
   1751  1.16  dante 	if (i == 0) {
   1752  1.16  dante 		return ADW_IERR_NO_CARRIER; /* (ENOMEM) */ ;
   1753  1.16  dante 	} else if (i != ADW_MAX_CARRIER) {
   1754  1.16  dante 		printf("%s: WARNING: only %d of %d Carriers created\n",
   1755  1.16  dante 		       sc->sc_dev.dv_xname, i, ADW_MAX_CARRIER);
   1756  1.16  dante 	}
   1757  1.16  dante 
   1758  1.10  dante 	/*
   1759  1.10  dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1760  1.10  dante 	 */
   1761  1.10  dante 
   1762  1.10  dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1763  1.16  dante 		return ADW_IERR_NO_CARRIER;
   1764  1.10  dante 	}
   1765  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1766  1.12  dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
   1767  1.10  dante 
   1768  1.10  dante 	/*
   1769  1.10  dante 	 * The first command issued will be placed in the stopper carrier.
   1770  1.10  dante 	 */
   1771  1.12  dante 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
   1772  1.10  dante 
   1773  1.10  dante 	/*
   1774  1.10  dante 	 * Set RISC ICQ physical address start value. Initialize the
   1775  1.10  dante 	 * COMMA register to the same value otherwise the RISC will
   1776  1.10  dante 	 * prematurely detect a command is available.
   1777  1.10  dante 	 */
   1778  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
   1779  1.12  dante 	ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, sc->icq_sp->carr_ba);
   1780  1.10  dante 
   1781  1.10  dante 	/*
   1782  1.10  dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1783  1.10  dante 	 */
   1784  1.10  dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1785  1.16  dante 		return ADW_IERR_NO_CARRIER;
   1786  1.10  dante 	}
   1787  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1788  1.12  dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
   1789  1.10  dante 
   1790  1.10  dante 	/*
   1791  1.10  dante 	 * The first command completed by the RISC will be placed in
   1792  1.10  dante 	 * the stopper.
   1793  1.10  dante 	 *
   1794  1.12  dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
   1795  1.16  dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
   1796  1.10  dante 	 */
   1797  1.12  dante 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
   1798  1.10  dante 
   1799  1.10  dante 	/*
   1800  1.10  dante 	 * Set RISC IRQ physical address start value.
   1801  1.10  dante 	 */
   1802  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
   1803  1.10  dante 	sc->carr_pending_cnt = 0;
   1804  1.10  dante 
   1805  1.10  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1806  1.10  dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1807  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
   1808  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1809  1.10  dante 
   1810  1.10  dante 	/* finally, finally, gentlemen, start your engine */
   1811  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1812  1.10  dante 
   1813  1.10  dante 	/*
   1814  1.10  dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1815  1.10  dante 	 * Resets should be performed. The RISC has to be running
   1816  1.10  dante 	 * to issue a SCSI Bus Reset.
   1817  1.10  dante 	 */
   1818  1.10  dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1819  1.10  dante 		/*
   1820  1.10  dante 		 * If the BIOS Signature is present in memory, restore the
   1821  1.10  dante 		 * per TID microcode operating variables.
   1822  1.10  dante 		 */
   1823  1.16  dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
   1824  1.10  dante 				0x55AA) {
   1825  1.10  dante 			/*
   1826  1.10  dante 			 * Restore per TID negotiated values.
   1827  1.10  dante 			 */
   1828  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   1829  1.10  dante 					wdtr_able);
   1830  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   1831  1.10  dante 					sdtr_able);
   1832  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   1833  1.10  dante 					ppr_able);
   1834  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   1835  1.10  dante 					tagqng_able);
   1836  1.10  dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1837  1.10  dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1838  1.16  dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1839  1.10  dante 						max_cmd[tid]);
   1840  1.10  dante 			}
   1841  1.10  dante 		} else {
   1842  1.16  dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
   1843  1.16  dante 				warn_code = ADW_WARN_BUSRESET_ERROR;
   1844  1.10  dante 			}
   1845  1.10  dante 		}
   1846  1.10  dante 	}
   1847  1.10  dante 
   1848  1.10  dante 	return warn_code;
   1849  1.10  dante }
   1850  1.10  dante 
   1851  1.10  dante 
   1852  1.10  dante /*
   1853  1.10  dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1854  1.10  dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1855  1.10  dante  * all of this is done.
   1856  1.10  dante  *
   1857  1.10  dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1858  1.10  dante  *
   1859  1.10  dante  * For a non-fatal error return a warning code. If there are no warnings
   1860  1.10  dante  * then 0 is returned.
   1861  1.10  dante  *
   1862  1.10  dante  * Note: Chip is stopped on entry.
   1863  1.10  dante  */
   1864  1.10  dante int
   1865  1.16  dante AdwInitFrom3550EEP(sc)
   1866  1.10  dante ADW_SOFTC      *sc;
   1867  1.10  dante {
   1868  1.10  dante 	bus_space_tag_t iot = sc->sc_iot;
   1869  1.10  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1870  1.10  dante 	u_int16_t		warn_code;
   1871  1.10  dante 	ADW_EEP_3550_CONFIG	eep_config;
   1872  1.10  dante 	int			i;
   1873  1.10  dante 
   1874  1.10  dante 
   1875  1.10  dante 	warn_code = 0;
   1876  1.10  dante 
   1877  1.10  dante 	/*
   1878  1.10  dante 	 * Read the board's EEPROM configuration.
   1879  1.10  dante 	 *
   1880  1.10  dante 	 * Set default values if a bad checksum is found.
   1881  1.10  dante 	 *
   1882  1.10  dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
   1883  1.10  dante 	 */
   1884  1.16  dante 	if (AdwGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1885  1.16  dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   1886  1.10  dante 
   1887  1.10  dante 		/*
   1888  1.10  dante 		 * Set EEPROM default values.
   1889  1.10  dante 		 */
   1890  1.10  dante 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1891  1.10  dante 			*((u_int8_t *) &eep_config + i) =
   1892  1.10  dante 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1893  1.10  dante 		}
   1894  1.10  dante 
   1895  1.10  dante 		/*
   1896  1.10  dante 		 * Assume the 6 byte board serial number that was read
   1897  1.10  dante 		 * from EEPROM is correct even if the EEPROM checksum
   1898  1.10  dante 		 * failed.
   1899  1.10  dante 		 */
   1900  1.10  dante 		eep_config.serial_number_word3 =
   1901  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1902  1.10  dante 
   1903  1.10  dante 		eep_config.serial_number_word2 =
   1904  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1905  1.10  dante 
   1906  1.10  dante 		eep_config.serial_number_word1 =
   1907  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1908  1.10  dante 
   1909  1.16  dante 		AdwSet3550EEPConfig(iot, ioh, &eep_config);
   1910  1.10  dante 	}
   1911  1.10  dante 	/*
   1912  1.10  dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
   1913  1.10  dante 	 * that was read.
   1914  1.10  dante 	 *
   1915  1.16  dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
   1916  1.10  dante 	 */
   1917  1.10  dante 	sc->wdtr_able = eep_config.wdtr_able;
   1918  1.10  dante 	sc->sdtr_able = eep_config.sdtr_able;
   1919  1.10  dante 	sc->ultra_able = eep_config.ultra_able;
   1920  1.10  dante 	sc->tagqng_able = eep_config.tagqng_able;
   1921  1.10  dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   1922  1.10  dante 	sc->max_host_qng = eep_config.max_host_qng;
   1923  1.10  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1924  1.10  dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1925  1.10  dante 	sc->start_motor = eep_config.start_motor;
   1926  1.10  dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1927  1.10  dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   1928  1.10  dante 	sc->no_scam = eep_config.scam_tolerant;
   1929  1.10  dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1930  1.10  dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1931  1.10  dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1932  1.10  dante 
   1933  1.10  dante 	/*
   1934  1.10  dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1935  1.10  dante 	 * maximum queuing (max. 63, min. 4).
   1936  1.10  dante 	 */
   1937  1.16  dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   1938  1.16  dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   1939  1.16  dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
   1940  1.10  dante 	{
   1941  1.10  dante 		/* If the value is zero, assume it is uninitialized. */
   1942  1.10  dante 		if (eep_config.max_host_qng == 0) {
   1943  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   1944  1.10  dante 		} else {
   1945  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   1946  1.10  dante 		}
   1947  1.10  dante 	}
   1948  1.10  dante 
   1949  1.16  dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   1950  1.16  dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   1951  1.16  dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   1952  1.10  dante 		/* If the value is zero, assume it is uninitialized. */
   1953  1.10  dante 		if (eep_config.max_dvc_qng == 0) {
   1954  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   1955  1.10  dante 		} else {
   1956  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   1957  1.10  dante 		}
   1958  1.10  dante 	}
   1959  1.10  dante 
   1960  1.10  dante 	/*
   1961  1.10  dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1962  1.10  dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1963  1.10  dante 	 */
   1964  1.10  dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1965  1.10  dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1966  1.10  dante 	}
   1967  1.10  dante 
   1968  1.10  dante 	/*
   1969  1.10  dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1970  1.10  dante 	 * values based on possibly adjusted EEPROM values.
   1971  1.10  dante 	 */
   1972  1.10  dante 	sc->max_host_qng = eep_config.max_host_qng;
   1973  1.10  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1974  1.10  dante 
   1975  1.10  dante 
   1976  1.10  dante 	/*
   1977  1.10  dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1978  1.10  dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1979  1.10  dante 	 *
   1980  1.10  dante 	 * If the termination is specified with a non-zero 'termination'
   1981  1.10  dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1982  1.10  dante 	 * 'termination' field appropriately.
   1983  1.10  dante 	 */
   1984  1.10  dante 
   1985  1.10  dante 	sc->cfg.termination = 0;	/* auto termination */
   1986  1.10  dante 	switch(eep_config.termination) {
   1987  1.10  dante 	case 3:
   1988  1.10  dante 		/* Enable manual control with low on / high on. */
   1989  1.10  dante 		sc->cfg.termination |= ADW_TERM_CTL_L;
   1990  1.10  dante 	case 2:
   1991  1.10  dante 		/* Enable manual control with low off / high on. */
   1992  1.10  dante 		sc->cfg.termination |= ADW_TERM_CTL_H;
   1993  1.10  dante 	case 1:
   1994  1.10  dante 		/* Enable manual control with low off / high off. */
   1995  1.10  dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
   1996  1.10  dante 	case 0:
   1997  1.10  dante 		break;
   1998  1.10  dante 	default:
   1999  1.16  dante 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2000   1.7  dante 	}
   2001   1.7  dante 
   2002   1.7  dante 	return warn_code;
   2003   1.7  dante }
   2004   1.7  dante 
   2005   1.7  dante 
   2006   1.7  dante /*
   2007   1.7  dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   2008   1.7  dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2009   1.7  dante  * all of this is done.
   2010   1.7  dante  *
   2011   1.7  dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   2012   1.7  dante  *
   2013   1.7  dante  * For a non-fatal error return a warning code. If there are no warnings
   2014   1.7  dante  * then 0 is returned.
   2015   1.7  dante  *
   2016   1.7  dante  * Note: Chip is stopped on entry.
   2017   1.7  dante  */
   2018   1.7  dante int
   2019  1.16  dante AdwInitFrom38C0800EEP(sc)
   2020   1.7  dante ADW_SOFTC      *sc;
   2021   1.7  dante {
   2022   1.7  dante 	bus_space_tag_t iot = sc->sc_iot;
   2023   1.7  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2024   1.7  dante 	u_int16_t		warn_code;
   2025  1.10  dante 	ADW_EEP_38C0800_CONFIG	eep_config;
   2026   1.7  dante 	int			i;
   2027  1.10  dante 	u_int8_t		tid, termination;
   2028  1.10  dante 	u_int16_t		sdtr_speed = 0;
   2029   1.7  dante 
   2030   1.7  dante 
   2031   1.7  dante 	warn_code = 0;
   2032   1.7  dante 
   2033   1.7  dante 	/*
   2034   1.7  dante 	 * Read the board's EEPROM configuration.
   2035   1.7  dante 	 *
   2036   1.7  dante 	 * Set default values if a bad checksum is found.
   2037   1.7  dante 	 */
   2038  1.16  dante 	if (AdwGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   2039  1.10  dante 			eep_config.check_sum) {
   2040  1.16  dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   2041   1.7  dante 
   2042   1.7  dante 		/*
   2043   1.7  dante 		 * Set EEPROM default values.
   2044   1.7  dante 		 */
   2045  1.10  dante 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   2046   1.7  dante 			*((u_int8_t *) &eep_config + i) =
   2047  1.10  dante 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   2048   1.7  dante 		}
   2049   1.7  dante 
   2050   1.7  dante 		/*
   2051   1.7  dante 		 * Assume the 6 byte board serial number that was read
   2052   1.7  dante 		 * from EEPROM is correct even if the EEPROM checksum
   2053   1.7  dante 		 * failed.
   2054   1.7  dante 		 */
   2055   1.7  dante 		eep_config.serial_number_word3 =
   2056  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2057   1.7  dante 
   2058   1.7  dante 		eep_config.serial_number_word2 =
   2059  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2060   1.7  dante 
   2061   1.7  dante 		eep_config.serial_number_word1 =
   2062  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2063   1.7  dante 
   2064  1.16  dante 		AdwSet38C0800EEPConfig(iot, ioh, &eep_config);
   2065   1.7  dante 	}
   2066   1.7  dante 	/*
   2067  1.10  dante 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   2068   1.7  dante 	 * EEPROM configuration that was read.
   2069   1.7  dante 	 *
   2070  1.16  dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
   2071   1.7  dante 	 */
   2072   1.7  dante 	sc->wdtr_able = eep_config.wdtr_able;
   2073  1.10  dante 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2074  1.10  dante 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2075  1.10  dante 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2076  1.10  dante 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2077   1.7  dante 	sc->tagqng_able = eep_config.tagqng_able;
   2078   1.7  dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   2079   1.7  dante 	sc->max_host_qng = eep_config.max_host_qng;
   2080   1.7  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2081   1.7  dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2082   1.7  dante 	sc->start_motor = eep_config.start_motor;
   2083   1.7  dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2084   1.7  dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   2085   1.7  dante 	sc->no_scam = eep_config.scam_tolerant;
   2086   1.7  dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   2087   1.7  dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   2088   1.7  dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   2089   1.7  dante 
   2090   1.7  dante 	/*
   2091  1.10  dante 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2092  1.10  dante 	 * are set, then set an 'sdtr_able' bit for it.
   2093  1.10  dante 	 */
   2094  1.10  dante 	sc->sdtr_able = 0;
   2095  1.10  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2096  1.10  dante 		if (tid == 0) {
   2097  1.10  dante 			sdtr_speed = sc->sdtr_speed1;
   2098  1.10  dante 		} else if (tid == 4) {
   2099  1.10  dante 			sdtr_speed = sc->sdtr_speed2;
   2100  1.10  dante 		} else if (tid == 8) {
   2101  1.10  dante 			sdtr_speed = sc->sdtr_speed3;
   2102  1.10  dante 		} else if (tid == 12) {
   2103  1.10  dante 			sdtr_speed = sc->sdtr_speed4;
   2104  1.10  dante 		}
   2105  1.10  dante 		if (sdtr_speed & ADW_MAX_TID) {
   2106  1.10  dante 			sc->sdtr_able |= (1 << tid);
   2107  1.10  dante 		}
   2108  1.10  dante 		sdtr_speed >>= 4;
   2109  1.10  dante 	}
   2110  1.10  dante 
   2111  1.10  dante 	/*
   2112   1.7  dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2113   1.7  dante 	 * maximum queuing (max. 63, min. 4).
   2114   1.7  dante 	 */
   2115  1.16  dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   2116  1.16  dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2117  1.16  dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG) {
   2118   1.7  dante 		/* If the value is zero, assume it is uninitialized. */
   2119   1.7  dante 		if (eep_config.max_host_qng == 0) {
   2120  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2121   1.7  dante 		} else {
   2122  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   2123   1.7  dante 		}
   2124   1.7  dante 	}
   2125   1.7  dante 
   2126  1.16  dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   2127  1.16  dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2128  1.16  dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   2129   1.7  dante 		/* If the value is zero, assume it is uninitialized. */
   2130   1.7  dante 		if (eep_config.max_dvc_qng == 0) {
   2131  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2132   1.7  dante 		} else {
   2133  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   2134   1.7  dante 		}
   2135   1.7  dante 	}
   2136   1.7  dante 
   2137   1.7  dante 	/*
   2138   1.7  dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2139   1.7  dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2140   1.7  dante 	 */
   2141   1.7  dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2142   1.7  dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2143   1.7  dante 	}
   2144   1.7  dante 
   2145   1.7  dante 	/*
   2146   1.7  dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   2147   1.7  dante 	 * values based on possibly adjusted EEPROM values.
   2148   1.7  dante 	 */
   2149   1.7  dante 	sc->max_host_qng = eep_config.max_host_qng;
   2150   1.7  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2151   1.7  dante 
   2152   1.7  dante 	/*
   2153   1.7  dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2154   1.7  dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   2155   1.7  dante 	 *
   2156   1.7  dante 	 * If the termination is specified with a non-zero 'termination'
   2157   1.7  dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   2158   1.7  dante 	 * 'termination' field appropriately.
   2159   1.7  dante 	 */
   2160  1.10  dante 
   2161  1.10  dante 	switch(eep_config.termination_se) {
   2162  1.10  dante 	case 0:
   2163  1.10  dante 		/* auto termination for SE */
   2164  1.10  dante 		termination = 0;
   2165  1.10  dante 		break;
   2166  1.10  dante 	case 1:
   2167   1.7  dante 		/* Enable manual control with low off / high off. */
   2168  1.10  dante 		termination = 0;
   2169  1.10  dante 		break;
   2170  1.10  dante 	case 2:
   2171  1.10  dante 		/* Enable manual control with low off / high on. */
   2172  1.10  dante 		termination = ADW_TERM_SE_HI;
   2173  1.10  dante 		break;
   2174  1.10  dante 	case 3:
   2175  1.10  dante 		/* Enable manual control with low on / high on. */
   2176  1.10  dante 		termination = ADW_TERM_SE;
   2177  1.10  dante 		break;
   2178  1.10  dante 	default:
   2179  1.10  dante 		/*
   2180  1.10  dante 		 * The EEPROM 'termination_se' field contains a bad value.
   2181  1.10  dante 		 * Use automatic termination instead.
   2182  1.10  dante 		 */
   2183  1.10  dante 		termination = 0;
   2184  1.16  dante 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2185  1.10  dante 	}
   2186   1.7  dante 
   2187  1.10  dante 	switch(eep_config.termination_lvd) {
   2188  1.10  dante 	case 0:
   2189  1.10  dante 		/* auto termination for LVD */
   2190  1.10  dante 		sc->cfg.termination = termination;
   2191  1.10  dante 		break;
   2192  1.10  dante 	case 1:
   2193  1.10  dante 		/* Enable manual control with low off / high off. */
   2194  1.10  dante 		sc->cfg.termination = termination;
   2195  1.10  dante 		break;
   2196  1.10  dante 	case 2:
   2197   1.7  dante 		/* Enable manual control with low off / high on. */
   2198  1.10  dante 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2199  1.10  dante 		break;
   2200  1.10  dante 	case 3:
   2201   1.7  dante 		/* Enable manual control with low on / high on. */
   2202  1.10  dante 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2203  1.10  dante 		break;
   2204  1.10  dante 	default:
   2205  1.10  dante 		/*
   2206  1.10  dante 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2207  1.10  dante 		 * Use automatic termination instead.
   2208  1.10  dante 		 */
   2209  1.10  dante 		sc->cfg.termination = termination;
   2210  1.16  dante 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2211   1.7  dante 	}
   2212   1.7  dante 
   2213   1.7  dante 	return warn_code;
   2214   1.7  dante }
   2215   1.7  dante 
   2216   1.7  dante 
   2217   1.7  dante /*
   2218  1.10  dante  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
   2219  1.10  dante  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2220   1.7  dante  * all of this is done.
   2221   1.7  dante  *
   2222  1.10  dante  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   2223   1.7  dante  *
   2224   1.7  dante  * For a non-fatal error return a warning code. If there are no warnings
   2225   1.7  dante  * then 0 is returned.
   2226   1.7  dante  *
   2227   1.7  dante  * Note: Chip is stopped on entry.
   2228   1.7  dante  */
   2229   1.7  dante int
   2230  1.16  dante AdwInitFrom38C1600EEP(sc)
   2231   1.7  dante ADW_SOFTC      *sc;
   2232   1.7  dante {
   2233   1.7  dante 	bus_space_tag_t iot = sc->sc_iot;
   2234   1.7  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2235   1.7  dante 	u_int16_t		warn_code;
   2236  1.10  dante 	ADW_EEP_38C1600_CONFIG	eep_config;
   2237   1.7  dante 	int			i;
   2238   1.7  dante 	u_int8_t		tid, termination;
   2239   1.7  dante 	u_int16_t		sdtr_speed = 0;
   2240   1.7  dante 
   2241   1.7  dante 
   2242   1.7  dante 	warn_code = 0;
   2243   1.7  dante 
   2244   1.7  dante 	/*
   2245   1.7  dante 	 * Read the board's EEPROM configuration.
   2246   1.7  dante 	 *
   2247   1.7  dante 	 * Set default values if a bad checksum is found.
   2248   1.7  dante 	 */
   2249  1.16  dante 	if (AdwGet38C1600EEPConfig(iot, ioh, &eep_config) !=
   2250   1.7  dante 			eep_config.check_sum) {
   2251  1.16  dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
   2252   1.7  dante 
   2253   1.7  dante 		/*
   2254   1.7  dante 		 * Set EEPROM default values.
   2255   1.7  dante 		 */
   2256  1.10  dante  		for (i = 0; i < sizeof(ADW_EEP_38C1600_CONFIG); i++) {
   2257  1.10  dante 	/* !!!!TODO!!!! */
   2258  1.10  dante //			if (i == 1 && ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
   2259  1.10  dante 			if (i == 1 ) {
   2260  1.10  dante 				/*
   2261  1.10  dante 				 * Set Function 1 EEPROM Word 0 MSB
   2262  1.10  dante 				 *
   2263  1.10  dante 				 * Clear the BIOS_ENABLE (bit 14) and INTAB (bit 11)
   2264  1.10  dante 				 * EEPROM bits.
   2265  1.10  dante 				 *
   2266  1.10  dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 and
   2267  1.10  dante 				 * old Mac system booting problem. The Expansion ROM must
   2268  1.10  dante 				 * be disabled in Function 1 for these systems.
   2269  1.10  dante 				 *
   2270  1.10  dante 				 */
   2271  1.10  dante 				*((u_int8_t *) &eep_config + i) =
   2272  1.10  dante 					((*((u_int8_t *) &Default_38C1600_EEPROM_Config + i)) &
   2273  1.10  dante 					(~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) &
   2274  1.10  dante 					0xFF)));
   2275  1.10  dante 
   2276  1.10  dante 				/*
   2277  1.10  dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
   2278  1.10  dante 				 * indicates the Function 1 interrupt line is
   2279  1.10  dante 				 * wired to INTA.
   2280  1.10  dante 				 *
   2281  1.10  dante 				 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
   2282  1.10  dante 				 *   1 - Function 1 interrupt line wired to INT A.
   2283  1.10  dante 				 *   0 - Function 1 interrupt line wired to INT B.
   2284  1.10  dante 				 *
   2285  1.10  dante 				 * Note: Adapter boards always have Function 0
   2286  1.10  dante 				 * wired to INTA.
   2287  1.10  dante 				 * Put all 5 GPIO bits in input mode and then
   2288  1.10  dante 				 * read their input values.
   2289  1.10  dante 				 */
   2290  1.10  dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2291  1.10  dante 					IOPB_GPIO_CNTL, 0);
   2292  1.10  dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
   2293  1.10  dante 						IOPB_GPIO_DATA) & 0x01) {
   2294  1.10  dante 					/* Function 1 interrupt wired to INTA;
   2295  1.10  dante 					   Set EEPROM bit. */
   2296  1.10  dante 					*((u_int8_t *) &eep_config + i) |=
   2297  1.10  dante 						((ADW_EEPROM_INTAB >> 8) &0xFF);
   2298  1.10  dante 				}
   2299  1.10  dante 			} else {
   2300  1.10  dante 				*((u_int8_t *)&eep_config + i) =
   2301  1.10  dante 				*((u_int8_t *)&Default_38C1600_EEPROM_Config+i);
   2302  1.10  dante 			}
   2303   1.7  dante 		}
   2304   1.7  dante 
   2305   1.7  dante 		/*
   2306   1.7  dante 		 * Assume the 6 byte board serial number that was read
   2307   1.7  dante 		 * from EEPROM is correct even if the EEPROM checksum
   2308   1.7  dante 		 * failed.
   2309   1.7  dante 		 */
   2310   1.7  dante 		eep_config.serial_number_word3 =
   2311  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2312   1.7  dante 
   2313   1.7  dante 		eep_config.serial_number_word2 =
   2314  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2315   1.7  dante 
   2316   1.7  dante 		eep_config.serial_number_word1 =
   2317  1.16  dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2318   1.7  dante 
   2319  1.16  dante 		AdwSet38C1600EEPConfig(iot, ioh, &eep_config);
   2320   1.7  dante 	}
   2321  1.10  dante 
   2322   1.7  dante 	/*
   2323  1.10  dante 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   2324   1.7  dante 	 * EEPROM configuration that was read.
   2325   1.7  dante 	 *
   2326  1.16  dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
   2327   1.7  dante 	 */
   2328   1.7  dante 	sc->wdtr_able = eep_config.wdtr_able;
   2329   1.7  dante 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2330   1.7  dante 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2331   1.7  dante 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2332   1.7  dante 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2333  1.10  dante 	sc->ppr_able = 0;
   2334   1.7  dante 	sc->tagqng_able = eep_config.tagqng_able;
   2335   1.7  dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   2336   1.7  dante 	sc->max_host_qng = eep_config.max_host_qng;
   2337   1.7  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2338   1.7  dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2339   1.7  dante 	sc->start_motor = eep_config.start_motor;
   2340   1.7  dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2341   1.7  dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   2342   1.7  dante 	sc->no_scam = eep_config.scam_tolerant;
   2343   1.7  dante 
   2344   1.7  dante 	/*
   2345   1.7  dante 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2346   1.7  dante 	 * are set, then set an 'sdtr_able' bit for it.
   2347   1.7  dante 	 */
   2348   1.7  dante 	sc->sdtr_able = 0;
   2349   1.7  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2350   1.7  dante 		if (tid == 0) {
   2351   1.7  dante 			sdtr_speed = sc->sdtr_speed1;
   2352   1.7  dante 		} else if (tid == 4) {
   2353   1.7  dante 			sdtr_speed = sc->sdtr_speed2;
   2354   1.7  dante 		} else if (tid == 8) {
   2355   1.7  dante 			sdtr_speed = sc->sdtr_speed3;
   2356   1.7  dante 		} else if (tid == 12) {
   2357   1.7  dante 			sdtr_speed = sc->sdtr_speed4;
   2358   1.7  dante 		}
   2359   1.7  dante 		if (sdtr_speed & ADW_MAX_TID) {
   2360   1.7  dante 			sc->sdtr_able |= (1 << tid);
   2361   1.7  dante 		}
   2362   1.7  dante 		sdtr_speed >>= 4;
   2363   1.7  dante 	}
   2364   1.7  dante 
   2365   1.7  dante 	/*
   2366   1.7  dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2367   1.7  dante 	 * maximum queuing (max. 63, min. 4).
   2368   1.7  dante 	 */
   2369  1.16  dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
   2370  1.16  dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2371  1.16  dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG) {
   2372   1.7  dante 		/* If the value is zero, assume it is uninitialized. */
   2373   1.7  dante 		if (eep_config.max_host_qng == 0) {
   2374  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
   2375   1.7  dante 		} else {
   2376  1.16  dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
   2377   1.7  dante 		}
   2378   1.7  dante 	}
   2379   1.7  dante 
   2380  1.16  dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
   2381  1.16  dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2382  1.16  dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
   2383   1.7  dante 		/* If the value is zero, assume it is uninitialized. */
   2384   1.7  dante 		if (eep_config.max_dvc_qng == 0) {
   2385  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
   2386   1.7  dante 		} else {
   2387  1.16  dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
   2388   1.7  dante 		}
   2389   1.7  dante 	}
   2390   1.7  dante 
   2391   1.7  dante 	/*
   2392   1.7  dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2393   1.7  dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2394   1.7  dante 	 */
   2395   1.7  dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2396   1.7  dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2397   1.7  dante 	}
   2398   1.7  dante 
   2399   1.7  dante 	/*
   2400  1.10  dante 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
   2401   1.7  dante 	 * values based on possibly adjusted EEPROM values.
   2402   1.7  dante 	 */
   2403   1.7  dante 	sc->max_host_qng = eep_config.max_host_qng;
   2404   1.7  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2405   1.7  dante 
   2406   1.7  dante 	/*
   2407   1.7  dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2408  1.10  dante 	 * the ASC_DVC_CFG 'termination' field to automatic also.
   2409   1.7  dante 	 *
   2410   1.7  dante 	 * If the termination is specified with a non-zero 'termination'
   2411  1.10  dante 	 * value check that a legal value is set and set the ASC_DVC_CFG
   2412   1.7  dante 	 * 'termination' field appropriately.
   2413   1.7  dante 	 */
   2414   1.7  dante 
   2415  1.10  dante 	switch(eep_config.termination_se) {
   2416  1.10  dante 	case 0:	/* auto termination for SE */
   2417  1.10  dante 		termination = 0;
   2418  1.10  dante 		break;
   2419  1.10  dante 	case 1:	/* Enable manual control with low off / high off. */
   2420  1.10  dante 		termination = 0;
   2421  1.10  dante 		break;
   2422  1.10  dante 	case 2:	/* Enable manual control with low off / high on. */
   2423  1.10  dante 		termination = ADW_TERM_SE_HI;
   2424  1.10  dante 		break;
   2425  1.10  dante 	case 3:	/* Enable manual control with low on / high on. */
   2426  1.10  dante 		termination = ADW_TERM_SE;
   2427  1.10  dante 		break;
   2428  1.10  dante 	default:
   2429  1.10  dante 		/*
   2430  1.10  dante 		 * The EEPROM 'termination_se' field contains a bad value.
   2431  1.10  dante 		 * Use automatic termination instead.
   2432  1.10  dante 		 */
   2433  1.10  dante 		termination = 0;
   2434  1.16  dante 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2435   1.7  dante 	}
   2436   1.7  dante 
   2437  1.10  dante 	switch(eep_config.termination_lvd) {
   2438  1.10  dante 	case 0:	/* auto termination for LVD */
   2439  1.10  dante 		sc->cfg.termination = termination;
   2440  1.10  dante 		break;
   2441  1.10  dante 	case 1:	/* Enable manual control with low off / high off. */
   2442  1.10  dante 		sc->cfg.termination = termination;
   2443  1.10  dante 		break;
   2444  1.10  dante 	case 2:	/* Enable manual control with low off / high on. */
   2445  1.10  dante 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2446  1.10  dante 		break;
   2447  1.10  dante 	case 3:	/* Enable manual control with low on / high on. */
   2448  1.10  dante 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2449  1.10  dante 		break;
   2450  1.10  dante 	default:
   2451  1.10  dante 		/*
   2452  1.10  dante 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2453  1.10  dante 		 * Use automatic termination instead.
   2454  1.10  dante 		 */
   2455   1.7  dante 		sc->cfg.termination = termination;
   2456  1.16  dante 		warn_code |= ADW_WARN_EEPROM_TERMINATION;
   2457   1.7  dante 	}
   2458   1.7  dante 
   2459   1.7  dante 	return warn_code;
   2460   1.7  dante }
   2461   1.7  dante 
   2462   1.7  dante 
   2463   1.7  dante /*
   2464   1.7  dante  * Read EEPROM configuration into the specified buffer.
   2465   1.7  dante  *
   2466   1.7  dante  * Return a checksum based on the EEPROM configuration read.
   2467   1.7  dante  */
   2468   1.7  dante static u_int16_t
   2469  1.16  dante AdwGet3550EEPConfig(iot, ioh, cfg_buf)
   2470   1.7  dante 	bus_space_tag_t		iot;
   2471   1.7  dante 	bus_space_handle_t	ioh;
   2472   1.7  dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2473   1.7  dante {
   2474   1.7  dante 	u_int16_t	       wval, chksum;
   2475   1.7  dante 	u_int16_t	       *wbuf;
   2476   1.7  dante 	int		    eep_addr;
   2477   1.7  dante 
   2478   1.7  dante 
   2479   1.7  dante 	wbuf = (u_int16_t *) cfg_buf;
   2480   1.7  dante 	chksum = 0;
   2481   1.7  dante 
   2482   1.7  dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2483  1.10  dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2484  1.10  dante 		eep_addr++, wbuf++) {
   2485  1.16  dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2486   1.7  dante 		chksum += wval;
   2487   1.7  dante 		*wbuf = wval;
   2488   1.7  dante 	}
   2489   1.7  dante 
   2490  1.16  dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2491   1.7  dante 	wbuf++;
   2492   1.7  dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2493   1.7  dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2494   1.7  dante 			eep_addr++, wbuf++) {
   2495  1.16  dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2496   1.7  dante 	}
   2497   1.7  dante 
   2498   1.7  dante 	return chksum;
   2499   1.7  dante }
   2500   1.7  dante 
   2501   1.7  dante 
   2502   1.7  dante /*
   2503   1.7  dante  * Read EEPROM configuration into the specified buffer.
   2504   1.7  dante  *
   2505   1.7  dante  * Return a checksum based on the EEPROM configuration read.
   2506   1.7  dante  */
   2507   1.7  dante static u_int16_t
   2508  1.16  dante AdwGet38C0800EEPConfig(iot, ioh, cfg_buf)
   2509   1.7  dante 	bus_space_tag_t		iot;
   2510   1.7  dante 	bus_space_handle_t	ioh;
   2511   1.7  dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2512   1.7  dante {
   2513   1.7  dante 	u_int16_t	wval, chksum;
   2514   1.7  dante 	u_int16_t	*wbuf;
   2515   1.7  dante 	int		eep_addr;
   2516   1.7  dante 
   2517   1.7  dante 
   2518   1.7  dante 	wbuf = (u_int16_t *) cfg_buf;
   2519   1.7  dante 	chksum = 0;
   2520   1.1  dante 
   2521   1.1  dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2522  1.10  dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2523  1.10  dante 		eep_addr++, wbuf++) {
   2524  1.16  dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2525  1.10  dante 		chksum += wval;
   2526  1.10  dante 		*wbuf = wval;
   2527  1.10  dante 	}
   2528  1.10  dante 
   2529  1.16  dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2530  1.10  dante 	wbuf++;
   2531  1.10  dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2532  1.10  dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2533   1.7  dante 			eep_addr++, wbuf++) {
   2534  1.16  dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2535  1.10  dante 	}
   2536  1.10  dante 
   2537  1.10  dante 	return chksum;
   2538  1.10  dante }
   2539  1.10  dante 
   2540  1.10  dante 
   2541  1.10  dante /*
   2542  1.10  dante  * Read EEPROM configuration into the specified buffer.
   2543  1.10  dante  *
   2544  1.10  dante  * Return a checksum based on the EEPROM configuration read.
   2545  1.10  dante  */
   2546  1.10  dante static u_int16_t
   2547  1.16  dante AdwGet38C1600EEPConfig(iot, ioh, cfg_buf)
   2548  1.10  dante 	bus_space_tag_t		iot;
   2549  1.10  dante 	bus_space_handle_t	ioh;
   2550  1.10  dante 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2551  1.10  dante {
   2552  1.10  dante 	u_int16_t	wval, chksum;
   2553  1.10  dante 	u_int16_t	*wbuf;
   2554  1.10  dante 	int		eep_addr;
   2555  1.10  dante 
   2556  1.10  dante 
   2557  1.10  dante 	wbuf = (u_int16_t *) cfg_buf;
   2558  1.10  dante 	chksum = 0;
   2559  1.10  dante 
   2560  1.10  dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2561  1.10  dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   2562  1.10  dante 		eep_addr++, wbuf++) {
   2563  1.16  dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   2564   1.1  dante 		chksum += wval;
   2565   1.1  dante 		*wbuf = wval;
   2566   1.1  dante 	}
   2567   1.7  dante 
   2568  1.16  dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2569   1.1  dante 	wbuf++;
   2570   1.7  dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2571   1.7  dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2572   1.7  dante 			eep_addr++, wbuf++) {
   2573  1.16  dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   2574   1.7  dante 	}
   2575   1.7  dante 
   2576   1.7  dante 	return chksum;
   2577   1.7  dante }
   2578   1.7  dante 
   2579   1.7  dante 
   2580   1.7  dante /*
   2581   1.7  dante  * Read the EEPROM from specified location
   2582   1.7  dante  */
   2583   1.7  dante static u_int16_t
   2584  1.16  dante AdwReadEEPWord(iot, ioh, eep_word_addr)
   2585   1.7  dante 	bus_space_tag_t		iot;
   2586   1.7  dante 	bus_space_handle_t	ioh;
   2587   1.7  dante 	int			eep_word_addr;
   2588   1.7  dante {
   2589   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2590   1.7  dante 		ASC_EEP_CMD_READ | eep_word_addr);
   2591  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2592   1.7  dante 
   2593   1.7  dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   2594   1.7  dante }
   2595   1.7  dante 
   2596   1.7  dante 
   2597   1.7  dante /*
   2598   1.7  dante  * Wait for EEPROM command to complete
   2599   1.7  dante  */
   2600   1.7  dante static void
   2601  1.16  dante AdwWaitEEPCmd(iot, ioh)
   2602   1.7  dante 	bus_space_tag_t		iot;
   2603   1.7  dante 	bus_space_handle_t	ioh;
   2604   1.7  dante {
   2605   1.7  dante 	int eep_delay_ms;
   2606   1.7  dante 
   2607   1.7  dante 
   2608   1.7  dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   2609   1.7  dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   2610   1.7  dante 				ASC_EEP_CMD_DONE) {
   2611   1.7  dante 			break;
   2612   1.7  dante 		}
   2613  1.16  dante 		AdwSleepMilliSecond(1);
   2614   1.7  dante 	}
   2615   1.7  dante 
   2616   1.7  dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   2617   1.7  dante }
   2618   1.7  dante 
   2619   1.7  dante 
   2620   1.7  dante /*
   2621   1.7  dante  * Write the EEPROM from 'cfg_buf'.
   2622   1.7  dante  */
   2623   1.7  dante static void
   2624  1.16  dante AdwSet3550EEPConfig(iot, ioh, cfg_buf)
   2625   1.7  dante 	bus_space_tag_t		iot;
   2626   1.7  dante 	bus_space_handle_t	ioh;
   2627   1.7  dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2628   1.7  dante {
   2629   1.7  dante 	u_int16_t *wbuf;
   2630   1.7  dante 	u_int16_t addr, chksum;
   2631   1.7  dante 
   2632   1.7  dante 
   2633   1.7  dante 	wbuf = (u_int16_t *) cfg_buf;
   2634   1.7  dante 	chksum = 0;
   2635   1.7  dante 
   2636   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2637  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2638   1.7  dante 
   2639   1.7  dante 	/*
   2640   1.7  dante 	 * Write EEPROM from word 0 to word 20
   2641   1.7  dante 	 */
   2642   1.7  dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2643   1.7  dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2644   1.7  dante 		chksum += *wbuf;
   2645   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2646   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2647   1.7  dante 				ASC_EEP_CMD_WRITE | addr);
   2648  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2649  1.16  dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2650   1.7  dante 	}
   2651   1.7  dante 
   2652   1.7  dante 	/*
   2653   1.7  dante 	 * Write EEPROM checksum at word 21
   2654   1.7  dante 	 */
   2655   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2656   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2657   1.7  dante 			ASC_EEP_CMD_WRITE | addr);
   2658  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2659   1.7  dante 	wbuf++;        /* skip over check_sum */
   2660   1.7  dante 
   2661   1.7  dante 	/*
   2662   1.7  dante 	 * Write EEPROM OEM name at words 22 to 29
   2663   1.7  dante 	 */
   2664   1.7  dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2665   1.7  dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2666   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2667   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2668   1.7  dante 				ASC_EEP_CMD_WRITE | addr);
   2669  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2670   1.1  dante 	}
   2671   1.1  dante 
   2672   1.2  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2673   1.7  dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2674  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2675   1.1  dante 
   2676   1.1  dante 	return;
   2677   1.1  dante }
   2678   1.1  dante 
   2679   1.7  dante 
   2680   1.1  dante /*
   2681   1.1  dante  * Write the EEPROM from 'cfg_buf'.
   2682   1.1  dante  */
   2683   1.1  dante static void
   2684  1.16  dante AdwSet38C0800EEPConfig(iot, ioh, cfg_buf)
   2685   1.7  dante 	bus_space_tag_t		iot;
   2686   1.7  dante 	bus_space_handle_t	ioh;
   2687   1.7  dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2688   1.1  dante {
   2689   1.7  dante 	u_int16_t *wbuf;
   2690   1.7  dante 	u_int16_t addr, chksum;
   2691   1.7  dante 
   2692   1.1  dante 
   2693   1.1  dante 	wbuf = (u_int16_t *) cfg_buf;
   2694   1.1  dante 	chksum = 0;
   2695   1.1  dante 
   2696   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2697  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2698   1.1  dante 
   2699   1.1  dante 	/*
   2700   1.7  dante 	 * Write EEPROM from word 0 to word 20
   2701   1.1  dante 	 */
   2702   1.1  dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2703   1.2  dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2704   1.1  dante 		chksum += *wbuf;
   2705   1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2706   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2707   1.7  dante 				ASC_EEP_CMD_WRITE | addr);
   2708  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2709  1.16  dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2710   1.1  dante 	}
   2711   1.1  dante 
   2712   1.1  dante 	/*
   2713   1.7  dante 	 * Write EEPROM checksum at word 21
   2714   1.1  dante 	 */
   2715   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2716   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2717   1.7  dante 			ASC_EEP_CMD_WRITE | addr);
   2718  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2719   1.7  dante 	wbuf++;        /* skip over check_sum */
   2720   1.1  dante 
   2721   1.1  dante 	/*
   2722   1.7  dante 	 * Write EEPROM OEM name at words 22 to 29
   2723   1.1  dante 	 */
   2724   1.1  dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2725   1.2  dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2726   1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2727   1.7  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2728   1.7  dante 				ASC_EEP_CMD_WRITE | addr);
   2729  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2730   1.1  dante 	}
   2731   1.7  dante 
   2732   1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2733   1.7  dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2734  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2735   1.7  dante 
   2736   1.1  dante 	return;
   2737   1.1  dante }
   2738   1.1  dante 
   2739   1.7  dante 
   2740   1.1  dante /*
   2741  1.10  dante  * Write the EEPROM from 'cfg_buf'.
   2742  1.10  dante  */
   2743  1.10  dante static void
   2744  1.16  dante AdwSet38C1600EEPConfig(iot, ioh, cfg_buf)
   2745  1.10  dante 	bus_space_tag_t		iot;
   2746  1.10  dante 	bus_space_handle_t	ioh;
   2747  1.10  dante 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2748  1.10  dante {
   2749  1.10  dante 	u_int16_t *wbuf;
   2750  1.10  dante 	u_int16_t addr, chksum;
   2751  1.10  dante 
   2752  1.10  dante 
   2753  1.10  dante 	wbuf = (u_int16_t *) cfg_buf;
   2754  1.10  dante 	chksum = 0;
   2755  1.10  dante 
   2756  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2757  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2758  1.10  dante 
   2759  1.10  dante 	/*
   2760  1.10  dante 	 * Write EEPROM from word 0 to word 20
   2761  1.10  dante 	 */
   2762  1.10  dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2763  1.10  dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2764  1.10  dante 		chksum += *wbuf;
   2765  1.10  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2766  1.10  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2767  1.10  dante 				ASC_EEP_CMD_WRITE | addr);
   2768  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2769  1.16  dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   2770  1.10  dante 	}
   2771  1.10  dante 
   2772  1.10  dante 	/*
   2773  1.10  dante 	 * Write EEPROM checksum at word 21
   2774  1.10  dante 	 */
   2775  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2776  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2777  1.10  dante 			ASC_EEP_CMD_WRITE | addr);
   2778  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2779  1.10  dante 	wbuf++;        /* skip over check_sum */
   2780  1.10  dante 
   2781  1.10  dante 	/*
   2782  1.10  dante 	 * Write EEPROM OEM name at words 22 to 29
   2783  1.10  dante 	 */
   2784  1.10  dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2785  1.10  dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2786  1.10  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2787  1.10  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2788  1.10  dante 				ASC_EEP_CMD_WRITE | addr);
   2789  1.16  dante 		AdwWaitEEPCmd(iot, ioh);
   2790  1.10  dante 	}
   2791  1.10  dante 
   2792  1.10  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2793  1.10  dante 			ASC_EEP_CMD_WRITE_DISABLE);
   2794  1.16  dante 	AdwWaitEEPCmd(iot, ioh);
   2795  1.10  dante 
   2796  1.10  dante 	return;
   2797  1.10  dante }
   2798  1.10  dante 
   2799  1.10  dante 
   2800  1.10  dante /*
   2801  1.16  dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   2802   1.7  dante  *
   2803   1.7  dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   2804   1.7  dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   2805   1.7  dante  *   RISC to notify it a new command is ready to be executed.
   2806   1.1  dante  *
   2807   1.7  dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   2808   1.7  dante  * set to SCSI_MAX_RETRY.
   2809   1.1  dante  *
   2810   1.7  dante  * Return:
   2811   1.7  dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   2812   1.7  dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   2813   1.7  dante  *                       request completes.
   2814   1.7  dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   2815   1.7  dante  *                       host IC error.
   2816   1.1  dante  */
   2817   1.7  dante int
   2818  1.16  dante AdwExeScsiQueue(sc, scsiq)
   2819   1.7  dante ADW_SOFTC	*sc;
   2820   1.7  dante ADW_SCSI_REQ_Q	*scsiq;
   2821   1.1  dante {
   2822   1.7  dante 	bus_space_tag_t iot = sc->sc_iot;
   2823   1.7  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2824   1.7  dante 	ADW_CCB		*ccb;
   2825   1.7  dante 	long		req_size;
   2826   1.7  dante 	u_int32_t	req_paddr;
   2827  1.10  dante 	ADW_CARRIER	*new_carrp;
   2828   1.7  dante 
   2829   1.7  dante 	/*
   2830   1.7  dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   2831   1.7  dante 	 */
   2832   1.7  dante 	if (scsiq->target_id > ADW_MAX_TID) {
   2833   1.7  dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   2834   1.7  dante 		scsiq->done_status = QD_WITH_ERROR;
   2835   1.7  dante 		return ADW_ERROR;
   2836   1.7  dante 	}
   2837   1.7  dante 
   2838  1.10  dante 	/*
   2839  1.10  dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   2840  1.10  dante 	 */
   2841  1.10  dante 
   2842   1.7  dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   2843   1.7  dante 
   2844   1.7  dante 	/*
   2845  1.16  dante 	 * Allocate a carrier and initialize fields.
   2846   1.7  dante 	 */
   2847   1.7  dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   2848   1.7  dante 		return ADW_BUSY;
   2849   1.7  dante 	}
   2850  1.16  dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   2851  1.12  dante 			ASC_GET_CARRP(new_carrp->next_ba));
   2852   1.7  dante 	sc->carr_pending_cnt++;
   2853   1.7  dante 
   2854   1.7  dante 	/*
   2855  1.12  dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   2856   1.7  dante 	 * to the stopper value. The current stopper will be changed
   2857   1.7  dante 	 * below to point to the new stopper.
   2858   1.7  dante 	 */
   2859  1.12  dante 	new_carrp->next_ba = ASC_CQ_STOPPER;
   2860   1.7  dante 
   2861   1.7  dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   2862   1.7  dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   2863   1.7  dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   2864   1.7  dante 
   2865   1.7  dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   2866   1.7  dante 	scsiq->scsiq_rptr = req_paddr;
   2867   1.7  dante 
   2868   1.7  dante 	/*
   2869  1.12  dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   2870   1.7  dante 	 * order during initialization.
   2871   1.7  dante 	 */
   2872  1.12  dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   2873  1.12  dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   2874   1.1  dante 
   2875   1.7  dante 	/*
   2876   1.7  dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   2877   1.7  dante 	 * the microcode. The newly allocated stopper will become the new
   2878   1.7  dante 	 * stopper.
   2879   1.7  dante 	 */
   2880  1.12  dante 	sc->icq_sp->areq_ba = req_paddr;
   2881   1.1  dante 
   2882   1.1  dante 	/*
   2883  1.12  dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   2884   1.7  dante 	 * physical address of the new stopper. The RISC can only
   2885   1.7  dante 	 * follow physical addresses.
   2886   1.1  dante 	 */
   2887  1.12  dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   2888   1.1  dante 
   2889  1.12  dante #if ADW_DEBUG
   2890  1.12  dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2891  1.12  dante 			sc->icq_sp->carr_id,
   2892  1.12  dante 			sc->icq_sp->carr_ba,
   2893  1.12  dante 			sc->icq_sp->areq_ba,
   2894  1.12  dante 			sc->icq_sp->next_ba);
   2895  1.12  dante #endif
   2896   1.1  dante 	/*
   2897   1.7  dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   2898   1.1  dante 	 */
   2899   1.7  dante 	sc->icq_sp = new_carrp;
   2900  1.11  dante 
   2901  1.16  dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2902  1.16  dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2903   1.7  dante 		/*
   2904  1.10  dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   2905  1.10  dante 		 * pointer.
   2906  1.10  dante 		 */
   2907  1.10  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2908  1.16  dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   2909  1.10  dante 			/*
   2910  1.10  dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   2911  1.10  dante 			 * command 'clr_tickle_a' does not work unless the host
   2912  1.10  dante 			 * value is cleared.
   2913  1.10  dante 			 */
   2914  1.10  dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   2915  1.10  dante 					ADV_TICKLE_NOP);
   2916  1.10  dante 		}
   2917  1.16  dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   2918  1.10  dante 		/*
   2919  1.10  dante 		 * Notify the RISC a carrier is ready by writing the physical
   2920  1.10  dante 		 * address of the new carrier stopper to the COMMA register.
   2921   1.7  dante 		 */
   2922  1.10  dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   2923  1.12  dante 				new_carrp->carr_ba);
   2924   1.7  dante 	}
   2925   1.7  dante 
   2926  1.10  dante 	/*
   2927  1.10  dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   2928  1.10  dante 	 */
   2929  1.10  dante 
   2930   1.7  dante 	return ADW_SUCCESS;
   2931   1.1  dante }
   2932   1.1  dante 
   2933   1.7  dante 
   2934   1.7  dante void
   2935  1.16  dante AdwResetChip(iot, ioh)
   2936   1.7  dante 	bus_space_tag_t iot;
   2937   1.7  dante 	bus_space_handle_t ioh;
   2938   1.1  dante {
   2939   1.7  dante 
   2940   1.7  dante 	/*
   2941   1.7  dante 	 * Reset Chip.
   2942   1.7  dante 	 */
   2943   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2944   1.7  dante 			ADW_CTRL_REG_CMD_RESET);
   2945  1.16  dante 	AdwSleepMilliSecond(100);
   2946   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2947   1.7  dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2948   1.1  dante }
   2949   1.1  dante 
   2950   1.7  dante 
   2951   1.1  dante /*
   2952   1.1  dante  * Reset SCSI Bus and purge all outstanding requests.
   2953   1.1  dante  *
   2954   1.1  dante  * Return Value:
   2955   1.7  dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2956   1.7  dante  *      ADW_FALSE(0) -  Microcode command failed.
   2957   1.7  dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2958   1.7  dante  *                      may be hung which requires driver recovery.
   2959   1.1  dante  */
   2960   1.1  dante int
   2961  1.16  dante AdwResetCCB(sc)
   2962   1.7  dante ADW_SOFTC	*sc;
   2963   1.1  dante {
   2964   1.7  dante 	int	    status;
   2965   1.7  dante 
   2966   1.7  dante 	/*
   2967   1.7  dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2968   1.7  dante 	 * the SCSI Bus Reset signal.
   2969   1.7  dante 	 */
   2970  1.16  dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2971  1.11  dante 	if (status != ADW_TRUE) {
   2972   1.7  dante 		return status;
   2973   1.7  dante 	}
   2974   1.7  dante 
   2975   1.7  dante 	/*
   2976   1.7  dante 	 * Delay for the specified SCSI Bus Reset hold time.
   2977   1.7  dante 	 *
   2978   1.7  dante 	 * The hold time delay is done on the host because the RISC has no
   2979   1.7  dante 	 * microsecond accurate timer.
   2980   1.7  dante 	 */
   2981  1.16  dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2982   1.1  dante 
   2983   1.7  dante 	/*
   2984   1.7  dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2985   1.7  dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   2986   1.7  dante 	 */
   2987  1.16  dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2988  1.11  dante 	if (status != ADW_TRUE) {
   2989   1.7  dante 		return status;
   2990   1.7  dante 	}
   2991   1.1  dante 
   2992  1.16  dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2993   1.1  dante 
   2994   1.1  dante 	return status;
   2995   1.1  dante }
   2996   1.1  dante 
   2997   1.7  dante 
   2998   1.1  dante /*
   2999   1.7  dante  * Reset chip and SCSI Bus.
   3000   1.7  dante  *
   3001   1.7  dante  * Return Value:
   3002   1.7  dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   3003   1.7  dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   3004   1.1  dante  */
   3005   1.7  dante int
   3006  1.16  dante AdwResetSCSIBus(sc)
   3007   1.7  dante ADW_SOFTC	*sc;
   3008   1.1  dante {
   3009   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   3010   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3011   1.7  dante 	int		status;
   3012  1.10  dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   3013   1.7  dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   3014   1.7  dante 	u_int16_t	bios_sig;
   3015   1.7  dante 
   3016   1.7  dante 
   3017   1.7  dante 	/*
   3018   1.7  dante 	 * Save current per TID negotiated values.
   3019   1.7  dante 	 */
   3020  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   3021  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   3022  1.16  dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3023  1.16  dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   3024  1.10  dante 	}
   3025  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   3026  1.11  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3027  1.16  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3028   1.7  dante 			max_cmd[tid]);
   3029   1.7  dante 	}
   3030   1.7  dante 
   3031   1.7  dante 	/*
   3032  1.16  dante 	 * Force the AdwInitAsc3550/38C0800Driver() function to
   3033   1.7  dante 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   3034   1.7  dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   3035   1.7  dante 	 * needed if the BIOS signature word is present.
   3036   1.7  dante 	 */
   3037  1.16  dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   3038  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   3039   1.7  dante 
   3040   1.7  dante 	/*
   3041   1.7  dante 	 * Stop chip and reset it.
   3042   1.7  dante 	 */
   3043   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   3044   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3045   1.7  dante 			ADW_CTRL_REG_CMD_RESET);
   3046  1.16  dante 	AdwSleepMilliSecond(100);
   3047   1.7  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3048   1.7  dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   3049   1.7  dante 
   3050   1.7  dante 	/*
   3051   1.7  dante 	 * Reset Adv Library error code, if any, and try
   3052   1.7  dante 	 * re-initializing the chip.
   3053   1.7  dante 	 */
   3054  1.16  dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3055  1.16  dante 	    status = AdwInitAsc38C1600Driver(sc);
   3056  1.16  dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C0800) {
   3057  1.16  dante 		status = AdwInitAsc38C0800Driver(sc);
   3058   1.7  dante 	} else {
   3059  1.16  dante 		status = AdwInitAsc3550Driver(sc);
   3060   1.7  dante 	}
   3061   1.1  dante 
   3062   1.7  dante 	/* Translate initialization return value to status value. */
   3063  1.13  dante 	status = (status == 0)? ADW_TRUE : ADW_FALSE;
   3064   1.1  dante 
   3065   1.7  dante 	/*
   3066   1.7  dante 	 * Restore the BIOS signature word.
   3067   1.7  dante 	 */
   3068  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   3069   1.1  dante 
   3070   1.1  dante 	/*
   3071   1.7  dante 	 * Restore per TID negotiated values.
   3072   1.1  dante 	 */
   3073  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   3074  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   3075  1.16  dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   3076  1.16  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   3077  1.10  dante 	}
   3078  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   3079   1.7  dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3080  1.16  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3081   1.7  dante 			max_cmd[tid]);
   3082   1.7  dante 	}
   3083   1.1  dante 
   3084   1.7  dante 	return status;
   3085   1.1  dante }
   3086   1.1  dante 
   3087   1.1  dante 
   3088   1.1  dante /*
   3089   1.1  dante  * Adv Library Interrupt Service Routine
   3090   1.1  dante  *
   3091   1.1  dante  *  This function is called by a driver's interrupt service routine.
   3092   1.1  dante  *  The function disables and re-enables interrupts.
   3093   1.1  dante  *
   3094   1.7  dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   3095   1.1  dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   3096   1.1  dante  *
   3097  1.16  dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   3098   1.1  dante  *  when there is no hardware interrupt condition present. It will
   3099   1.1  dante  *  always check for completed idle commands and microcode requests.
   3100   1.1  dante  *  This is an important feature that shouldn't be changed because it
   3101   1.1  dante  *  allows commands to be completed from polling mode loops.
   3102   1.1  dante  *
   3103   1.1  dante  * Return:
   3104   1.1  dante  *   ADW_TRUE(1) - interrupt was pending
   3105   1.1  dante  *   ADW_FALSE(0) - no interrupt was pending
   3106   1.1  dante  */
   3107   1.1  dante int
   3108  1.16  dante AdwISR(sc)
   3109   1.7  dante ADW_SOFTC	*sc;
   3110   1.1  dante {
   3111   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   3112   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3113   1.7  dante 	u_int8_t	int_stat;
   3114   1.7  dante 	u_int16_t	target_bit;
   3115   1.7  dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   3116   1.7  dante 	u_int32_t	irq_next_pa;
   3117   1.7  dante 	ADW_SCSI_REQ_Q	*scsiq;
   3118   1.7  dante 	ADW_CCB		*ccb;
   3119  1.11  dante 	int		s;
   3120  1.11  dante 
   3121   1.1  dante 
   3122  1.11  dante 	s = splbio();
   3123   1.1  dante 
   3124   1.1  dante 	/* Reading the register clears the interrupt. */
   3125   1.1  dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   3126   1.1  dante 
   3127   1.7  dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   3128   1.7  dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   3129  1.11  dante 		splx(s);
   3130   1.7  dante 		return ADW_FALSE;
   3131   1.1  dante 	}
   3132   1.7  dante 
   3133   1.7  dante 	/*
   3134   1.7  dante 	 * Notify the driver of an asynchronous microcode condition by
   3135   1.7  dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   3136  1.16  dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   3137   1.1  dante 	 */
   3138   1.7  dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   3139   1.7  dante 		u_int8_t intrb_code;
   3140   1.7  dante 
   3141  1.16  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   3142  1.10  dante 
   3143  1.16  dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   3144  1.16  dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   3145  1.10  dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   3146  1.10  dante 				sc->carr_pending_cnt != 0) {
   3147  1.10  dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3148  1.10  dante 					IOPB_TICKLE, ADV_TICKLE_A);
   3149  1.16  dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   3150  1.10  dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3151  1.10  dante 						IOPB_TICKLE, ADV_TICKLE_NOP);
   3152  1.10  dante 				}
   3153  1.10  dante 			}
   3154   1.7  dante 		}
   3155   1.7  dante 
   3156   1.7  dante 		if (sc->async_callback != 0) {
   3157   1.7  dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   3158   1.1  dante 		}
   3159   1.1  dante 	}
   3160   1.7  dante 
   3161   1.1  dante 	/*
   3162   1.7  dante 	 * Check if the IRQ stopper carrier contains a completed request.
   3163   1.1  dante 	 */
   3164  1.12  dante 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
   3165   1.7  dante 	{
   3166  1.12  dante #if ADW_DEBUG
   3167  1.12  dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   3168  1.12  dante 				sc->irq_sp->carr_id,
   3169  1.12  dante 				sc->irq_sp->carr_ba,
   3170  1.12  dante 				sc->irq_sp->areq_ba,
   3171  1.12  dante 				sc->irq_sp->next_ba);
   3172  1.12  dante #endif
   3173   1.7  dante 		/*
   3174  1.10  dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   3175  1.10  dante 		 * structure.
   3176  1.12  dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   3177   1.7  dante 		 *
   3178   1.7  dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   3179  1.12  dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   3180  1.10  dante 		 * The conversion below complements the conversion of
   3181  1.16  dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   3182   1.7  dante 		 */
   3183  1.12  dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   3184   1.7  dante 		scsiq = &ccb->scsiq;
   3185  1.12  dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   3186   1.7  dante 
   3187  1.10  dante 		/*
   3188  1.10  dante 		 * Request finished with good status and the queue was not
   3189  1.10  dante 		 * DMAed to host memory by the firmware. Set all status fields
   3190  1.10  dante 		 * to indicate good status.
   3191  1.10  dante 		 */
   3192  1.10  dante 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   3193  1.10  dante 			scsiq->done_status = QD_NO_ERROR;
   3194  1.10  dante 			scsiq->host_status = scsiq->scsi_status = 0;
   3195  1.10  dante 			scsiq->data_cnt = 0L;
   3196   1.7  dante 		}
   3197   1.1  dante 
   3198   1.1  dante 		/*
   3199   1.7  dante 		 * Advance the stopper pointer to the next carrier
   3200   1.7  dante 		 * ignoring the lower four bits. Free the previous
   3201   1.7  dante 		 * stopper carrier.
   3202   1.1  dante 		 */
   3203   1.7  dante 		free_carrp = sc->irq_sp;
   3204  1.16  dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   3205   1.7  dante 
   3206  1.16  dante 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   3207  1.16  dante 					: sc->carr_freelist->carr_ba;
   3208   1.7  dante 		sc->carr_freelist = free_carrp;
   3209   1.7  dante 		sc->carr_pending_cnt--;
   3210   1.1  dante 
   3211   1.1  dante 
   3212   1.1  dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   3213   1.1  dante 
   3214   1.1  dante 		/*
   3215   1.1  dante 		 * Clear request microcode control flag.
   3216   1.1  dante 		 */
   3217   1.1  dante 		scsiq->cntl = 0;
   3218   1.1  dante 
   3219   1.1  dante 		/*
   3220   1.1  dante 		 * Check Condition handling
   3221   1.1  dante 		 */
   3222   1.1  dante 		/*
   3223   1.1  dante 		 * If the command that completed was a SCSI INQUIRY and
   3224   1.1  dante 		 * LUN 0 was sent the command, then process the INQUIRY
   3225   1.1  dante 		 * command information for the device.
   3226   1.1  dante 		 */
   3227   1.7  dante 		if (scsiq->done_status == QD_NO_ERROR &&
   3228  1.10  dante 		    scsiq->cdb[0] == INQUIRY &&
   3229  1.10  dante 		    scsiq->target_lun == 0) {
   3230  1.16  dante 			AdwInquiryHandling(sc, scsiq);
   3231   1.1  dante 		}
   3232   1.1  dante 
   3233   1.1  dante 		/*
   3234   1.1  dante 		 * Notify the driver of the completed request by passing
   3235   1.1  dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   3236   1.1  dante 		 */
   3237   1.7  dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   3238   1.1  dante 		/*
   3239   1.1  dante 		 * Note: After the driver callback function is called, 'scsiq'
   3240   1.1  dante 		 * can no longer be referenced.
   3241   1.1  dante 		 *
   3242   1.1  dante 		 * Fall through and continue processing other completed
   3243   1.1  dante 		 * requests...
   3244   1.1  dante 		 */
   3245   1.1  dante 	}
   3246  1.11  dante 
   3247  1.11  dante 	splx(s);
   3248   1.7  dante 
   3249   1.7  dante 	return ADW_TRUE;
   3250   1.1  dante }
   3251   1.1  dante 
   3252   1.7  dante 
   3253   1.1  dante /*
   3254   1.1  dante  * Send an idle command to the chip and wait for completion.
   3255   1.1  dante  *
   3256   1.7  dante  * Command completion is polled for once per microsecond.
   3257   1.7  dante  *
   3258   1.7  dante  * The function can be called from anywhere including an interrupt handler.
   3259  1.10  dante  * But the function is not re-entrant, so it uses the splbio/splx()
   3260   1.7  dante  * functions to prevent reentrancy.
   3261   1.1  dante  *
   3262   1.1  dante  * Return Values:
   3263   1.1  dante  *   ADW_TRUE - command completed successfully
   3264   1.1  dante  *   ADW_FALSE - command failed
   3265   1.7  dante  *   ADW_ERROR - command timed out
   3266   1.1  dante  */
   3267   1.1  dante int
   3268  1.16  dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   3269   1.7  dante ADW_SOFTC      *sc;
   3270   1.7  dante u_int16_t       idle_cmd;
   3271   1.7  dante u_int32_t       idle_cmd_parameter;
   3272   1.1  dante {
   3273   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   3274   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3275  1.13  dante 	u_int16_t	result;
   3276  1.10  dante 	u_int32_t	i, j, s;
   3277   1.1  dante 
   3278  1.10  dante 	s = splbio();
   3279   1.7  dante 
   3280   1.7  dante 	/*
   3281   1.7  dante 	 * Clear the idle command status which is set by the microcode
   3282   1.7  dante 	 * to a non-zero value to indicate when the command is completed.
   3283   1.7  dante 	 */
   3284  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   3285   1.1  dante 
   3286   1.1  dante 	/*
   3287   1.1  dante 	 * Write the idle command value after the idle command parameter
   3288   1.1  dante 	 * has been written to avoid a race condition. If the order is not
   3289   1.1  dante 	 * followed, the microcode may process the idle command before the
   3290   1.1  dante 	 * parameters have been written to LRAM.
   3291   1.1  dante 	 */
   3292  1.16  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   3293  1.13  dante 			idle_cmd_parameter);
   3294  1.16  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   3295   1.1  dante 
   3296   1.1  dante 	/*
   3297   1.7  dante 	 * Tickle the RISC to tell it to process the idle command.
   3298   1.1  dante 	 */
   3299   1.7  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   3300  1.16  dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   3301   1.1  dante 		/*
   3302   1.7  dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   3303   1.7  dante 		 * command 'clr_tickle_b' does not work unless the host
   3304   1.7  dante 		 * value is cleared.
   3305   1.1  dante 		 */
   3306   1.7  dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   3307   1.7  dante 	}
   3308   1.1  dante 
   3309   1.7  dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   3310   1.7  dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   3311   1.7  dante 		/* Poll once each microsecond for command completion. */
   3312   1.7  dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   3313  1.16  dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, result);
   3314   1.7  dante 			if (result != 0) {
   3315  1.10  dante 				splx(s);
   3316   1.7  dante 				return result;
   3317   1.7  dante 			}
   3318  1.16  dante 			AdwDelayMicroSecond(1);
   3319   1.7  dante 		}
   3320   1.1  dante 	}
   3321   1.1  dante 
   3322  1.10  dante 	splx(s);
   3323   1.7  dante 	return ADW_ERROR;
   3324   1.1  dante }
   3325   1.1  dante 
   3326   1.1  dante 
   3327   1.1  dante /*
   3328   1.1  dante  * Inquiry Information Byte 7 Handling
   3329   1.1  dante  *
   3330   1.1  dante  * Handle SCSI Inquiry Command information for a device by setting
   3331   1.2  dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   3332   1.1  dante  * Queuing.
   3333   1.1  dante  */
   3334   1.1  dante static void
   3335  1.16  dante AdwInquiryHandling(sc, scsiq)
   3336   1.7  dante ADW_SOFTC	*sc;
   3337   1.7  dante ADW_SCSI_REQ_Q *scsiq;
   3338   1.1  dante {
   3339   1.9  dante #ifndef FAILSAFE
   3340   1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   3341   1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   3342   1.7  dante 	u_int8_t		tid;
   3343  1.13  dante 	struct scsipi_inquiry_data *inq;
   3344   1.7  dante 	u_int16_t		tidmask;
   3345   1.7  dante 	u_int16_t		cfg_word;
   3346   1.7  dante 
   3347   1.1  dante 
   3348   1.1  dante 	/*
   3349  1.16  dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   3350   1.1  dante 	 * to be available.
   3351   1.1  dante 	 *
   3352   1.1  dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   3353   1.1  dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   3354   1.1  dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   3355   1.1  dante 	 * microcode to the transfer residual count.
   3356   1.1  dante 	 */
   3357   1.7  dante 
   3358   1.2  dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   3359   1.1  dante 		return;
   3360   1.1  dante 	}
   3361   1.7  dante 
   3362   1.1  dante 	tid = scsiq->target_id;
   3363   1.7  dante 
   3364  1.13  dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   3365   1.1  dante 
   3366   1.1  dante 	/*
   3367   1.1  dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   3368   1.1  dante 	 */
   3369  1.13  dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   3370  1.13  dante 	    ((inq->version & SID_ANSII) < 2)) {
   3371   1.1  dante 		return;
   3372   1.2  dante 	} else {
   3373   1.1  dante 		/*
   3374   1.1  dante 		 * INQUIRY Byte 7 Handling
   3375   1.1  dante 		 *
   3376   1.1  dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   3377   1.1  dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   3378   1.1  dante 		 * is enabled in the EEPROM and the device supports the
   3379   1.1  dante 		 * feature, then enable it in the microcode.
   3380   1.1  dante 		 */
   3381   1.1  dante 
   3382   1.1  dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   3383   1.7  dante 
   3384   1.1  dante 		/*
   3385   1.1  dante 		 * Wide Transfers
   3386   1.1  dante 		 *
   3387   1.1  dante 		 * If the EEPROM enabled WDTR for the device and the device
   3388   1.1  dante 		 * supports wide bus (16 bit) transfers, then turn on the
   3389   1.1  dante 		 * device's 'wdtr_able' bit and write the new value to the
   3390   1.1  dante 		 * microcode.
   3391   1.1  dante 		 */
   3392   1.7  dante #ifdef SCSI_ADW_WDTR_DISABLE
   3393   1.8  dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   3394   1.7  dante #endif /* SCSI_ADW_WDTR_DISABLE */
   3395  1.13  dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   3396  1.16  dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   3397   1.7  dante 					cfg_word);
   3398   1.2  dante 			if ((cfg_word & tidmask) == 0) {
   3399   1.1  dante 				cfg_word |= tidmask;
   3400  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   3401   1.7  dante 						cfg_word);
   3402   1.1  dante 
   3403   1.1  dante 				/*
   3404  1.16  dante 				 * Clear the microcode "SDTR negotiation" and
   3405  1.16  dante 				 * "WDTR negotiation" done indicators for the
   3406  1.16  dante 				 * target to cause it to negotiate with the new
   3407  1.16  dante 				 * setting set above.
   3408   1.7  dante 				 * WDTR when accepted causes the target to enter
   3409  1.16  dante 				 * asynchronous mode, so SDTR must be negotiated
   3410   1.1  dante 				 */
   3411  1.16  dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3412   1.7  dante 						cfg_word);
   3413   1.7  dante 				cfg_word &= ~tidmask;
   3414  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3415   1.7  dante 						cfg_word);
   3416  1.16  dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   3417   1.7  dante 						cfg_word);
   3418   1.1  dante 				cfg_word &= ~tidmask;
   3419  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   3420   1.7  dante 						cfg_word);
   3421   1.1  dante 			}
   3422   1.1  dante 		}
   3423   1.7  dante 
   3424   1.1  dante 		/*
   3425   1.1  dante 		 * Synchronous Transfers
   3426   1.1  dante 		 *
   3427   1.1  dante 		 * If the EEPROM enabled SDTR for the device and the device
   3428   1.1  dante 		 * supports synchronous transfers, then turn on the device's
   3429   1.1  dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   3430   1.1  dante 		 */
   3431   1.7  dante #ifdef SCSI_ADW_SDTR_DISABLE
   3432   1.8  dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   3433   1.7  dante #endif /* SCSI_ADW_SDTR_DISABLE */
   3434  1.13  dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   3435  1.16  dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, cfg_word);
   3436   1.2  dante 			if ((cfg_word & tidmask) == 0) {
   3437   1.1  dante 				cfg_word |= tidmask;
   3438  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   3439   1.7  dante 						cfg_word);
   3440   1.1  dante 
   3441   1.1  dante 				/*
   3442  1.16  dante 				 * Clear the microcode "SDTR negotiation"
   3443  1.16  dante 				 * done indicator for the target to cause it
   3444  1.16  dante 				 * to negotiate with the new setting set above.
   3445   1.1  dante 				 */
   3446  1.16  dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3447   1.7  dante 						cfg_word);
   3448   1.1  dante 				cfg_word &= ~tidmask;
   3449  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   3450   1.7  dante 						cfg_word);
   3451  1.10  dante 			}
   3452  1.10  dante 		}
   3453  1.10  dante 		/*
   3454  1.10  dante 		 * If the Inquiry data included enough space for the SPI-3
   3455  1.10  dante 		 * Clocking field, then check if DT mode is supported.
   3456  1.10  dante 		 */
   3457  1.16  dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   3458  1.10  dante 			(scsiq->cdb[4] >= 57 ||
   3459  1.10  dante 				(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   3460  1.10  dante 			/*
   3461  1.10  dante 			 * PPR (Parallel Protocol Request) Capable
   3462  1.10  dante 			 *
   3463  1.10  dante 			 * If the device supports DT mode, then it must be
   3464  1.10  dante 			 * PPR capable.
   3465  1.10  dante 			 * The PPR message will be used in place of the SDTR
   3466  1.10  dante 			 * and WDTR messages to negotiate synchronous speed
   3467  1.10  dante 			 * and offset, transfer width, and protocol options.
   3468  1.10  dante 			 */
   3469  1.15  dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   3470  1.16  dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   3471  1.10  dante 						sc->ppr_able);
   3472  1.10  dante 				sc->ppr_able |= tidmask;
   3473  1.16  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   3474  1.10  dante 						sc->ppr_able);
   3475   1.1  dante 			}
   3476   1.1  dante 		}
   3477   1.7  dante 
   3478   1.1  dante 		/*
   3479   1.7  dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   3480   1.7  dante 		 * device supports Tag Queueing, then turn on the device's
   3481   1.1  dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   3482   1.7  dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   3483   1.1  dante 		 * value.
   3484   1.1  dante 		 *
   3485   1.1  dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   3486   1.1  dante 		 * mode and would see no benefit from Tag Queuing. Also by
   3487   1.1  dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   3488   1.1  dante 		 * bugs will at least work with the BIOS.
   3489   1.1  dante 		 */
   3490   1.7  dante #ifdef SCSI_ADW_TAGQ_DISABLE
   3491   1.8  dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   3492   1.7  dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   3493  1.13  dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   3494  1.16  dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   3495   1.7  dante 					cfg_word);
   3496   1.1  dante 			cfg_word |= tidmask;
   3497  1.16  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   3498   1.7  dante 					cfg_word);
   3499   1.7  dante 
   3500   1.1  dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   3501  1.16  dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   3502   1.7  dante 					sc->max_dvc_qng);
   3503   1.1  dante 		}
   3504   1.9  dante 	}
   3505   1.7  dante #endif /* FAILSAFE */
   3506   1.1  dante }
   3507   1.1  dante 
   3508   1.7  dante 
   3509   1.1  dante static void
   3510  1.16  dante AdwSleepMilliSecond(n)
   3511   1.7  dante u_int32_t	n;
   3512   1.1  dante {
   3513   1.1  dante 
   3514   1.1  dante 	DELAY(n * 1000);
   3515   1.1  dante }
   3516   1.1  dante 
   3517   1.7  dante 
   3518   1.1  dante static void
   3519  1.16  dante AdwDelayMicroSecond(n)
   3520   1.7  dante u_int32_t	n;
   3521   1.1  dante {
   3522   1.1  dante 
   3523   1.1  dante 	DELAY(n);
   3524   1.1  dante }
   3525   1.7  dante 
   3526