Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.2
      1  1.2  dante /* $NetBSD: adwlib.c,v 1.2 1998/09/26 19:54:22 dante Exp $        */
      2  1.1  dante 
      3  1.1  dante /*
      4  1.1  dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  1.1  dante  *
      6  1.1  dante  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      7  1.1  dante  * All rights reserved.
      8  1.1  dante  *
      9  1.1  dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  1.1  dante  *
     11  1.1  dante  * Redistribution and use in source and binary forms, with or without
     12  1.1  dante  * modification, are permitted provided that the following conditions
     13  1.1  dante  * are met:
     14  1.1  dante  * 1. Redistributions of source code must retain the above copyright
     15  1.1  dante  *    notice, this list of conditions and the following disclaimer.
     16  1.1  dante  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1  dante  *    notice, this list of conditions and the following disclaimer in the
     18  1.1  dante  *    documentation and/or other materials provided with the distribution.
     19  1.1  dante  * 3. All advertising materials mentioning features or use of this software
     20  1.1  dante  *    must display the following acknowledgement:
     21  1.1  dante  *        This product includes software developed by the NetBSD
     22  1.1  dante  *        Foundation, Inc. and its contributors.
     23  1.1  dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.1  dante  *    contributors may be used to endorse or promote products derived
     25  1.1  dante  *    from this software without specific prior written permission.
     26  1.1  dante  *
     27  1.1  dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.1  dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.1  dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.1  dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.1  dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.1  dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.1  dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.1  dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.1  dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.1  dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.1  dante  * POSSIBILITY OF SUCH DAMAGE.
     38  1.1  dante  */
     39  1.1  dante /*
     40  1.1  dante  * Ported from:
     41  1.1  dante  */
     42  1.1  dante /*
     43  1.1  dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  1.1  dante  *
     45  1.1  dante  * Copyright (c) 1995-1998 Advanced System Products, Inc.
     46  1.1  dante  * All Rights Reserved.
     47  1.1  dante  *
     48  1.1  dante  * Redistribution and use in source and binary forms, with or without
     49  1.1  dante  * modification, are permitted provided that redistributions of source
     50  1.1  dante  * code retain the above copyright notice and this comment without
     51  1.1  dante  * modification.
     52  1.1  dante  */
     53  1.1  dante 
     54  1.1  dante #include <sys/types.h>
     55  1.1  dante #include <sys/param.h>
     56  1.1  dante #include <sys/systm.h>
     57  1.1  dante #include <sys/malloc.h>
     58  1.1  dante #include <sys/kernel.h>
     59  1.1  dante #include <sys/queue.h>
     60  1.1  dante #include <sys/device.h>
     61  1.1  dante 
     62  1.1  dante #include <machine/bus.h>
     63  1.1  dante #include <machine/intr.h>
     64  1.1  dante 
     65  1.1  dante #include <dev/scsipi/scsi_all.h>
     66  1.1  dante #include <dev/scsipi/scsipi_all.h>
     67  1.1  dante #include <dev/scsipi/scsiconf.h>
     68  1.1  dante 
     69  1.1  dante #include <vm/vm.h>
     70  1.1  dante #include <vm/vm_param.h>
     71  1.1  dante #include <vm/pmap.h>
     72  1.1  dante 
     73  1.1  dante #include <dev/ic/adwlib.h>
     74  1.1  dante #include <dev/ic/adw.h>
     75  1.1  dante #include <dev/ic/adwmcode.h>
     76  1.1  dante 
     77  1.1  dante 
     78  1.1  dante /* Static Functions */
     79  1.1  dante 
     80  1.1  dante static u_int16_t AdvGetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     81  1.2  dante      							ADWEEP_CONFIG *));
     82  1.2  dante static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t,
     83  1.2  dante 							int));
     84  1.1  dante static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     85  1.1  dante static void AdvSetEEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     86  1.2  dante 					                 ADWEEP_CONFIG *));
     87  1.1  dante static int AdvSendScsiCmd __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     88  1.1  dante static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     89  1.1  dante 
     90  1.2  dante static void DvcSleepMilliSecond __P((ulong));
     91  1.2  dante static void DvcDelayMicroSecond __P((ulong));
     92  1.1  dante 
     93  1.1  dante 
     94  1.1  dante /*
     95  1.1  dante  * EEPROM Configuration.
     96  1.1  dante  *
     97  1.1  dante  * All drivers should use this structure to set the default EEPROM
     98  1.1  dante  * configuration. The BIOS now uses this structure when it is built.
     99  1.1  dante  * Additional structure information can be found in advlib.h where
    100  1.1  dante  * the structure is defined.
    101  1.1  dante  */
    102  1.1  dante static ADWEEP_CONFIG
    103  1.1  dante Default_EEPROM_Config = {
    104  1.2  dante 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_msw */
    105  1.2  dante 	0x0000,		/* cfg_lsw */
    106  1.2  dante 	0xFFFF,		/* disc_enable */
    107  1.2  dante 	0xFFFF,		/* wdtr_able */
    108  1.2  dante 	0xFFFF,		/* sdtr_able */
    109  1.2  dante 	0xFFFF,		/* start_motor */
    110  1.2  dante 	0xFFFF,		/* tagqng_able */
    111  1.2  dante 	0xFFFF,		/* bios_scan */
    112  1.2  dante 	0,		/* scam_tolerant */
    113  1.2  dante 	7,		/* adapter_scsi_id */
    114  1.2  dante 	0,		/* bios_boot_delay */
    115  1.2  dante 	3,		/* scsi_reset_delay */
    116  1.2  dante 	0,		/* bios_id_lun */
    117  1.2  dante 	0,		/* termination */
    118  1.2  dante 	0,		/* reserved1 */
    119  1.2  dante 	0xFFEF,		/* bios_ctrl */
    120  1.2  dante 	0xFFFF,		/* ultra_able */
    121  1.2  dante 	0,		/* reserved2 */
    122  1.2  dante 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
    123  1.2  dante 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    124  1.2  dante 	0,		/* dvc_cntl */
    125  1.2  dante 	0,		/* bug_fix */
    126  1.2  dante 	0,		/* serial_number_word1 */
    127  1.2  dante 	0,		/* serial_number_word2 */
    128  1.2  dante 	0,		/* serial_number_word3 */
    129  1.2  dante 	0,		/* check_sum */
    130  1.2  dante 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* oem_name[16] */
    131  1.2  dante 	0,		/* dvc_err_code */
    132  1.2  dante 	0,		/* adv_err_code */
    133  1.2  dante 	0,		/* adv_err_addr */
    134  1.2  dante 	0,		/* saved_dvc_err_code */
    135  1.2  dante 	0,		/* saved_adv_err_code */
    136  1.2  dante 	0,		/* saved_adv_err_addr */
    137  1.2  dante 	0		/* num_of_err */
    138  1.1  dante };
    139  1.1  dante 
    140  1.1  dante /*
    141  1.1  dante  * Initialize the ASC3550.
    142  1.1  dante  *
    143  1.1  dante  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    144  1.1  dante  *
    145  1.1  dante  * For a non-fatal error return a warning code. If there are no warnings
    146  1.1  dante  * then 0 is returned.
    147  1.1  dante  */
    148  1.1  dante int
    149  1.1  dante AdvInitAsc3550Driver(sc)
    150  1.2  dante ADW_SOFTC      *sc;
    151  1.1  dante {
    152  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    153  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    154  1.2  dante 	u_int16_t       warn_code;
    155  1.2  dante 	u_int32_t       sum;
    156  1.2  dante 	int             begin_addr;
    157  1.2  dante 	int             end_addr;
    158  1.2  dante 	int             code_sum;
    159  1.2  dante 	int             word;
    160  1.2  dante 	int             rql_addr;	/* RISC Queue List address */
    161  1.2  dante 	int             i;
    162  1.2  dante 	u_int16_t       scsi_cfg1;
    163  1.2  dante 	u_int8_t        biosmem[ASC_MC_BIOSLEN];	/* BIOS RISC Memory
    164  1.2  dante 							 * 0x40-0x8F */
    165  1.1  dante 
    166  1.1  dante 
    167  1.1  dante 	warn_code = 0;
    168  1.1  dante 
    169  1.1  dante 	/*
    170  1.1  dante 	 * Save the RISC memory BIOS region before writing the microcode.
    171  1.1  dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    172  1.1  dante 	 * so its region must be saved and restored.
    173  1.1  dante 	 *
    174  1.1  dante 	 * Note: This code makes the assumption, which is currently true,
    175  1.1  dante 	 * that a chip reset does not clear RISC LRAM.
    176  1.1  dante 	 */
    177  1.1  dante 	for (i = 0; i < ASC_MC_BIOSLEN; i++) {
    178  1.1  dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
    179  1.1  dante 	}
    180  1.1  dante 
    181  1.1  dante 	/*
    182  1.1  dante 	 * Load the Microcode
    183  1.1  dante 	 *
    184  1.1  dante 	 * Write the microcode image to RISC memory starting at address 0.
    185  1.1  dante 	 */
    186  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    187  1.1  dante 	for (word = 0; word < adv_mcode_size; word += 2) {
    188  1.1  dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    189  1.2  dante 				       *((u_int16_t *) (&adv_mcode[word])));
    190  1.1  dante 	}
    191  1.1  dante 
    192  1.1  dante 	/*
    193  1.1  dante 	 * Clear the rest of Condor's Internal RAM (8KB).
    194  1.1  dante 	 */
    195  1.1  dante 	for (; word < ADW_CONDOR_MEMSIZE; word += 2) {
    196  1.1  dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    197  1.1  dante 	}
    198  1.1  dante 
    199  1.1  dante 	/*
    200  1.1  dante 	 * Verify the microcode checksum.
    201  1.1  dante 	 */
    202  1.1  dante 	sum = 0;
    203  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    204  1.1  dante 	for (word = 0; word < adv_mcode_size; word += 2) {
    205  1.1  dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    206  1.1  dante 	}
    207  1.1  dante 
    208  1.1  dante 	if (sum != adv_mcode_chksum)
    209  1.1  dante 		return ASC_IERR_MCODE_CHKSUM;
    210  1.1  dante 
    211  1.1  dante 	/*
    212  1.1  dante 	 * Restore the RISC memory BIOS region.
    213  1.1  dante 	 */
    214  1.1  dante 	for (i = 0; i < ASC_MC_BIOSLEN; i++) {
    215  1.1  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + i, biosmem[i]);
    216  1.1  dante 	}
    217  1.1  dante 
    218  1.1  dante 	/*
    219  1.1  dante 	 * Calculate and write the microcode code checksum to the microcode
    220  1.2  dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    221  1.1  dante 	 */
    222  1.1  dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    223  1.1  dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    224  1.1  dante 	code_sum = 0;
    225  1.1  dante 	for (word = begin_addr; word < end_addr; word += 2) {
    226  1.1  dante 		code_sum += *((u_int16_t *) (&adv_mcode[word]));
    227  1.1  dante 	}
    228  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    229  1.1  dante 
    230  1.1  dante 	/*
    231  1.1  dante 	 * Read microcode version and date.
    232  1.1  dante 	 */
    233  1.1  dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE, sc->cfg.mcode_date);
    234  1.1  dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM, sc->cfg.mcode_version);
    235  1.1  dante 
    236  1.1  dante 	/*
    237  1.1  dante 	 * Initialize microcode operating variables
    238  1.1  dante 	 */
    239  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ADAPTER_SCSI_ID,
    240  1.2  dante 			    sc->chip_scsi_id);
    241  1.1  dante 
    242  1.1  dante 	/*
    243  1.1  dante 	 * If the PCI Configuration Command Register "Parity Error Response
    244  1.1  dante 	 * Control" Bit was clear (0), then set the microcode variable
    245  1.1  dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    246  1.1  dante 	 * to ignore DMA parity errors.
    247  1.1  dante 	 */
    248  1.1  dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    249  1.1  dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    250  1.1  dante 		word |= CONTROL_FLAG_IGNORE_PERR;
    251  1.1  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    252  1.1  dante 	}
    253  1.1  dante 	/*
    254  1.1  dante 	 * Set default microcode operating variables for WDTR, SDTR, and
    255  1.1  dante 	 * command tag queuing based on the EEPROM configuration values.
    256  1.1  dante 	 *
    257  1.1  dante 	 * These ADW_DVC_VAR fields and the microcode variables will be
    258  1.1  dante 	 * changed in AdvInquiryHandling() if it is found a device is
    259  1.1  dante 	 * incapable of a particular feature.
    260  1.1  dante 	 */
    261  1.1  dante 
    262  1.1  dante 	/*
    263  1.1  dante 	 * Set the microcode ULTRA target mask from EEPROM value. The
    264  1.1  dante 	 * SDTR target mask overrides the ULTRA target mask in the
    265  1.1  dante 	 * microcode so it is safe to set this value without determining
    266  1.1  dante 	 * whether the device supports SDTR.
    267  1.2  dante 	 *
    268  1.1  dante 	 * Note: There is no way to know whether a device supports ULTRA
    269  1.1  dante 	 * speed without attempting a SDTR ULTRA speed negotiation with
    270  1.1  dante 	 * the device. The device will reject the speed if it does not
    271  1.1  dante 	 * support it by responding with an SDTR message containing a
    272  1.1  dante 	 * slower speed.
    273  1.1  dante 	 */
    274  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_ULTRA_ABLE, sc->ultra_able);
    275  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
    276  1.1  dante 
    277  1.1  dante 
    278  1.1  dante 	/*
    279  1.1  dante 	 * Set SCSI_CFG0 Microcode Default Value.
    280  1.1  dante 	 *
    281  1.1  dante 	 * The microcode will set the SCSI_CFG0 register using this value
    282  1.1  dante 	 * after it is started below.
    283  1.1  dante 	 */
    284  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
    285  1.2  dante 	ADW_PARITY_EN | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN | sc->chip_scsi_id);
    286  1.2  dante 
    287  1.1  dante 	/*
    288  1.1  dante 	 * Determine SCSI_CFG1 Microcode Default Value.
    289  1.1  dante 	 *
    290  1.1  dante 	 * The microcode will set the SCSI_CFG1 register using this value
    291  1.1  dante 	 * after it is started below.
    292  1.1  dante 	 */
    293  1.1  dante 
    294  1.1  dante 	/* Read current SCSI_CFG1 Register value. */
    295  1.1  dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    296  1.1  dante 
    297  1.1  dante 	/*
    298  1.1  dante 	 * If all three connectors are in use, return an error.
    299  1.1  dante 	 */
    300  1.1  dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    301  1.2  dante 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    302  1.1  dante 		return ASC_IERR_ILLEGAL_CONNECTION;
    303  1.1  dante 	}
    304  1.1  dante 	/*
    305  1.1  dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    306  1.1  dante 	 * register signals will be set. Check for and return an error if
    307  1.1  dante 	 * this condition is found.
    308  1.1  dante 	 */
    309  1.2  dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    310  1.2  dante 			0x3F07) {
    311  1.2  dante 
    312  1.1  dante 		return ASC_IERR_REVERSED_CABLE;
    313  1.2  dante 	}
    314  1.1  dante 
    315  1.1  dante 	/*
    316  1.1  dante 	 * If this is a differential board and a single-ended device
    317  1.1  dante 	 * is attached to one of the connectors, return an error.
    318  1.1  dante 	 */
    319  1.1  dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0)
    320  1.1  dante 		return ASC_IERR_SINGLE_END_DEVICE;
    321  1.1  dante 
    322  1.1  dante 	/*
    323  1.1  dante 	 * If automatic termination control is enabled, then set the
    324  1.1  dante 	 * termination value based on a table listed in advlib.h.
    325  1.1  dante 	 *
    326  1.1  dante 	 * If manual termination was specified with an EEPROM setting
    327  1.1  dante 	 * then 'termination' was set-up in AdvInitFromEEP() and
    328  1.1  dante 	 * is ready to be 'ored' into SCSI_CFG1.
    329  1.1  dante 	 */
    330  1.1  dante 	if (sc->cfg.termination == 0) {
    331  1.1  dante 		/*
    332  1.2  dante 		 * The software always controls termination by setting
    333  1.2  dante 		 * ADW_TERM_CTL_SEL.
    334  1.2  dante 		 * If ADW_TERM_CTL_SEL were set to 0, the hardware would
    335  1.2  dante 		 * set termination.
    336  1.1  dante 		 */
    337  1.1  dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    338  1.1  dante 
    339  1.2  dante 		switch (scsi_cfg1 & ADW_CABLE_DETECT) {
    340  1.1  dante 			/* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: on */
    341  1.2  dante 		case 0x3:
    342  1.2  dante 		case 0x7:
    343  1.2  dante 		case 0xB:
    344  1.2  dante 		case 0xD:
    345  1.2  dante 		case 0xE:
    346  1.2  dante 		case 0xF:
    347  1.2  dante 			sc->cfg.termination |= (ADW_TERM_CTL_H |
    348  1.2  dante 					ADW_TERM_CTL_L);
    349  1.2  dante 			break;
    350  1.1  dante 
    351  1.1  dante 			/* ADW_TERM_CTL_H: on, ADW_TERM_CTL_L: off */
    352  1.2  dante 		case 0x1:
    353  1.2  dante 		case 0x5:
    354  1.2  dante 		case 0x9:
    355  1.2  dante 		case 0xA:
    356  1.2  dante 		case 0xC:
    357  1.2  dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    358  1.2  dante 			break;
    359  1.1  dante 
    360  1.1  dante 			/* ADW_TERM_CTL_H: off, ADW_TERM_CTL_L: off */
    361  1.2  dante 		case 0x2:
    362  1.2  dante 		case 0x6:
    363  1.2  dante 			break;
    364  1.1  dante 		}
    365  1.1  dante 	}
    366  1.1  dante 	/*
    367  1.1  dante 	 * Clear any set ADW_TERM_CTL_H and ADW_TERM_CTL_L bits.
    368  1.1  dante 	 */
    369  1.1  dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
    370  1.1  dante 
    371  1.1  dante 	/*
    372  1.1  dante 	 * Invert the ADW_TERM_CTL_H and ADW_TERM_CTL_L bits and then
    373  1.1  dante 	 * set 'scsi_cfg1'. The ADW_TERM_POL bit does not need to be
    374  1.1  dante 	 * referenced, because the hardware internally inverts
    375  1.1  dante 	 * the Termination High and Low bits if ADW_TERM_POL is set.
    376  1.1  dante 	 */
    377  1.1  dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    378  1.1  dante 
    379  1.1  dante 	/*
    380  1.1  dante 	 * Set SCSI_CFG1 Microcode Default Value
    381  1.1  dante 	 *
    382  1.1  dante 	 * Set filter value and possibly modified termination control
    383  1.1  dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
    384  1.1  dante 	 *
    385  1.1  dante 	 * The microcode will set the SCSI_CFG1 register using this value
    386  1.1  dante 	 * after it is started below.
    387  1.1  dante 	 */
    388  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
    389  1.2  dante 			    ADW_FLTR_11_TO_20NS | scsi_cfg1);
    390  1.1  dante 
    391  1.1  dante 	/*
    392  1.1  dante 	 * Set SEL_MASK Microcode Default Value
    393  1.1  dante 	 *
    394  1.1  dante 	 * The microcode will set the SEL_MASK register using this value
    395  1.1  dante 	 * after it is started below.
    396  1.1  dante 	 */
    397  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
    398  1.2  dante 			    ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    399  1.1  dante 
    400  1.1  dante 	/*
    401  1.1  dante 	 * Link all the RISC Queue Lists together in a doubly-linked
    402  1.1  dante 	 * NULL terminated list.
    403  1.1  dante 	 *
    404  1.1  dante 	 * Skip the NULL (0) queue which is not used.
    405  1.1  dante 	 */
    406  1.2  dante 	for (i = 1, rql_addr = ASC_MC_RISC_Q_LIST_BASE+ASC_MC_RISC_Q_LIST_SIZE;
    407  1.2  dante 	     i < ASC_MC_RISC_Q_TOTAL_CNT;
    408  1.2  dante 	     i++, rql_addr += ASC_MC_RISC_Q_LIST_SIZE) {
    409  1.1  dante 		/*
    410  1.2  dante 		 * Set the current RISC Queue List's RQL_FWD and
    411  1.2  dante 		 * RQL_BWD pointers in a one word write and set
    412  1.2  dante 		 * the state (RQL_STATE) to free.
    413  1.1  dante 		 */
    414  1.2  dante 		ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
    415  1.2  dante 				((i + 1) + ((i - 1) << 8)));
    416  1.2  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE,
    417  1.2  dante 				ASC_MC_QS_FREE);
    418  1.1  dante 	}
    419  1.1  dante 
    420  1.1  dante 	/*
    421  1.1  dante 	 * Set the Host and RISC Queue List pointers.
    422  1.1  dante 	 *
    423  1.1  dante 	 * Both sets of pointers are initialized with the same values:
    424  1.1  dante 	 * ASC_MC_RISC_Q_FIRST(0x01) and ASC_MC_RISC_Q_LAST (0xFF).
    425  1.1  dante 	 */
    426  1.2  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
    427  1.2  dante 			ASC_MC_RISC_Q_FIRST);
    428  1.2  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
    429  1.2  dante 			ASC_MC_RISC_Q_LAST);
    430  1.2  dante 
    431  1.2  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_READY,
    432  1.2  dante 			ASC_MC_RISC_Q_FIRST);
    433  1.2  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_RISC_NEXT_DONE,
    434  1.2  dante 			ASC_MC_RISC_Q_LAST);
    435  1.1  dante 
    436  1.1  dante 	/*
    437  1.1  dante 	 * Finally, set up the last RISC Queue List (255) with
    438  1.1  dante 	 * a NULL forward pointer.
    439  1.1  dante 	 */
    440  1.2  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, rql_addr,
    441  1.2  dante 			(ASC_MC_NULL_Q + ((i - 1) << 8)));
    442  1.1  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, rql_addr + RQL_STATE, ASC_MC_QS_FREE);
    443  1.1  dante 
    444  1.1  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    445  1.1  dante 		 (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    446  1.1  dante 
    447  1.1  dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
    448  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    449  1.1  dante 
    450  1.1  dante 	/* finally, finally, gentlemen, start your engine */
    451  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    452  1.2  dante 
    453  1.1  dante 	return warn_code;
    454  1.1  dante }
    455  1.1  dante 
    456  1.1  dante /*
    457  1.1  dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    458  1.1  dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    459  1.1  dante  * all of this is done.
    460  1.1  dante  *
    461  1.1  dante  * On failure set the ADW_DVC_VAR field 'err_code' and return ADW_ERROR.
    462  1.1  dante  *
    463  1.1  dante  * For a non-fatal error return a warning code. If there are no warnings
    464  1.1  dante  * then 0 is returned.
    465  1.1  dante  *
    466  1.1  dante  * Note: Chip is stopped on entry.
    467  1.1  dante  */
    468  1.1  dante int
    469  1.1  dante AdvInitFromEEP(sc)
    470  1.2  dante 	ADW_SOFTC      *sc;
    471  1.1  dante {
    472  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    473  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    474  1.2  dante 	u_int16_t       warn_code;
    475  1.2  dante 	ADWEEP_CONFIG   eep_config;
    476  1.2  dante 	int             eep_chksum, i;
    477  1.1  dante 
    478  1.1  dante 
    479  1.1  dante 	warn_code = 0;
    480  1.1  dante 
    481  1.1  dante 	/*
    482  1.1  dante 	 * Read the board's EEPROM configuration.
    483  1.1  dante 	 *
    484  1.1  dante 	 * Set default values if a bad checksum is found.
    485  1.1  dante 	 */
    486  1.1  dante 	eep_chksum = AdvGetEEPConfig(iot, ioh, &eep_config);
    487  1.2  dante 
    488  1.2  dante 	if (eep_chksum != eep_config.check_sum) {
    489  1.1  dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
    490  1.1  dante 
    491  1.1  dante 		/*
    492  1.1  dante 		 * Set EEPROM default values.
    493  1.1  dante 		 */
    494  1.1  dante 		for (i = 0; i < sizeof(ADWEEP_CONFIG); i++) {
    495  1.2  dante 			*((u_int8_t *) & eep_config + i) =
    496  1.2  dante 				*((u_int8_t *) & Default_EEPROM_Config + i);
    497  1.1  dante 		}
    498  1.1  dante 
    499  1.1  dante 		/*
    500  1.1  dante 		 * Assume the 6 byte board serial number that was read
    501  1.1  dante 		 * from EEPROM is correct even if the EEPROM checksum
    502  1.1  dante 		 * failed.
    503  1.1  dante 		 */
    504  1.1  dante 		eep_config.serial_number_word3 =
    505  1.1  dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
    506  1.1  dante 		eep_config.serial_number_word2 =
    507  1.1  dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
    508  1.1  dante 		eep_config.serial_number_word1 =
    509  1.1  dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
    510  1.1  dante 		AdvSetEEPConfig(iot, ioh, &eep_config);
    511  1.1  dante 	}
    512  1.1  dante 	/*
    513  1.1  dante 	 * Set ADW_DVC_VAR and ADW_DVC_CFG variables from the
    514  1.1  dante 	 * EEPROM configuration that was read.
    515  1.1  dante 	 *
    516  1.1  dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
    517  1.1  dante 	 */
    518  1.1  dante 	sc->wdtr_able = eep_config.wdtr_able;
    519  1.1  dante 	sc->sdtr_able = eep_config.sdtr_able;
    520  1.1  dante 	sc->ultra_able = eep_config.ultra_able;
    521  1.1  dante 	sc->tagqng_able = eep_config.tagqng_able;
    522  1.1  dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    523  1.1  dante 	sc->max_host_qng = eep_config.max_host_qng;
    524  1.1  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    525  1.1  dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    526  1.1  dante 	sc->start_motor = eep_config.start_motor;
    527  1.1  dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    528  1.1  dante 	sc->cfg.bios_boot_wait = eep_config.bios_boot_delay;
    529  1.1  dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    530  1.1  dante 	sc->no_scam = eep_config.scam_tolerant;
    531  1.1  dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
    532  1.1  dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
    533  1.1  dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
    534  1.1  dante 
    535  1.1  dante 	/*
    536  1.1  dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    537  1.1  dante 	 * maximum queuing (max. 63, min. 4).
    538  1.1  dante 	 */
    539  1.1  dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
    540  1.1  dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
    541  1.1  dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
    542  1.1  dante 		/* If the value is zero, assume it is uninitialized. */
    543  1.1  dante 		if (eep_config.max_host_qng == 0) {
    544  1.1  dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
    545  1.1  dante 		} else {
    546  1.1  dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
    547  1.1  dante 		}
    548  1.1  dante 	}
    549  1.2  dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
    550  1.1  dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
    551  1.2  dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
    552  1.1  dante 		/* If the value is zero, assume it is uninitialized. */
    553  1.2  dante 		if (eep_config.max_dvc_qng == 0) {
    554  1.1  dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
    555  1.2  dante 		} else {
    556  1.1  dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
    557  1.1  dante 		}
    558  1.1  dante 	}
    559  1.1  dante 	/*
    560  1.1  dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    561  1.1  dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    562  1.1  dante 	 */
    563  1.2  dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    564  1.1  dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    565  1.1  dante 	}
    566  1.1  dante 	/*
    567  1.1  dante 	 * Set ADW_DVC_VAR 'max_host_qng' and ADW_DVC_CFG 'max_dvc_qng'
    568  1.1  dante 	 * values based on possibly adjusted EEPROM values.
    569  1.1  dante 	 */
    570  1.1  dante 	sc->max_host_qng = eep_config.max_host_qng;
    571  1.1  dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    572  1.1  dante 
    573  1.1  dante 
    574  1.1  dante 	/*
    575  1.1  dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    576  1.1  dante 	 * the ADW_DVC_CFG 'termination' field to automatic also.
    577  1.1  dante 	 *
    578  1.1  dante 	 * If the termination is specified with a non-zero 'termination'
    579  1.1  dante 	 * value check that a legal value is set and set the ADW_DVC_CFG
    580  1.1  dante 	 * 'termination' field appropriately.
    581  1.1  dante 	 */
    582  1.2  dante 	if (eep_config.termination == 0) {
    583  1.1  dante 		sc->cfg.termination = 0;	/* auto termination */
    584  1.2  dante 	} else {
    585  1.1  dante 		/* Enable manual control with low off / high off. */
    586  1.2  dante 		if (eep_config.termination == 1) {
    587  1.1  dante 			sc->cfg.termination = ADW_TERM_CTL_SEL;
    588  1.1  dante 
    589  1.2  dante 			/* Enable manual control with low off / high on. */
    590  1.2  dante 		} else if (eep_config.termination == 2) {
    591  1.1  dante 			sc->cfg.termination = ADW_TERM_CTL_SEL | ADW_TERM_CTL_H;
    592  1.1  dante 
    593  1.2  dante 			/* Enable manual control with low on / high on. */
    594  1.2  dante 		} else if (eep_config.termination == 3) {
    595  1.2  dante 			sc->cfg.termination = ADW_TERM_CTL_SEL |
    596  1.2  dante 					ADW_TERM_CTL_H | ADW_TERM_CTL_L;
    597  1.2  dante 		} else {
    598  1.1  dante 			/*
    599  1.2  dante 			 * The EEPROM 'termination' field contains a bad value.
    600  1.2  dante 			 * Use automatic termination instead.
    601  1.1  dante 			 */
    602  1.1  dante 			sc->cfg.termination = 0;
    603  1.1  dante 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
    604  1.1  dante 		}
    605  1.1  dante 	}
    606  1.1  dante 
    607  1.1  dante 	return warn_code;
    608  1.1  dante }
    609  1.1  dante 
    610  1.1  dante /*
    611  1.1  dante  * Read EEPROM configuration into the specified buffer.
    612  1.1  dante  *
    613  1.1  dante  * Return a checksum based on the EEPROM configuration read.
    614  1.1  dante  */
    615  1.2  dante static          u_int16_t
    616  1.1  dante AdvGetEEPConfig(iot, ioh, cfg_buf)
    617  1.2  dante 	bus_space_tag_t iot;
    618  1.2  dante 	bus_space_handle_t ioh;
    619  1.2  dante 	ADWEEP_CONFIG  *cfg_buf;
    620  1.1  dante {
    621  1.2  dante 	u_int16_t       wval, chksum;
    622  1.2  dante 	u_int16_t      *wbuf;
    623  1.2  dante 	int             eep_addr;
    624  1.1  dante 
    625  1.1  dante 	wbuf = (u_int16_t *) cfg_buf;
    626  1.1  dante 	chksum = 0;
    627  1.1  dante 
    628  1.1  dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
    629  1.2  dante 	     eep_addr < ASC_EEP_DVC_CFG_END;
    630  1.2  dante 	     eep_addr++, wbuf++) {
    631  1.1  dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
    632  1.1  dante 		chksum += wval;
    633  1.1  dante 		*wbuf = wval;
    634  1.1  dante 	}
    635  1.1  dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
    636  1.1  dante 	wbuf++;
    637  1.1  dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
    638  1.2  dante 	     eep_addr < ASC_EEP_MAX_WORD_ADDR;
    639  1.2  dante 	     eep_addr++, wbuf++) {
    640  1.1  dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
    641  1.1  dante 	}
    642  1.1  dante 	return chksum;
    643  1.1  dante }
    644  1.1  dante 
    645  1.1  dante /*
    646  1.1  dante  * Read the EEPROM from specified location
    647  1.1  dante  */
    648  1.2  dante static          u_int16_t
    649  1.1  dante AdvReadEEPWord(iot, ioh, eep_word_addr)
    650  1.2  dante 	bus_space_tag_t iot;
    651  1.2  dante 	bus_space_handle_t ioh;
    652  1.2  dante 	int             eep_word_addr;
    653  1.1  dante {
    654  1.2  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
    655  1.2  dante 				ASC_EEP_CMD_READ | eep_word_addr);
    656  1.2  dante 	AdvWaitEEPCmd(iot, iot);
    657  1.2  dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
    658  1.1  dante }
    659  1.1  dante 
    660  1.1  dante /*
    661  1.1  dante  * Wait for EEPROM command to complete
    662  1.1  dante  */
    663  1.1  dante static void
    664  1.1  dante AdvWaitEEPCmd(iot, ioh)
    665  1.2  dante 	bus_space_tag_t iot;
    666  1.2  dante 	bus_space_handle_t ioh;
    667  1.1  dante {
    668  1.1  dante 	DvcSleepMilliSecond(1);
    669  1.1  dante 
    670  1.2  dante 	for (;;) {
    671  1.1  dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
    672  1.2  dante 		    ASC_EEP_CMD_DONE) {
    673  1.1  dante 			break;
    674  1.1  dante 		}
    675  1.1  dante 		DvcSleepMilliSecond(1);
    676  1.1  dante 	}
    677  1.1  dante 
    678  1.1  dante 	return;
    679  1.1  dante }
    680  1.1  dante 
    681  1.1  dante /*
    682  1.1  dante  * Write the EEPROM from 'cfg_buf'.
    683  1.1  dante  */
    684  1.1  dante static void
    685  1.1  dante AdvSetEEPConfig(iot, ioh, cfg_buf)
    686  1.2  dante 	bus_space_tag_t iot;
    687  1.2  dante 	bus_space_handle_t ioh;
    688  1.2  dante 	ADWEEP_CONFIG  *cfg_buf;
    689  1.1  dante {
    690  1.2  dante 	u_int16_t      *wbuf;
    691  1.2  dante 	u_int16_t       addr, chksum;
    692  1.1  dante 
    693  1.1  dante 	wbuf = (u_int16_t *) cfg_buf;
    694  1.1  dante 	chksum = 0;
    695  1.1  dante 
    696  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
    697  1.1  dante 	AdvWaitEEPCmd(iot, ioh);
    698  1.1  dante 
    699  1.1  dante 	/*
    700  1.1  dante 	 * Write EEPROM from word 0 to word 15
    701  1.1  dante 	 */
    702  1.1  dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
    703  1.2  dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
    704  1.1  dante 		chksum += *wbuf;
    705  1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
    706  1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh,
    707  1.2  dante 				     IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
    708  1.1  dante 		AdvWaitEEPCmd(iot, ioh);
    709  1.1  dante 		DvcSleepMilliSecond(ASC_EEP_DELAY_MS);
    710  1.1  dante 	}
    711  1.1  dante 
    712  1.1  dante 	/*
    713  1.1  dante 	 * Write EEPROM checksum at word 18
    714  1.1  dante 	 */
    715  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
    716  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
    717  1.2  dante 				ASC_EEP_CMD_WRITE | addr);
    718  1.1  dante 	AdvWaitEEPCmd(iot, ioh);
    719  1.2  dante 	wbuf++;			/* skip over check_sum */
    720  1.1  dante 
    721  1.1  dante 	/*
    722  1.2  dante 	 * Write EEPROM OEM name at words 19 to 26
    723  1.1  dante 	 */
    724  1.1  dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
    725  1.2  dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
    726  1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
    727  1.1  dante 		ADW_WRITE_WORD_REGISTER(iot, ioh,
    728  1.2  dante 				     IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
    729  1.1  dante 		AdvWaitEEPCmd(iot, ioh);
    730  1.1  dante 	}
    731  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
    732  1.2  dante 				ASC_EEP_CMD_WRITE_DISABLE);
    733  1.1  dante 	AdvWaitEEPCmd(iot, ioh);
    734  1.1  dante 	return;
    735  1.1  dante }
    736  1.1  dante 
    737  1.1  dante /*
    738  1.1  dante  * This function resets the chip and SCSI bus
    739  1.1  dante  *
    740  1.1  dante  * It is up to the caller to add a delay to let the bus settle after
    741  1.1  dante  * calling this function.
    742  1.1  dante  *
    743  1.1  dante  * The SCSI_CFG0, SCSI_CFG1, and MEM_CFG registers are set-up in
    744  1.1  dante  * AdvInitAsc3550Driver(). Here when doing a write to one of these
    745  1.1  dante  * registers read first and then write.
    746  1.1  dante  *
    747  1.1  dante  * Note: A SCSI Bus Reset can not be done until after the EEPROM
    748  1.1  dante  * configuration is read to determine whether SCSI Bus Resets
    749  1.1  dante  * should be performed.
    750  1.1  dante  */
    751  1.1  dante void
    752  1.1  dante AdvResetChip(iot, ioh)
    753  1.2  dante 	bus_space_tag_t iot;
    754  1.2  dante 	bus_space_handle_t ioh;
    755  1.1  dante {
    756  1.2  dante 	u_int16_t       word;
    757  1.2  dante 	u_int8_t        byte;
    758  1.1  dante 
    759  1.1  dante 
    760  1.1  dante 	/*
    761  1.1  dante 	 * Reset Chip.
    762  1.1  dante 	 */
    763  1.2  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
    764  1.2  dante 			ADW_CTRL_REG_CMD_RESET);
    765  1.1  dante 	DvcSleepMilliSecond(100);
    766  1.2  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
    767  1.2  dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
    768  1.1  dante 
    769  1.1  dante 	/*
    770  1.1  dante 	 * Initialize Chip registers.
    771  1.2  dante 	 *
    772  1.1  dante 	 * Note: Don't remove the use of a temporary variable in the following
    773  1.2  dante 	 * code, otherwise the Microsoft C compiler will turn the following
    774  1.2  dante 	 * lines into a no-op.
    775  1.1  dante 	 */
    776  1.1  dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG);
    777  1.1  dante 	byte |= RAM_SZ_8KB;
    778  1.1  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_MEM_CFG, byte);
    779  1.1  dante 
    780  1.1  dante 	word = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    781  1.1  dante 	word &= ~BIG_ENDIAN;
    782  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1, word);
    783  1.1  dante 
    784  1.1  dante 	/*
    785  1.1  dante 	 * Setting the START_CTL_EMFU 3:2 bits sets a FIFO threshold
    786  1.1  dante 	 * of 128 bytes. This register is only accessible to the host.
    787  1.1  dante 	 */
    788  1.1  dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    789  1.2  dante 				START_CTL_EMFU | READ_CMD_MRM);
    790  1.1  dante }
    791  1.1  dante 
    792  1.1  dante /*
    793  1.1  dante  * Description:
    794  1.1  dante  *      Send a SCSI request to the ASC3550 chip
    795  1.1  dante  *
    796  1.1  dante  * If there is no SG list for the request, set 'sg_entry_cnt' to 0.
    797  1.1  dante  *
    798  1.1  dante  * If 'sg_real_addr' is non-zero on entry, AscGetSGList() will not be
    799  1.1  dante  * called. It is assumed the caller has already initialized 'sg_real_addr'.
    800  1.1  dante  *
    801  1.1  dante  * Return:
    802  1.1  dante  *      ADW_SUCCESS(1) - the request is in the mailbox
    803  1.1  dante  *      ADW_BUSY(0) - total request count > 253, try later
    804  1.1  dante  *      ADW_ERROR(-1) - invalid scsi request Q
    805  1.1  dante  */
    806  1.1  dante int
    807  1.1  dante AdvExeScsiQueue(sc, scsiq)
    808  1.2  dante 	ADW_SOFTC      *sc;
    809  1.2  dante 	ADW_SCSI_REQ_Q *scsiq;
    810  1.1  dante {
    811  1.2  dante 	return AdvSendScsiCmd(sc, scsiq);
    812  1.1  dante }
    813  1.1  dante 
    814  1.1  dante /*
    815  1.1  dante  * Reset SCSI Bus and purge all outstanding requests.
    816  1.1  dante  *
    817  1.1  dante  * Return Value:
    818  1.1  dante  *      ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
    819  1.1  dante  *
    820  1.1  dante  * Note: Should always return ADW_TRUE.
    821  1.1  dante  */
    822  1.1  dante int
    823  1.1  dante AdvResetCCB(sc)
    824  1.2  dante 	ADW_SOFTC      *sc;
    825  1.1  dante {
    826  1.2  dante 	int             status;
    827  1.1  dante 
    828  1.1  dante 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET, 0L, 0);
    829  1.1  dante 
    830  1.1  dante 	AdvResetSCSIBus(sc);
    831  1.1  dante 
    832  1.1  dante 	return status;
    833  1.1  dante }
    834  1.1  dante 
    835  1.1  dante /*
    836  1.1  dante  * Reset SCSI Bus and delay.
    837  1.1  dante  */
    838  1.1  dante void
    839  1.1  dante AdvResetSCSIBus(sc)
    840  1.2  dante 	ADW_SOFTC      *sc;
    841  1.1  dante {
    842  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    843  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    844  1.2  dante 	u_int16_t       scsi_ctrl;
    845  1.1  dante 
    846  1.1  dante 
    847  1.1  dante 
    848  1.1  dante 	/*
    849  1.1  dante 	 * The microcode currently sets the SCSI Bus Reset signal while
    850  1.1  dante 	 * handling the AdvSendIdleCmd() IDLE_CMD_SCSI_RESET command above.
    851  1.2  dante 	 * But the SCSI Bus Reset Hold Time in the uCode is not deterministic
    852  1.1  dante 	 * (it may in fact be for less than the SCSI Spec. minimum of 25 us).
    853  1.1  dante 	 * Therefore on return the Adv Library sets the SCSI Bus Reset signal
    854  1.1  dante 	 * for ASC_SCSI_RESET_HOLD_TIME_US, which is defined to be greater
    855  1.1  dante 	 * than 25 us.
    856  1.1  dante 	 */
    857  1.1  dante 	scsi_ctrl = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL);
    858  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
    859  1.2  dante 				scsi_ctrl | ADW_SCSI_CTRL_RSTOUT);
    860  1.2  dante 	DvcDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
    861  1.1  dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL,
    862  1.2  dante 				scsi_ctrl & ~ADW_SCSI_CTRL_RSTOUT);
    863  1.1  dante 
    864  1.1  dante 	DvcSleepMilliSecond((ulong) sc->scsi_reset_wait * 1000);
    865  1.1  dante }
    866  1.1  dante 
    867  1.1  dante 
    868  1.1  dante /*
    869  1.1  dante  * Adv Library Interrupt Service Routine
    870  1.1  dante  *
    871  1.1  dante  *  This function is called by a driver's interrupt service routine.
    872  1.1  dante  *  The function disables and re-enables interrupts.
    873  1.1  dante  *
    874  1.1  dante  *  When a microcode idle command is completed, the ADW_DVC_VAR
    875  1.1  dante  *  'idle_cmd_done' field is set to ADW_TRUE.
    876  1.1  dante  *
    877  1.1  dante  *  Note: AdvISR() can be called when interrupts are disabled or even
    878  1.1  dante  *  when there is no hardware interrupt condition present. It will
    879  1.1  dante  *  always check for completed idle commands and microcode requests.
    880  1.1  dante  *  This is an important feature that shouldn't be changed because it
    881  1.1  dante  *  allows commands to be completed from polling mode loops.
    882  1.1  dante  *
    883  1.1  dante  * Return:
    884  1.1  dante  *   ADW_TRUE(1) - interrupt was pending
    885  1.1  dante  *   ADW_FALSE(0) - no interrupt was pending
    886  1.1  dante  */
    887  1.1  dante int
    888  1.1  dante AdvISR(sc)
    889  1.2  dante 	ADW_SOFTC      *sc;
    890  1.1  dante {
    891  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
    892  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
    893  1.2  dante 	u_int8_t        int_stat;
    894  1.2  dante 	u_int16_t       next_done_loc, target_bit;
    895  1.2  dante 	int             completed_q;
    896  1.2  dante 	ADW_SCSI_REQ_Q *scsiq;
    897  1.2  dante 	ASC_REQ_SENSE  *sense_data;
    898  1.2  dante 	int             ret;
    899  1.1  dante 
    900  1.1  dante 
    901  1.2  dante 	ret = (ADW_IS_INT_PENDING(iot, ioh)) ? ADW_TRUE : ADW_FALSE;
    902  1.1  dante 
    903  1.1  dante 	/* Reading the register clears the interrupt. */
    904  1.1  dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
    905  1.1  dante 
    906  1.2  dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
    907  1.1  dante 		sc->idle_cmd_done = ADW_TRUE;
    908  1.1  dante 	}
    909  1.1  dante 	/*
    910  1.1  dante 	 * Notify the driver of a hardware detected SCSI Bus Reset.
    911  1.1  dante 	 */
    912  1.2  dante 	if (int_stat & ADW_INTR_STATUS_INTRC) {
    913  1.2  dante 		if (sc->sbreset_callback) {
    914  1.2  dante 			(*(ADW_SBRESET_CALLBACK) sc->sbreset_callback) (sc);
    915  1.1  dante 		}
    916  1.1  dante 	}
    917  1.1  dante 	/*
    918  1.1  dante 	 * ASC_MC_HOST_NEXT_DONE (0x129) is actually the last completed RISC
    919  1.1  dante 	 * Queue List request. Its forward pointer (RQL_FWD) points to the
    920  1.1  dante 	 * current completed RISC Queue List request.
    921  1.1  dante 	 */
    922  1.1  dante 	ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE, next_done_loc);
    923  1.1  dante 	next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
    924  1.1  dante 		(next_done_loc * ASC_MC_RISC_Q_LIST_SIZE) + RQL_FWD;
    925  1.1  dante 
    926  1.1  dante 	ADW_READ_BYTE_LRAM(iot, ioh, next_done_loc, completed_q);
    927  1.1  dante 
    928  1.1  dante 	/* Loop until all completed Q's are processed. */
    929  1.2  dante 	while (completed_q != ASC_MC_NULL_Q) {
    930  1.1  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_DONE,
    931  1.2  dante 				    completed_q);
    932  1.1  dante 
    933  1.1  dante 		next_done_loc = ASC_MC_RISC_Q_LIST_BASE +
    934  1.2  dante 			(completed_q * ASC_MC_RISC_Q_LIST_SIZE);
    935  1.1  dante 
    936  1.1  dante 		/*
    937  1.1  dante 		 * Read the ADW_SCSI_REQ_Q virtual address pointer from
    938  1.1  dante 		 * the RISC list entry. The microcode has changed the
    939  1.1  dante 		 * ADW_SCSI_REQ_Q physical address to its virtual address.
    940  1.1  dante 		 *
    941  1.1  dante 		 * Refer to comments at the end of AdvSendScsiCmd() for
    942  1.1  dante 		 * more information on the RISC list structure.
    943  1.1  dante 		 */
    944  1.1  dante 		{
    945  1.2  dante 			ushort          lsw, msw;
    946  1.1  dante 			ADW_READ_WORD_LRAM(iot, ioh,
    947  1.2  dante 					   next_done_loc + RQL_PHYADDR, lsw);
    948  1.1  dante 			ADW_READ_WORD_LRAM(iot, ioh,
    949  1.2  dante 				      next_done_loc + RQL_PHYADDR + 2, msw);
    950  1.1  dante 
    951  1.1  dante 			scsiq = (ADW_SCSI_REQ_Q *)
    952  1.2  dante 				(((u_int32_t) msw << 16) | lsw);
    953  1.1  dante 		}
    954  1.1  dante 
    955  1.1  dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
    956  1.1  dante 
    957  1.1  dante 		/*
    958  1.1  dante 		 * Clear request microcode control flag.
    959  1.1  dante 		 */
    960  1.1  dante 		scsiq->cntl = 0;
    961  1.1  dante 
    962  1.1  dante 		/*
    963  1.1  dante 		 * Check Condition handling
    964  1.1  dante 		 */
    965  1.1  dante 		if ((scsiq->done_status == QD_WITH_ERROR) &&
    966  1.2  dante 		    (scsiq->scsi_status == SS_CHK_CONDITION) &&
    967  1.2  dante 		 (sense_data = (ASC_REQ_SENSE *) scsiq->vsense_addr) != 0 &&
    968  1.2  dante 		    (scsiq->orig_sense_len - scsiq->sense_len) >=
    969  1.2  dante 			ASC_MIN_SENSE_LEN) {
    970  1.1  dante 			/*
    971  1.1  dante 			 * Command returned with a check condition and valid
    972  1.1  dante 			 * sense data.
    973  1.1  dante 			 */
    974  1.1  dante 		}
    975  1.1  dante 		/*
    976  1.1  dante 		 * If the command that completed was a SCSI INQUIRY and
    977  1.1  dante 		 * LUN 0 was sent the command, then process the INQUIRY
    978  1.1  dante 		 * command information for the device.
    979  1.1  dante 		 */
    980  1.1  dante 		else if (scsiq->done_status == QD_NO_ERROR &&
    981  1.2  dante 			 scsiq->cdb[0] == INQUIRY &&
    982  1.2  dante 			 scsiq->target_lun == 0) {
    983  1.1  dante 			AdvInquiryHandling(sc, scsiq);
    984  1.1  dante 		}
    985  1.1  dante 		/* Change the RISC Queue List state to free. */
    986  1.1  dante 		ADW_WRITE_BYTE_LRAM(iot, ioh,
    987  1.2  dante 				 next_done_loc + RQL_STATE, ASC_MC_QS_FREE);
    988  1.1  dante 
    989  1.1  dante 		/* Get the RISC Queue List forward pointer. */
    990  1.1  dante 		ADW_READ_BYTE_LRAM(iot, ioh,
    991  1.2  dante 				   next_done_loc + RQL_FWD, completed_q);
    992  1.1  dante 
    993  1.1  dante 		/*
    994  1.1  dante 		 * Notify the driver of the completed request by passing
    995  1.1  dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
    996  1.1  dante 		 */
    997  1.1  dante 		sc->cur_host_qng--;
    998  1.1  dante 		scsiq->a_flag |= ADW_SCSIQ_DONE;
    999  1.2  dante 		(*(ADW_ISR_CALLBACK) sc->isr_callback) (sc, scsiq);
   1000  1.1  dante 		/*
   1001  1.1  dante 		 * Note: After the driver callback function is called, 'scsiq'
   1002  1.1  dante 		 * can no longer be referenced.
   1003  1.1  dante 		 *
   1004  1.1  dante 		 * Fall through and continue processing other completed
   1005  1.1  dante 		 * requests...
   1006  1.1  dante 		 */
   1007  1.1  dante 	}
   1008  1.1  dante 	return ret;
   1009  1.1  dante }
   1010  1.1  dante 
   1011  1.1  dante /*
   1012  1.1  dante  * Send an idle command to the chip and wait for completion.
   1013  1.1  dante  *
   1014  1.1  dante  * Interrupts do not have to be enabled on entry.
   1015  1.1  dante  *
   1016  1.1  dante  * Return Values:
   1017  1.1  dante  *   ADW_TRUE - command completed successfully
   1018  1.1  dante  *   ADW_FALSE - command failed
   1019  1.1  dante  */
   1020  1.1  dante int
   1021  1.1  dante AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter, flags)
   1022  1.2  dante 	ADW_SOFTC      *sc;
   1023  1.2  dante 	u_int16_t       idle_cmd;
   1024  1.2  dante 	u_int32_t       idle_cmd_parameter;
   1025  1.2  dante 	int             flags;
   1026  1.1  dante {
   1027  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   1028  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1029  1.2  dante 	u_int32_t       i;
   1030  1.2  dante 	int             ret;
   1031  1.1  dante 
   1032  1.1  dante 	sc->idle_cmd_done = 0;
   1033  1.1  dante 
   1034  1.1  dante 	/*
   1035  1.1  dante 	 * Write the idle command value after the idle command parameter
   1036  1.1  dante 	 * has been written to avoid a race condition. If the order is not
   1037  1.1  dante 	 * followed, the microcode may process the idle command before the
   1038  1.1  dante 	 * parameters have been written to LRAM.
   1039  1.1  dante 	 */
   1040  1.1  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT,
   1041  1.2  dante 			     idle_cmd_parameter);
   1042  1.1  dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
   1043  1.1  dante 
   1044  1.1  dante 	/*
   1045  1.1  dante 	 * If the 'flags' argument contains the ADW_NOWAIT flag, then
   1046  1.1  dante 	 * return with success.
   1047  1.1  dante 	 */
   1048  1.1  dante 	if (flags & ADW_NOWAIT)
   1049  1.1  dante 		return ADW_TRUE;
   1050  1.1  dante 
   1051  1.2  dante 	for (i = 0; i < SCSI_WAIT_10_SEC * SCSI_MS_PER_SEC; i++) {
   1052  1.1  dante 		/*
   1053  1.1  dante 		 * 'idle_cmd_done' is set by AdvISR().
   1054  1.1  dante 		 */
   1055  1.1  dante 		if (sc->idle_cmd_done)
   1056  1.1  dante 			break;
   1057  1.1  dante 
   1058  1.1  dante 		DvcSleepMilliSecond(1);
   1059  1.1  dante 
   1060  1.1  dante 		/*
   1061  1.1  dante 		 * If interrupts were disabled on entry to AdvSendIdleCmd(),
   1062  1.1  dante 		 * then they will still be disabled here. Call AdvISR() to
   1063  1.1  dante 		 * check for the idle command completion.
   1064  1.1  dante 		 */
   1065  1.1  dante 		(void) AdvISR(sc);
   1066  1.1  dante 	}
   1067  1.1  dante 
   1068  1.2  dante 	if (sc->idle_cmd_done == ADW_FALSE) {
   1069  1.1  dante 		return ADW_FALSE;
   1070  1.2  dante 	} else {
   1071  1.1  dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_PARA_STAT, ret);
   1072  1.1  dante 		return ret;
   1073  1.1  dante 	}
   1074  1.1  dante }
   1075  1.1  dante 
   1076  1.1  dante /*
   1077  1.1  dante  * Send the SCSI request block to the adapter
   1078  1.1  dante  *
   1079  1.1  dante  * Each of the 255 Adv Library/Microcode RISC Lists or mailboxes has the
   1080  1.1  dante  * following structure:
   1081  1.1  dante  *
   1082  1.1  dante  * 0: RQL_FWD - RISC list forward pointer (1 byte)
   1083  1.1  dante  * 1: RQL_BWD - RISC list backward pointer (1 byte)
   1084  1.1  dante  * 2: RQL_STATE - RISC list state byte - free, ready, done, aborted (1 byte)
   1085  1.1  dante  * 3: RQL_TID - request target id (1 byte)
   1086  1.1  dante  * 4: RQL_PHYADDR - ADW_SCSI_REQ_Q physical pointer (4 bytes)
   1087  1.1  dante  *
   1088  1.1  dante  * Return:
   1089  1.1  dante  *      ADW_SUCCESS(1) - the request is in the mailbox
   1090  1.1  dante  *      ADW_BUSY(0) - total request count > 253, try later
   1091  1.1  dante  */
   1092  1.1  dante static int
   1093  1.1  dante AdvSendScsiCmd(sc, scsiq)
   1094  1.2  dante 	ADW_SOFTC      *sc;
   1095  1.2  dante 	ADW_SCSI_REQ_Q *scsiq;
   1096  1.1  dante {
   1097  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   1098  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1099  1.2  dante 	ADW_CCB        *ccb = (ADW_CCB *) scsiq->ccb_ptr;
   1100  1.2  dante 	u_int16_t       next_ready_loc;
   1101  1.2  dante 	u_int8_t        next_ready_loc_fwd;
   1102  1.2  dante 	long            req_size;
   1103  1.2  dante 	u_int32_t       q_phy_addr;
   1104  1.1  dante 
   1105  1.1  dante 
   1106  1.2  dante 	if (sc->cur_host_qng >= sc->max_host_qng) {
   1107  1.1  dante 		return ADW_BUSY;
   1108  1.2  dante 	} else {
   1109  1.1  dante 		sc->cur_host_qng++;
   1110  1.1  dante 	}
   1111  1.1  dante 
   1112  1.1  dante 	/*
   1113  1.1  dante 	 * Clear the ADW_SCSI_REQ_Q done flag.
   1114  1.1  dante 	 */
   1115  1.1  dante 	scsiq->a_flag &= ~ADW_SCSIQ_DONE;
   1116  1.1  dante 
   1117  1.1  dante 	/*
   1118  1.1  dante 	 * Save the original sense buffer length.
   1119  1.1  dante 	 *
   1120  1.1  dante 	 * After the request completes 'sense_len' will be set to the residual
   1121  1.1  dante 	 * byte count of the Auto-Request Sense if a command returns CHECK
   1122  1.1  dante 	 * CONDITION and the Sense Data is valid indicated by 'host_status' not
   1123  1.1  dante 	 * being set to QHSTA_M_AUTO_REQ_SENSE_FAIL. To determine the valid
   1124  1.1  dante 	 * Sense Data Length subtract 'sense_len' from 'orig_sense_len'.
   1125  1.1  dante 	 */
   1126  1.1  dante 	scsiq->orig_sense_len = scsiq->sense_len;
   1127  1.1  dante 
   1128  1.1  dante 	ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY, next_ready_loc);
   1129  1.1  dante 	next_ready_loc = ASC_MC_RISC_Q_LIST_BASE +
   1130  1.1  dante 		(next_ready_loc * ASC_MC_RISC_Q_LIST_SIZE);
   1131  1.1  dante 
   1132  1.1  dante 	/*
   1133  1.1  dante 	 * Write the physical address of the Q to the mailbox.
   1134  1.1  dante 	 * We need to skip the first four bytes, because the microcode
   1135  1.1  dante 	 * uses them internally for linking Q's together.
   1136  1.1  dante 	 */
   1137  1.1  dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1138  1.1  dante 	q_phy_addr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1139  1.1  dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1140  1.1  dante 
   1141  1.1  dante 	scsiq->scsiq_ptr = scsiq;
   1142  1.1  dante 
   1143  1.1  dante 	/*
   1144  1.1  dante 	 * The RISC list structure, which 'next_ready_loc' is a pointer
   1145  1.1  dante 	 * to in microcode LRAM, has the format detailed in the comment
   1146  1.1  dante 	 * header for this function.
   1147  1.1  dante 	 *
   1148  1.2  dante 	 * Write the ADW_SCSI_REQ_Q physical pointer to
   1149  1.2  dante 	 * 'next_ready_loc' request.
   1150  1.1  dante 	 */
   1151  1.2  dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, next_ready_loc + RQL_PHYADDR,
   1152  1.2  dante 			q_phy_addr);
   1153  1.1  dante 
   1154  1.1  dante 	/* Write target_id to 'next_ready_loc' request. */
   1155  1.2  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_TID,
   1156  1.2  dante 			scsiq->target_id);
   1157  1.1  dante 
   1158  1.1  dante 	/*
   1159  1.1  dante 	 * Set the ASC_MC_HOST_NEXT_READY (0x128) microcode variable to
   1160  1.1  dante 	 * the 'next_ready_loc' request forward pointer.
   1161  1.1  dante 	 *
   1162  1.1  dante 	 * Do this *before* changing the 'next_ready_loc' queue to QS_READY.
   1163  1.1  dante 	 * After the state is changed to QS_READY 'RQL_FWD' will be changed
   1164  1.1  dante 	 * by the microcode.
   1165  1.1  dante 	 *
   1166  1.1  dante 	 * NOTE: The temporary variable 'next_ready_loc_fwd' is required to
   1167  1.1  dante 	 * prevent some compilers from optimizing out 'AdvReadByteLram()' if
   1168  1.1  dante 	 * it were used as the 3rd argument to 'AdvWriteByteLram()'.
   1169  1.1  dante 	 */
   1170  1.1  dante 	ADW_READ_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_FWD,
   1171  1.2  dante 			   next_ready_loc_fwd);
   1172  1.1  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_HOST_NEXT_READY,
   1173  1.2  dante 			    next_ready_loc_fwd);
   1174  1.1  dante 
   1175  1.1  dante 	/*
   1176  1.1  dante 	 * Change the state of 'next_ready_loc' request from QS_FREE to
   1177  1.1  dante 	 * QS_READY which will cause the microcode to pick it up and
   1178  1.1  dante 	 * execute it.
   1179  1.1  dante 	 *
   1180  1.1  dante 	 * Can't reference 'next_ready_loc' after changing the request
   1181  1.1  dante 	 * state to QS_READY. The microcode now owns the request.
   1182  1.1  dante 	 */
   1183  1.1  dante 	ADW_WRITE_BYTE_LRAM(iot, ioh, next_ready_loc + RQL_STATE,
   1184  1.2  dante 			    ASC_MC_QS_READY);
   1185  1.1  dante 
   1186  1.1  dante 	return ADW_SUCCESS;
   1187  1.1  dante }
   1188  1.1  dante 
   1189  1.1  dante /*
   1190  1.1  dante  * Inquiry Information Byte 7 Handling
   1191  1.1  dante  *
   1192  1.1  dante  * Handle SCSI Inquiry Command information for a device by setting
   1193  1.2  dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   1194  1.1  dante  * Queuing.
   1195  1.1  dante  */
   1196  1.1  dante static void
   1197  1.1  dante AdvInquiryHandling(sc, scsiq)
   1198  1.2  dante 	ADW_SOFTC      *sc;
   1199  1.2  dante 	ADW_SCSI_REQ_Q *scsiq;
   1200  1.1  dante {
   1201  1.2  dante 	bus_space_tag_t iot = sc->sc_iot;
   1202  1.2  dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1203  1.2  dante 	ASC_SCSI_INQUIRY *inq;
   1204  1.2  dante 	u_int16_t       cfg_word;
   1205  1.2  dante 	u_int16_t       tidmask;
   1206  1.2  dante 	u_int8_t        tid;
   1207  1.1  dante 
   1208  1.1  dante 	/*
   1209  1.1  dante 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
   1210  1.1  dante 	 * to be available.
   1211  1.1  dante 	 *
   1212  1.1  dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   1213  1.1  dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   1214  1.1  dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   1215  1.1  dante 	 * microcode to the transfer residual count.
   1216  1.1  dante 	 */
   1217  1.2  dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   1218  1.1  dante 		return;
   1219  1.1  dante 	}
   1220  1.1  dante 	tid = scsiq->target_id;
   1221  1.1  dante 	inq = (ASC_SCSI_INQUIRY *) scsiq->vdata_addr;
   1222  1.1  dante 
   1223  1.1  dante 	/*
   1224  1.1  dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   1225  1.1  dante 	 */
   1226  1.2  dante 	if (inq->byte3.rsp_data_fmt < 2 && inq->byte2.ansi_apr_ver < 2) {
   1227  1.1  dante 		return;
   1228  1.2  dante 	} else {
   1229  1.1  dante 		/*
   1230  1.1  dante 		 * INQUIRY Byte 7 Handling
   1231  1.1  dante 		 *
   1232  1.1  dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   1233  1.1  dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   1234  1.1  dante 		 * is enabled in the EEPROM and the device supports the
   1235  1.1  dante 		 * feature, then enable it in the microcode.
   1236  1.1  dante 		 */
   1237  1.1  dante 
   1238  1.1  dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   1239  1.1  dante 		/*
   1240  1.1  dante 		 * Wide Transfers
   1241  1.1  dante 		 *
   1242  1.1  dante 		 * If the EEPROM enabled WDTR for the device and the device
   1243  1.1  dante 		 * supports wide bus (16 bit) transfers, then turn on the
   1244  1.1  dante 		 * device's 'wdtr_able' bit and write the new value to the
   1245  1.1  dante 		 * microcode.
   1246  1.1  dante 		 */
   1247  1.2  dante 		if ((sc->wdtr_able & tidmask) && inq->byte7.WBus16) {
   1248  1.1  dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1249  1.2  dante 					   cfg_word);
   1250  1.2  dante 			if ((cfg_word & tidmask) == 0) {
   1251  1.1  dante 				cfg_word |= tidmask;
   1252  1.1  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1253  1.2  dante 						    cfg_word);
   1254  1.1  dante 
   1255  1.1  dante 				/*
   1256  1.2  dante 				 * Clear the microcode "WDTR negotiation" done
   1257  1.2  dante 				 * indicator for the target to cause it
   1258  1.2  dante 				 * to negotiate with the new setting set above.
   1259  1.1  dante 				 */
   1260  1.1  dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   1261  1.2  dante 						   cfg_word);
   1262  1.1  dante 				cfg_word &= ~tidmask;
   1263  1.1  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   1264  1.2  dante 						    cfg_word);
   1265  1.1  dante 			}
   1266  1.1  dante 		}
   1267  1.1  dante 		/*
   1268  1.1  dante 		 * Synchronous Transfers
   1269  1.1  dante 		 *
   1270  1.1  dante 		 * If the EEPROM enabled SDTR for the device and the device
   1271  1.1  dante 		 * supports synchronous transfers, then turn on the device's
   1272  1.1  dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   1273  1.1  dante 		 */
   1274  1.2  dante 		if ((sc->sdtr_able & tidmask) && inq->byte7.Sync) {
   1275  1.1  dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1276  1.2  dante 					   cfg_word);
   1277  1.2  dante 			if ((cfg_word & tidmask) == 0) {
   1278  1.1  dante 				cfg_word |= tidmask;
   1279  1.1  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1280  1.2  dante 						    cfg_word);
   1281  1.1  dante 
   1282  1.1  dante 				/*
   1283  1.2  dante 				 * Clear the microcode "SDTR negotiation" done
   1284  1.2  dante 				 * indicator for the target to cause it
   1285  1.2  dante 				 * to negotiate with the new setting set above.
   1286  1.1  dante 				 */
   1287  1.1  dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   1288  1.2  dante 						   cfg_word);
   1289  1.1  dante 				cfg_word &= ~tidmask;
   1290  1.1  dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   1291  1.2  dante 						    cfg_word);
   1292  1.1  dante 			}
   1293  1.1  dante 		}
   1294  1.1  dante 		/*
   1295  1.1  dante 		 * If the EEPROM enabled Tag Queuing for device and the
   1296  1.1  dante 		 * device supports Tag Queuing, then turn on the device's
   1297  1.1  dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   1298  1.1  dante 		 * maximum command count to the ADW_DVC_VAR 'max_dvc_qng'
   1299  1.1  dante 		 * value.
   1300  1.1  dante 		 *
   1301  1.1  dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   1302  1.1  dante 		 * mode and would see no benefit from Tag Queuing. Also by
   1303  1.1  dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   1304  1.1  dante 		 * bugs will at least work with the BIOS.
   1305  1.1  dante 		 */
   1306  1.2  dante 		if ((sc->tagqng_able & tidmask) && inq->byte7.CmdQue) {
   1307  1.1  dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1308  1.2  dante 					   cfg_word);
   1309  1.1  dante 			cfg_word |= tidmask;
   1310  1.1  dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1311  1.2  dante 					    cfg_word);
   1312  1.1  dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   1313  1.2  dante 					    ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1314  1.2  dante 					    sc->max_dvc_qng);
   1315  1.1  dante 		}
   1316  1.1  dante 	}
   1317  1.1  dante }
   1318  1.1  dante 
   1319  1.1  dante static void
   1320  1.1  dante DvcSleepMilliSecond(n)
   1321  1.2  dante 	ulong           n;
   1322  1.1  dante {
   1323  1.1  dante 
   1324  1.1  dante 	DELAY(n * 1000);
   1325  1.1  dante }
   1326  1.1  dante 
   1327  1.1  dante static void
   1328  1.1  dante DvcDelayMicroSecond(n)
   1329  1.2  dante 	ulong           n;
   1330  1.1  dante {
   1331  1.1  dante 
   1332  1.1  dante 	DELAY(n);
   1333  1.1  dante }
   1334