adwlib.c revision 1.20 1 1.20 itojun /* $NetBSD: adwlib.c,v 1.20 2000/07/04 04:17:03 itojun Exp $ */
2 1.1 dante
3 1.1 dante /*
4 1.1 dante * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 1.1 dante *
6 1.7 dante * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 1.1 dante * All rights reserved.
8 1.1 dante *
9 1.1 dante * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 1.1 dante *
11 1.1 dante * Redistribution and use in source and binary forms, with or without
12 1.1 dante * modification, are permitted provided that the following conditions
13 1.1 dante * are met:
14 1.1 dante * 1. Redistributions of source code must retain the above copyright
15 1.1 dante * notice, this list of conditions and the following disclaimer.
16 1.1 dante * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 dante * notice, this list of conditions and the following disclaimer in the
18 1.1 dante * documentation and/or other materials provided with the distribution.
19 1.1 dante * 3. All advertising materials mentioning features or use of this software
20 1.1 dante * must display the following acknowledgement:
21 1.1 dante * This product includes software developed by the NetBSD
22 1.1 dante * Foundation, Inc. and its contributors.
23 1.1 dante * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 dante * contributors may be used to endorse or promote products derived
25 1.1 dante * from this software without specific prior written permission.
26 1.1 dante *
27 1.1 dante * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 dante * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 dante * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 dante * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 dante * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 dante * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 dante * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 dante * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 dante * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 dante * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 dante * POSSIBILITY OF SUCH DAMAGE.
38 1.1 dante */
39 1.1 dante /*
40 1.1 dante * Ported from:
41 1.1 dante */
42 1.1 dante /*
43 1.1 dante * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 1.7 dante *
45 1.10 dante * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 1.1 dante * All Rights Reserved.
47 1.1 dante *
48 1.1 dante * Redistribution and use in source and binary forms, with or without
49 1.1 dante * modification, are permitted provided that redistributions of source
50 1.1 dante * code retain the above copyright notice and this comment without
51 1.1 dante * modification.
52 1.1 dante */
53 1.1 dante
54 1.1 dante #include <sys/types.h>
55 1.1 dante #include <sys/param.h>
56 1.1 dante #include <sys/systm.h>
57 1.1 dante #include <sys/malloc.h>
58 1.1 dante #include <sys/kernel.h>
59 1.1 dante #include <sys/queue.h>
60 1.1 dante #include <sys/device.h>
61 1.1 dante
62 1.1 dante #include <machine/bus.h>
63 1.1 dante #include <machine/intr.h>
64 1.1 dante
65 1.1 dante #include <dev/scsipi/scsi_all.h>
66 1.1 dante #include <dev/scsipi/scsipi_all.h>
67 1.1 dante #include <dev/scsipi/scsiconf.h>
68 1.1 dante
69 1.7 dante #include <dev/pci/pcidevs.h>
70 1.7 dante
71 1.19 mrg #include <uvm/uvm_extern.h>
72 1.1 dante
73 1.1 dante #include <dev/ic/adwlib.h>
74 1.16 dante #include <dev/ic/adwmcode.h>
75 1.1 dante #include <dev/ic/adw.h>
76 1.1 dante
77 1.1 dante
78 1.1 dante /* Static Functions */
79 1.1 dante
80 1.17 dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
81 1.17 dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
82 1.17 dante u_int8_t));
83 1.17 dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
84 1.17 dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
85 1.17 dante ADW_DVC_CFG *));
86 1.17 dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 1.17 dante ADW_DVC_CFG *));
88 1.17 dante
89 1.17 dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
90 1.17 dante ADW_EEPROM *));
91 1.17 dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 1.17 dante ADW_EEPROM *));
93 1.16 dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
94 1.16 dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
95 1.17 dante
96 1.16 dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
97 1.1 dante
98 1.16 dante static void AdwSleepMilliSecond __P((u_int32_t));
99 1.16 dante static void AdwDelayMicroSecond __P((u_int32_t));
100 1.1 dante
101 1.1 dante
102 1.1 dante /*
103 1.1 dante * EEPROM Configuration.
104 1.1 dante *
105 1.1 dante * All drivers should use this structure to set the default EEPROM
106 1.1 dante * configuration. The BIOS now uses this structure when it is built.
107 1.16 dante * Additional structure information can be found in adwlib.h where
108 1.1 dante * the structure is defined.
109 1.1 dante */
110 1.17 dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
111 1.17 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
112 1.17 dante 0x0000, /* 01 cfg_msw */
113 1.17 dante 0xFFFF, /* 02 disc_enable */
114 1.17 dante 0xFFFF, /* 03 wdtr_able */
115 1.17 dante { 0xFFFF }, /* 04 sdtr_able */
116 1.17 dante 0xFFFF, /* 05 start_motor */
117 1.17 dante 0xFFFF, /* 06 tagqng_able */
118 1.17 dante 0xFFFF, /* 07 bios_scan */
119 1.17 dante 0, /* 08 scam_tolerant */
120 1.17 dante 7, /* 09 adapter_scsi_id */
121 1.17 dante 0, /* bios_boot_delay */
122 1.17 dante 3, /* 10 scsi_reset_delay */
123 1.17 dante 0, /* bios_id_lun */
124 1.17 dante 0, /* 11 termination */
125 1.17 dante 0, /* reserved1 */
126 1.17 dante 0xFFE7, /* 12 bios_ctrl */
127 1.17 dante { 0xFFFF }, /* 13 ultra_able */
128 1.17 dante { 0 }, /* 14 reserved2 */
129 1.17 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
130 1.17 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
131 1.17 dante 0, /* 16 dvc_cntl */
132 1.17 dante { 0 }, /* 17 bug_fix */
133 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
134 1.17 dante 0, /* 21 check_sum */
135 1.17 dante { /* 22-29 oem_name[16] */
136 1.17 dante 0,0,0,0,0,0,0,0,
137 1.17 dante 0,0,0,0,0,0,0,0
138 1.17 dante },
139 1.17 dante 0, /* 30 dvc_err_code */
140 1.17 dante 0, /* 31 adv_err_code */
141 1.17 dante 0, /* 32 adv_err_addr */
142 1.17 dante 0, /* 33 saved_dvc_err_code */
143 1.17 dante 0, /* 34 saved_adv_err_code */
144 1.17 dante 0 /* 35 saved_adv_err_addr */
145 1.7 dante };
146 1.7 dante
147 1.17 dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
148 1.7 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
149 1.7 dante 0x0000, /* 01 cfg_msw */
150 1.7 dante 0xFFFF, /* 02 disc_enable */
151 1.7 dante 0xFFFF, /* 03 wdtr_able */
152 1.17 dante { 0x4444 }, /* 04 sdtr_speed1 */
153 1.7 dante 0xFFFF, /* 05 start_motor */
154 1.7 dante 0xFFFF, /* 06 tagqng_able */
155 1.7 dante 0xFFFF, /* 07 bios_scan */
156 1.7 dante 0, /* 08 scam_tolerant */
157 1.7 dante 7, /* 09 adapter_scsi_id */
158 1.7 dante 0, /* bios_boot_delay */
159 1.7 dante 3, /* 10 scsi_reset_delay */
160 1.7 dante 0, /* bios_id_lun */
161 1.7 dante 0, /* 11 termination_se */
162 1.7 dante 0, /* termination_lvd */
163 1.7 dante 0xFFE7, /* 12 bios_ctrl */
164 1.17 dante { 0x4444 }, /* 13 sdtr_speed2 */
165 1.17 dante { 0x4444 }, /* 14 sdtr_speed3 */
166 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
167 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
168 1.7 dante 0, /* 16 dvc_cntl */
169 1.17 dante { 0x4444 }, /* 17 sdtr_speed4 */
170 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
171 1.7 dante 0, /* 21 check_sum */
172 1.17 dante { /* 22-29 oem_name[16] */
173 1.17 dante 0,0,0,0,0,0,0,0,
174 1.17 dante 0,0,0,0,0,0,0,0
175 1.17 dante },
176 1.7 dante 0, /* 30 dvc_err_code */
177 1.7 dante 0, /* 31 adv_err_code */
178 1.7 dante 0, /* 32 adv_err_addr */
179 1.7 dante 0, /* 33 saved_dvc_err_code */
180 1.7 dante 0, /* 34 saved_adv_err_code */
181 1.7 dante 0, /* 35 saved_adv_err_addr */
182 1.17 dante { /* 36-55 reserved1[16] */
183 1.17 dante 0,0,0,0,0,0,0,0,0,0,
184 1.17 dante 0,0,0,0,0,0,0,0,0,0
185 1.17 dante },
186 1.7 dante 0, /* 56 cisptr_lsw */
187 1.7 dante 0, /* 57 cisprt_msw */
188 1.7 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
189 1.7 dante PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
190 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
191 1.1 dante };
192 1.1 dante
193 1.17 dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
194 1.10 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
195 1.10 dante 0x0000, /* 01 cfg_msw */
196 1.10 dante 0xFFFF, /* 02 disc_enable */
197 1.10 dante 0xFFFF, /* 03 wdtr_able */
198 1.17 dante { 0x5555 }, /* 04 sdtr_speed1 */
199 1.10 dante 0xFFFF, /* 05 start_motor */
200 1.10 dante 0xFFFF, /* 06 tagqng_able */
201 1.10 dante 0xFFFF, /* 07 bios_scan */
202 1.10 dante 0, /* 08 scam_tolerant */
203 1.10 dante 7, /* 09 adapter_scsi_id */
204 1.10 dante 0, /* bios_boot_delay */
205 1.10 dante 3, /* 10 scsi_reset_delay */
206 1.10 dante 0, /* bios_id_lun */
207 1.10 dante 0, /* 11 termination_se */
208 1.10 dante 0, /* termination_lvd */
209 1.10 dante 0xFFE7, /* 12 bios_ctrl */
210 1.17 dante { 0x5555 }, /* 13 sdtr_speed2 */
211 1.17 dante { 0x5555 }, /* 14 sdtr_speed3 */
212 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
213 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
214 1.10 dante 0, /* 16 dvc_cntl */
215 1.17 dante { 0x5555 }, /* 17 sdtr_speed4 */
216 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
217 1.10 dante 0, /* 21 check_sum */
218 1.17 dante { /* 22-29 oem_name[16] */
219 1.17 dante 0,0,0,0,0,0,0,0,
220 1.17 dante 0,0,0,0,0,0,0,0
221 1.17 dante },
222 1.10 dante 0, /* 30 dvc_err_code */
223 1.10 dante 0, /* 31 adv_err_code */
224 1.10 dante 0, /* 32 adv_err_addr */
225 1.10 dante 0, /* 33 saved_dvc_err_code */
226 1.10 dante 0, /* 34 saved_adv_err_code */
227 1.10 dante 0, /* 35 saved_adv_err_addr */
228 1.17 dante { /* 36-55 reserved1[16] */
229 1.17 dante 0,0,0,0,0,0,0,0,0,0,
230 1.17 dante 0,0,0,0,0,0,0,0,0,0
231 1.17 dante },
232 1.10 dante 0, /* 56 cisptr_lsw */
233 1.10 dante 0, /* 57 cisprt_msw */
234 1.10 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
235 1.10 dante PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
236 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
237 1.10 dante };
238 1.10 dante
239 1.17 dante
240 1.1 dante /*
241 1.17 dante * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
242 1.17 dante * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
243 1.17 dante * all of this is done.
244 1.1 dante *
245 1.1 dante * For a non-fatal error return a warning code. If there are no warnings
246 1.1 dante * then 0 is returned.
247 1.17 dante *
248 1.17 dante * Note: Chip is stopped on entry.
249 1.17 dante */
250 1.17 dante int
251 1.17 dante AdwInitFromEEPROM(sc)
252 1.17 dante ADW_SOFTC *sc;
253 1.17 dante {
254 1.17 dante bus_space_tag_t iot = sc->sc_iot;
255 1.17 dante bus_space_handle_t ioh = sc->sc_ioh;
256 1.17 dante ADW_EEPROM eep_config;
257 1.17 dante u_int16_t warn_code;
258 1.17 dante u_int16_t sdtr_speed = 0;
259 1.17 dante u_int8_t tid, termination;
260 1.17 dante int i, j;
261 1.17 dante
262 1.17 dante
263 1.17 dante warn_code = 0;
264 1.17 dante
265 1.17 dante /*
266 1.17 dante * Read the board's EEPROM configuration.
267 1.17 dante *
268 1.17 dante * Set default values if a bad checksum is found.
269 1.17 dante *
270 1.17 dante * XXX - Don't handle big-endian access to EEPROM yet.
271 1.17 dante */
272 1.17 dante if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
273 1.17 dante warn_code |= ADW_WARN_EEPROM_CHKSUM;
274 1.17 dante
275 1.17 dante /*
276 1.17 dante * Set EEPROM default values.
277 1.17 dante */
278 1.17 dante switch(sc->chip_type) {
279 1.17 dante case ADW_CHIP_ASC3550:
280 1.17 dante eep_config = adw_3550_Default_EEPROM;
281 1.17 dante break;
282 1.17 dante case ADW_CHIP_ASC38C0800:
283 1.17 dante eep_config = adw_38C0800_Default_EEPROM;
284 1.17 dante break;
285 1.17 dante case ADW_CHIP_ASC38C1600:
286 1.17 dante eep_config = adw_38C1600_Default_EEPROM;
287 1.17 dante
288 1.17 dante // XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
289 1.17 dante if (sc->cfg.pci_slot_info != 0) {
290 1.17 dante u_int8_t lsw_msb;
291 1.17 dante
292 1.17 dante lsw_msb = eep_config.cfg_lsw >> 8;
293 1.17 dante /*
294 1.17 dante * Set Function 1 EEPROM Word 0 MSB
295 1.17 dante *
296 1.17 dante * Clear the BIOS_ENABLE (bit 14) and
297 1.17 dante * INTAB (bit 11) EEPROM bits.
298 1.17 dante *
299 1.17 dante * Disable Bit 14 (BIOS_ENABLE) to fix
300 1.17 dante * SPARC Ultra 60 and old Mac system booting
301 1.17 dante * problem. The Expansion ROM must
302 1.17 dante * be disabled in Function 1 for these systems.
303 1.17 dante */
304 1.17 dante lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
305 1.17 dante ADW_EEPROM_INTAB) >> 8) & 0xFF);
306 1.17 dante /*
307 1.17 dante * Set the INTAB (bit 11) if the GPIO 0 input
308 1.17 dante * indicates the Function 1 interrupt line is
309 1.17 dante * wired to INTA.
310 1.17 dante *
311 1.17 dante * Set/Clear Bit 11 (INTAB) from
312 1.17 dante * the GPIO bit 0 input:
313 1.17 dante * 1 - Function 1 intr line wired to INT A.
314 1.17 dante * 0 - Function 1 intr line wired to INT B.
315 1.17 dante *
316 1.17 dante * Note: Adapter boards always have Function 0
317 1.17 dante * wired to INTA.
318 1.17 dante * Put all 5 GPIO bits in input mode and then
319 1.17 dante * read their input values.
320 1.17 dante */
321 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
322 1.17 dante IOPB_GPIO_CNTL, 0);
323 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh,
324 1.17 dante IOPB_GPIO_DATA) & 0x01) {
325 1.17 dante /*
326 1.17 dante * Function 1 interrupt wired to INTA;
327 1.17 dante * Set EEPROM bit.
328 1.17 dante */
329 1.17 dante lsw_msb |= (ADW_EEPROM_INTAB >> 8)
330 1.17 dante & 0xFF;
331 1.17 dante }
332 1.17 dante eep_config.cfg_lsw &= 0x00FF;
333 1.17 dante eep_config.cfg_lsw |= lsw_msb << 8;
334 1.17 dante }
335 1.17 dante break;
336 1.17 dante }
337 1.17 dante
338 1.17 dante /*
339 1.17 dante * Assume the 6 byte board serial number that was read
340 1.17 dante * from EEPROM is correct even if the EEPROM checksum
341 1.17 dante * failed.
342 1.17 dante */
343 1.17 dante for (i=2, j=1; i>=0; i--, j++) {
344 1.17 dante eep_config.serial_number[i] =
345 1.17 dante AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
346 1.17 dante }
347 1.17 dante
348 1.17 dante AdwSetEEPROMConfig(iot, ioh, &eep_config);
349 1.17 dante }
350 1.17 dante /*
351 1.17 dante * Set sc and sc->cfg variables from the EEPROM configuration
352 1.17 dante * that was read.
353 1.17 dante *
354 1.17 dante * This is the mapping of EEPROM fields to Adw Library fields.
355 1.17 dante */
356 1.17 dante sc->wdtr_able = eep_config.wdtr_able;
357 1.17 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
358 1.17 dante sc->sdtr_able = eep_config.sdtr1.sdtr_able;
359 1.17 dante sc->ultra_able = eep_config.sdtr2.ultra_able;
360 1.17 dante } else {
361 1.17 dante sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
362 1.17 dante sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
363 1.17 dante sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
364 1.17 dante sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
365 1.17 dante }
366 1.17 dante sc->ppr_able = 0;
367 1.17 dante sc->tagqng_able = eep_config.tagqng_able;
368 1.17 dante sc->cfg.disc_enable = eep_config.disc_enable;
369 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
370 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
371 1.17 dante sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
372 1.17 dante sc->start_motor = eep_config.start_motor;
373 1.17 dante sc->scsi_reset_wait = eep_config.scsi_reset_delay;
374 1.17 dante sc->bios_ctrl = eep_config.bios_ctrl;
375 1.17 dante sc->no_scam = eep_config.scam_tolerant;
376 1.17 dante sc->cfg.serial1 = eep_config.serial_number[0];
377 1.17 dante sc->cfg.serial2 = eep_config.serial_number[1];
378 1.17 dante sc->cfg.serial3 = eep_config.serial_number[2];
379 1.17 dante
380 1.17 dante if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
381 1.17 dante sc->chip_type == ADW_CHIP_ASC38C1600) {
382 1.17 dante sc->sdtr_able = 0;
383 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
384 1.17 dante if (tid == 0) {
385 1.17 dante sdtr_speed = sc->sdtr_speed1;
386 1.17 dante } else if (tid == 4) {
387 1.17 dante sdtr_speed = sc->sdtr_speed2;
388 1.17 dante } else if (tid == 8) {
389 1.17 dante sdtr_speed = sc->sdtr_speed3;
390 1.17 dante } else if (tid == 12) {
391 1.17 dante sdtr_speed = sc->sdtr_speed4;
392 1.17 dante }
393 1.17 dante if (sdtr_speed & ADW_MAX_TID) {
394 1.17 dante sc->sdtr_able |= (1 << tid);
395 1.17 dante }
396 1.17 dante sdtr_speed >>= 4;
397 1.17 dante }
398 1.17 dante }
399 1.17 dante
400 1.17 dante /*
401 1.17 dante * Set the host maximum queuing (max. 253, min. 16) and the per device
402 1.17 dante * maximum queuing (max. 63, min. 4).
403 1.17 dante */
404 1.17 dante if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
405 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
406 1.17 dante } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
407 1.17 dante {
408 1.17 dante /* If the value is zero, assume it is uninitialized. */
409 1.17 dante if (eep_config.max_host_qng == 0) {
410 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
411 1.17 dante } else {
412 1.17 dante eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
413 1.17 dante }
414 1.17 dante }
415 1.17 dante
416 1.17 dante if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
417 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
418 1.17 dante } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
419 1.17 dante /* If the value is zero, assume it is uninitialized. */
420 1.17 dante if (eep_config.max_dvc_qng == 0) {
421 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 1.17 dante } else {
423 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
424 1.17 dante }
425 1.17 dante }
426 1.17 dante
427 1.17 dante /*
428 1.17 dante * If 'max_dvc_qng' is greater than 'max_host_qng', then
429 1.17 dante * set 'max_dvc_qng' to 'max_host_qng'.
430 1.17 dante */
431 1.17 dante if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
432 1.17 dante eep_config.max_dvc_qng = eep_config.max_host_qng;
433 1.17 dante }
434 1.17 dante
435 1.17 dante /*
436 1.17 dante * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
437 1.17 dante * values based on possibly adjusted EEPROM values.
438 1.17 dante */
439 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
440 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
441 1.17 dante
442 1.17 dante
443 1.17 dante /*
444 1.17 dante * If the EEPROM 'termination' field is set to automatic (0), then set
445 1.17 dante * the ADV_DVC_CFG 'termination' field to automatic also.
446 1.17 dante *
447 1.17 dante * If the termination is specified with a non-zero 'termination'
448 1.17 dante * value check that a legal value is set and set the ADV_DVC_CFG
449 1.17 dante * 'termination' field appropriately.
450 1.17 dante */
451 1.17 dante
452 1.17 dante switch(sc->chip_type) {
453 1.17 dante case ADW_CHIP_ASC3550:
454 1.17 dante sc->cfg.termination = 0; /* auto termination */
455 1.17 dante switch(eep_config.termination_se) {
456 1.17 dante case 3:
457 1.17 dante /* Enable manual control with low on / high on. */
458 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_L;
459 1.17 dante case 2:
460 1.17 dante /* Enable manual control with low off / high on. */
461 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_H;
462 1.17 dante case 1:
463 1.17 dante /* Enable manual control with low off / high off. */
464 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_SEL;
465 1.17 dante case 0:
466 1.17 dante break;
467 1.17 dante default:
468 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
469 1.17 dante }
470 1.17 dante break;
471 1.17 dante
472 1.17 dante case ADW_CHIP_ASC38C0800:
473 1.17 dante case ADW_CHIP_ASC38C1600:
474 1.17 dante switch(eep_config.termination_se) {
475 1.17 dante case 0:
476 1.17 dante /* auto termination for SE */
477 1.17 dante termination = 0;
478 1.17 dante break;
479 1.17 dante case 1:
480 1.17 dante /* Enable manual control with low off / high off. */
481 1.17 dante termination = 0;
482 1.17 dante break;
483 1.17 dante case 2:
484 1.17 dante /* Enable manual control with low off / high on. */
485 1.17 dante termination = ADW_TERM_SE_HI;
486 1.17 dante break;
487 1.17 dante case 3:
488 1.17 dante /* Enable manual control with low on / high on. */
489 1.17 dante termination = ADW_TERM_SE;
490 1.17 dante break;
491 1.17 dante default:
492 1.17 dante /*
493 1.17 dante * The EEPROM 'termination_se' field contains a
494 1.17 dante * bad value. Use automatic termination instead.
495 1.17 dante */
496 1.17 dante termination = 0;
497 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
498 1.17 dante }
499 1.17 dante
500 1.17 dante switch(eep_config.termination_lvd) {
501 1.17 dante case 0:
502 1.17 dante /* auto termination for LVD */
503 1.17 dante sc->cfg.termination = termination;
504 1.17 dante break;
505 1.17 dante case 1:
506 1.17 dante /* Enable manual control with low off / high off. */
507 1.17 dante sc->cfg.termination = termination;
508 1.17 dante break;
509 1.17 dante case 2:
510 1.17 dante /* Enable manual control with low off / high on. */
511 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD_HI;
512 1.17 dante break;
513 1.17 dante case 3:
514 1.17 dante /* Enable manual control with low on / high on. */
515 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD;
516 1.17 dante break;
517 1.17 dante default:
518 1.17 dante /*
519 1.17 dante * The EEPROM 'termination_lvd' field contains a
520 1.17 dante * bad value. Use automatic termination instead.
521 1.17 dante */
522 1.17 dante sc->cfg.termination = termination;
523 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
524 1.17 dante }
525 1.17 dante break;
526 1.17 dante }
527 1.17 dante
528 1.17 dante return warn_code;
529 1.17 dante }
530 1.17 dante
531 1.17 dante
532 1.17 dante /*
533 1.17 dante * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
534 1.17 dante *
535 1.17 dante * On failure return the error code.
536 1.1 dante */
537 1.1 dante int
538 1.17 dante AdwInitDriver(sc)
539 1.2 dante ADW_SOFTC *sc;
540 1.1 dante {
541 1.2 dante bus_space_tag_t iot = sc->sc_iot;
542 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
543 1.17 dante u_int16_t error_code;
544 1.7 dante int word;
545 1.17 dante int i;
546 1.16 dante u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
547 1.7 dante 0x40-0x8F. */
548 1.17 dante u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
549 1.7 dante u_int8_t max_cmd[ADW_MAX_TID + 1];
550 1.17 dante u_int8_t tid;
551 1.1 dante
552 1.1 dante
553 1.17 dante error_code = 0;
554 1.1 dante
555 1.1 dante /*
556 1.1 dante * Save the RISC memory BIOS region before writing the microcode.
557 1.1 dante * The BIOS may already be loaded and using its RISC LRAM region
558 1.1 dante * so its region must be saved and restored.
559 1.1 dante *
560 1.1 dante * Note: This code makes the assumption, which is currently true,
561 1.1 dante * that a chip reset does not clear RISC LRAM.
562 1.1 dante */
563 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
564 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
565 1.7 dante }
566 1.7 dante
567 1.7 dante /*
568 1.7 dante * Save current per TID negotiated values.
569 1.7 dante */
570 1.17 dante switch (sc->chip_type) {
571 1.17 dante case ADW_CHIP_ASC3550:
572 1.17 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
573 1.17 dante
574 1.17 dante u_int16_t bios_version, major, minor;
575 1.17 dante
576 1.17 dante bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
577 1.17 dante ADW_MC_BIOSMEM) / 2];
578 1.17 dante major = (bios_version >> 12) & 0xF;
579 1.17 dante minor = (bios_version >> 8) & 0xF;
580 1.17 dante if (major < 3 || (major == 3 && minor == 1)) {
581 1.17 dante /*
582 1.17 dante * BIOS 3.1 and earlier location of
583 1.17 dante * 'wdtr_able' variable.
584 1.17 dante */
585 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
586 1.17 dante } else {
587 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
588 1.17 dante wdtr_able);
589 1.17 dante }
590 1.17 dante }
591 1.17 dante break;
592 1.7 dante
593 1.17 dante case ADW_CHIP_ASC38C1600:
594 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
595 1.17 dante /* FALLTHROUGH */
596 1.17 dante case ADW_CHIP_ASC38C0800:
597 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
598 1.17 dante break;
599 1.7 dante }
600 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
601 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
602 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
603 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
604 1.7 dante max_cmd[tid]);
605 1.1 dante }
606 1.1 dante
607 1.1 dante /*
608 1.17 dante * Perform a RAM Built-In Self Test
609 1.1 dante */
610 1.17 dante if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
611 1.17 dante return error_code;
612 1.17 dante }
613 1.7 dante
614 1.17 dante /*
615 1.17 dante * Load the Microcode
616 1.7 dante */
617 1.17 dante ;
618 1.17 dante if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
619 1.17 dante return error_code;
620 1.1 dante }
621 1.1 dante
622 1.1 dante /*
623 1.17 dante * Read microcode version and date.
624 1.7 dante */
625 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
626 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
627 1.7 dante
628 1.7 dante /*
629 1.17 dante * If the PCI Configuration Command Register "Parity Error Response
630 1.17 dante * Control" Bit was clear (0), then set the microcode variable
631 1.17 dante * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
632 1.17 dante * to ignore DMA parity errors.
633 1.1 dante */
634 1.17 dante if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
635 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
636 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
637 1.17 dante word | CONTROL_FLAG_IGNORE_PERR);
638 1.1 dante }
639 1.1 dante
640 1.17 dante switch (sc->chip_type) {
641 1.17 dante case ADW_CHIP_ASC3550:
642 1.17 dante /*
643 1.17 dante * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
644 1.17 dante * FIFO threshold of 128 bytes.
645 1.17 dante * This register is only accessible to the host.
646 1.17 dante */
647 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
648 1.17 dante START_CTL_EMFU | READ_CMD_MRM);
649 1.17 dante break;
650 1.7 dante
651 1.17 dante case ADW_CHIP_ASC38C0800:
652 1.17 dante /*
653 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
654 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
655 1.17 dante * cable detection and then we are able to read C_DET[3:0].
656 1.17 dante *
657 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
658 1.17 dante * Microcode Default Value' section below.
659 1.17 dante */
660 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
661 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
662 1.17 dante | ADW_DIS_TERM_DRV);
663 1.1 dante
664 1.17 dante /*
665 1.17 dante * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
666 1.17 dante * START_CTL_TH [3:2] bits for the default FIFO threshold.
667 1.17 dante *
668 1.17 dante * Note: ASC-38C0800 FIFO threshold has been changed to
669 1.17 dante * 256 bytes.
670 1.17 dante *
671 1.17 dante * For DMA Errata #4 set the BC_THRESH_ENB bit.
672 1.17 dante */
673 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
674 1.17 dante BC_THRESH_ENB | FIFO_THRESH_80B
675 1.17 dante | START_CTL_TH | READ_CMD_MRM);
676 1.17 dante break;
677 1.1 dante
678 1.17 dante case ADW_CHIP_ASC38C1600:
679 1.17 dante /*
680 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
681 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
682 1.17 dante * cable detection and then we are able to read C_DET[3:0].
683 1.17 dante *
684 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
685 1.17 dante * Microcode Default Value' section below.
686 1.17 dante */
687 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
688 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
689 1.17 dante | ADW_DIS_TERM_DRV);
690 1.1 dante
691 1.17 dante /*
692 1.17 dante * If the BIOS control flag AIPP (Asynchronous Information
693 1.17 dante * Phase Protection) disable bit is not set, then set the
694 1.17 dante * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
695 1.17 dante * enable AIPP checking and encoding.
696 1.17 dante */
697 1.17 dante if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
698 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
699 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
700 1.17 dante word | CONTROL_FLAG_ENABLE_AIPP);
701 1.17 dante }
702 1.1 dante
703 1.17 dante /*
704 1.17 dante * For ASC-38C1600 use DMA_CFG0 default values:
705 1.17 dante * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
706 1.17 dante */
707 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
708 1.17 dante FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
709 1.17 dante break;
710 1.1 dante }
711 1.7 dante
712 1.1 dante /*
713 1.7 dante * Microcode operating variables for WDTR, SDTR, and command tag
714 1.17 dante * queuing will be set in AdvInquiryHandling() based on what a
715 1.7 dante * device reports it is capable of in Inquiry byte 7.
716 1.7 dante *
717 1.16 dante * If SCSI Bus Resets have been disabled, then directly set
718 1.7 dante * SDTR and WDTR from the EEPROM configuration. This will allow
719 1.7 dante * the BIOS and warm boot to work without a SCSI bus hang on
720 1.7 dante * the Inquiry caused by host and target mismatched DTR values.
721 1.7 dante * Without the SCSI Bus Reset, before an Inquiry a device can't
722 1.7 dante * be assumed to be in Asynchronous, Narrow mode.
723 1.7 dante */
724 1.7 dante if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
725 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
726 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
727 1.7 dante }
728 1.7 dante
729 1.7 dante /*
730 1.7 dante * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
731 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
732 1.7 dante * bitmask. These values determine the maximum SDTR speed negotiated
733 1.7 dante * with a device.
734 1.7 dante *
735 1.7 dante * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
736 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
737 1.7 dante * without determining here whether the device supports SDTR.
738 1.7 dante */
739 1.17 dante switch (sc->chip_type) {
740 1.17 dante case ADW_CHIP_ASC3550:
741 1.17 dante word = 0;
742 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
743 1.17 dante if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
744 1.17 dante /* Set Ultra speed for TID 'tid'. */
745 1.17 dante word |= (0x3 << (4 * (tid % 4)));
746 1.17 dante } else {
747 1.17 dante /* Set Fast speed for TID 'tid'. */
748 1.17 dante word |= (0x2 << (4 * (tid % 4)));
749 1.17 dante }
750 1.17 dante /* Check if done with sdtr_speed1. */
751 1.17 dante if (tid == 3) {
752 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
753 1.17 dante ADW_MC_SDTR_SPEED1, word);
754 1.17 dante word = 0;
755 1.17 dante /* Check if done with sdtr_speed2. */
756 1.17 dante } else if (tid == 7) {
757 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
758 1.17 dante ADW_MC_SDTR_SPEED2, word);
759 1.17 dante word = 0;
760 1.17 dante /* Check if done with sdtr_speed3. */
761 1.17 dante } else if (tid == 11) {
762 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
763 1.17 dante ADW_MC_SDTR_SPEED3, word);
764 1.17 dante word = 0;
765 1.17 dante /* Check if done with sdtr_speed4. */
766 1.17 dante } else if (tid == 15) {
767 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
768 1.17 dante ADW_MC_SDTR_SPEED4, word);
769 1.17 dante /* End of loop. */
770 1.17 dante }
771 1.7 dante }
772 1.17 dante
773 1.17 dante /*
774 1.17 dante * Set microcode operating variable for the
775 1.17 dante * disconnect per TID bitmask.
776 1.17 dante */
777 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
778 1.17 dante sc->cfg.disc_enable);
779 1.17 dante break;
780 1.17 dante
781 1.17 dante case ADW_CHIP_ASC38C0800:
782 1.17 dante /* FALLTHROUGH */
783 1.17 dante case ADW_CHIP_ASC38C1600:
784 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
785 1.17 dante sc->cfg.disc_enable);
786 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
787 1.17 dante sc->sdtr_speed1);
788 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
789 1.17 dante sc->sdtr_speed2);
790 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
791 1.17 dante sc->sdtr_speed3);
792 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
793 1.17 dante sc->sdtr_speed4);
794 1.17 dante break;
795 1.7 dante }
796 1.1 dante
797 1.1 dante
798 1.1 dante /*
799 1.1 dante * Set SCSI_CFG0 Microcode Default Value.
800 1.1 dante *
801 1.1 dante * The microcode will set the SCSI_CFG0 register using this value
802 1.1 dante * after it is started below.
803 1.1 dante */
804 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
805 1.10 dante ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
806 1.10 dante ADW_OUR_ID_EN | sc->chip_scsi_id);
807 1.2 dante
808 1.1 dante
809 1.17 dante switch(sc->chip_type) {
810 1.17 dante case ADW_CHIP_ASC3550:
811 1.17 dante error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
812 1.17 dante break;
813 1.1 dante
814 1.17 dante case ADW_CHIP_ASC38C0800:
815 1.17 dante error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
816 1.17 dante break;
817 1.7 dante
818 1.17 dante case ADW_CHIP_ASC38C1600:
819 1.17 dante error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
820 1.17 dante break;
821 1.7 dante }
822 1.17 dante if(error_code) {
823 1.17 dante return error_code;
824 1.1 dante }
825 1.7 dante
826 1.1 dante /*
827 1.1 dante * Set SEL_MASK Microcode Default Value
828 1.1 dante *
829 1.1 dante * The microcode will set the SEL_MASK register using this value
830 1.1 dante * after it is started below.
831 1.1 dante */
832 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
833 1.7 dante ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
834 1.7 dante
835 1.17 dante /*
836 1.17 dante * Create and Initialize Host->RISC Carrier lists
837 1.17 dante */
838 1.17 dante sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
839 1.17 dante sc->sc_control->carriers);
840 1.16 dante
841 1.7 dante /*
842 1.7 dante * Set-up the Host->RISC Initiator Command Queue (ICQ).
843 1.7 dante */
844 1.7 dante
845 1.7 dante if ((sc->icq_sp = sc->carr_freelist) == NULL) {
846 1.16 dante return ADW_IERR_NO_CARRIER;
847 1.7 dante }
848 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
849 1.12 dante ASC_GET_CARRP(sc->icq_sp->next_ba));
850 1.7 dante
851 1.7 dante /*
852 1.7 dante * The first command issued will be placed in the stopper carrier.
853 1.7 dante */
854 1.12 dante sc->icq_sp->next_ba = ASC_CQ_STOPPER;
855 1.1 dante
856 1.1 dante /*
857 1.7 dante * Set RISC ICQ physical address start value.
858 1.7 dante */
859 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
860 1.7 dante
861 1.7 dante /*
862 1.17 dante * Initialize the COMMA register to the same value otherwise
863 1.17 dante * the RISC will prematurely detect a command is available.
864 1.17 dante */
865 1.17 dante if(sc->chip_type == ADW_CHIP_ASC38C1600) {
866 1.17 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
867 1.17 dante sc->icq_sp->carr_ba);
868 1.17 dante }
869 1.17 dante
870 1.17 dante /*
871 1.7 dante * Set-up the RISC->Host Initiator Response Queue (IRQ).
872 1.1 dante */
873 1.7 dante if ((sc->irq_sp = sc->carr_freelist) == NULL) {
874 1.16 dante return ADW_IERR_NO_CARRIER;
875 1.1 dante }
876 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
877 1.12 dante ASC_GET_CARRP(sc->irq_sp->next_ba));
878 1.1 dante
879 1.1 dante /*
880 1.7 dante * The first command completed by the RISC will be placed in
881 1.7 dante * the stopper.
882 1.1 dante *
883 1.12 dante * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
884 1.16 dante * completed the RISC will set the ASC_RQ_DONE bit.
885 1.1 dante */
886 1.12 dante sc->irq_sp->next_ba = ASC_CQ_STOPPER;
887 1.1 dante
888 1.1 dante /*
889 1.7 dante * Set RISC IRQ physical address start value.
890 1.1 dante */
891 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
892 1.7 dante sc->carr_pending_cnt = 0;
893 1.1 dante
894 1.1 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
895 1.7 dante (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
896 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
897 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
898 1.1 dante
899 1.1 dante /* finally, finally, gentlemen, start your engine */
900 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
901 1.2 dante
902 1.7 dante /*
903 1.7 dante * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
904 1.7 dante * Resets should be performed. The RISC has to be running
905 1.7 dante * to issue a SCSI Bus Reset.
906 1.7 dante */
907 1.7 dante if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
908 1.7 dante {
909 1.7 dante /*
910 1.7 dante * If the BIOS Signature is present in memory, restore the
911 1.7 dante * BIOS Handshake Configuration Table and do not perform
912 1.7 dante * a SCSI Bus Reset.
913 1.7 dante */
914 1.16 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
915 1.7 dante 0x55AA) {
916 1.7 dante /*
917 1.7 dante * Restore per TID negotiated values.
918 1.7 dante */
919 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
920 1.7 dante wdtr_able);
921 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
922 1.7 dante sdtr_able);
923 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
924 1.7 dante tagqng_able);
925 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
926 1.7 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
927 1.17 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
928 1.17 dante max_cmd[tid]);
929 1.7 dante }
930 1.7 dante } else {
931 1.16 dante if (AdwResetCCB(sc) != ADW_TRUE) {
932 1.17 dante error_code = ADW_WARN_BUSRESET_ERROR;
933 1.7 dante }
934 1.7 dante }
935 1.7 dante }
936 1.7 dante
937 1.17 dante return error_code;
938 1.1 dante }
939 1.1 dante
940 1.17 dante
941 1.1 dante int
942 1.17 dante AdwRamSelfTest(iot, ioh, chip_type)
943 1.17 dante bus_space_tag_t iot;
944 1.17 dante bus_space_handle_t ioh;
945 1.17 dante u_int8_t chip_type;
946 1.1 dante {
947 1.17 dante int i;
948 1.7 dante u_int8_t byte;
949 1.1 dante
950 1.1 dante
951 1.17 dante if ((chip_type == ADW_CHIP_ASC38C0800) ||
952 1.17 dante (chip_type == ADW_CHIP_ASC38C1600)) {
953 1.17 dante /*
954 1.17 dante * RAM BIST (RAM Built-In Self Test)
955 1.17 dante *
956 1.17 dante * Address : I/O base + offset 0x38h register (byte).
957 1.17 dante * Function: Bit 7-6(RW) : RAM mode
958 1.17 dante * Normal Mode : 0x00
959 1.17 dante * Pre-test Mode : 0x40
960 1.17 dante * RAM Test Mode : 0x80
961 1.17 dante * Bit 5 : unused
962 1.17 dante * Bit 4(RO) : Done bit
963 1.17 dante * Bit 3-0(RO) : Status
964 1.17 dante * Host Error : 0x08
965 1.17 dante * Int_RAM Error : 0x04
966 1.17 dante * RISC Error : 0x02
967 1.17 dante * SCSI Error : 0x01
968 1.17 dante * No Error : 0x00
969 1.17 dante *
970 1.17 dante * Note: RAM BIST code should be put right here, before loading
971 1.17 dante * the microcode and after saving the RISC memory BIOS region.
972 1.17 dante */
973 1.1 dante
974 1.17 dante /*
975 1.17 dante * LRAM Pre-test
976 1.17 dante *
977 1.17 dante * Write PRE_TEST_MODE (0x40) to register and wait for
978 1.17 dante * 10 milliseconds.
979 1.17 dante * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
980 1.17 dante * return an error. Reset to NORMAL_MODE (0x00) and do again.
981 1.17 dante * If cannot reset to NORMAL_MODE, return an error too.
982 1.17 dante */
983 1.17 dante for (i = 0; i < 2; i++) {
984 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
985 1.17 dante PRE_TEST_MODE);
986 1.17 dante /* Wait for 10ms before reading back. */
987 1.17 dante AdwSleepMilliSecond(10);
988 1.17 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
989 1.17 dante if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
990 1.17 dante PRE_TEST_VALUE) {
991 1.17 dante return ADW_IERR_BIST_PRE_TEST;
992 1.17 dante }
993 1.7 dante
994 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
995 1.17 dante NORMAL_MODE);
996 1.17 dante /* Wait for 10ms before reading back. */
997 1.17 dante AdwSleepMilliSecond(10);
998 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
999 1.17 dante != NORMAL_VALUE) {
1000 1.17 dante return ADW_IERR_BIST_PRE_TEST;
1001 1.17 dante }
1002 1.17 dante }
1003 1.2 dante
1004 1.17 dante /*
1005 1.17 dante * LRAM Test - It takes about 1.5 ms to run through the test.
1006 1.17 dante *
1007 1.17 dante * Write RAM_TEST_MODE (0x80) to register and wait for
1008 1.17 dante * 10 milliseconds.
1009 1.17 dante * If Done bit not set or Status not 0, save register byte,
1010 1.17 dante * set the err_code, and return an error.
1011 1.17 dante */
1012 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1013 1.17 dante /* Wait for 10ms before checking status. */
1014 1.17 dante AdwSleepMilliSecond(10);
1015 1.1 dante
1016 1.7 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1017 1.17 dante if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1018 1.17 dante /* Get here if Done bit not set or Status not 0. */
1019 1.17 dante return ADW_IERR_BIST_RAM_TEST;
1020 1.1 dante }
1021 1.1 dante
1022 1.17 dante /* We need to reset back to normal mode after LRAM test passes*/
1023 1.7 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1024 1.1 dante }
1025 1.7 dante
1026 1.17 dante return 0;
1027 1.17 dante }
1028 1.17 dante
1029 1.7 dante
1030 1.17 dante int
1031 1.17 dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1032 1.17 dante bus_space_tag_t iot;
1033 1.17 dante bus_space_handle_t ioh;
1034 1.17 dante u_int16_t *bios_mem;
1035 1.17 dante u_int8_t chip_type;
1036 1.17 dante {
1037 1.17 dante u_int8_t *mcode_data;
1038 1.17 dante u_int32_t mcode_chksum;
1039 1.17 dante u_int16_t mcode_size;
1040 1.17 dante u_int32_t sum;
1041 1.17 dante u_int16_t code_sum;
1042 1.17 dante int begin_addr;
1043 1.17 dante int end_addr;
1044 1.17 dante int word;
1045 1.17 dante int adw_memsize;
1046 1.17 dante int adw_mcode_expanded_size;
1047 1.17 dante int i, j;
1048 1.7 dante
1049 1.17 dante
1050 1.17 dante switch(chip_type) {
1051 1.17 dante case ADW_CHIP_ASC3550:
1052 1.17 dante mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1053 1.17 dante mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1054 1.17 dante mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1055 1.17 dante adw_memsize = ADW_3550_MEMSIZE;
1056 1.17 dante break;
1057 1.17 dante
1058 1.17 dante case ADW_CHIP_ASC38C0800:
1059 1.17 dante mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1060 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1061 1.17 dante mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1062 1.17 dante adw_memsize = ADW_38C0800_MEMSIZE;
1063 1.17 dante break;
1064 1.17 dante
1065 1.17 dante case ADW_CHIP_ASC38C1600:
1066 1.17 dante mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1067 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1068 1.17 dante mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1069 1.17 dante adw_memsize = ADW_38C1600_MEMSIZE;
1070 1.17 dante break;
1071 1.17 dante }
1072 1.1 dante
1073 1.1 dante /*
1074 1.7 dante * Write the microcode image to RISC memory starting at address 0.
1075 1.1 dante */
1076 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1077 1.7 dante
1078 1.7 dante /* Assume the following compressed format of the microcode buffer:
1079 1.7 dante *
1080 1.7 dante * 254 word (508 byte) table indexed by byte code followed
1081 1.7 dante * by the following byte codes:
1082 1.7 dante *
1083 1.7 dante * 1-Byte Code:
1084 1.7 dante * 00: Emit word 0 in table.
1085 1.7 dante * 01: Emit word 1 in table.
1086 1.7 dante * .
1087 1.7 dante * FD: Emit word 253 in table.
1088 1.7 dante *
1089 1.7 dante * Multi-Byte Code:
1090 1.7 dante * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1091 1.7 dante * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1092 1.7 dante */
1093 1.7 dante word = 0;
1094 1.17 dante for (i = 253 * 2; i < mcode_size; i++) {
1095 1.17 dante if (mcode_data[i] == 0xff) {
1096 1.17 dante for (j = 0; j < mcode_data[i + 1]; j++) {
1097 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1098 1.17 dante (((u_int16_t)mcode_data[i + 3] << 8) |
1099 1.17 dante mcode_data[i + 2]));
1100 1.7 dante word++;
1101 1.7 dante }
1102 1.7 dante i += 3;
1103 1.17 dante } else if (mcode_data[i] == 0xfe) {
1104 1.17 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1105 1.17 dante (((u_int16_t)mcode_data[i + 2] << 8) |
1106 1.17 dante mcode_data[i + 1]));
1107 1.7 dante i += 2;
1108 1.7 dante word++;
1109 1.1 dante } else {
1110 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1111 1.17 dante mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1112 1.17 dante mcode_data[mcode_data[i] * 2]));
1113 1.7 dante word++;
1114 1.1 dante }
1115 1.1 dante }
1116 1.7 dante
1117 1.7 dante /*
1118 1.7 dante * Set 'word' for later use to clear the rest of memory and save
1119 1.7 dante * the expanded mcode size.
1120 1.7 dante */
1121 1.7 dante word *= 2;
1122 1.17 dante adw_mcode_expanded_size = word;
1123 1.7 dante
1124 1.1 dante /*
1125 1.17 dante * Clear the rest of the Internal RAM.
1126 1.1 dante */
1127 1.17 dante for (; word < adw_memsize; word += 2) {
1128 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1129 1.1 dante }
1130 1.7 dante
1131 1.1 dante /*
1132 1.7 dante * Verify the microcode checksum.
1133 1.1 dante */
1134 1.7 dante sum = 0;
1135 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1136 1.7 dante
1137 1.17 dante for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1138 1.7 dante sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1139 1.7 dante }
1140 1.1 dante
1141 1.17 dante if (sum != mcode_chksum) {
1142 1.17 dante return ADW_IERR_MCODE_CHKSUM;
1143 1.7 dante }
1144 1.1 dante
1145 1.1 dante /*
1146 1.7 dante * Restore the RISC memory BIOS region.
1147 1.1 dante */
1148 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1149 1.17 dante if(chip_type == ADW_CHIP_ASC3550) {
1150 1.17 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1151 1.17 dante bios_mem[i]);
1152 1.17 dante } else {
1153 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1154 1.17 dante bios_mem[i]);
1155 1.17 dante }
1156 1.7 dante }
1157 1.1 dante
1158 1.7 dante /*
1159 1.7 dante * Calculate and write the microcode code checksum to the microcode
1160 1.16 dante * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1161 1.7 dante */
1162 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1163 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1164 1.7 dante code_sum = 0;
1165 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1166 1.7 dante for (word = begin_addr; word < end_addr; word += 2) {
1167 1.7 dante code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1168 1.1 dante }
1169 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1170 1.1 dante
1171 1.7 dante /*
1172 1.17 dante * Set the chip type.
1173 1.7 dante */
1174 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1175 1.17 dante
1176 1.17 dante return 0;
1177 1.17 dante }
1178 1.17 dante
1179 1.17 dante
1180 1.17 dante int
1181 1.17 dante AdwASC3550Cabling(iot, ioh, cfg)
1182 1.17 dante bus_space_tag_t iot;
1183 1.17 dante bus_space_handle_t ioh;
1184 1.17 dante ADW_DVC_CFG *cfg;
1185 1.17 dante {
1186 1.17 dante u_int16_t scsi_cfg1;
1187 1.17 dante
1188 1.1 dante
1189 1.7 dante /*
1190 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1191 1.17 dante *
1192 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1193 1.17 dante * after it is started below.
1194 1.7 dante */
1195 1.17 dante
1196 1.17 dante /* Read current SCSI_CFG1 Register value. */
1197 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1198 1.1 dante
1199 1.7 dante /*
1200 1.17 dante * If all three connectors are in use in ASC3550, return an error.
1201 1.7 dante */
1202 1.17 dante if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1203 1.17 dante (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1204 1.17 dante return ADW_IERR_ILLEGAL_CONNECTION;
1205 1.17 dante }
1206 1.7 dante
1207 1.7 dante /*
1208 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1209 1.17 dante * will be set. Check for and return an error if this condition is
1210 1.17 dante * found.
1211 1.7 dante */
1212 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1213 1.17 dante return ADW_IERR_REVERSED_CABLE;
1214 1.7 dante }
1215 1.7 dante
1216 1.7 dante /*
1217 1.17 dante * If this is a differential board and a single-ended device
1218 1.17 dante * is attached to one of the connectors, return an error.
1219 1.7 dante */
1220 1.17 dante if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1221 1.17 dante (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1222 1.17 dante return ADW_IERR_SINGLE_END_DEVICE;
1223 1.17 dante }
1224 1.7 dante
1225 1.7 dante /*
1226 1.17 dante * If automatic termination control is enabled, then set the
1227 1.17 dante * termination value based on a table listed in a_condor.h.
1228 1.7 dante *
1229 1.17 dante * If manual termination was specified with an EEPROM setting
1230 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and
1231 1.17 dante * is ready to be 'ored' into SCSI_CFG1.
1232 1.7 dante */
1233 1.17 dante if (cfg->termination == 0) {
1234 1.17 dante /*
1235 1.17 dante * The software always controls termination by setting
1236 1.17 dante * TERM_CTL_SEL.
1237 1.17 dante * If TERM_CTL_SEL were set to 0, the hardware would set
1238 1.17 dante * termination.
1239 1.17 dante */
1240 1.17 dante cfg->termination |= ADW_TERM_CTL_SEL;
1241 1.17 dante
1242 1.17 dante switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1243 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: on */
1244 1.17 dante case 0x3: case 0x7: case 0xB:
1245 1.17 dante case 0xD: case 0xE: case 0xF:
1246 1.17 dante cfg->termination |=
1247 1.17 dante (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1248 1.17 dante break;
1249 1.17 dante
1250 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: off */
1251 1.17 dante case 0x1: case 0x5: case 0x9:
1252 1.17 dante case 0xA: case 0xC:
1253 1.17 dante cfg->termination |= ADW_TERM_CTL_H;
1254 1.17 dante break;
1255 1.17 dante
1256 1.17 dante /* TERM_CTL_H: off, TERM_CTL_L: off */
1257 1.17 dante case 0x2: case 0x6:
1258 1.17 dante break;
1259 1.17 dante }
1260 1.7 dante }
1261 1.7 dante
1262 1.7 dante /*
1263 1.17 dante * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1264 1.17 dante */
1265 1.17 dante scsi_cfg1 &= ~ADW_TERM_CTL;
1266 1.17 dante
1267 1.17 dante /*
1268 1.17 dante * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1269 1.17 dante * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1270 1.17 dante * referenced, because the hardware internally inverts
1271 1.17 dante * the Termination High and Low bits if TERM_POL is set.
1272 1.17 dante */
1273 1.17 dante scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1274 1.17 dante
1275 1.17 dante /*
1276 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1277 1.17 dante *
1278 1.17 dante * Set filter value and possibly modified termination control
1279 1.17 dante * bits in the Microcode SCSI_CFG1 Register Value.
1280 1.7 dante *
1281 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1282 1.17 dante * after it is started below.
1283 1.7 dante */
1284 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1285 1.17 dante ADW_FLTR_DISABLE | scsi_cfg1);
1286 1.7 dante
1287 1.7 dante /*
1288 1.17 dante * Set MEM_CFG Microcode Default Value
1289 1.7 dante *
1290 1.17 dante * The microcode will set the MEM_CFG register using this value
1291 1.7 dante * after it is started below.
1292 1.17 dante *
1293 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1294 1.17 dante * are defined.
1295 1.17 dante *
1296 1.17 dante * ASC-3550 has 8KB internal memory.
1297 1.7 dante */
1298 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1299 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1300 1.17 dante
1301 1.17 dante return 0;
1302 1.17 dante }
1303 1.17 dante
1304 1.17 dante
1305 1.17 dante int
1306 1.17 dante AdwASC38C0800Cabling(iot, ioh, cfg)
1307 1.17 dante bus_space_tag_t iot;
1308 1.17 dante bus_space_handle_t ioh;
1309 1.17 dante ADW_DVC_CFG *cfg;
1310 1.17 dante {
1311 1.17 dante u_int16_t scsi_cfg1;
1312 1.17 dante
1313 1.7 dante
1314 1.7 dante /*
1315 1.7 dante * Determine SCSI_CFG1 Microcode Default Value.
1316 1.7 dante *
1317 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1318 1.7 dante * after it is started below.
1319 1.7 dante */
1320 1.7 dante
1321 1.7 dante /* Read current SCSI_CFG1 Register value. */
1322 1.7 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1323 1.7 dante
1324 1.7 dante /*
1325 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1326 1.17 dante * will be set. Check for and return an error if this condition is
1327 1.17 dante * found.
1328 1.7 dante */
1329 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1330 1.16 dante return ADW_IERR_REVERSED_CABLE;
1331 1.7 dante }
1332 1.7 dante
1333 1.7 dante /*
1334 1.17 dante * All kind of combinations of devices attached to one of four
1335 1.17 dante * connectors are acceptable except HVD device attached.
1336 1.17 dante * For example, LVD device can be attached to SE connector while
1337 1.17 dante * SE device attached to LVD connector.
1338 1.17 dante * If LVD device attached to SE connector, it only runs up to
1339 1.17 dante * Ultra speed.
1340 1.17 dante *
1341 1.17 dante * If an HVD device is attached to one of LVD connectors, return
1342 1.17 dante * an error.
1343 1.17 dante * However, there is no way to detect HVD device attached to
1344 1.17 dante * SE connectors.
1345 1.7 dante */
1346 1.7 dante if (scsi_cfg1 & ADW_HVD) {
1347 1.16 dante return ADW_IERR_HVD_DEVICE;
1348 1.7 dante }
1349 1.7 dante
1350 1.7 dante /*
1351 1.7 dante * If either SE or LVD automatic termination control is enabled, then
1352 1.7 dante * set the termination value based on a table listed in a_condor.h.
1353 1.7 dante *
1354 1.7 dante * If manual termination was specified with an EEPROM setting then
1355 1.17 dante * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1356 1.17 dante * to be 'ored' into SCSI_CFG1.
1357 1.7 dante */
1358 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1359 1.7 dante /* SE automatic termination control is enabled. */
1360 1.7 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1361 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1362 1.7 dante case 0x1: case 0x2: case 0x3:
1363 1.17 dante cfg->termination |= ADW_TERM_SE;
1364 1.7 dante break;
1365 1.7 dante
1366 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: off */
1367 1.7 dante case 0x0:
1368 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1369 1.7 dante break;
1370 1.7 dante }
1371 1.7 dante }
1372 1.7 dante
1373 1.17 dante if ((cfg->termination & ADW_TERM_LVD) == 0) {
1374 1.7 dante /* LVD automatic termination control is enabled. */
1375 1.7 dante switch(scsi_cfg1 & ADW_C_DET_LVD) {
1376 1.7 dante /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1377 1.7 dante case 0x4: case 0x8: case 0xC:
1378 1.17 dante cfg->termination |= ADW_TERM_LVD;
1379 1.7 dante break;
1380 1.7 dante
1381 1.7 dante /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1382 1.7 dante case 0x0:
1383 1.7 dante break;
1384 1.7 dante }
1385 1.7 dante }
1386 1.7 dante
1387 1.7 dante /*
1388 1.7 dante * Clear any set TERM_SE and TERM_LVD bits.
1389 1.7 dante */
1390 1.7 dante scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1391 1.7 dante
1392 1.7 dante /*
1393 1.7 dante * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1394 1.7 dante */
1395 1.17 dante scsi_cfg1 |= (~cfg->termination & 0xF0);
1396 1.7 dante
1397 1.7 dante /*
1398 1.17 dante * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1399 1.17 dante * HVD/LVD/SE bits and set possibly modified termination control bits
1400 1.17 dante * in the Microcode SCSI_CFG1 Register Value.
1401 1.7 dante */
1402 1.7 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1403 1.17 dante ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1404 1.7 dante
1405 1.7 dante /*
1406 1.7 dante * Set SCSI_CFG1 Microcode Default Value
1407 1.7 dante *
1408 1.7 dante * Set possibly modified termination control and reset DIS_TERM_DRV
1409 1.7 dante * bits in the Microcode SCSI_CFG1 Register Value.
1410 1.7 dante *
1411 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1412 1.7 dante * after it is started below.
1413 1.7 dante */
1414 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1415 1.7 dante
1416 1.7 dante /*
1417 1.7 dante * Set MEM_CFG Microcode Default Value
1418 1.7 dante *
1419 1.7 dante * The microcode will set the MEM_CFG register using this value
1420 1.7 dante * after it is started below.
1421 1.7 dante *
1422 1.7 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1423 1.7 dante * are defined.
1424 1.7 dante *
1425 1.7 dante * ASC-38C0800 has 16KB internal memory.
1426 1.7 dante */
1427 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1428 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1429 1.7 dante
1430 1.17 dante return 0;
1431 1.17 dante }
1432 1.7 dante
1433 1.7 dante
1434 1.17 dante int
1435 1.17 dante AdwASC38C1600Cabling(iot, ioh, cfg)
1436 1.17 dante bus_space_tag_t iot;
1437 1.17 dante bus_space_handle_t ioh;
1438 1.17 dante ADW_DVC_CFG *cfg;
1439 1.17 dante {
1440 1.17 dante u_int16_t scsi_cfg1;
1441 1.7 dante
1442 1.7 dante
1443 1.7 dante /*
1444 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1445 1.17 dante *
1446 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1447 1.17 dante * after it is started below.
1448 1.17 dante * Each ASC-38C1600 function has only two cable detect bits.
1449 1.17 dante * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1450 1.7 dante */
1451 1.7 dante
1452 1.17 dante /* Read current SCSI_CFG1 Register value. */
1453 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1454 1.7 dante
1455 1.7 dante /*
1456 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1457 1.17 dante * will be set. Check for and return an error if this condition is
1458 1.17 dante * found.
1459 1.7 dante */
1460 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1461 1.17 dante return ADW_IERR_REVERSED_CABLE;
1462 1.7 dante }
1463 1.7 dante
1464 1.7 dante /*
1465 1.17 dante * Each ASC-38C1600 function has two connectors. Only an HVD device
1466 1.17 dante * can not be connected to either connector. An LVD device or SE device
1467 1.17 dante * may be connected to either connecor. If an SE device is connected,
1468 1.17 dante * then at most Ultra speed (20 Mhz) can be used on both connectors.
1469 1.7 dante *
1470 1.17 dante * If an HVD device is attached, return an error.
1471 1.7 dante */
1472 1.17 dante if (scsi_cfg1 & ADW_HVD) {
1473 1.17 dante return ADW_IERR_HVD_DEVICE;
1474 1.17 dante }
1475 1.7 dante
1476 1.7 dante /*
1477 1.17 dante * Each function in the ASC-38C1600 uses only the SE cable detect and
1478 1.17 dante * termination because there are two connectors for each function.
1479 1.17 dante * Each function may use either LVD or SE mode.
1480 1.17 dante * Corresponding the SE automatic termination control EEPROM bits are
1481 1.17 dante * used for each function.
1482 1.17 dante * Each function has its own EEPROM. If SE automatic control is enabled
1483 1.17 dante * for the function, then set the termination value based on a table
1484 1.17 dante * listed in adwlib.h.
1485 1.17 dante *
1486 1.17 dante * If manual termination is specified in the EEPROM for the function,
1487 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and is
1488 1.17 dante * ready to be 'ored' into SCSI_CFG1.
1489 1.7 dante */
1490 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1491 1.17 dante /* SE automatic termination control is enabled. */
1492 1.17 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1493 1.17 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1494 1.17 dante case 0x1: case 0x2: case 0x3:
1495 1.17 dante cfg->termination |= ADW_TERM_SE;
1496 1.17 dante break;
1497 1.7 dante
1498 1.17 dante case 0x0:
1499 1.17 dante /* !!!!TODO!!!! */
1500 1.17 dante // if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1501 1.17 dante /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1502 1.17 dante // }
1503 1.17 dante // else
1504 1.17 dante // {
1505 1.17 dante /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1506 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1507 1.17 dante // }
1508 1.17 dante break;
1509 1.10 dante }
1510 1.7 dante }
1511 1.7 dante
1512 1.17 dante /*
1513 1.17 dante * Clear any set TERM_SE bits.
1514 1.17 dante */
1515 1.17 dante scsi_cfg1 &= ~ADW_TERM_SE;
1516 1.7 dante
1517 1.7 dante /*
1518 1.17 dante * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1519 1.7 dante */
1520 1.17 dante scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1521 1.7 dante
1522 1.7 dante /*
1523 1.17 dante * Clear Big Endian and Terminator Polarity bits and set possibly
1524 1.17 dante * modified termination control bits in the Microcode SCSI_CFG1
1525 1.17 dante * Register Value.
1526 1.7 dante */
1527 1.17 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1528 1.7 dante
1529 1.7 dante /*
1530 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1531 1.17 dante *
1532 1.17 dante * Set possibly modified termination control bits in the Microcode
1533 1.17 dante * SCSI_CFG1 Register Value.
1534 1.7 dante *
1535 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1536 1.17 dante * after it is started below.
1537 1.7 dante */
1538 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1539 1.7 dante
1540 1.17 dante /*
1541 1.17 dante * Set MEM_CFG Microcode Default Value
1542 1.17 dante *
1543 1.17 dante * The microcode will set the MEM_CFG register using this value
1544 1.17 dante * after it is started below.
1545 1.17 dante *
1546 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1547 1.17 dante * are defined.
1548 1.17 dante *
1549 1.17 dante * ASC-38C1600 has 32KB internal memory.
1550 1.17 dante */
1551 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1552 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1553 1.7 dante
1554 1.17 dante return 0;
1555 1.7 dante }
1556 1.7 dante
1557 1.7 dante
1558 1.7 dante /*
1559 1.7 dante * Read EEPROM configuration into the specified buffer.
1560 1.7 dante *
1561 1.7 dante * Return a checksum based on the EEPROM configuration read.
1562 1.7 dante */
1563 1.7 dante static u_int16_t
1564 1.17 dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1565 1.7 dante bus_space_tag_t iot;
1566 1.7 dante bus_space_handle_t ioh;
1567 1.17 dante ADW_EEPROM *cfg_buf;
1568 1.7 dante {
1569 1.7 dante u_int16_t wval, chksum;
1570 1.7 dante u_int16_t *wbuf;
1571 1.7 dante int eep_addr;
1572 1.7 dante
1573 1.7 dante
1574 1.7 dante wbuf = (u_int16_t *) cfg_buf;
1575 1.7 dante chksum = 0;
1576 1.7 dante
1577 1.7 dante for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1578 1.10 dante eep_addr < ASC_EEP_DVC_CFG_END;
1579 1.10 dante eep_addr++, wbuf++) {
1580 1.16 dante wval = AdwReadEEPWord(iot, ioh, eep_addr);
1581 1.7 dante chksum += wval;
1582 1.7 dante *wbuf = wval;
1583 1.7 dante }
1584 1.7 dante
1585 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1586 1.7 dante wbuf++;
1587 1.7 dante for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1588 1.7 dante eep_addr < ASC_EEP_MAX_WORD_ADDR;
1589 1.7 dante eep_addr++, wbuf++) {
1590 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1591 1.7 dante }
1592 1.7 dante
1593 1.7 dante return chksum;
1594 1.7 dante }
1595 1.7 dante
1596 1.7 dante
1597 1.7 dante /*
1598 1.7 dante * Read the EEPROM from specified location
1599 1.7 dante */
1600 1.7 dante static u_int16_t
1601 1.16 dante AdwReadEEPWord(iot, ioh, eep_word_addr)
1602 1.7 dante bus_space_tag_t iot;
1603 1.7 dante bus_space_handle_t ioh;
1604 1.7 dante int eep_word_addr;
1605 1.7 dante {
1606 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1607 1.7 dante ASC_EEP_CMD_READ | eep_word_addr);
1608 1.16 dante AdwWaitEEPCmd(iot, ioh);
1609 1.7 dante
1610 1.7 dante return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1611 1.7 dante }
1612 1.7 dante
1613 1.7 dante
1614 1.7 dante /*
1615 1.7 dante * Wait for EEPROM command to complete
1616 1.7 dante */
1617 1.7 dante static void
1618 1.16 dante AdwWaitEEPCmd(iot, ioh)
1619 1.7 dante bus_space_tag_t iot;
1620 1.7 dante bus_space_handle_t ioh;
1621 1.7 dante {
1622 1.7 dante int eep_delay_ms;
1623 1.7 dante
1624 1.7 dante
1625 1.7 dante for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1626 1.7 dante if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1627 1.7 dante ASC_EEP_CMD_DONE) {
1628 1.7 dante break;
1629 1.7 dante }
1630 1.16 dante AdwSleepMilliSecond(1);
1631 1.7 dante }
1632 1.7 dante
1633 1.7 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1634 1.7 dante }
1635 1.7 dante
1636 1.7 dante
1637 1.7 dante /*
1638 1.7 dante * Write the EEPROM from 'cfg_buf'.
1639 1.7 dante */
1640 1.7 dante static void
1641 1.17 dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1642 1.10 dante bus_space_tag_t iot;
1643 1.10 dante bus_space_handle_t ioh;
1644 1.17 dante ADW_EEPROM *cfg_buf;
1645 1.10 dante {
1646 1.10 dante u_int16_t *wbuf;
1647 1.10 dante u_int16_t addr, chksum;
1648 1.10 dante
1649 1.10 dante
1650 1.10 dante wbuf = (u_int16_t *) cfg_buf;
1651 1.10 dante chksum = 0;
1652 1.10 dante
1653 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1654 1.16 dante AdwWaitEEPCmd(iot, ioh);
1655 1.10 dante
1656 1.10 dante /*
1657 1.10 dante * Write EEPROM from word 0 to word 20
1658 1.10 dante */
1659 1.10 dante for (addr = ASC_EEP_DVC_CFG_BEGIN;
1660 1.10 dante addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1661 1.10 dante chksum += *wbuf;
1662 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1663 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1664 1.10 dante ASC_EEP_CMD_WRITE | addr);
1665 1.16 dante AdwWaitEEPCmd(iot, ioh);
1666 1.16 dante AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1667 1.10 dante }
1668 1.10 dante
1669 1.10 dante /*
1670 1.10 dante * Write EEPROM checksum at word 21
1671 1.10 dante */
1672 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1673 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1674 1.10 dante ASC_EEP_CMD_WRITE | addr);
1675 1.16 dante AdwWaitEEPCmd(iot, ioh);
1676 1.10 dante wbuf++; /* skip over check_sum */
1677 1.10 dante
1678 1.10 dante /*
1679 1.10 dante * Write EEPROM OEM name at words 22 to 29
1680 1.10 dante */
1681 1.10 dante for (addr = ASC_EEP_DVC_CTL_BEGIN;
1682 1.10 dante addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1683 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1684 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1685 1.10 dante ASC_EEP_CMD_WRITE | addr);
1686 1.16 dante AdwWaitEEPCmd(iot, ioh);
1687 1.10 dante }
1688 1.10 dante
1689 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1690 1.10 dante ASC_EEP_CMD_WRITE_DISABLE);
1691 1.16 dante AdwWaitEEPCmd(iot, ioh);
1692 1.10 dante
1693 1.10 dante return;
1694 1.10 dante }
1695 1.10 dante
1696 1.10 dante
1697 1.10 dante /*
1698 1.16 dante * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1699 1.7 dante *
1700 1.7 dante * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1701 1.7 dante * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1702 1.7 dante * RISC to notify it a new command is ready to be executed.
1703 1.1 dante *
1704 1.7 dante * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1705 1.7 dante * set to SCSI_MAX_RETRY.
1706 1.1 dante *
1707 1.7 dante * Return:
1708 1.7 dante * ADW_SUCCESS(1) - The request was successfully queued.
1709 1.7 dante * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1710 1.7 dante * request completes.
1711 1.7 dante * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1712 1.7 dante * host IC error.
1713 1.1 dante */
1714 1.7 dante int
1715 1.16 dante AdwExeScsiQueue(sc, scsiq)
1716 1.7 dante ADW_SOFTC *sc;
1717 1.7 dante ADW_SCSI_REQ_Q *scsiq;
1718 1.1 dante {
1719 1.7 dante bus_space_tag_t iot = sc->sc_iot;
1720 1.7 dante bus_space_handle_t ioh = sc->sc_ioh;
1721 1.7 dante ADW_CCB *ccb;
1722 1.7 dante long req_size;
1723 1.7 dante u_int32_t req_paddr;
1724 1.10 dante ADW_CARRIER *new_carrp;
1725 1.7 dante
1726 1.7 dante /*
1727 1.7 dante * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1728 1.7 dante */
1729 1.7 dante if (scsiq->target_id > ADW_MAX_TID) {
1730 1.7 dante scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1731 1.7 dante scsiq->done_status = QD_WITH_ERROR;
1732 1.7 dante return ADW_ERROR;
1733 1.7 dante }
1734 1.7 dante
1735 1.10 dante /*
1736 1.10 dante * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1737 1.10 dante */
1738 1.10 dante
1739 1.7 dante ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1740 1.7 dante
1741 1.7 dante /*
1742 1.16 dante * Allocate a carrier and initialize fields.
1743 1.7 dante */
1744 1.7 dante if ((new_carrp = sc->carr_freelist) == NULL) {
1745 1.7 dante return ADW_BUSY;
1746 1.7 dante }
1747 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1748 1.12 dante ASC_GET_CARRP(new_carrp->next_ba));
1749 1.7 dante sc->carr_pending_cnt++;
1750 1.7 dante
1751 1.7 dante /*
1752 1.12 dante * Set the carrier to be a stopper by setting 'next_ba'
1753 1.7 dante * to the stopper value. The current stopper will be changed
1754 1.7 dante * below to point to the new stopper.
1755 1.7 dante */
1756 1.12 dante new_carrp->next_ba = ASC_CQ_STOPPER;
1757 1.7 dante
1758 1.7 dante req_size = sizeof(ADW_SCSI_REQ_Q);
1759 1.7 dante req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1760 1.7 dante ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1761 1.7 dante
1762 1.7 dante /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1763 1.7 dante scsiq->scsiq_rptr = req_paddr;
1764 1.7 dante
1765 1.7 dante /*
1766 1.12 dante * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1767 1.7 dante * order during initialization.
1768 1.7 dante */
1769 1.12 dante scsiq->carr_ba = sc->icq_sp->carr_ba;
1770 1.12 dante scsiq->carr_va = sc->icq_sp->carr_ba;
1771 1.1 dante
1772 1.7 dante /*
1773 1.7 dante * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1774 1.7 dante * the microcode. The newly allocated stopper will become the new
1775 1.7 dante * stopper.
1776 1.7 dante */
1777 1.12 dante sc->icq_sp->areq_ba = req_paddr;
1778 1.1 dante
1779 1.1 dante /*
1780 1.12 dante * Set the 'next_ba' pointer for the old stopper to be the
1781 1.7 dante * physical address of the new stopper. The RISC can only
1782 1.7 dante * follow physical addresses.
1783 1.1 dante */
1784 1.12 dante sc->icq_sp->next_ba = new_carrp->carr_ba;
1785 1.1 dante
1786 1.12 dante #if ADW_DEBUG
1787 1.12 dante printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1788 1.12 dante sc->icq_sp->carr_id,
1789 1.12 dante sc->icq_sp->carr_ba,
1790 1.12 dante sc->icq_sp->areq_ba,
1791 1.12 dante sc->icq_sp->next_ba);
1792 1.12 dante #endif
1793 1.1 dante /*
1794 1.7 dante * Set the host adapter stopper pointer to point to the new carrier.
1795 1.1 dante */
1796 1.7 dante sc->icq_sp = new_carrp;
1797 1.11 dante
1798 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
1799 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
1800 1.7 dante /*
1801 1.10 dante * Tickle the RISC to tell it to read its Command Queue Head
1802 1.10 dante * pointer.
1803 1.10 dante */
1804 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1805 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
1806 1.10 dante /*
1807 1.10 dante * Clear the tickle value. In the ASC-3550 the RISC flag
1808 1.10 dante * command 'clr_tickle_a' does not work unless the host
1809 1.10 dante * value is cleared.
1810 1.10 dante */
1811 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1812 1.20 itojun ADW_TICKLE_NOP);
1813 1.10 dante }
1814 1.16 dante } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1815 1.10 dante /*
1816 1.10 dante * Notify the RISC a carrier is ready by writing the physical
1817 1.10 dante * address of the new carrier stopper to the COMMA register.
1818 1.7 dante */
1819 1.10 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1820 1.12 dante new_carrp->carr_ba);
1821 1.7 dante }
1822 1.7 dante
1823 1.10 dante /*
1824 1.10 dante * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1825 1.10 dante */
1826 1.10 dante
1827 1.7 dante return ADW_SUCCESS;
1828 1.1 dante }
1829 1.1 dante
1830 1.7 dante
1831 1.7 dante void
1832 1.16 dante AdwResetChip(iot, ioh)
1833 1.7 dante bus_space_tag_t iot;
1834 1.7 dante bus_space_handle_t ioh;
1835 1.1 dante {
1836 1.7 dante
1837 1.7 dante /*
1838 1.7 dante * Reset Chip.
1839 1.7 dante */
1840 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1841 1.7 dante ADW_CTRL_REG_CMD_RESET);
1842 1.16 dante AdwSleepMilliSecond(100);
1843 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1844 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1845 1.1 dante }
1846 1.1 dante
1847 1.7 dante
1848 1.1 dante /*
1849 1.1 dante * Reset SCSI Bus and purge all outstanding requests.
1850 1.1 dante *
1851 1.1 dante * Return Value:
1852 1.7 dante * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1853 1.7 dante * ADW_FALSE(0) - Microcode command failed.
1854 1.7 dante * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1855 1.7 dante * may be hung which requires driver recovery.
1856 1.1 dante */
1857 1.1 dante int
1858 1.16 dante AdwResetCCB(sc)
1859 1.7 dante ADW_SOFTC *sc;
1860 1.1 dante {
1861 1.7 dante int status;
1862 1.7 dante
1863 1.7 dante /*
1864 1.7 dante * Send the SCSI Bus Reset idle start idle command which asserts
1865 1.7 dante * the SCSI Bus Reset signal.
1866 1.7 dante */
1867 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1868 1.11 dante if (status != ADW_TRUE) {
1869 1.7 dante return status;
1870 1.7 dante }
1871 1.7 dante
1872 1.7 dante /*
1873 1.7 dante * Delay for the specified SCSI Bus Reset hold time.
1874 1.7 dante *
1875 1.7 dante * The hold time delay is done on the host because the RISC has no
1876 1.7 dante * microsecond accurate timer.
1877 1.7 dante */
1878 1.16 dante AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1879 1.1 dante
1880 1.7 dante /*
1881 1.7 dante * Send the SCSI Bus Reset end idle command which de-asserts
1882 1.7 dante * the SCSI Bus Reset signal and purges any pending requests.
1883 1.7 dante */
1884 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1885 1.11 dante if (status != ADW_TRUE) {
1886 1.7 dante return status;
1887 1.7 dante }
1888 1.1 dante
1889 1.16 dante AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1890 1.1 dante
1891 1.1 dante return status;
1892 1.1 dante }
1893 1.1 dante
1894 1.7 dante
1895 1.1 dante /*
1896 1.7 dante * Reset chip and SCSI Bus.
1897 1.7 dante *
1898 1.7 dante * Return Value:
1899 1.7 dante * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1900 1.7 dante * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1901 1.1 dante */
1902 1.7 dante int
1903 1.16 dante AdwResetSCSIBus(sc)
1904 1.7 dante ADW_SOFTC *sc;
1905 1.1 dante {
1906 1.2 dante bus_space_tag_t iot = sc->sc_iot;
1907 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
1908 1.7 dante int status;
1909 1.10 dante u_int16_t wdtr_able, sdtr_able, ppr_able, tagqng_able;
1910 1.7 dante u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1911 1.7 dante u_int16_t bios_sig;
1912 1.7 dante
1913 1.7 dante
1914 1.7 dante /*
1915 1.7 dante * Save current per TID negotiated values.
1916 1.7 dante */
1917 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1918 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1919 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1920 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1921 1.10 dante }
1922 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1923 1.11 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1924 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1925 1.7 dante max_cmd[tid]);
1926 1.7 dante }
1927 1.7 dante
1928 1.7 dante /*
1929 1.17 dante * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1930 1.17 dante * by clearing the BIOS signature word.
1931 1.7 dante * The initialization functions assumes a SCSI Bus Reset is not
1932 1.7 dante * needed if the BIOS signature word is present.
1933 1.7 dante */
1934 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1935 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1936 1.7 dante
1937 1.7 dante /*
1938 1.7 dante * Stop chip and reset it.
1939 1.7 dante */
1940 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1941 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1942 1.7 dante ADW_CTRL_REG_CMD_RESET);
1943 1.16 dante AdwSleepMilliSecond(100);
1944 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1945 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1946 1.7 dante
1947 1.7 dante /*
1948 1.7 dante * Reset Adv Library error code, if any, and try
1949 1.7 dante * re-initializing the chip.
1950 1.17 dante * Then translate initialization return value to status value.
1951 1.7 dante */
1952 1.17 dante status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1953 1.1 dante
1954 1.7 dante /*
1955 1.7 dante * Restore the BIOS signature word.
1956 1.7 dante */
1957 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1958 1.1 dante
1959 1.1 dante /*
1960 1.7 dante * Restore per TID negotiated values.
1961 1.1 dante */
1962 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1963 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1964 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1965 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1966 1.10 dante }
1967 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1968 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1969 1.16 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1970 1.7 dante max_cmd[tid]);
1971 1.7 dante }
1972 1.1 dante
1973 1.7 dante return status;
1974 1.1 dante }
1975 1.1 dante
1976 1.1 dante
1977 1.1 dante /*
1978 1.1 dante * Adv Library Interrupt Service Routine
1979 1.1 dante *
1980 1.1 dante * This function is called by a driver's interrupt service routine.
1981 1.1 dante * The function disables and re-enables interrupts.
1982 1.1 dante *
1983 1.7 dante * When a microcode idle command is completed, the ADV_DVC_VAR
1984 1.1 dante * 'idle_cmd_done' field is set to ADW_TRUE.
1985 1.1 dante *
1986 1.16 dante * Note: AdwISR() can be called when interrupts are disabled or even
1987 1.1 dante * when there is no hardware interrupt condition present. It will
1988 1.1 dante * always check for completed idle commands and microcode requests.
1989 1.1 dante * This is an important feature that shouldn't be changed because it
1990 1.1 dante * allows commands to be completed from polling mode loops.
1991 1.1 dante *
1992 1.1 dante * Return:
1993 1.1 dante * ADW_TRUE(1) - interrupt was pending
1994 1.1 dante * ADW_FALSE(0) - no interrupt was pending
1995 1.1 dante */
1996 1.1 dante int
1997 1.16 dante AdwISR(sc)
1998 1.7 dante ADW_SOFTC *sc;
1999 1.1 dante {
2000 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2001 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2002 1.7 dante u_int8_t int_stat;
2003 1.7 dante u_int16_t target_bit;
2004 1.7 dante ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2005 1.7 dante u_int32_t irq_next_pa;
2006 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2007 1.7 dante ADW_CCB *ccb;
2008 1.11 dante int s;
2009 1.11 dante
2010 1.1 dante
2011 1.11 dante s = splbio();
2012 1.1 dante
2013 1.1 dante /* Reading the register clears the interrupt. */
2014 1.1 dante int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2015 1.1 dante
2016 1.7 dante if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2017 1.7 dante ADW_INTR_STATUS_INTRC)) == 0) {
2018 1.11 dante splx(s);
2019 1.7 dante return ADW_FALSE;
2020 1.1 dante }
2021 1.7 dante
2022 1.7 dante /*
2023 1.7 dante * Notify the driver of an asynchronous microcode condition by
2024 1.7 dante * calling the ADV_DVC_VAR.async_callback function. The function
2025 1.16 dante * is passed the microcode ADW_MC_INTRB_CODE byte value.
2026 1.1 dante */
2027 1.7 dante if (int_stat & ADW_INTR_STATUS_INTRB) {
2028 1.7 dante u_int8_t intrb_code;
2029 1.7 dante
2030 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2031 1.10 dante
2032 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
2033 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
2034 1.10 dante if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2035 1.10 dante sc->carr_pending_cnt != 0) {
2036 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2037 1.20 itojun IOPB_TICKLE, ADW_TICKLE_A);
2038 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2039 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2040 1.20 itojun IOPB_TICKLE, ADW_TICKLE_NOP);
2041 1.10 dante }
2042 1.10 dante }
2043 1.7 dante }
2044 1.7 dante
2045 1.7 dante if (sc->async_callback != 0) {
2046 1.7 dante (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2047 1.1 dante }
2048 1.1 dante }
2049 1.7 dante
2050 1.1 dante /*
2051 1.7 dante * Check if the IRQ stopper carrier contains a completed request.
2052 1.1 dante */
2053 1.12 dante while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
2054 1.7 dante {
2055 1.12 dante #if ADW_DEBUG
2056 1.12 dante printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2057 1.12 dante sc->irq_sp->carr_id,
2058 1.12 dante sc->irq_sp->carr_ba,
2059 1.12 dante sc->irq_sp->areq_ba,
2060 1.12 dante sc->irq_sp->next_ba);
2061 1.12 dante #endif
2062 1.7 dante /*
2063 1.10 dante * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2064 1.10 dante * structure.
2065 1.12 dante * The RISC will have set 'areq_ba' to a virtual address.
2066 1.7 dante *
2067 1.7 dante * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2068 1.12 dante * field to the carrier ADV_CARR_T.areq_ba field.
2069 1.10 dante * The conversion below complements the conversion of
2070 1.16 dante * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2071 1.7 dante */
2072 1.12 dante ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2073 1.7 dante scsiq = &ccb->scsiq;
2074 1.12 dante scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2075 1.7 dante
2076 1.10 dante /*
2077 1.10 dante * Request finished with good status and the queue was not
2078 1.10 dante * DMAed to host memory by the firmware. Set all status fields
2079 1.10 dante * to indicate good status.
2080 1.10 dante */
2081 1.10 dante if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
2082 1.10 dante scsiq->done_status = QD_NO_ERROR;
2083 1.10 dante scsiq->host_status = scsiq->scsi_status = 0;
2084 1.10 dante scsiq->data_cnt = 0L;
2085 1.7 dante }
2086 1.1 dante
2087 1.1 dante /*
2088 1.7 dante * Advance the stopper pointer to the next carrier
2089 1.7 dante * ignoring the lower four bits. Free the previous
2090 1.7 dante * stopper carrier.
2091 1.1 dante */
2092 1.7 dante free_carrp = sc->irq_sp;
2093 1.16 dante sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2094 1.7 dante
2095 1.16 dante free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2096 1.16 dante : sc->carr_freelist->carr_ba;
2097 1.7 dante sc->carr_freelist = free_carrp;
2098 1.7 dante sc->carr_pending_cnt--;
2099 1.1 dante
2100 1.1 dante
2101 1.1 dante target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2102 1.1 dante
2103 1.1 dante /*
2104 1.1 dante * Clear request microcode control flag.
2105 1.1 dante */
2106 1.1 dante scsiq->cntl = 0;
2107 1.1 dante
2108 1.1 dante /*
2109 1.1 dante * Check Condition handling
2110 1.1 dante */
2111 1.1 dante /*
2112 1.1 dante * If the command that completed was a SCSI INQUIRY and
2113 1.1 dante * LUN 0 was sent the command, then process the INQUIRY
2114 1.1 dante * command information for the device.
2115 1.1 dante */
2116 1.7 dante if (scsiq->done_status == QD_NO_ERROR &&
2117 1.10 dante scsiq->cdb[0] == INQUIRY &&
2118 1.10 dante scsiq->target_lun == 0) {
2119 1.16 dante AdwInquiryHandling(sc, scsiq);
2120 1.1 dante }
2121 1.1 dante
2122 1.1 dante /*
2123 1.1 dante * Notify the driver of the completed request by passing
2124 1.1 dante * the ADW_SCSI_REQ_Q pointer to its callback function.
2125 1.1 dante */
2126 1.7 dante (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2127 1.1 dante /*
2128 1.1 dante * Note: After the driver callback function is called, 'scsiq'
2129 1.1 dante * can no longer be referenced.
2130 1.1 dante *
2131 1.1 dante * Fall through and continue processing other completed
2132 1.1 dante * requests...
2133 1.1 dante */
2134 1.1 dante }
2135 1.11 dante
2136 1.11 dante splx(s);
2137 1.7 dante
2138 1.7 dante return ADW_TRUE;
2139 1.1 dante }
2140 1.1 dante
2141 1.7 dante
2142 1.1 dante /*
2143 1.1 dante * Send an idle command to the chip and wait for completion.
2144 1.1 dante *
2145 1.7 dante * Command completion is polled for once per microsecond.
2146 1.7 dante *
2147 1.7 dante * The function can be called from anywhere including an interrupt handler.
2148 1.10 dante * But the function is not re-entrant, so it uses the splbio/splx()
2149 1.7 dante * functions to prevent reentrancy.
2150 1.1 dante *
2151 1.1 dante * Return Values:
2152 1.1 dante * ADW_TRUE - command completed successfully
2153 1.1 dante * ADW_FALSE - command failed
2154 1.7 dante * ADW_ERROR - command timed out
2155 1.1 dante */
2156 1.1 dante int
2157 1.16 dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2158 1.7 dante ADW_SOFTC *sc;
2159 1.7 dante u_int16_t idle_cmd;
2160 1.7 dante u_int32_t idle_cmd_parameter;
2161 1.1 dante {
2162 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2163 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2164 1.13 dante u_int16_t result;
2165 1.10 dante u_int32_t i, j, s;
2166 1.1 dante
2167 1.10 dante s = splbio();
2168 1.7 dante
2169 1.7 dante /*
2170 1.7 dante * Clear the idle command status which is set by the microcode
2171 1.7 dante * to a non-zero value to indicate when the command is completed.
2172 1.7 dante */
2173 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2174 1.1 dante
2175 1.1 dante /*
2176 1.1 dante * Write the idle command value after the idle command parameter
2177 1.1 dante * has been written to avoid a race condition. If the order is not
2178 1.1 dante * followed, the microcode may process the idle command before the
2179 1.1 dante * parameters have been written to LRAM.
2180 1.1 dante */
2181 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2182 1.13 dante idle_cmd_parameter);
2183 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2184 1.1 dante
2185 1.1 dante /*
2186 1.7 dante * Tickle the RISC to tell it to process the idle command.
2187 1.1 dante */
2188 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2189 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2190 1.1 dante /*
2191 1.7 dante * Clear the tickle value. In the ASC-3550 the RISC flag
2192 1.7 dante * command 'clr_tickle_b' does not work unless the host
2193 1.7 dante * value is cleared.
2194 1.1 dante */
2195 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2196 1.7 dante }
2197 1.1 dante
2198 1.7 dante /* Wait for up to 100 millisecond for the idle command to timeout. */
2199 1.7 dante for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2200 1.7 dante /* Poll once each microsecond for command completion. */
2201 1.7 dante for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2202 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2203 1.17 dante result);
2204 1.7 dante if (result != 0) {
2205 1.10 dante splx(s);
2206 1.7 dante return result;
2207 1.7 dante }
2208 1.16 dante AdwDelayMicroSecond(1);
2209 1.7 dante }
2210 1.1 dante }
2211 1.1 dante
2212 1.10 dante splx(s);
2213 1.7 dante return ADW_ERROR;
2214 1.1 dante }
2215 1.1 dante
2216 1.1 dante
2217 1.1 dante /*
2218 1.1 dante * Inquiry Information Byte 7 Handling
2219 1.1 dante *
2220 1.1 dante * Handle SCSI Inquiry Command information for a device by setting
2221 1.2 dante * microcode operating variables that affect WDTR, SDTR, and Tag
2222 1.1 dante * Queuing.
2223 1.1 dante */
2224 1.1 dante static void
2225 1.16 dante AdwInquiryHandling(sc, scsiq)
2226 1.7 dante ADW_SOFTC *sc;
2227 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2228 1.1 dante {
2229 1.9 dante #ifndef FAILSAFE
2230 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2231 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2232 1.7 dante u_int8_t tid;
2233 1.13 dante struct scsipi_inquiry_data *inq;
2234 1.7 dante u_int16_t tidmask;
2235 1.7 dante u_int16_t cfg_word;
2236 1.7 dante
2237 1.1 dante
2238 1.1 dante /*
2239 1.16 dante * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2240 1.1 dante * to be available.
2241 1.1 dante *
2242 1.1 dante * If less than 8 bytes of INQUIRY information were requested or less
2243 1.1 dante * than 8 bytes were transferred, then return. cdb[4] is the request
2244 1.1 dante * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2245 1.1 dante * microcode to the transfer residual count.
2246 1.1 dante */
2247 1.7 dante
2248 1.2 dante if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2249 1.1 dante return;
2250 1.1 dante }
2251 1.7 dante
2252 1.1 dante tid = scsiq->target_id;
2253 1.7 dante
2254 1.13 dante inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2255 1.1 dante
2256 1.1 dante /*
2257 1.1 dante * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2258 1.1 dante */
2259 1.13 dante if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2260 1.13 dante ((inq->version & SID_ANSII) < 2)) {
2261 1.1 dante return;
2262 1.2 dante } else {
2263 1.1 dante /*
2264 1.1 dante * INQUIRY Byte 7 Handling
2265 1.1 dante *
2266 1.1 dante * Use a device's INQUIRY byte 7 to determine whether it
2267 1.1 dante * supports WDTR, SDTR, and Tag Queuing. If the feature
2268 1.1 dante * is enabled in the EEPROM and the device supports the
2269 1.1 dante * feature, then enable it in the microcode.
2270 1.1 dante */
2271 1.1 dante
2272 1.1 dante tidmask = ADW_TID_TO_TIDMASK(tid);
2273 1.7 dante
2274 1.1 dante /*
2275 1.1 dante * Wide Transfers
2276 1.1 dante *
2277 1.1 dante * If the EEPROM enabled WDTR for the device and the device
2278 1.1 dante * supports wide bus (16 bit) transfers, then turn on the
2279 1.1 dante * device's 'wdtr_able' bit and write the new value to the
2280 1.1 dante * microcode.
2281 1.1 dante */
2282 1.7 dante #ifdef SCSI_ADW_WDTR_DISABLE
2283 1.8 dante if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2284 1.7 dante #endif /* SCSI_ADW_WDTR_DISABLE */
2285 1.13 dante if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2286 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2287 1.7 dante cfg_word);
2288 1.2 dante if ((cfg_word & tidmask) == 0) {
2289 1.1 dante cfg_word |= tidmask;
2290 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2291 1.7 dante cfg_word);
2292 1.1 dante
2293 1.1 dante /*
2294 1.16 dante * Clear the microcode "SDTR negotiation" and
2295 1.16 dante * "WDTR negotiation" done indicators for the
2296 1.16 dante * target to cause it to negotiate with the new
2297 1.16 dante * setting set above.
2298 1.7 dante * WDTR when accepted causes the target to enter
2299 1.16 dante * asynchronous mode, so SDTR must be negotiated
2300 1.1 dante */
2301 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2302 1.7 dante cfg_word);
2303 1.7 dante cfg_word &= ~tidmask;
2304 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2305 1.7 dante cfg_word);
2306 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2307 1.7 dante cfg_word);
2308 1.1 dante cfg_word &= ~tidmask;
2309 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2310 1.7 dante cfg_word);
2311 1.1 dante }
2312 1.1 dante }
2313 1.7 dante
2314 1.1 dante /*
2315 1.1 dante * Synchronous Transfers
2316 1.1 dante *
2317 1.1 dante * If the EEPROM enabled SDTR for the device and the device
2318 1.1 dante * supports synchronous transfers, then turn on the device's
2319 1.1 dante * 'sdtr_able' bit. Write the new value to the microcode.
2320 1.1 dante */
2321 1.7 dante #ifdef SCSI_ADW_SDTR_DISABLE
2322 1.8 dante if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2323 1.7 dante #endif /* SCSI_ADW_SDTR_DISABLE */
2324 1.13 dante if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2325 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2326 1.2 dante if ((cfg_word & tidmask) == 0) {
2327 1.1 dante cfg_word |= tidmask;
2328 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2329 1.7 dante cfg_word);
2330 1.1 dante
2331 1.1 dante /*
2332 1.16 dante * Clear the microcode "SDTR negotiation"
2333 1.16 dante * done indicator for the target to cause it
2334 1.16 dante * to negotiate with the new setting set above.
2335 1.1 dante */
2336 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2337 1.7 dante cfg_word);
2338 1.1 dante cfg_word &= ~tidmask;
2339 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2340 1.7 dante cfg_word);
2341 1.10 dante }
2342 1.10 dante }
2343 1.10 dante /*
2344 1.10 dante * If the Inquiry data included enough space for the SPI-3
2345 1.10 dante * Clocking field, then check if DT mode is supported.
2346 1.10 dante */
2347 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2348 1.17 dante (scsiq->cdb[4] >= 57 ||
2349 1.17 dante (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2350 1.10 dante /*
2351 1.10 dante * PPR (Parallel Protocol Request) Capable
2352 1.10 dante *
2353 1.10 dante * If the device supports DT mode, then it must be
2354 1.10 dante * PPR capable.
2355 1.10 dante * The PPR message will be used in place of the SDTR
2356 1.10 dante * and WDTR messages to negotiate synchronous speed
2357 1.10 dante * and offset, transfer width, and protocol options.
2358 1.10 dante */
2359 1.15 dante if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2360 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2361 1.10 dante sc->ppr_able);
2362 1.10 dante sc->ppr_able |= tidmask;
2363 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2364 1.10 dante sc->ppr_able);
2365 1.1 dante }
2366 1.1 dante }
2367 1.7 dante
2368 1.1 dante /*
2369 1.7 dante * If the EEPROM enabled Tag Queuing for the device and the
2370 1.7 dante * device supports Tag Queueing, then turn on the device's
2371 1.1 dante * 'tagqng_enable' bit in the microcode and set the microcode
2372 1.7 dante * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2373 1.1 dante * value.
2374 1.1 dante *
2375 1.1 dante * Tag Queuing is disabled for the BIOS which runs in polled
2376 1.1 dante * mode and would see no benefit from Tag Queuing. Also by
2377 1.1 dante * disabling Tag Queuing in the BIOS devices with Tag Queuing
2378 1.1 dante * bugs will at least work with the BIOS.
2379 1.1 dante */
2380 1.7 dante #ifdef SCSI_ADW_TAGQ_DISABLE
2381 1.8 dante if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2382 1.7 dante #endif /* SCSI_ADW_TAGQ_DISABLE */
2383 1.13 dante if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2384 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2385 1.7 dante cfg_word);
2386 1.1 dante cfg_word |= tidmask;
2387 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2388 1.7 dante cfg_word);
2389 1.7 dante
2390 1.1 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
2391 1.16 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
2392 1.7 dante sc->max_dvc_qng);
2393 1.1 dante }
2394 1.9 dante }
2395 1.7 dante #endif /* FAILSAFE */
2396 1.1 dante }
2397 1.1 dante
2398 1.7 dante
2399 1.1 dante static void
2400 1.16 dante AdwSleepMilliSecond(n)
2401 1.7 dante u_int32_t n;
2402 1.1 dante {
2403 1.1 dante
2404 1.1 dante DELAY(n * 1000);
2405 1.1 dante }
2406 1.1 dante
2407 1.7 dante
2408 1.1 dante static void
2409 1.16 dante AdwDelayMicroSecond(n)
2410 1.7 dante u_int32_t n;
2411 1.1 dante {
2412 1.1 dante
2413 1.1 dante DELAY(n);
2414 1.1 dante }
2415 1.7 dante
2416