Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.21
      1  1.21   lukem /* $NetBSD: adwlib.c,v 1.21 2001/04/30 03:43:09 lukem Exp $        */
      2   1.1   dante 
      3   1.1   dante /*
      4   1.1   dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5   1.1   dante  *
      6   1.7   dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7   1.1   dante  * All rights reserved.
      8   1.1   dante  *
      9   1.1   dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10   1.1   dante  *
     11   1.1   dante  * Redistribution and use in source and binary forms, with or without
     12   1.1   dante  * modification, are permitted provided that the following conditions
     13   1.1   dante  * are met:
     14   1.1   dante  * 1. Redistributions of source code must retain the above copyright
     15   1.1   dante  *    notice, this list of conditions and the following disclaimer.
     16   1.1   dante  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1   dante  *    notice, this list of conditions and the following disclaimer in the
     18   1.1   dante  *    documentation and/or other materials provided with the distribution.
     19   1.1   dante  * 3. All advertising materials mentioning features or use of this software
     20   1.1   dante  *    must display the following acknowledgement:
     21   1.1   dante  *        This product includes software developed by the NetBSD
     22   1.1   dante  *        Foundation, Inc. and its contributors.
     23   1.1   dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.1   dante  *    contributors may be used to endorse or promote products derived
     25   1.1   dante  *    from this software without specific prior written permission.
     26   1.1   dante  *
     27   1.1   dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.1   dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.1   dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.1   dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.1   dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.1   dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.1   dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.1   dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.1   dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.1   dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.1   dante  * POSSIBILITY OF SUCH DAMAGE.
     38   1.1   dante  */
     39   1.1   dante /*
     40   1.1   dante  * Ported from:
     41   1.1   dante  */
     42   1.1   dante /*
     43   1.1   dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44   1.7   dante  *
     45  1.10   dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46   1.1   dante  * All Rights Reserved.
     47   1.1   dante  *
     48   1.1   dante  * Redistribution and use in source and binary forms, with or without
     49   1.1   dante  * modification, are permitted provided that redistributions of source
     50   1.1   dante  * code retain the above copyright notice and this comment without
     51   1.1   dante  * modification.
     52   1.1   dante  */
     53   1.1   dante 
     54   1.1   dante #include <sys/types.h>
     55   1.1   dante #include <sys/param.h>
     56   1.1   dante #include <sys/systm.h>
     57   1.1   dante #include <sys/malloc.h>
     58   1.1   dante #include <sys/kernel.h>
     59   1.1   dante #include <sys/queue.h>
     60   1.1   dante #include <sys/device.h>
     61   1.1   dante 
     62   1.1   dante #include <machine/bus.h>
     63   1.1   dante #include <machine/intr.h>
     64   1.1   dante 
     65   1.1   dante #include <dev/scsipi/scsi_all.h>
     66   1.1   dante #include <dev/scsipi/scsipi_all.h>
     67   1.1   dante #include <dev/scsipi/scsiconf.h>
     68   1.1   dante 
     69   1.7   dante #include <dev/pci/pcidevs.h>
     70   1.7   dante 
     71  1.19     mrg #include <uvm/uvm_extern.h>
     72   1.1   dante 
     73   1.1   dante #include <dev/ic/adwlib.h>
     74  1.16   dante #include <dev/ic/adwmcode.h>
     75   1.1   dante #include <dev/ic/adw.h>
     76   1.1   dante 
     77   1.1   dante 
     78   1.1   dante /* Static Functions */
     79   1.1   dante 
     80  1.17   dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     81  1.17   dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     82  1.17   dante 								u_int8_t));
     83  1.17   dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     84  1.17   dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     85  1.17   dante 								ADW_DVC_CFG *));
     86  1.17   dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87  1.17   dante 								ADW_DVC_CFG *));
     88  1.17   dante 
     89  1.17   dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     90  1.17   dante      							ADW_EEPROM *));
     91  1.17   dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92  1.17   dante 					                 ADW_EEPROM *));
     93  1.16   dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     94  1.16   dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     95  1.17   dante 
     96  1.16   dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97   1.1   dante 
     98  1.16   dante static void AdwSleepMilliSecond __P((u_int32_t));
     99  1.16   dante static void AdwDelayMicroSecond __P((u_int32_t));
    100   1.1   dante 
    101   1.1   dante 
    102   1.1   dante /*
    103   1.1   dante  * EEPROM Configuration.
    104   1.1   dante  *
    105   1.1   dante  * All drivers should use this structure to set the default EEPROM
    106   1.1   dante  * configuration. The BIOS now uses this structure when it is built.
    107  1.16   dante  * Additional structure information can be found in adwlib.h where
    108   1.1   dante  * the structure is defined.
    109   1.1   dante  */
    110  1.17   dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
    111  1.17   dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    112  1.17   dante 	0x0000,			/* 01 cfg_msw */
    113  1.17   dante 	0xFFFF,			/* 02 disc_enable */
    114  1.17   dante 	0xFFFF,			/* 03 wdtr_able */
    115  1.17   dante 	{ 0xFFFF },		/* 04 sdtr_able */
    116  1.17   dante 	0xFFFF,			/* 05 start_motor */
    117  1.17   dante 	0xFFFF,			/* 06 tagqng_able */
    118  1.17   dante 	0xFFFF,			/* 07 bios_scan */
    119  1.17   dante 	0,			/* 08 scam_tolerant */
    120  1.17   dante 	7,			/* 09 adapter_scsi_id */
    121  1.17   dante 	0,			/*    bios_boot_delay */
    122  1.17   dante 	3,			/* 10 scsi_reset_delay */
    123  1.17   dante 	0,			/*    bios_id_lun */
    124  1.17   dante 	0,			/* 11 termination */
    125  1.17   dante 	0,			/*    reserved1 */
    126  1.17   dante 	0xFFE7,			/* 12 bios_ctrl */
    127  1.17   dante 	{ 0xFFFF },		/* 13 ultra_able */
    128  1.17   dante 	{ 0 },			/* 14 reserved2 */
    129  1.17   dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    130  1.17   dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    131  1.17   dante 	0,			/* 16 dvc_cntl */
    132  1.17   dante 	{ 0 },			/* 17 bug_fix */
    133  1.17   dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    134  1.17   dante 	0,			/* 21 check_sum */
    135  1.17   dante 	{			/* 22-29 oem_name[16] */
    136  1.17   dante 	  0,0,0,0,0,0,0,0,
    137  1.17   dante 	  0,0,0,0,0,0,0,0
    138  1.17   dante 	},
    139  1.17   dante 	0,			/* 30 dvc_err_code */
    140  1.17   dante 	0,			/* 31 adv_err_code */
    141  1.17   dante 	0,			/* 32 adv_err_addr */
    142  1.17   dante 	0,			/* 33 saved_dvc_err_code */
    143  1.17   dante 	0,			/* 34 saved_adv_err_code */
    144  1.17   dante 	0			/* 35 saved_adv_err_addr */
    145   1.7   dante };
    146   1.7   dante 
    147  1.17   dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    148   1.7   dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    149   1.7   dante 	0x0000,			/* 01 cfg_msw */
    150   1.7   dante 	0xFFFF,			/* 02 disc_enable */
    151   1.7   dante 	0xFFFF,			/* 03 wdtr_able */
    152  1.17   dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    153   1.7   dante 	0xFFFF,			/* 05 start_motor */
    154   1.7   dante 	0xFFFF,			/* 06 tagqng_able */
    155   1.7   dante 	0xFFFF,			/* 07 bios_scan */
    156   1.7   dante 	0,			/* 08 scam_tolerant */
    157   1.7   dante 	7,			/* 09 adapter_scsi_id */
    158   1.7   dante 	0,			/*    bios_boot_delay */
    159   1.7   dante 	3,			/* 10 scsi_reset_delay */
    160   1.7   dante 	0,			/*    bios_id_lun */
    161   1.7   dante 	0,			/* 11 termination_se */
    162   1.7   dante 	0,			/*    termination_lvd */
    163   1.7   dante 	0xFFE7,			/* 12 bios_ctrl */
    164  1.17   dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    165  1.17   dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    166  1.16   dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    167  1.16   dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    168   1.7   dante 	0,			/* 16 dvc_cntl */
    169  1.17   dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    170  1.17   dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    171   1.7   dante 	0,			/* 21 check_sum */
    172  1.17   dante 	{			/* 22-29 oem_name[16] */
    173  1.17   dante 	  0,0,0,0,0,0,0,0,
    174  1.17   dante 	  0,0,0,0,0,0,0,0
    175  1.17   dante 	},
    176   1.7   dante 	0,			/* 30 dvc_err_code */
    177   1.7   dante 	0,			/* 31 adv_err_code */
    178   1.7   dante 	0,			/* 32 adv_err_addr */
    179   1.7   dante 	0,			/* 33 saved_dvc_err_code */
    180   1.7   dante 	0,			/* 34 saved_adv_err_code */
    181   1.7   dante 	0,			/* 35 saved_adv_err_addr */
    182  1.17   dante 	{			/* 36-55 reserved1[16] */
    183  1.17   dante 	  0,0,0,0,0,0,0,0,0,0,
    184  1.17   dante 	  0,0,0,0,0,0,0,0,0,0
    185  1.17   dante 	},
    186   1.7   dante 	0,			/* 56 cisptr_lsw */
    187   1.7   dante 	0,			/* 57 cisprt_msw */
    188   1.7   dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    189   1.7   dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    190  1.17   dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    191   1.1   dante };
    192   1.1   dante 
    193  1.17   dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    194  1.10   dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    195  1.10   dante 	0x0000,			/* 01 cfg_msw */
    196  1.10   dante 	0xFFFF,			/* 02 disc_enable */
    197  1.10   dante 	0xFFFF,			/* 03 wdtr_able */
    198  1.17   dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    199  1.10   dante 	0xFFFF,			/* 05 start_motor */
    200  1.10   dante 	0xFFFF,			/* 06 tagqng_able */
    201  1.10   dante 	0xFFFF,			/* 07 bios_scan */
    202  1.10   dante 	0,			/* 08 scam_tolerant */
    203  1.10   dante 	7,			/* 09 adapter_scsi_id */
    204  1.10   dante 	0,			/*    bios_boot_delay */
    205  1.10   dante 	3,			/* 10 scsi_reset_delay */
    206  1.10   dante 	0,			/*    bios_id_lun */
    207  1.10   dante 	0,			/* 11 termination_se */
    208  1.10   dante 	0,			/*    termination_lvd */
    209  1.10   dante 	0xFFE7,			/* 12 bios_ctrl */
    210  1.17   dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    211  1.17   dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    212  1.16   dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    213  1.16   dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    214  1.10   dante 	0,			/* 16 dvc_cntl */
    215  1.17   dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    216  1.17   dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    217  1.10   dante 	0,			/* 21 check_sum */
    218  1.17   dante 	{			/* 22-29 oem_name[16] */
    219  1.17   dante 	  0,0,0,0,0,0,0,0,
    220  1.17   dante 	  0,0,0,0,0,0,0,0
    221  1.17   dante 	},
    222  1.10   dante 	0,			/* 30 dvc_err_code */
    223  1.10   dante 	0,			/* 31 adv_err_code */
    224  1.10   dante 	0,			/* 32 adv_err_addr */
    225  1.10   dante 	0,			/* 33 saved_dvc_err_code */
    226  1.10   dante 	0,			/* 34 saved_adv_err_code */
    227  1.10   dante 	0,			/* 35 saved_adv_err_addr */
    228  1.17   dante 	{			/* 36-55 reserved1[16] */
    229  1.17   dante 	  0,0,0,0,0,0,0,0,0,0,
    230  1.17   dante 	  0,0,0,0,0,0,0,0,0,0
    231  1.17   dante 	},
    232  1.10   dante 	0,			/* 56 cisptr_lsw */
    233  1.10   dante 	0,			/* 57 cisprt_msw */
    234  1.10   dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    235  1.10   dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    236  1.17   dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    237  1.10   dante };
    238  1.10   dante 
    239  1.17   dante 
    240   1.1   dante /*
    241  1.17   dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    242  1.17   dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    243  1.17   dante  * all of this is done.
    244   1.1   dante  *
    245   1.1   dante  * For a non-fatal error return a warning code. If there are no warnings
    246   1.1   dante  * then 0 is returned.
    247  1.17   dante  *
    248  1.17   dante  * Note: Chip is stopped on entry.
    249  1.17   dante  */
    250  1.17   dante int
    251  1.17   dante AdwInitFromEEPROM(sc)
    252  1.17   dante ADW_SOFTC      *sc;
    253  1.17   dante {
    254  1.17   dante 	bus_space_tag_t iot = sc->sc_iot;
    255  1.17   dante 	bus_space_handle_t ioh = sc->sc_ioh;
    256  1.17   dante 	ADW_EEPROM		eep_config;
    257  1.17   dante 	u_int16_t		warn_code;
    258  1.17   dante 	u_int16_t		sdtr_speed = 0;
    259  1.17   dante 	u_int8_t		tid, termination;
    260  1.17   dante 	int			i, j;
    261  1.17   dante 
    262  1.17   dante 
    263  1.17   dante 	warn_code = 0;
    264  1.17   dante 
    265  1.17   dante 	/*
    266  1.17   dante 	 * Read the board's EEPROM configuration.
    267  1.17   dante 	 *
    268  1.17   dante 	 * Set default values if a bad checksum is found.
    269  1.17   dante 	 *
    270  1.17   dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    271  1.17   dante 	 */
    272  1.17   dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    273  1.17   dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    274  1.17   dante 
    275  1.17   dante 		/*
    276  1.17   dante 		 * Set EEPROM default values.
    277  1.17   dante 		 */
    278  1.17   dante 		switch(sc->chip_type) {
    279  1.17   dante 		case ADW_CHIP_ASC3550:
    280  1.17   dante 			eep_config = adw_3550_Default_EEPROM;
    281  1.17   dante 			break;
    282  1.17   dante 		case ADW_CHIP_ASC38C0800:
    283  1.17   dante 			eep_config = adw_38C0800_Default_EEPROM;
    284  1.17   dante 			break;
    285  1.17   dante 		case ADW_CHIP_ASC38C1600:
    286  1.17   dante 			eep_config = adw_38C1600_Default_EEPROM;
    287  1.17   dante 
    288  1.21   lukem #if 0
    289  1.21   lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    290  1.21   lukem #endif
    291  1.17   dante 			if (sc->cfg.pci_slot_info != 0) {
    292  1.17   dante 				u_int8_t lsw_msb;
    293  1.17   dante 
    294  1.17   dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    295  1.17   dante 				/*
    296  1.17   dante 				 * Set Function 1 EEPROM Word 0 MSB
    297  1.17   dante 				 *
    298  1.17   dante 				 * Clear the BIOS_ENABLE (bit 14) and
    299  1.17   dante 				 * INTAB (bit 11) EEPROM bits.
    300  1.17   dante 				 *
    301  1.17   dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    302  1.17   dante 				 * SPARC Ultra 60 and old Mac system booting
    303  1.17   dante 				 * problem. The Expansion ROM must
    304  1.17   dante 				 * be disabled in Function 1 for these systems.
    305  1.17   dante 				 */
    306  1.17   dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    307  1.17   dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    308  1.17   dante 				/*
    309  1.17   dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    310  1.17   dante 				 * indicates the Function 1 interrupt line is
    311  1.17   dante 				 * wired to INTA.
    312  1.17   dante 				 *
    313  1.17   dante 				 * Set/Clear Bit 11 (INTAB) from
    314  1.17   dante 				 * the GPIO bit 0 input:
    315  1.17   dante 				 *   1 - Function 1 intr line wired to INT A.
    316  1.17   dante 				 *   0 - Function 1 intr line wired to INT B.
    317  1.17   dante 				 *
    318  1.17   dante 				 * Note: Adapter boards always have Function 0
    319  1.17   dante 				 * wired to INTA.
    320  1.17   dante 				 * Put all 5 GPIO bits in input mode and then
    321  1.17   dante 				 * read their input values.
    322  1.17   dante 				 */
    323  1.17   dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    324  1.17   dante 							IOPB_GPIO_CNTL, 0);
    325  1.17   dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    326  1.17   dante 						IOPB_GPIO_DATA) & 0x01) {
    327  1.17   dante 					/*
    328  1.17   dante 					 * Function 1 interrupt wired to INTA;
    329  1.17   dante 					 * Set EEPROM bit.
    330  1.17   dante 					 */
    331  1.17   dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    332  1.17   dante 							 & 0xFF;
    333  1.17   dante 				 }
    334  1.17   dante 				 eep_config.cfg_lsw &= 0x00FF;
    335  1.17   dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    336  1.17   dante 			}
    337  1.17   dante 			break;
    338  1.17   dante 		}
    339  1.17   dante 
    340  1.17   dante 		/*
    341  1.17   dante 		 * Assume the 6 byte board serial number that was read
    342  1.17   dante 		 * from EEPROM is correct even if the EEPROM checksum
    343  1.17   dante 		 * failed.
    344  1.17   dante 		 */
    345  1.17   dante 		for (i=2, j=1; i>=0; i--, j++) {
    346  1.17   dante 		eep_config.serial_number[i] =
    347  1.17   dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    348  1.17   dante 		}
    349  1.17   dante 
    350  1.17   dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    351  1.17   dante 	}
    352  1.17   dante 	/*
    353  1.17   dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    354  1.17   dante 	 * that was read.
    355  1.17   dante 	 *
    356  1.17   dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    357  1.17   dante 	 */
    358  1.17   dante 	sc->wdtr_able = eep_config.wdtr_able;
    359  1.17   dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    360  1.17   dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    361  1.17   dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    362  1.17   dante 	} else {
    363  1.17   dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    364  1.17   dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    365  1.17   dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    366  1.17   dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    367  1.17   dante 	}
    368  1.17   dante 	sc->ppr_able = 0;
    369  1.17   dante 	sc->tagqng_able = eep_config.tagqng_able;
    370  1.17   dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    371  1.17   dante 	sc->max_host_qng = eep_config.max_host_qng;
    372  1.17   dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    373  1.17   dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    374  1.17   dante 	sc->start_motor = eep_config.start_motor;
    375  1.17   dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    376  1.17   dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    377  1.17   dante 	sc->no_scam = eep_config.scam_tolerant;
    378  1.17   dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    379  1.17   dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    380  1.17   dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    381  1.17   dante 
    382  1.17   dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    383  1.17   dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    384  1.17   dante 		sc->sdtr_able = 0;
    385  1.17   dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    386  1.17   dante 			if (tid == 0) {
    387  1.17   dante 				sdtr_speed = sc->sdtr_speed1;
    388  1.17   dante 			} else if (tid == 4) {
    389  1.17   dante 				sdtr_speed = sc->sdtr_speed2;
    390  1.17   dante 			} else if (tid == 8) {
    391  1.17   dante 				sdtr_speed = sc->sdtr_speed3;
    392  1.17   dante 			} else if (tid == 12) {
    393  1.17   dante 				sdtr_speed = sc->sdtr_speed4;
    394  1.17   dante 			}
    395  1.17   dante 			if (sdtr_speed & ADW_MAX_TID) {
    396  1.17   dante 				sc->sdtr_able |= (1 << tid);
    397  1.17   dante 			}
    398  1.17   dante 			sdtr_speed >>= 4;
    399  1.17   dante 		}
    400  1.17   dante 	}
    401  1.17   dante 
    402  1.17   dante 	/*
    403  1.17   dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    404  1.17   dante 	 * maximum queuing (max. 63, min. 4).
    405  1.17   dante 	 */
    406  1.17   dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    407  1.17   dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    408  1.17   dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    409  1.17   dante 	{
    410  1.17   dante 		/* If the value is zero, assume it is uninitialized. */
    411  1.17   dante 		if (eep_config.max_host_qng == 0) {
    412  1.17   dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413  1.17   dante 		} else {
    414  1.17   dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    415  1.17   dante 		}
    416  1.17   dante 	}
    417  1.17   dante 
    418  1.17   dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    419  1.17   dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    420  1.17   dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    421  1.17   dante 		/* If the value is zero, assume it is uninitialized. */
    422  1.17   dante 		if (eep_config.max_dvc_qng == 0) {
    423  1.17   dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    424  1.17   dante 		} else {
    425  1.17   dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    426  1.17   dante 		}
    427  1.17   dante 	}
    428  1.17   dante 
    429  1.17   dante 	/*
    430  1.17   dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    431  1.17   dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    432  1.17   dante 	 */
    433  1.17   dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    434  1.17   dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    435  1.17   dante 	}
    436  1.17   dante 
    437  1.17   dante 	/*
    438  1.17   dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    439  1.17   dante 	 * values based on possibly adjusted EEPROM values.
    440  1.17   dante 	 */
    441  1.17   dante 	sc->max_host_qng = eep_config.max_host_qng;
    442  1.17   dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    443  1.17   dante 
    444  1.17   dante 
    445  1.17   dante 	/*
    446  1.17   dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    447  1.17   dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    448  1.17   dante 	 *
    449  1.17   dante 	 * If the termination is specified with a non-zero 'termination'
    450  1.17   dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    451  1.17   dante 	 * 'termination' field appropriately.
    452  1.17   dante 	 */
    453  1.17   dante 
    454  1.17   dante 	switch(sc->chip_type) {
    455  1.17   dante 	case ADW_CHIP_ASC3550:
    456  1.17   dante 		sc->cfg.termination = 0;	/* auto termination */
    457  1.17   dante 		switch(eep_config.termination_se) {
    458  1.17   dante 		case 3:
    459  1.17   dante 			/* Enable manual control with low on / high on. */
    460  1.17   dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    461  1.17   dante 		case 2:
    462  1.17   dante 			/* Enable manual control with low off / high on. */
    463  1.17   dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    464  1.17   dante 		case 1:
    465  1.17   dante 			/* Enable manual control with low off / high off. */
    466  1.17   dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    467  1.17   dante 		case 0:
    468  1.17   dante 			break;
    469  1.17   dante 		default:
    470  1.17   dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    471  1.17   dante 		}
    472  1.17   dante 		break;
    473  1.17   dante 
    474  1.17   dante 	case ADW_CHIP_ASC38C0800:
    475  1.17   dante 	case ADW_CHIP_ASC38C1600:
    476  1.17   dante 		switch(eep_config.termination_se) {
    477  1.17   dante 		case 0:
    478  1.17   dante 			/* auto termination for SE */
    479  1.17   dante 			termination = 0;
    480  1.17   dante 			break;
    481  1.17   dante 		case 1:
    482  1.17   dante 			/* Enable manual control with low off / high off. */
    483  1.17   dante 			termination = 0;
    484  1.17   dante 			break;
    485  1.17   dante 		case 2:
    486  1.17   dante 			/* Enable manual control with low off / high on. */
    487  1.17   dante 			termination = ADW_TERM_SE_HI;
    488  1.17   dante 			break;
    489  1.17   dante 		case 3:
    490  1.17   dante 			/* Enable manual control with low on / high on. */
    491  1.17   dante 			termination = ADW_TERM_SE;
    492  1.17   dante 			break;
    493  1.17   dante 		default:
    494  1.17   dante 			/*
    495  1.17   dante 			 * The EEPROM 'termination_se' field contains a
    496  1.17   dante 			 * bad value. Use automatic termination instead.
    497  1.17   dante 			 */
    498  1.17   dante 			termination = 0;
    499  1.17   dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    500  1.17   dante 		}
    501  1.17   dante 
    502  1.17   dante 		switch(eep_config.termination_lvd) {
    503  1.17   dante 		case 0:
    504  1.17   dante 			/* auto termination for LVD */
    505  1.17   dante 			sc->cfg.termination = termination;
    506  1.17   dante 			break;
    507  1.17   dante 		case 1:
    508  1.17   dante 			/* Enable manual control with low off / high off. */
    509  1.17   dante 			sc->cfg.termination = termination;
    510  1.17   dante 			break;
    511  1.17   dante 		case 2:
    512  1.17   dante 			/* Enable manual control with low off / high on. */
    513  1.17   dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    514  1.17   dante 			break;
    515  1.17   dante 		case 3:
    516  1.17   dante 			/* Enable manual control with low on / high on. */
    517  1.17   dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    518  1.17   dante 			break;
    519  1.17   dante 		default:
    520  1.17   dante 			/*
    521  1.17   dante 			 * The EEPROM 'termination_lvd' field contains a
    522  1.17   dante 			 * bad value. Use automatic termination instead.
    523  1.17   dante 			 */
    524  1.17   dante 			sc->cfg.termination = termination;
    525  1.17   dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    526  1.17   dante 		}
    527  1.17   dante 		break;
    528  1.17   dante 	}
    529  1.17   dante 
    530  1.17   dante 	return warn_code;
    531  1.17   dante }
    532  1.17   dante 
    533  1.17   dante 
    534  1.17   dante /*
    535  1.17   dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    536  1.17   dante  *
    537  1.17   dante  * On failure return the error code.
    538   1.1   dante  */
    539   1.1   dante int
    540  1.17   dante AdwInitDriver(sc)
    541   1.2   dante ADW_SOFTC      *sc;
    542   1.1   dante {
    543   1.2   dante 	bus_space_tag_t iot = sc->sc_iot;
    544   1.2   dante 	bus_space_handle_t ioh = sc->sc_ioh;
    545  1.17   dante 	u_int16_t	error_code;
    546   1.7   dante 	int		word;
    547  1.17   dante 	int		i;
    548  1.16   dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    549   1.7   dante 								0x40-0x8F. */
    550  1.17   dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    551   1.7   dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    552  1.17   dante 	u_int8_t	tid;
    553   1.1   dante 
    554   1.1   dante 
    555  1.17   dante 	error_code = 0;
    556   1.1   dante 
    557   1.1   dante 	/*
    558   1.1   dante 	 * Save the RISC memory BIOS region before writing the microcode.
    559   1.1   dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    560   1.1   dante 	 * so its region must be saved and restored.
    561   1.1   dante 	 *
    562   1.1   dante 	 * Note: This code makes the assumption, which is currently true,
    563   1.1   dante 	 * that a chip reset does not clear RISC LRAM.
    564   1.1   dante 	 */
    565  1.16   dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    566  1.16   dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    567   1.7   dante 	}
    568   1.7   dante 
    569   1.7   dante 	/*
    570   1.7   dante 	 * Save current per TID negotiated values.
    571   1.7   dante 	 */
    572  1.17   dante 	switch (sc->chip_type) {
    573  1.17   dante 	case ADW_CHIP_ASC3550:
    574  1.17   dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    575  1.17   dante 
    576  1.17   dante 			u_int16_t  bios_version, major, minor;
    577  1.17   dante 
    578  1.17   dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    579  1.17   dante 					ADW_MC_BIOSMEM) / 2];
    580  1.17   dante 			major = (bios_version  >> 12) & 0xF;
    581  1.17   dante 			minor = (bios_version  >> 8) & 0xF;
    582  1.17   dante 			if (major < 3 || (major == 3 && minor == 1)) {
    583  1.17   dante 			    /*
    584  1.17   dante 			     * BIOS 3.1 and earlier location of
    585  1.17   dante 			     * 'wdtr_able' variable.
    586  1.17   dante 			     */
    587  1.17   dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    588  1.17   dante 			} else {
    589  1.17   dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    590  1.17   dante 					    wdtr_able);
    591  1.17   dante 			}
    592  1.17   dante 		}
    593  1.17   dante 		break;
    594   1.7   dante 
    595  1.17   dante 	case ADW_CHIP_ASC38C1600:
    596  1.17   dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    597  1.17   dante 		/* FALLTHROUGH */
    598  1.17   dante 	case ADW_CHIP_ASC38C0800:
    599  1.17   dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    600  1.17   dante 		break;
    601   1.7   dante 	}
    602  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    603  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    604   1.7   dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    605  1.16   dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    606   1.7   dante 			max_cmd[tid]);
    607   1.1   dante 	}
    608   1.1   dante 
    609   1.1   dante 	/*
    610  1.17   dante 	 * Perform a RAM Built-In Self Test
    611   1.1   dante 	 */
    612  1.17   dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    613  1.17   dante 		return error_code;
    614  1.17   dante 	}
    615   1.7   dante 
    616  1.17   dante 	/*
    617  1.17   dante 	 * Load the Microcode
    618   1.7   dante 	 */
    619  1.17   dante 	;
    620  1.17   dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    621  1.17   dante 		return error_code;
    622   1.1   dante 	}
    623   1.1   dante 
    624   1.1   dante 	/*
    625  1.17   dante 	 * Read microcode version and date.
    626   1.7   dante 	 */
    627  1.17   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    628  1.17   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    629   1.7   dante 
    630   1.7   dante 	/*
    631  1.17   dante 	 * If the PCI Configuration Command Register "Parity Error Response
    632  1.17   dante 	 * Control" Bit was clear (0), then set the microcode variable
    633  1.17   dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    634  1.17   dante 	 * to ignore DMA parity errors.
    635   1.1   dante 	 */
    636  1.17   dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    637  1.17   dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    638  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    639  1.17   dante 					word | CONTROL_FLAG_IGNORE_PERR);
    640   1.1   dante 	}
    641   1.1   dante 
    642  1.17   dante 	switch (sc->chip_type) {
    643  1.17   dante 	case ADW_CHIP_ASC3550:
    644  1.17   dante 		/*
    645  1.17   dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    646  1.17   dante 		 * FIFO threshold of 128 bytes.
    647  1.17   dante 		 * This register is only accessible to the host.
    648  1.17   dante 		 */
    649  1.17   dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    650  1.17   dante 				START_CTL_EMFU | READ_CMD_MRM);
    651  1.17   dante 		break;
    652   1.7   dante 
    653  1.17   dante 	case ADW_CHIP_ASC38C0800:
    654  1.17   dante 		/*
    655  1.17   dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    656  1.17   dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    657  1.17   dante 		 * cable detection and then we are able to read C_DET[3:0].
    658  1.17   dante 		 *
    659  1.17   dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    660  1.17   dante 		 * Microcode Default Value' section below.
    661  1.17   dante 		 */
    662  1.17   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    663  1.17   dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    664  1.17   dante 				| ADW_DIS_TERM_DRV);
    665   1.1   dante 
    666  1.17   dante 		/*
    667  1.17   dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    668  1.17   dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    669  1.17   dante 		 *
    670  1.17   dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    671  1.17   dante 		 * 256 bytes.
    672  1.17   dante 		 *
    673  1.17   dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    674  1.17   dante 		 */
    675  1.17   dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    676  1.17   dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    677  1.17   dante 						| START_CTL_TH | READ_CMD_MRM);
    678  1.17   dante 		break;
    679   1.1   dante 
    680  1.17   dante 	case ADW_CHIP_ASC38C1600:
    681  1.17   dante 		/*
    682  1.17   dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    683  1.17   dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    684  1.17   dante 		 * cable detection and then we are able to read C_DET[3:0].
    685  1.17   dante 		 *
    686  1.17   dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    687  1.17   dante 		 * Microcode Default Value' section below.
    688  1.17   dante 		 */
    689  1.17   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    690  1.17   dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    691  1.17   dante 				| ADW_DIS_TERM_DRV);
    692   1.1   dante 
    693  1.17   dante 		/*
    694  1.17   dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    695  1.17   dante 		 * Phase Protection) disable bit is not set, then set the
    696  1.17   dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    697  1.17   dante 		 * enable AIPP checking and encoding.
    698  1.17   dante 		 */
    699  1.17   dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    700  1.17   dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    701  1.17   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    702  1.17   dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    703  1.17   dante 		}
    704   1.1   dante 
    705  1.17   dante 		/*
    706  1.17   dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    707  1.17   dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    708  1.17   dante 		 */
    709  1.17   dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    710  1.17   dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    711  1.17   dante 		break;
    712   1.1   dante 	}
    713   1.7   dante 
    714   1.1   dante 	/*
    715   1.7   dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    716  1.17   dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    717   1.7   dante 	 * device reports it is capable of in Inquiry byte 7.
    718   1.7   dante 	 *
    719  1.16   dante 	 * If SCSI Bus Resets have been disabled, then directly set
    720   1.7   dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    721   1.7   dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    722   1.7   dante 	 * the Inquiry caused by host and target mismatched DTR values.
    723   1.7   dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    724   1.7   dante 	 * be assumed to be in Asynchronous, Narrow mode.
    725   1.7   dante 	 */
    726   1.7   dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    727  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    728  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    729   1.7   dante 	}
    730   1.7   dante 
    731   1.7   dante 	/*
    732   1.7   dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    733   1.7   dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    734   1.7   dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    735   1.7   dante 	 * with a device.
    736   1.7   dante 	 *
    737   1.7   dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    738   1.7   dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    739   1.7   dante 	 * without determining here whether the device supports SDTR.
    740   1.7   dante 	 */
    741  1.17   dante 	switch (sc->chip_type) {
    742  1.17   dante 	case ADW_CHIP_ASC3550:
    743  1.17   dante 		word = 0;
    744  1.17   dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    745  1.17   dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    746  1.17   dante 				/* Set Ultra speed for TID 'tid'. */
    747  1.17   dante 				word |= (0x3 << (4 * (tid % 4)));
    748  1.17   dante 			} else {
    749  1.17   dante 				/* Set Fast speed for TID 'tid'. */
    750  1.17   dante 				word |= (0x2 << (4 * (tid % 4)));
    751  1.17   dante 			}
    752  1.17   dante 			/* Check if done with sdtr_speed1. */
    753  1.17   dante 			if (tid == 3) {
    754  1.17   dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    755  1.17   dante 						ADW_MC_SDTR_SPEED1, word);
    756  1.17   dante 				word = 0;
    757  1.17   dante 			/* Check if done with sdtr_speed2. */
    758  1.17   dante 			} else if (tid == 7) {
    759  1.17   dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    760  1.17   dante 						ADW_MC_SDTR_SPEED2, word);
    761  1.17   dante 				word = 0;
    762  1.17   dante 			/* Check if done with sdtr_speed3. */
    763  1.17   dante 			} else if (tid == 11) {
    764  1.17   dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    765  1.17   dante 						ADW_MC_SDTR_SPEED3, word);
    766  1.17   dante 				word = 0;
    767  1.17   dante 			/* Check if done with sdtr_speed4. */
    768  1.17   dante 			} else if (tid == 15) {
    769  1.17   dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    770  1.17   dante 						ADW_MC_SDTR_SPEED4, word);
    771  1.17   dante 				/* End of loop. */
    772  1.17   dante 			}
    773   1.7   dante 		}
    774  1.17   dante 
    775  1.17   dante 		/*
    776  1.17   dante 		 * Set microcode operating variable for the
    777  1.17   dante 		 * disconnect per TID bitmask.
    778  1.17   dante 		 */
    779  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    780  1.17   dante 							sc->cfg.disc_enable);
    781  1.17   dante 		break;
    782  1.17   dante 
    783  1.17   dante 	case ADW_CHIP_ASC38C0800:
    784  1.17   dante 		/* FALLTHROUGH */
    785  1.17   dante 	case ADW_CHIP_ASC38C1600:
    786  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    787  1.17   dante 							sc->cfg.disc_enable);
    788  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    789  1.17   dante 							sc->sdtr_speed1);
    790  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    791  1.17   dante 							sc->sdtr_speed2);
    792  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    793  1.17   dante 							sc->sdtr_speed3);
    794  1.17   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    795  1.17   dante 							sc->sdtr_speed4);
    796  1.17   dante 		break;
    797   1.7   dante 	}
    798   1.1   dante 
    799   1.1   dante 
    800   1.1   dante 	/*
    801   1.1   dante 	 * Set SCSI_CFG0 Microcode Default Value.
    802   1.1   dante 	 *
    803   1.1   dante 	 * The microcode will set the SCSI_CFG0 register using this value
    804   1.1   dante 	 * after it is started below.
    805   1.1   dante 	 */
    806  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    807  1.10   dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    808  1.10   dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    809   1.2   dante 
    810   1.1   dante 
    811  1.17   dante 	switch(sc->chip_type) {
    812  1.17   dante 	case ADW_CHIP_ASC3550:
    813  1.17   dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    814  1.17   dante 		break;
    815   1.1   dante 
    816  1.17   dante 	case ADW_CHIP_ASC38C0800:
    817  1.17   dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    818  1.17   dante 		break;
    819   1.7   dante 
    820  1.17   dante 	case ADW_CHIP_ASC38C1600:
    821  1.17   dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    822  1.17   dante 		break;
    823   1.7   dante 	}
    824  1.17   dante 	if(error_code) {
    825  1.17   dante 		return error_code;
    826   1.1   dante 	}
    827   1.7   dante 
    828   1.1   dante 	/*
    829   1.1   dante 	 * Set SEL_MASK Microcode Default Value
    830   1.1   dante 	 *
    831   1.1   dante 	 * The microcode will set the SEL_MASK register using this value
    832   1.1   dante 	 * after it is started below.
    833   1.1   dante 	 */
    834  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    835   1.7   dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    836   1.7   dante 
    837  1.17   dante 	/*
    838  1.17   dante 	 * Create and Initialize Host->RISC Carrier lists
    839  1.17   dante 	 */
    840  1.17   dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    841  1.17   dante 						sc->sc_control->carriers);
    842  1.16   dante 
    843   1.7   dante 	/*
    844   1.7   dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    845   1.7   dante 	 */
    846   1.7   dante 
    847   1.7   dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    848  1.16   dante 		return ADW_IERR_NO_CARRIER;
    849   1.7   dante 	}
    850  1.16   dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    851  1.12   dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    852   1.7   dante 
    853   1.7   dante 	/*
    854   1.7   dante 	 * The first command issued will be placed in the stopper carrier.
    855   1.7   dante 	 */
    856  1.12   dante 	sc->icq_sp->next_ba = ASC_CQ_STOPPER;
    857   1.1   dante 
    858   1.1   dante 	/*
    859   1.7   dante 	 * Set RISC ICQ physical address start value.
    860   1.7   dante 	 */
    861  1.16   dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
    862   1.7   dante 
    863   1.7   dante 	/*
    864  1.17   dante 	 * Initialize the COMMA register to the same value otherwise
    865  1.17   dante 	 * the RISC will prematurely detect a command is available.
    866  1.17   dante 	 */
    867  1.17   dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    868  1.17   dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    869  1.17   dante 							sc->icq_sp->carr_ba);
    870  1.17   dante 	}
    871  1.17   dante 
    872  1.17   dante 	/*
    873   1.7   dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    874   1.1   dante 	 */
    875   1.7   dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    876  1.16   dante 		return ADW_IERR_NO_CARRIER;
    877   1.1   dante 	}
    878  1.16   dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    879  1.12   dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    880   1.1   dante 
    881   1.1   dante 	/*
    882   1.7   dante 	 * The first command completed by the RISC will be placed in
    883   1.7   dante 	 * the stopper.
    884   1.1   dante 	 *
    885  1.12   dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    886  1.16   dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    887   1.1   dante 	 */
    888  1.12   dante 	sc->irq_sp->next_ba = ASC_CQ_STOPPER;
    889   1.1   dante 
    890   1.1   dante 	/*
    891   1.7   dante 	 * Set RISC IRQ physical address start value.
    892   1.1   dante 	 */
    893  1.16   dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
    894   1.7   dante 	sc->carr_pending_cnt = 0;
    895   1.1   dante 
    896   1.1   dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    897   1.7   dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    898  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    899   1.1   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    900   1.1   dante 
    901   1.1   dante 	/* finally, finally, gentlemen, start your engine */
    902   1.1   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    903   1.2   dante 
    904   1.7   dante 	/*
    905   1.7   dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    906   1.7   dante 	 * Resets should be performed. The RISC has to be running
    907   1.7   dante 	 * to issue a SCSI Bus Reset.
    908   1.7   dante 	 */
    909   1.7   dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    910   1.7   dante 	{
    911   1.7   dante 		/*
    912   1.7   dante 		 * If the BIOS Signature is present in memory, restore the
    913   1.7   dante 		 * BIOS Handshake Configuration Table and do not perform
    914   1.7   dante 		 * a SCSI Bus Reset.
    915   1.7   dante 		 */
    916  1.16   dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    917   1.7   dante 				0x55AA) {
    918   1.7   dante 			/*
    919   1.7   dante 			 * Restore per TID negotiated values.
    920   1.7   dante 			 */
    921  1.16   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    922   1.7   dante 					wdtr_able);
    923  1.16   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    924   1.7   dante 					sdtr_able);
    925  1.16   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    926   1.7   dante 					tagqng_able);
    927   1.7   dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    928   1.7   dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    929  1.17   dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    930  1.17   dante 						max_cmd[tid]);
    931   1.7   dante 			}
    932   1.7   dante 		} else {
    933  1.16   dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    934  1.17   dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    935   1.7   dante 			}
    936   1.7   dante 		}
    937   1.7   dante 	}
    938   1.7   dante 
    939  1.17   dante 	return error_code;
    940   1.1   dante }
    941   1.1   dante 
    942  1.17   dante 
    943   1.1   dante int
    944  1.17   dante AdwRamSelfTest(iot, ioh, chip_type)
    945  1.17   dante 	bus_space_tag_t iot;
    946  1.17   dante 	bus_space_handle_t ioh;
    947  1.17   dante 	u_int8_t chip_type;
    948   1.1   dante {
    949  1.17   dante 	int		i;
    950   1.7   dante 	u_int8_t	byte;
    951   1.1   dante 
    952   1.1   dante 
    953  1.17   dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    954  1.17   dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    955  1.17   dante 		/*
    956  1.17   dante 		 * RAM BIST (RAM Built-In Self Test)
    957  1.17   dante 		 *
    958  1.17   dante 		 * Address : I/O base + offset 0x38h register (byte).
    959  1.17   dante 		 * Function: Bit 7-6(RW) : RAM mode
    960  1.17   dante 		 *			    Normal Mode   : 0x00
    961  1.17   dante 		 *			    Pre-test Mode : 0x40
    962  1.17   dante 		 *			    RAM Test Mode : 0x80
    963  1.17   dante 		 *	     Bit 5	 : unused
    964  1.17   dante 		 *	     Bit 4(RO)   : Done bit
    965  1.17   dante 		 *	     Bit 3-0(RO) : Status
    966  1.17   dante 		 *			    Host Error    : 0x08
    967  1.17   dante 		 *			    Int_RAM Error : 0x04
    968  1.17   dante 		 *			    RISC Error    : 0x02
    969  1.17   dante 		 *			    SCSI Error    : 0x01
    970  1.17   dante 		 *			    No Error	  : 0x00
    971  1.17   dante 		 *
    972  1.17   dante 		 * Note: RAM BIST code should be put right here, before loading
    973  1.17   dante 		 * the microcode and after saving the RISC memory BIOS region.
    974  1.17   dante 		 */
    975   1.1   dante 
    976  1.17   dante 		/*
    977  1.17   dante 		 * LRAM Pre-test
    978  1.17   dante 		 *
    979  1.17   dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    980  1.17   dante 		 * 10 milliseconds.
    981  1.17   dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    982  1.17   dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    983  1.17   dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    984  1.17   dante 		 */
    985  1.17   dante 		for (i = 0; i < 2; i++) {
    986  1.17   dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    987  1.17   dante 					PRE_TEST_MODE);
    988  1.17   dante 			 /* Wait for 10ms before reading back. */
    989  1.17   dante 			AdwSleepMilliSecond(10);
    990  1.17   dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    991  1.17   dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    992  1.17   dante 					PRE_TEST_VALUE) {
    993  1.17   dante 				return ADW_IERR_BIST_PRE_TEST;
    994  1.17   dante 			}
    995   1.7   dante 
    996  1.17   dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    997  1.17   dante 								NORMAL_MODE);
    998  1.17   dante 			/* Wait for 10ms before reading back. */
    999  1.17   dante 			AdwSleepMilliSecond(10);
   1000  1.17   dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1001  1.17   dante 			    != NORMAL_VALUE) {
   1002  1.17   dante 				return ADW_IERR_BIST_PRE_TEST;
   1003  1.17   dante 			}
   1004  1.17   dante 		}
   1005   1.2   dante 
   1006  1.17   dante 		/*
   1007  1.17   dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1008  1.17   dante 		 *
   1009  1.17   dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1010  1.17   dante 		 * 10 milliseconds.
   1011  1.17   dante 		 * If Done bit not set or Status not 0, save register byte,
   1012  1.17   dante 		 * set the err_code, and return an error.
   1013  1.17   dante 		 */
   1014  1.17   dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1015  1.17   dante 		/* Wait for 10ms before checking status. */
   1016  1.17   dante 		AdwSleepMilliSecond(10);
   1017   1.1   dante 
   1018   1.7   dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1019  1.17   dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1020  1.17   dante 			/* Get here if Done bit not set or Status not 0. */
   1021  1.17   dante 			return ADW_IERR_BIST_RAM_TEST;
   1022   1.1   dante 		}
   1023   1.1   dante 
   1024  1.17   dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1025   1.7   dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1026   1.1   dante 	}
   1027   1.7   dante 
   1028  1.17   dante 	return 0;
   1029  1.17   dante }
   1030  1.17   dante 
   1031   1.7   dante 
   1032  1.17   dante int
   1033  1.17   dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1034  1.17   dante 	bus_space_tag_t iot;
   1035  1.17   dante 	bus_space_handle_t ioh;
   1036  1.17   dante 	u_int16_t *bios_mem;
   1037  1.17   dante 	u_int8_t chip_type;
   1038  1.17   dante {
   1039  1.17   dante 	u_int8_t	*mcode_data;
   1040  1.17   dante 	u_int32_t	 mcode_chksum;
   1041  1.17   dante 	u_int16_t	 mcode_size;
   1042  1.17   dante 	u_int32_t	sum;
   1043  1.17   dante 	u_int16_t	code_sum;
   1044  1.17   dante 	int		begin_addr;
   1045  1.17   dante 	int		end_addr;
   1046  1.17   dante 	int		word;
   1047  1.17   dante 	int		adw_memsize;
   1048  1.17   dante 	int		adw_mcode_expanded_size;
   1049  1.17   dante 	int		i, j;
   1050   1.7   dante 
   1051  1.17   dante 
   1052  1.17   dante 	switch(chip_type) {
   1053  1.17   dante 	case ADW_CHIP_ASC3550:
   1054  1.17   dante 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1055  1.17   dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1056  1.17   dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1057  1.17   dante 		adw_memsize = ADW_3550_MEMSIZE;
   1058  1.17   dante 		break;
   1059  1.17   dante 
   1060  1.17   dante 	case ADW_CHIP_ASC38C0800:
   1061  1.17   dante 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1062  1.17   dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1063  1.17   dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1064  1.17   dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1065  1.17   dante 		break;
   1066  1.17   dante 
   1067  1.17   dante 	case ADW_CHIP_ASC38C1600:
   1068  1.17   dante 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1069  1.17   dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1070  1.17   dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1071  1.17   dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1072  1.17   dante 		break;
   1073  1.17   dante 	}
   1074   1.1   dante 
   1075   1.1   dante 	/*
   1076   1.7   dante 	 * Write the microcode image to RISC memory starting at address 0.
   1077   1.1   dante 	 */
   1078   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1079   1.7   dante 
   1080   1.7   dante 	/* Assume the following compressed format of the microcode buffer:
   1081   1.7   dante 	 *
   1082   1.7   dante 	 *  254 word (508 byte) table indexed by byte code followed
   1083   1.7   dante 	 *  by the following byte codes:
   1084   1.7   dante 	 *
   1085   1.7   dante 	 *    1-Byte Code:
   1086   1.7   dante 	 *	00: Emit word 0 in table.
   1087   1.7   dante 	 *	01: Emit word 1 in table.
   1088   1.7   dante 	 *	.
   1089   1.7   dante 	 *	FD: Emit word 253 in table.
   1090   1.7   dante 	 *
   1091   1.7   dante 	 *    Multi-Byte Code:
   1092   1.7   dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1093   1.7   dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1094   1.7   dante 	 */
   1095   1.7   dante 	word = 0;
   1096  1.17   dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1097  1.17   dante 		if (mcode_data[i] == 0xff) {
   1098  1.17   dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1099   1.7   dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1100  1.17   dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1101  1.17   dante 				  mcode_data[i + 2]));
   1102   1.7   dante 				word++;
   1103   1.7   dante 			}
   1104   1.7   dante 			i += 3;
   1105  1.17   dante 		} else if (mcode_data[i] == 0xfe) {
   1106  1.17   dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1107  1.17   dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1108  1.17   dante 			    mcode_data[i + 1]));
   1109   1.7   dante 			i += 2;
   1110   1.7   dante 			word++;
   1111   1.1   dante 		} else {
   1112   1.7   dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1113  1.17   dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1114  1.17   dante 			 mcode_data[mcode_data[i] * 2]));
   1115   1.7   dante 			word++;
   1116   1.1   dante 		}
   1117   1.1   dante 	}
   1118   1.7   dante 
   1119   1.7   dante 	/*
   1120   1.7   dante 	 * Set 'word' for later use to clear the rest of memory and save
   1121   1.7   dante 	 * the expanded mcode size.
   1122   1.7   dante 	 */
   1123   1.7   dante 	word *= 2;
   1124  1.17   dante 	adw_mcode_expanded_size = word;
   1125   1.7   dante 
   1126   1.1   dante 	/*
   1127  1.17   dante 	 * Clear the rest of the Internal RAM.
   1128   1.1   dante 	 */
   1129  1.17   dante 	for (; word < adw_memsize; word += 2) {
   1130   1.7   dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1131   1.1   dante 	}
   1132   1.7   dante 
   1133   1.1   dante 	/*
   1134   1.7   dante 	 * Verify the microcode checksum.
   1135   1.1   dante 	 */
   1136   1.7   dante 	sum = 0;
   1137   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1138   1.7   dante 
   1139  1.17   dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1140   1.7   dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1141   1.7   dante 	}
   1142   1.1   dante 
   1143  1.17   dante 	if (sum != mcode_chksum) {
   1144  1.17   dante 		return ADW_IERR_MCODE_CHKSUM;
   1145   1.7   dante 	}
   1146   1.1   dante 
   1147   1.1   dante 	/*
   1148   1.7   dante 	 * Restore the RISC memory BIOS region.
   1149   1.1   dante 	 */
   1150  1.16   dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1151  1.17   dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1152  1.17   dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1153  1.17   dante 								bios_mem[i]);
   1154  1.17   dante 		} else {
   1155  1.17   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156  1.17   dante 								bios_mem[i]);
   1157  1.17   dante 		}
   1158   1.7   dante 	}
   1159   1.1   dante 
   1160   1.7   dante 	/*
   1161   1.7   dante 	 * Calculate and write the microcode code checksum to the microcode
   1162  1.16   dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1163   1.7   dante 	 */
   1164  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1165  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1166   1.7   dante 	code_sum = 0;
   1167   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1168   1.7   dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1169   1.7   dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1170   1.1   dante 	}
   1171  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1172   1.1   dante 
   1173   1.7   dante 	/*
   1174  1.17   dante 	 * Set the chip type.
   1175   1.7   dante 	 */
   1176  1.17   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1177  1.17   dante 
   1178  1.17   dante 	return 0;
   1179  1.17   dante }
   1180  1.17   dante 
   1181  1.17   dante 
   1182  1.17   dante int
   1183  1.17   dante AdwASC3550Cabling(iot, ioh, cfg)
   1184  1.17   dante 	bus_space_tag_t iot;
   1185  1.17   dante 	bus_space_handle_t ioh;
   1186  1.17   dante 	ADW_DVC_CFG *cfg;
   1187  1.17   dante {
   1188  1.17   dante 	u_int16_t	scsi_cfg1;
   1189  1.17   dante 
   1190   1.1   dante 
   1191   1.7   dante 	/*
   1192  1.17   dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1193  1.17   dante 	 *
   1194  1.17   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1195  1.17   dante 	 * after it is started below.
   1196   1.7   dante 	 */
   1197  1.17   dante 
   1198  1.17   dante 	/* Read current SCSI_CFG1 Register value. */
   1199  1.17   dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1200   1.1   dante 
   1201   1.7   dante 	/*
   1202  1.17   dante 	 * If all three connectors are in use in ASC3550, return an error.
   1203   1.7   dante 	 */
   1204  1.17   dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1205  1.17   dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1206  1.17   dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1207  1.17   dante 	}
   1208   1.7   dante 
   1209   1.7   dante 	/*
   1210  1.17   dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1211  1.17   dante 	 * will be set. Check for and return an error if this condition is
   1212  1.17   dante 	 * found.
   1213   1.7   dante 	 */
   1214  1.17   dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1215  1.17   dante 		return ADW_IERR_REVERSED_CABLE;
   1216   1.7   dante 	}
   1217   1.7   dante 
   1218   1.7   dante 	/*
   1219  1.17   dante 	 * If this is a differential board and a single-ended device
   1220  1.17   dante 	 * is attached to one of the connectors, return an error.
   1221   1.7   dante 	 */
   1222  1.17   dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1223  1.17   dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1224  1.17   dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1225  1.17   dante 	}
   1226   1.7   dante 
   1227   1.7   dante 	/*
   1228  1.17   dante 	 * If automatic termination control is enabled, then set the
   1229  1.17   dante 	 * termination value based on a table listed in a_condor.h.
   1230   1.7   dante 	 *
   1231  1.17   dante 	 * If manual termination was specified with an EEPROM setting
   1232  1.17   dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1233  1.17   dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1234   1.7   dante 	 */
   1235  1.17   dante 	if (cfg->termination == 0) {
   1236  1.17   dante 		/*
   1237  1.17   dante 		 * The software always controls termination by setting
   1238  1.17   dante 		 * TERM_CTL_SEL.
   1239  1.17   dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1240  1.17   dante 		 * termination.
   1241  1.17   dante 		 */
   1242  1.17   dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1243  1.17   dante 
   1244  1.17   dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1245  1.17   dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1246  1.17   dante 			case 0x3: case 0x7: case 0xB:
   1247  1.17   dante 			case 0xD: case 0xE: case 0xF:
   1248  1.17   dante 				cfg->termination |=
   1249  1.17   dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1250  1.17   dante 				break;
   1251  1.17   dante 
   1252  1.17   dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1253  1.17   dante 			case 0x1: case 0x5: case 0x9:
   1254  1.17   dante 			case 0xA: case 0xC:
   1255  1.17   dante 				cfg->termination |= ADW_TERM_CTL_H;
   1256  1.17   dante 				break;
   1257  1.17   dante 
   1258  1.17   dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1259  1.17   dante 			case 0x2: case 0x6:
   1260  1.17   dante 				break;
   1261  1.17   dante 		}
   1262   1.7   dante 	}
   1263   1.7   dante 
   1264   1.7   dante 	/*
   1265  1.17   dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1266  1.17   dante 	 */
   1267  1.17   dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1268  1.17   dante 
   1269  1.17   dante 	/*
   1270  1.17   dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1271  1.17   dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1272  1.17   dante 	 * referenced, because the hardware internally inverts
   1273  1.17   dante 	 * the Termination High and Low bits if TERM_POL is set.
   1274  1.17   dante 	 */
   1275  1.17   dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1276  1.17   dante 
   1277  1.17   dante 	/*
   1278  1.17   dante 	 * Set SCSI_CFG1 Microcode Default Value
   1279  1.17   dante 	 *
   1280  1.17   dante 	 * Set filter value and possibly modified termination control
   1281  1.17   dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1282   1.7   dante 	 *
   1283  1.17   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1284  1.17   dante 	 * after it is started below.
   1285   1.7   dante 	 */
   1286  1.17   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1287  1.17   dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1288   1.7   dante 
   1289   1.7   dante 	/*
   1290  1.17   dante 	 * Set MEM_CFG Microcode Default Value
   1291   1.7   dante 	 *
   1292  1.17   dante 	 * The microcode will set the MEM_CFG register using this value
   1293   1.7   dante 	 * after it is started below.
   1294  1.17   dante 	 *
   1295  1.17   dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1296  1.17   dante 	 * are defined.
   1297  1.17   dante 	 *
   1298  1.17   dante 	 * ASC-3550 has 8KB internal memory.
   1299   1.7   dante 	 */
   1300  1.17   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1301  1.17   dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1302  1.17   dante 
   1303  1.17   dante 	return 0;
   1304  1.17   dante }
   1305  1.17   dante 
   1306  1.17   dante 
   1307  1.17   dante int
   1308  1.17   dante AdwASC38C0800Cabling(iot, ioh, cfg)
   1309  1.17   dante 	bus_space_tag_t iot;
   1310  1.17   dante 	bus_space_handle_t ioh;
   1311  1.17   dante 	ADW_DVC_CFG *cfg;
   1312  1.17   dante {
   1313  1.17   dante 	u_int16_t	scsi_cfg1;
   1314  1.17   dante 
   1315   1.7   dante 
   1316   1.7   dante 	/*
   1317   1.7   dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1318   1.7   dante 	 *
   1319   1.7   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1320   1.7   dante 	 * after it is started below.
   1321   1.7   dante 	 */
   1322   1.7   dante 
   1323   1.7   dante 	/* Read current SCSI_CFG1 Register value. */
   1324   1.7   dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1325   1.7   dante 
   1326   1.7   dante 	/*
   1327  1.17   dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1328  1.17   dante 	 * will be set. Check for and return an error if this condition is
   1329  1.17   dante 	 * found.
   1330   1.7   dante 	 */
   1331  1.17   dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1332  1.16   dante 		return ADW_IERR_REVERSED_CABLE;
   1333   1.7   dante 	}
   1334   1.7   dante 
   1335   1.7   dante 	/*
   1336  1.17   dante 	 * All kind of combinations of devices attached to one of four
   1337  1.17   dante 	 * connectors are acceptable except HVD device attached.
   1338  1.17   dante 	 * For example, LVD device can be attached to SE connector while
   1339  1.17   dante 	 * SE device attached to LVD connector.
   1340  1.17   dante 	 * If LVD device attached to SE connector, it only runs up to
   1341  1.17   dante 	 * Ultra speed.
   1342  1.17   dante 	 *
   1343  1.17   dante 	 * If an HVD device is attached to one of LVD connectors, return
   1344  1.17   dante 	 * an error.
   1345  1.17   dante 	 * However, there is no way to detect HVD device attached to
   1346  1.17   dante 	 * SE connectors.
   1347   1.7   dante 	 */
   1348   1.7   dante 	if (scsi_cfg1 & ADW_HVD) {
   1349  1.16   dante 		return ADW_IERR_HVD_DEVICE;
   1350   1.7   dante 	}
   1351   1.7   dante 
   1352   1.7   dante 	/*
   1353   1.7   dante 	 * If either SE or LVD automatic termination control is enabled, then
   1354   1.7   dante 	 * set the termination value based on a table listed in a_condor.h.
   1355   1.7   dante 	 *
   1356   1.7   dante 	 * If manual termination was specified with an EEPROM setting then
   1357  1.17   dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1358  1.17   dante 	 * to be 'ored' into SCSI_CFG1.
   1359   1.7   dante 	 */
   1360  1.17   dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1361   1.7   dante 		/* SE automatic termination control is enabled. */
   1362   1.7   dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1363   1.7   dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1364   1.7   dante 			case 0x1: case 0x2: case 0x3:
   1365  1.17   dante 				cfg->termination |= ADW_TERM_SE;
   1366   1.7   dante 				break;
   1367   1.7   dante 
   1368   1.7   dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1369   1.7   dante 			case 0x0:
   1370  1.17   dante 				cfg->termination |= ADW_TERM_SE_HI;
   1371   1.7   dante 				break;
   1372   1.7   dante 		}
   1373   1.7   dante 	}
   1374   1.7   dante 
   1375  1.17   dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1376   1.7   dante 		/* LVD automatic termination control is enabled. */
   1377   1.7   dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1378   1.7   dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1379   1.7   dante 			case 0x4: case 0x8: case 0xC:
   1380  1.17   dante 				cfg->termination |= ADW_TERM_LVD;
   1381   1.7   dante 				break;
   1382   1.7   dante 
   1383   1.7   dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1384   1.7   dante 			case 0x0:
   1385   1.7   dante 				break;
   1386   1.7   dante 		}
   1387   1.7   dante 	}
   1388   1.7   dante 
   1389   1.7   dante 	/*
   1390   1.7   dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1391   1.7   dante 	 */
   1392   1.7   dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1393   1.7   dante 
   1394   1.7   dante 	/*
   1395   1.7   dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1396   1.7   dante 	 */
   1397  1.17   dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1398   1.7   dante 
   1399   1.7   dante 	/*
   1400  1.17   dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1401  1.17   dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1402  1.17   dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1403   1.7   dante 	 */
   1404   1.7   dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1405  1.17   dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1406   1.7   dante 
   1407   1.7   dante 	/*
   1408   1.7   dante 	 * Set SCSI_CFG1 Microcode Default Value
   1409   1.7   dante 	 *
   1410   1.7   dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1411   1.7   dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1412   1.7   dante 	 *
   1413   1.7   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1414   1.7   dante 	 * after it is started below.
   1415   1.7   dante 	 */
   1416  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1417   1.7   dante 
   1418   1.7   dante 	/*
   1419   1.7   dante 	 * Set MEM_CFG Microcode Default Value
   1420   1.7   dante 	 *
   1421   1.7   dante 	 * The microcode will set the MEM_CFG register using this value
   1422   1.7   dante 	 * after it is started below.
   1423   1.7   dante 	 *
   1424   1.7   dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1425   1.7   dante 	 * are defined.
   1426   1.7   dante 	 *
   1427   1.7   dante 	 * ASC-38C0800 has 16KB internal memory.
   1428   1.7   dante 	 */
   1429  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1430  1.17   dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1431   1.7   dante 
   1432  1.17   dante 	return 0;
   1433  1.17   dante }
   1434   1.7   dante 
   1435   1.7   dante 
   1436  1.17   dante int
   1437  1.17   dante AdwASC38C1600Cabling(iot, ioh, cfg)
   1438  1.17   dante 	bus_space_tag_t iot;
   1439  1.17   dante 	bus_space_handle_t ioh;
   1440  1.17   dante 	ADW_DVC_CFG *cfg;
   1441  1.17   dante {
   1442  1.17   dante 	u_int16_t	scsi_cfg1;
   1443   1.7   dante 
   1444   1.7   dante 
   1445   1.7   dante 	/*
   1446  1.17   dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1447  1.17   dante 	 *
   1448  1.17   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1449  1.17   dante 	 * after it is started below.
   1450  1.17   dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1451  1.17   dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1452   1.7   dante 	 */
   1453   1.7   dante 
   1454  1.17   dante 	/* Read current SCSI_CFG1 Register value. */
   1455  1.17   dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1456   1.7   dante 
   1457   1.7   dante 	/*
   1458  1.17   dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1459  1.17   dante 	 * will be set. Check for and return an error if this condition is
   1460  1.17   dante 	 * found.
   1461   1.7   dante 	 */
   1462  1.17   dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1463  1.17   dante 		return ADW_IERR_REVERSED_CABLE;
   1464   1.7   dante 	}
   1465   1.7   dante 
   1466   1.7   dante 	/*
   1467  1.17   dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1468  1.17   dante 	 * can not be connected to either connector. An LVD device or SE device
   1469  1.17   dante 	 * may be connected to either connecor. If an SE device is connected,
   1470  1.17   dante 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1471   1.7   dante 	 *
   1472  1.17   dante 	 * If an HVD device is attached, return an error.
   1473   1.7   dante 	 */
   1474  1.17   dante 	if (scsi_cfg1 & ADW_HVD) {
   1475  1.17   dante 		return ADW_IERR_HVD_DEVICE;
   1476  1.17   dante 	}
   1477   1.7   dante 
   1478   1.7   dante 	/*
   1479  1.17   dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1480  1.17   dante 	 * termination because there are two connectors for each function.
   1481  1.17   dante 	 * Each function may use either LVD or SE mode.
   1482  1.17   dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1483  1.17   dante 	 * used for each function.
   1484  1.17   dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1485  1.17   dante 	 * for the function, then set the termination value based on a table
   1486  1.17   dante 	 * listed in adwlib.h.
   1487  1.17   dante 	 *
   1488  1.17   dante 	 * If manual termination is specified in the EEPROM for the function,
   1489  1.17   dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1490  1.17   dante 	 * ready to be 'ored' into SCSI_CFG1.
   1491   1.7   dante 	 */
   1492  1.17   dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1493  1.17   dante 		/* SE automatic termination control is enabled. */
   1494  1.17   dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1495  1.17   dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1496  1.17   dante 			case 0x1: case 0x2: case 0x3:
   1497  1.17   dante 				cfg->termination |= ADW_TERM_SE;
   1498  1.17   dante 				break;
   1499   1.7   dante 
   1500  1.17   dante 			case 0x0:
   1501  1.21   lukem #if 0
   1502  1.17   dante 	/* !!!!TODO!!!! */
   1503  1.21   lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1504  1.17   dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1505  1.21   lukem 				}
   1506  1.21   lukem 				else
   1507  1.21   lukem #endif
   1508  1.21   lukem 				{
   1509  1.17   dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1510  1.17   dante 					cfg->termination |= ADW_TERM_SE_HI;
   1511  1.21   lukem 				}
   1512  1.17   dante 				break;
   1513  1.10   dante 			}
   1514   1.7   dante 	}
   1515   1.7   dante 
   1516  1.17   dante 	/*
   1517  1.17   dante 	 * Clear any set TERM_SE bits.
   1518  1.17   dante 	 */
   1519  1.17   dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1520   1.7   dante 
   1521   1.7   dante 	/*
   1522  1.17   dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1523   1.7   dante 	 */
   1524  1.17   dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1525   1.7   dante 
   1526   1.7   dante 	/*
   1527  1.17   dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1528  1.17   dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1529  1.17   dante 	 * Register Value.
   1530   1.7   dante 	 */
   1531  1.17   dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1532   1.7   dante 
   1533   1.7   dante 	/*
   1534  1.17   dante 	 * Set SCSI_CFG1 Microcode Default Value
   1535  1.17   dante 	 *
   1536  1.17   dante 	 * Set possibly modified termination control bits in the Microcode
   1537  1.17   dante 	 * SCSI_CFG1 Register Value.
   1538   1.7   dante 	 *
   1539  1.17   dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1540  1.17   dante 	 * after it is started below.
   1541   1.7   dante 	 */
   1542  1.17   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1543   1.7   dante 
   1544  1.17   dante 	/*
   1545  1.17   dante 	 * Set MEM_CFG Microcode Default Value
   1546  1.17   dante 	 *
   1547  1.17   dante 	 * The microcode will set the MEM_CFG register using this value
   1548  1.17   dante 	 * after it is started below.
   1549  1.17   dante 	 *
   1550  1.17   dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1551  1.17   dante 	 * are defined.
   1552  1.17   dante 	 *
   1553  1.17   dante 	 * ASC-38C1600 has 32KB internal memory.
   1554  1.17   dante 	 */
   1555  1.17   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1556  1.17   dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1557   1.7   dante 
   1558  1.17   dante 	return 0;
   1559   1.7   dante }
   1560   1.7   dante 
   1561   1.7   dante 
   1562   1.7   dante /*
   1563   1.7   dante  * Read EEPROM configuration into the specified buffer.
   1564   1.7   dante  *
   1565   1.7   dante  * Return a checksum based on the EEPROM configuration read.
   1566   1.7   dante  */
   1567   1.7   dante static u_int16_t
   1568  1.17   dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1569   1.7   dante 	bus_space_tag_t		iot;
   1570   1.7   dante 	bus_space_handle_t	ioh;
   1571  1.17   dante 	ADW_EEPROM		*cfg_buf;
   1572   1.7   dante {
   1573   1.7   dante 	u_int16_t	       wval, chksum;
   1574   1.7   dante 	u_int16_t	       *wbuf;
   1575   1.7   dante 	int		    eep_addr;
   1576   1.7   dante 
   1577   1.7   dante 
   1578   1.7   dante 	wbuf = (u_int16_t *) cfg_buf;
   1579   1.7   dante 	chksum = 0;
   1580   1.7   dante 
   1581   1.7   dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1582  1.10   dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1583  1.10   dante 		eep_addr++, wbuf++) {
   1584  1.16   dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1585   1.7   dante 		chksum += wval;
   1586   1.7   dante 		*wbuf = wval;
   1587   1.7   dante 	}
   1588   1.7   dante 
   1589  1.16   dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1590   1.7   dante 	wbuf++;
   1591   1.7   dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1592   1.7   dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1593   1.7   dante 			eep_addr++, wbuf++) {
   1594  1.16   dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1595   1.7   dante 	}
   1596   1.7   dante 
   1597   1.7   dante 	return chksum;
   1598   1.7   dante }
   1599   1.7   dante 
   1600   1.7   dante 
   1601   1.7   dante /*
   1602   1.7   dante  * Read the EEPROM from specified location
   1603   1.7   dante  */
   1604   1.7   dante static u_int16_t
   1605  1.16   dante AdwReadEEPWord(iot, ioh, eep_word_addr)
   1606   1.7   dante 	bus_space_tag_t		iot;
   1607   1.7   dante 	bus_space_handle_t	ioh;
   1608   1.7   dante 	int			eep_word_addr;
   1609   1.7   dante {
   1610   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1611   1.7   dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1612  1.16   dante 	AdwWaitEEPCmd(iot, ioh);
   1613   1.7   dante 
   1614   1.7   dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1615   1.7   dante }
   1616   1.7   dante 
   1617   1.7   dante 
   1618   1.7   dante /*
   1619   1.7   dante  * Wait for EEPROM command to complete
   1620   1.7   dante  */
   1621   1.7   dante static void
   1622  1.16   dante AdwWaitEEPCmd(iot, ioh)
   1623   1.7   dante 	bus_space_tag_t		iot;
   1624   1.7   dante 	bus_space_handle_t	ioh;
   1625   1.7   dante {
   1626   1.7   dante 	int eep_delay_ms;
   1627   1.7   dante 
   1628   1.7   dante 
   1629   1.7   dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1630   1.7   dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1631   1.7   dante 				ASC_EEP_CMD_DONE) {
   1632   1.7   dante 			break;
   1633   1.7   dante 		}
   1634  1.16   dante 		AdwSleepMilliSecond(1);
   1635   1.7   dante 	}
   1636   1.7   dante 
   1637   1.7   dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1638   1.7   dante }
   1639   1.7   dante 
   1640   1.7   dante 
   1641   1.7   dante /*
   1642   1.7   dante  * Write the EEPROM from 'cfg_buf'.
   1643   1.7   dante  */
   1644   1.7   dante static void
   1645  1.17   dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1646  1.10   dante 	bus_space_tag_t		iot;
   1647  1.10   dante 	bus_space_handle_t	ioh;
   1648  1.17   dante 	ADW_EEPROM		*cfg_buf;
   1649  1.10   dante {
   1650  1.10   dante 	u_int16_t *wbuf;
   1651  1.10   dante 	u_int16_t addr, chksum;
   1652  1.10   dante 
   1653  1.10   dante 
   1654  1.10   dante 	wbuf = (u_int16_t *) cfg_buf;
   1655  1.10   dante 	chksum = 0;
   1656  1.10   dante 
   1657  1.10   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1658  1.16   dante 	AdwWaitEEPCmd(iot, ioh);
   1659  1.10   dante 
   1660  1.10   dante 	/*
   1661  1.10   dante 	 * Write EEPROM from word 0 to word 20
   1662  1.10   dante 	 */
   1663  1.10   dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1664  1.10   dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1665  1.10   dante 		chksum += *wbuf;
   1666  1.10   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1667  1.10   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1668  1.10   dante 				ASC_EEP_CMD_WRITE | addr);
   1669  1.16   dante 		AdwWaitEEPCmd(iot, ioh);
   1670  1.16   dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1671  1.10   dante 	}
   1672  1.10   dante 
   1673  1.10   dante 	/*
   1674  1.10   dante 	 * Write EEPROM checksum at word 21
   1675  1.10   dante 	 */
   1676  1.10   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1677  1.10   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1678  1.10   dante 			ASC_EEP_CMD_WRITE | addr);
   1679  1.16   dante 	AdwWaitEEPCmd(iot, ioh);
   1680  1.10   dante 	wbuf++;        /* skip over check_sum */
   1681  1.10   dante 
   1682  1.10   dante 	/*
   1683  1.10   dante 	 * Write EEPROM OEM name at words 22 to 29
   1684  1.10   dante 	 */
   1685  1.10   dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1686  1.10   dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1687  1.10   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1688  1.10   dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1689  1.10   dante 				ASC_EEP_CMD_WRITE | addr);
   1690  1.16   dante 		AdwWaitEEPCmd(iot, ioh);
   1691  1.10   dante 	}
   1692  1.10   dante 
   1693  1.10   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1694  1.10   dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1695  1.16   dante 	AdwWaitEEPCmd(iot, ioh);
   1696  1.10   dante 
   1697  1.10   dante 	return;
   1698  1.10   dante }
   1699  1.10   dante 
   1700  1.10   dante 
   1701  1.10   dante /*
   1702  1.16   dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1703   1.7   dante  *
   1704   1.7   dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1705   1.7   dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1706   1.7   dante  *   RISC to notify it a new command is ready to be executed.
   1707   1.1   dante  *
   1708   1.7   dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1709   1.7   dante  * set to SCSI_MAX_RETRY.
   1710   1.1   dante  *
   1711   1.7   dante  * Return:
   1712   1.7   dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1713   1.7   dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1714   1.7   dante  *                       request completes.
   1715   1.7   dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1716   1.7   dante  *                       host IC error.
   1717   1.1   dante  */
   1718   1.7   dante int
   1719  1.16   dante AdwExeScsiQueue(sc, scsiq)
   1720   1.7   dante ADW_SOFTC	*sc;
   1721   1.7   dante ADW_SCSI_REQ_Q	*scsiq;
   1722   1.1   dante {
   1723   1.7   dante 	bus_space_tag_t iot = sc->sc_iot;
   1724   1.7   dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1725   1.7   dante 	ADW_CCB		*ccb;
   1726   1.7   dante 	long		req_size;
   1727   1.7   dante 	u_int32_t	req_paddr;
   1728  1.10   dante 	ADW_CARRIER	*new_carrp;
   1729   1.7   dante 
   1730   1.7   dante 	/*
   1731   1.7   dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1732   1.7   dante 	 */
   1733   1.7   dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1734   1.7   dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1735   1.7   dante 		scsiq->done_status = QD_WITH_ERROR;
   1736   1.7   dante 		return ADW_ERROR;
   1737   1.7   dante 	}
   1738   1.7   dante 
   1739  1.10   dante 	/*
   1740  1.10   dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1741  1.10   dante 	 */
   1742  1.10   dante 
   1743   1.7   dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1744   1.7   dante 
   1745   1.7   dante 	/*
   1746  1.16   dante 	 * Allocate a carrier and initialize fields.
   1747   1.7   dante 	 */
   1748   1.7   dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1749   1.7   dante 		return ADW_BUSY;
   1750   1.7   dante 	}
   1751  1.16   dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1752  1.12   dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1753   1.7   dante 	sc->carr_pending_cnt++;
   1754   1.7   dante 
   1755   1.7   dante 	/*
   1756  1.12   dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1757   1.7   dante 	 * to the stopper value. The current stopper will be changed
   1758   1.7   dante 	 * below to point to the new stopper.
   1759   1.7   dante 	 */
   1760  1.12   dante 	new_carrp->next_ba = ASC_CQ_STOPPER;
   1761   1.7   dante 
   1762   1.7   dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1763   1.7   dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1764   1.7   dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1765   1.7   dante 
   1766   1.7   dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1767   1.7   dante 	scsiq->scsiq_rptr = req_paddr;
   1768   1.7   dante 
   1769   1.7   dante 	/*
   1770  1.12   dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1771   1.7   dante 	 * order during initialization.
   1772   1.7   dante 	 */
   1773  1.12   dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1774  1.12   dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1775   1.1   dante 
   1776   1.7   dante 	/*
   1777   1.7   dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1778   1.7   dante 	 * the microcode. The newly allocated stopper will become the new
   1779   1.7   dante 	 * stopper.
   1780   1.7   dante 	 */
   1781  1.12   dante 	sc->icq_sp->areq_ba = req_paddr;
   1782   1.1   dante 
   1783   1.1   dante 	/*
   1784  1.12   dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1785   1.7   dante 	 * physical address of the new stopper. The RISC can only
   1786   1.7   dante 	 * follow physical addresses.
   1787   1.1   dante 	 */
   1788  1.12   dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1789   1.1   dante 
   1790  1.12   dante #if ADW_DEBUG
   1791  1.12   dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1792  1.12   dante 			sc->icq_sp->carr_id,
   1793  1.12   dante 			sc->icq_sp->carr_ba,
   1794  1.12   dante 			sc->icq_sp->areq_ba,
   1795  1.12   dante 			sc->icq_sp->next_ba);
   1796  1.12   dante #endif
   1797   1.1   dante 	/*
   1798   1.7   dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1799   1.1   dante 	 */
   1800   1.7   dante 	sc->icq_sp = new_carrp;
   1801  1.11   dante 
   1802  1.16   dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1803  1.16   dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1804   1.7   dante 		/*
   1805  1.10   dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1806  1.10   dante 		 * pointer.
   1807  1.10   dante 		 */
   1808  1.20  itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1809  1.16   dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1810  1.10   dante 			/*
   1811  1.10   dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1812  1.10   dante 			 * command 'clr_tickle_a' does not work unless the host
   1813  1.10   dante 			 * value is cleared.
   1814  1.10   dante 			 */
   1815  1.10   dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1816  1.20  itojun 					ADW_TICKLE_NOP);
   1817  1.10   dante 		}
   1818  1.16   dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1819  1.10   dante 		/*
   1820  1.10   dante 		 * Notify the RISC a carrier is ready by writing the physical
   1821  1.10   dante 		 * address of the new carrier stopper to the COMMA register.
   1822   1.7   dante 		 */
   1823  1.10   dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1824  1.12   dante 				new_carrp->carr_ba);
   1825   1.7   dante 	}
   1826   1.7   dante 
   1827  1.10   dante 	/*
   1828  1.10   dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1829  1.10   dante 	 */
   1830  1.10   dante 
   1831   1.7   dante 	return ADW_SUCCESS;
   1832   1.1   dante }
   1833   1.1   dante 
   1834   1.7   dante 
   1835   1.7   dante void
   1836  1.16   dante AdwResetChip(iot, ioh)
   1837   1.7   dante 	bus_space_tag_t iot;
   1838   1.7   dante 	bus_space_handle_t ioh;
   1839   1.1   dante {
   1840   1.7   dante 
   1841   1.7   dante 	/*
   1842   1.7   dante 	 * Reset Chip.
   1843   1.7   dante 	 */
   1844   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1845   1.7   dante 			ADW_CTRL_REG_CMD_RESET);
   1846  1.16   dante 	AdwSleepMilliSecond(100);
   1847   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1848   1.7   dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1849   1.1   dante }
   1850   1.1   dante 
   1851   1.7   dante 
   1852   1.1   dante /*
   1853   1.1   dante  * Reset SCSI Bus and purge all outstanding requests.
   1854   1.1   dante  *
   1855   1.1   dante  * Return Value:
   1856   1.7   dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1857   1.7   dante  *      ADW_FALSE(0) -  Microcode command failed.
   1858   1.7   dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1859   1.7   dante  *                      may be hung which requires driver recovery.
   1860   1.1   dante  */
   1861   1.1   dante int
   1862  1.16   dante AdwResetCCB(sc)
   1863   1.7   dante ADW_SOFTC	*sc;
   1864   1.1   dante {
   1865   1.7   dante 	int	    status;
   1866   1.7   dante 
   1867   1.7   dante 	/*
   1868   1.7   dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1869   1.7   dante 	 * the SCSI Bus Reset signal.
   1870   1.7   dante 	 */
   1871  1.16   dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1872  1.11   dante 	if (status != ADW_TRUE) {
   1873   1.7   dante 		return status;
   1874   1.7   dante 	}
   1875   1.7   dante 
   1876   1.7   dante 	/*
   1877   1.7   dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1878   1.7   dante 	 *
   1879   1.7   dante 	 * The hold time delay is done on the host because the RISC has no
   1880   1.7   dante 	 * microsecond accurate timer.
   1881   1.7   dante 	 */
   1882  1.16   dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1883   1.1   dante 
   1884   1.7   dante 	/*
   1885   1.7   dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1886   1.7   dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1887   1.7   dante 	 */
   1888  1.16   dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1889  1.11   dante 	if (status != ADW_TRUE) {
   1890   1.7   dante 		return status;
   1891   1.7   dante 	}
   1892   1.1   dante 
   1893  1.16   dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1894   1.1   dante 
   1895   1.1   dante 	return status;
   1896   1.1   dante }
   1897   1.1   dante 
   1898   1.7   dante 
   1899   1.1   dante /*
   1900   1.7   dante  * Reset chip and SCSI Bus.
   1901   1.7   dante  *
   1902   1.7   dante  * Return Value:
   1903   1.7   dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1904   1.7   dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1905   1.1   dante  */
   1906   1.7   dante int
   1907  1.16   dante AdwResetSCSIBus(sc)
   1908   1.7   dante ADW_SOFTC	*sc;
   1909   1.1   dante {
   1910   1.2   dante 	bus_space_tag_t iot = sc->sc_iot;
   1911   1.2   dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1912   1.7   dante 	int		status;
   1913  1.10   dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1914   1.7   dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1915   1.7   dante 	u_int16_t	bios_sig;
   1916   1.7   dante 
   1917   1.7   dante 
   1918   1.7   dante 	/*
   1919   1.7   dante 	 * Save current per TID negotiated values.
   1920   1.7   dante 	 */
   1921  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1922  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1923  1.16   dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1924  1.16   dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1925  1.10   dante 	}
   1926  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1927  1.11   dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1928  1.16   dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1929   1.7   dante 			max_cmd[tid]);
   1930   1.7   dante 	}
   1931   1.7   dante 
   1932   1.7   dante 	/*
   1933  1.17   dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1934  1.17   dante 	 * by clearing the BIOS signature word.
   1935   1.7   dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1936   1.7   dante 	 * needed if the BIOS signature word is present.
   1937   1.7   dante 	 */
   1938  1.16   dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1939  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1940   1.7   dante 
   1941   1.7   dante 	/*
   1942   1.7   dante 	 * Stop chip and reset it.
   1943   1.7   dante 	 */
   1944   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1945   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1946   1.7   dante 			ADW_CTRL_REG_CMD_RESET);
   1947  1.16   dante 	AdwSleepMilliSecond(100);
   1948   1.7   dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1949   1.7   dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1950   1.7   dante 
   1951   1.7   dante 	/*
   1952   1.7   dante 	 * Reset Adv Library error code, if any, and try
   1953   1.7   dante 	 * re-initializing the chip.
   1954  1.17   dante 	 * Then translate initialization return value to status value.
   1955   1.7   dante 	 */
   1956  1.17   dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1957   1.1   dante 
   1958   1.7   dante 	/*
   1959   1.7   dante 	 * Restore the BIOS signature word.
   1960   1.7   dante 	 */
   1961  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1962   1.1   dante 
   1963   1.1   dante 	/*
   1964   1.7   dante 	 * Restore per TID negotiated values.
   1965   1.1   dante 	 */
   1966  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1967  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1968  1.16   dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1969  1.16   dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1970  1.10   dante 	}
   1971  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1972   1.7   dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1973  1.16   dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1974   1.7   dante 			max_cmd[tid]);
   1975   1.7   dante 	}
   1976   1.1   dante 
   1977   1.7   dante 	return status;
   1978   1.1   dante }
   1979   1.1   dante 
   1980   1.1   dante 
   1981   1.1   dante /*
   1982   1.1   dante  * Adv Library Interrupt Service Routine
   1983   1.1   dante  *
   1984   1.1   dante  *  This function is called by a driver's interrupt service routine.
   1985   1.1   dante  *  The function disables and re-enables interrupts.
   1986   1.1   dante  *
   1987   1.7   dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1988   1.1   dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1989   1.1   dante  *
   1990  1.16   dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1991   1.1   dante  *  when there is no hardware interrupt condition present. It will
   1992   1.1   dante  *  always check for completed idle commands and microcode requests.
   1993   1.1   dante  *  This is an important feature that shouldn't be changed because it
   1994   1.1   dante  *  allows commands to be completed from polling mode loops.
   1995   1.1   dante  *
   1996   1.1   dante  * Return:
   1997   1.1   dante  *   ADW_TRUE(1) - interrupt was pending
   1998   1.1   dante  *   ADW_FALSE(0) - no interrupt was pending
   1999   1.1   dante  */
   2000   1.1   dante int
   2001  1.16   dante AdwISR(sc)
   2002   1.7   dante ADW_SOFTC	*sc;
   2003   1.1   dante {
   2004   1.2   dante 	bus_space_tag_t iot = sc->sc_iot;
   2005   1.2   dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2006   1.7   dante 	u_int8_t	int_stat;
   2007   1.7   dante 	u_int16_t	target_bit;
   2008   1.7   dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2009   1.7   dante 	u_int32_t	irq_next_pa;
   2010   1.7   dante 	ADW_SCSI_REQ_Q	*scsiq;
   2011   1.7   dante 	ADW_CCB		*ccb;
   2012  1.11   dante 	int		s;
   2013  1.11   dante 
   2014   1.1   dante 
   2015  1.11   dante 	s = splbio();
   2016   1.1   dante 
   2017   1.1   dante 	/* Reading the register clears the interrupt. */
   2018   1.1   dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2019   1.1   dante 
   2020   1.7   dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2021   1.7   dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2022  1.11   dante 		splx(s);
   2023   1.7   dante 		return ADW_FALSE;
   2024   1.1   dante 	}
   2025   1.7   dante 
   2026   1.7   dante 	/*
   2027   1.7   dante 	 * Notify the driver of an asynchronous microcode condition by
   2028   1.7   dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2029  1.16   dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2030   1.1   dante 	 */
   2031   1.7   dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2032   1.7   dante 		u_int8_t intrb_code;
   2033   1.7   dante 
   2034  1.16   dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2035  1.10   dante 
   2036  1.16   dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2037  1.16   dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2038  1.10   dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2039  1.10   dante 				sc->carr_pending_cnt != 0) {
   2040  1.10   dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2041  1.20  itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2042  1.16   dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2043  1.10   dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2044  1.20  itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2045  1.10   dante 				}
   2046  1.10   dante 			}
   2047   1.7   dante 		}
   2048   1.7   dante 
   2049   1.7   dante 		if (sc->async_callback != 0) {
   2050   1.7   dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2051   1.1   dante 		}
   2052   1.1   dante 	}
   2053   1.7   dante 
   2054   1.1   dante 	/*
   2055   1.7   dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2056   1.1   dante 	 */
   2057  1.12   dante 	while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
   2058   1.7   dante 	{
   2059  1.12   dante #if ADW_DEBUG
   2060  1.12   dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2061  1.12   dante 				sc->irq_sp->carr_id,
   2062  1.12   dante 				sc->irq_sp->carr_ba,
   2063  1.12   dante 				sc->irq_sp->areq_ba,
   2064  1.12   dante 				sc->irq_sp->next_ba);
   2065  1.12   dante #endif
   2066   1.7   dante 		/*
   2067  1.10   dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2068  1.10   dante 		 * structure.
   2069  1.12   dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2070   1.7   dante 		 *
   2071   1.7   dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2072  1.12   dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2073  1.10   dante 		 * The conversion below complements the conversion of
   2074  1.16   dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2075   1.7   dante 		 */
   2076  1.12   dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2077   1.7   dante 		scsiq = &ccb->scsiq;
   2078  1.12   dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2079   1.7   dante 
   2080  1.10   dante 		/*
   2081  1.10   dante 		 * Request finished with good status and the queue was not
   2082  1.10   dante 		 * DMAed to host memory by the firmware. Set all status fields
   2083  1.10   dante 		 * to indicate good status.
   2084  1.10   dante 		 */
   2085  1.10   dante 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   2086  1.10   dante 			scsiq->done_status = QD_NO_ERROR;
   2087  1.10   dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2088  1.10   dante 			scsiq->data_cnt = 0L;
   2089   1.7   dante 		}
   2090   1.1   dante 
   2091   1.1   dante 		/*
   2092   1.7   dante 		 * Advance the stopper pointer to the next carrier
   2093   1.7   dante 		 * ignoring the lower four bits. Free the previous
   2094   1.7   dante 		 * stopper carrier.
   2095   1.1   dante 		 */
   2096   1.7   dante 		free_carrp = sc->irq_sp;
   2097  1.16   dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2098   1.7   dante 
   2099  1.16   dante 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   2100  1.16   dante 					: sc->carr_freelist->carr_ba;
   2101   1.7   dante 		sc->carr_freelist = free_carrp;
   2102   1.7   dante 		sc->carr_pending_cnt--;
   2103   1.1   dante 
   2104   1.1   dante 
   2105   1.1   dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2106   1.1   dante 
   2107   1.1   dante 		/*
   2108   1.1   dante 		 * Clear request microcode control flag.
   2109   1.1   dante 		 */
   2110   1.1   dante 		scsiq->cntl = 0;
   2111   1.1   dante 
   2112   1.1   dante 		/*
   2113   1.1   dante 		 * Check Condition handling
   2114   1.1   dante 		 */
   2115   1.1   dante 		/*
   2116   1.1   dante 		 * If the command that completed was a SCSI INQUIRY and
   2117   1.1   dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2118   1.1   dante 		 * command information for the device.
   2119   1.1   dante 		 */
   2120   1.7   dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2121  1.10   dante 		    scsiq->cdb[0] == INQUIRY &&
   2122  1.10   dante 		    scsiq->target_lun == 0) {
   2123  1.16   dante 			AdwInquiryHandling(sc, scsiq);
   2124   1.1   dante 		}
   2125   1.1   dante 
   2126   1.1   dante 		/*
   2127   1.1   dante 		 * Notify the driver of the completed request by passing
   2128   1.1   dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2129   1.1   dante 		 */
   2130   1.7   dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2131   1.1   dante 		/*
   2132   1.1   dante 		 * Note: After the driver callback function is called, 'scsiq'
   2133   1.1   dante 		 * can no longer be referenced.
   2134   1.1   dante 		 *
   2135   1.1   dante 		 * Fall through and continue processing other completed
   2136   1.1   dante 		 * requests...
   2137   1.1   dante 		 */
   2138   1.1   dante 	}
   2139  1.11   dante 
   2140  1.11   dante 	splx(s);
   2141   1.7   dante 
   2142   1.7   dante 	return ADW_TRUE;
   2143   1.1   dante }
   2144   1.1   dante 
   2145   1.7   dante 
   2146   1.1   dante /*
   2147   1.1   dante  * Send an idle command to the chip and wait for completion.
   2148   1.1   dante  *
   2149   1.7   dante  * Command completion is polled for once per microsecond.
   2150   1.7   dante  *
   2151   1.7   dante  * The function can be called from anywhere including an interrupt handler.
   2152  1.10   dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2153   1.7   dante  * functions to prevent reentrancy.
   2154   1.1   dante  *
   2155   1.1   dante  * Return Values:
   2156   1.1   dante  *   ADW_TRUE - command completed successfully
   2157   1.1   dante  *   ADW_FALSE - command failed
   2158   1.7   dante  *   ADW_ERROR - command timed out
   2159   1.1   dante  */
   2160   1.1   dante int
   2161  1.16   dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2162   1.7   dante ADW_SOFTC      *sc;
   2163   1.7   dante u_int16_t       idle_cmd;
   2164   1.7   dante u_int32_t       idle_cmd_parameter;
   2165   1.1   dante {
   2166   1.2   dante 	bus_space_tag_t iot = sc->sc_iot;
   2167   1.2   dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2168  1.13   dante 	u_int16_t	result;
   2169  1.10   dante 	u_int32_t	i, j, s;
   2170   1.1   dante 
   2171  1.10   dante 	s = splbio();
   2172   1.7   dante 
   2173   1.7   dante 	/*
   2174   1.7   dante 	 * Clear the idle command status which is set by the microcode
   2175   1.7   dante 	 * to a non-zero value to indicate when the command is completed.
   2176   1.7   dante 	 */
   2177  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2178   1.1   dante 
   2179   1.1   dante 	/*
   2180   1.1   dante 	 * Write the idle command value after the idle command parameter
   2181   1.1   dante 	 * has been written to avoid a race condition. If the order is not
   2182   1.1   dante 	 * followed, the microcode may process the idle command before the
   2183   1.1   dante 	 * parameters have been written to LRAM.
   2184   1.1   dante 	 */
   2185  1.16   dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2186  1.13   dante 			idle_cmd_parameter);
   2187  1.16   dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2188   1.1   dante 
   2189   1.1   dante 	/*
   2190   1.7   dante 	 * Tickle the RISC to tell it to process the idle command.
   2191   1.1   dante 	 */
   2192  1.20  itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2193  1.16   dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2194   1.1   dante 		/*
   2195   1.7   dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2196   1.7   dante 		 * command 'clr_tickle_b' does not work unless the host
   2197   1.7   dante 		 * value is cleared.
   2198   1.1   dante 		 */
   2199  1.20  itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2200   1.7   dante 	}
   2201   1.1   dante 
   2202   1.7   dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2203   1.7   dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2204   1.7   dante 		/* Poll once each microsecond for command completion. */
   2205   1.7   dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2206  1.17   dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2207  1.17   dante 									result);
   2208   1.7   dante 			if (result != 0) {
   2209  1.10   dante 				splx(s);
   2210   1.7   dante 				return result;
   2211   1.7   dante 			}
   2212  1.16   dante 			AdwDelayMicroSecond(1);
   2213   1.7   dante 		}
   2214   1.1   dante 	}
   2215   1.1   dante 
   2216  1.10   dante 	splx(s);
   2217   1.7   dante 	return ADW_ERROR;
   2218   1.1   dante }
   2219   1.1   dante 
   2220   1.1   dante 
   2221   1.1   dante /*
   2222   1.1   dante  * Inquiry Information Byte 7 Handling
   2223   1.1   dante  *
   2224   1.1   dante  * Handle SCSI Inquiry Command information for a device by setting
   2225   1.2   dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2226   1.1   dante  * Queuing.
   2227   1.1   dante  */
   2228   1.1   dante static void
   2229  1.16   dante AdwInquiryHandling(sc, scsiq)
   2230   1.7   dante ADW_SOFTC	*sc;
   2231   1.7   dante ADW_SCSI_REQ_Q *scsiq;
   2232   1.1   dante {
   2233   1.9   dante #ifndef FAILSAFE
   2234   1.2   dante 	bus_space_tag_t iot = sc->sc_iot;
   2235   1.2   dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2236   1.7   dante 	u_int8_t		tid;
   2237  1.13   dante 	struct scsipi_inquiry_data *inq;
   2238   1.7   dante 	u_int16_t		tidmask;
   2239   1.7   dante 	u_int16_t		cfg_word;
   2240   1.7   dante 
   2241   1.1   dante 
   2242   1.1   dante 	/*
   2243  1.16   dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2244   1.1   dante 	 * to be available.
   2245   1.1   dante 	 *
   2246   1.1   dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2247   1.1   dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2248   1.1   dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2249   1.1   dante 	 * microcode to the transfer residual count.
   2250   1.1   dante 	 */
   2251   1.7   dante 
   2252   1.2   dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2253   1.1   dante 		return;
   2254   1.1   dante 	}
   2255   1.7   dante 
   2256   1.1   dante 	tid = scsiq->target_id;
   2257   1.7   dante 
   2258  1.13   dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2259   1.1   dante 
   2260   1.1   dante 	/*
   2261   1.1   dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2262   1.1   dante 	 */
   2263  1.13   dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2264  1.13   dante 	    ((inq->version & SID_ANSII) < 2)) {
   2265   1.1   dante 		return;
   2266   1.2   dante 	} else {
   2267   1.1   dante 		/*
   2268   1.1   dante 		 * INQUIRY Byte 7 Handling
   2269   1.1   dante 		 *
   2270   1.1   dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2271   1.1   dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2272   1.1   dante 		 * is enabled in the EEPROM and the device supports the
   2273   1.1   dante 		 * feature, then enable it in the microcode.
   2274   1.1   dante 		 */
   2275   1.1   dante 
   2276   1.1   dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2277   1.7   dante 
   2278   1.1   dante 		/*
   2279   1.1   dante 		 * Wide Transfers
   2280   1.1   dante 		 *
   2281   1.1   dante 		 * If the EEPROM enabled WDTR for the device and the device
   2282   1.1   dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2283   1.1   dante 		 * device's 'wdtr_able' bit and write the new value to the
   2284   1.1   dante 		 * microcode.
   2285   1.1   dante 		 */
   2286   1.7   dante #ifdef SCSI_ADW_WDTR_DISABLE
   2287   1.8   dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2288   1.7   dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2289  1.13   dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2290  1.16   dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2291   1.7   dante 					cfg_word);
   2292   1.2   dante 			if ((cfg_word & tidmask) == 0) {
   2293   1.1   dante 				cfg_word |= tidmask;
   2294  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2295   1.7   dante 						cfg_word);
   2296   1.1   dante 
   2297   1.1   dante 				/*
   2298  1.16   dante 				 * Clear the microcode "SDTR negotiation" and
   2299  1.16   dante 				 * "WDTR negotiation" done indicators for the
   2300  1.16   dante 				 * target to cause it to negotiate with the new
   2301  1.16   dante 				 * setting set above.
   2302   1.7   dante 				 * WDTR when accepted causes the target to enter
   2303  1.16   dante 				 * asynchronous mode, so SDTR must be negotiated
   2304   1.1   dante 				 */
   2305  1.16   dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306   1.7   dante 						cfg_word);
   2307   1.7   dante 				cfg_word &= ~tidmask;
   2308  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309   1.7   dante 						cfg_word);
   2310  1.16   dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2311   1.7   dante 						cfg_word);
   2312   1.1   dante 				cfg_word &= ~tidmask;
   2313  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2314   1.7   dante 						cfg_word);
   2315   1.1   dante 			}
   2316   1.1   dante 		}
   2317   1.7   dante 
   2318   1.1   dante 		/*
   2319   1.1   dante 		 * Synchronous Transfers
   2320   1.1   dante 		 *
   2321   1.1   dante 		 * If the EEPROM enabled SDTR for the device and the device
   2322   1.1   dante 		 * supports synchronous transfers, then turn on the device's
   2323   1.1   dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2324   1.1   dante 		 */
   2325   1.7   dante #ifdef SCSI_ADW_SDTR_DISABLE
   2326   1.8   dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2327   1.7   dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2328  1.13   dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2329  1.17   dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2330   1.2   dante 			if ((cfg_word & tidmask) == 0) {
   2331   1.1   dante 				cfg_word |= tidmask;
   2332  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2333   1.7   dante 						cfg_word);
   2334   1.1   dante 
   2335   1.1   dante 				/*
   2336  1.16   dante 				 * Clear the microcode "SDTR negotiation"
   2337  1.16   dante 				 * done indicator for the target to cause it
   2338  1.16   dante 				 * to negotiate with the new setting set above.
   2339   1.1   dante 				 */
   2340  1.16   dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2341   1.7   dante 						cfg_word);
   2342   1.1   dante 				cfg_word &= ~tidmask;
   2343  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2344   1.7   dante 						cfg_word);
   2345  1.10   dante 			}
   2346  1.10   dante 		}
   2347  1.10   dante 		/*
   2348  1.10   dante 		 * If the Inquiry data included enough space for the SPI-3
   2349  1.10   dante 		 * Clocking field, then check if DT mode is supported.
   2350  1.10   dante 		 */
   2351  1.16   dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2352  1.17   dante 		   (scsiq->cdb[4] >= 57 ||
   2353  1.17   dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2354  1.10   dante 			/*
   2355  1.10   dante 			 * PPR (Parallel Protocol Request) Capable
   2356  1.10   dante 			 *
   2357  1.10   dante 			 * If the device supports DT mode, then it must be
   2358  1.10   dante 			 * PPR capable.
   2359  1.10   dante 			 * The PPR message will be used in place of the SDTR
   2360  1.10   dante 			 * and WDTR messages to negotiate synchronous speed
   2361  1.10   dante 			 * and offset, transfer width, and protocol options.
   2362  1.10   dante 			 */
   2363  1.15   dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2364  1.16   dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2365  1.10   dante 						sc->ppr_able);
   2366  1.10   dante 				sc->ppr_able |= tidmask;
   2367  1.16   dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2368  1.10   dante 						sc->ppr_able);
   2369   1.1   dante 			}
   2370   1.1   dante 		}
   2371   1.7   dante 
   2372   1.1   dante 		/*
   2373   1.7   dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2374   1.7   dante 		 * device supports Tag Queueing, then turn on the device's
   2375   1.1   dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2376   1.7   dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2377   1.1   dante 		 * value.
   2378   1.1   dante 		 *
   2379   1.1   dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2380   1.1   dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2381   1.1   dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2382   1.1   dante 		 * bugs will at least work with the BIOS.
   2383   1.1   dante 		 */
   2384   1.7   dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2385   1.8   dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2386   1.7   dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2387  1.13   dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2388  1.16   dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2389   1.7   dante 					cfg_word);
   2390   1.1   dante 			cfg_word |= tidmask;
   2391  1.16   dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2392   1.7   dante 					cfg_word);
   2393   1.7   dante 
   2394   1.1   dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2395  1.16   dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2396   1.7   dante 					sc->max_dvc_qng);
   2397   1.1   dante 		}
   2398   1.9   dante 	}
   2399   1.7   dante #endif /* FAILSAFE */
   2400   1.1   dante }
   2401   1.1   dante 
   2402   1.7   dante 
   2403   1.1   dante static void
   2404  1.16   dante AdwSleepMilliSecond(n)
   2405   1.7   dante u_int32_t	n;
   2406   1.1   dante {
   2407   1.1   dante 
   2408   1.1   dante 	DELAY(n * 1000);
   2409   1.1   dante }
   2410   1.1   dante 
   2411   1.7   dante 
   2412   1.1   dante static void
   2413  1.16   dante AdwDelayMicroSecond(n)
   2414   1.7   dante u_int32_t	n;
   2415   1.1   dante {
   2416   1.1   dante 
   2417   1.1   dante 	DELAY(n);
   2418   1.1   dante }
   2419   1.7   dante 
   2420