adwlib.c revision 1.21 1 1.21 lukem /* $NetBSD: adwlib.c,v 1.21 2001/04/30 03:43:09 lukem Exp $ */
2 1.1 dante
3 1.1 dante /*
4 1.1 dante * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 1.1 dante *
6 1.7 dante * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 1.1 dante * All rights reserved.
8 1.1 dante *
9 1.1 dante * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 1.1 dante *
11 1.1 dante * Redistribution and use in source and binary forms, with or without
12 1.1 dante * modification, are permitted provided that the following conditions
13 1.1 dante * are met:
14 1.1 dante * 1. Redistributions of source code must retain the above copyright
15 1.1 dante * notice, this list of conditions and the following disclaimer.
16 1.1 dante * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 dante * notice, this list of conditions and the following disclaimer in the
18 1.1 dante * documentation and/or other materials provided with the distribution.
19 1.1 dante * 3. All advertising materials mentioning features or use of this software
20 1.1 dante * must display the following acknowledgement:
21 1.1 dante * This product includes software developed by the NetBSD
22 1.1 dante * Foundation, Inc. and its contributors.
23 1.1 dante * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 dante * contributors may be used to endorse or promote products derived
25 1.1 dante * from this software without specific prior written permission.
26 1.1 dante *
27 1.1 dante * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 dante * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 dante * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 dante * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 dante * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 dante * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 dante * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 dante * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 dante * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 dante * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 dante * POSSIBILITY OF SUCH DAMAGE.
38 1.1 dante */
39 1.1 dante /*
40 1.1 dante * Ported from:
41 1.1 dante */
42 1.1 dante /*
43 1.1 dante * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 1.7 dante *
45 1.10 dante * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 1.1 dante * All Rights Reserved.
47 1.1 dante *
48 1.1 dante * Redistribution and use in source and binary forms, with or without
49 1.1 dante * modification, are permitted provided that redistributions of source
50 1.1 dante * code retain the above copyright notice and this comment without
51 1.1 dante * modification.
52 1.1 dante */
53 1.1 dante
54 1.1 dante #include <sys/types.h>
55 1.1 dante #include <sys/param.h>
56 1.1 dante #include <sys/systm.h>
57 1.1 dante #include <sys/malloc.h>
58 1.1 dante #include <sys/kernel.h>
59 1.1 dante #include <sys/queue.h>
60 1.1 dante #include <sys/device.h>
61 1.1 dante
62 1.1 dante #include <machine/bus.h>
63 1.1 dante #include <machine/intr.h>
64 1.1 dante
65 1.1 dante #include <dev/scsipi/scsi_all.h>
66 1.1 dante #include <dev/scsipi/scsipi_all.h>
67 1.1 dante #include <dev/scsipi/scsiconf.h>
68 1.1 dante
69 1.7 dante #include <dev/pci/pcidevs.h>
70 1.7 dante
71 1.19 mrg #include <uvm/uvm_extern.h>
72 1.1 dante
73 1.1 dante #include <dev/ic/adwlib.h>
74 1.16 dante #include <dev/ic/adwmcode.h>
75 1.1 dante #include <dev/ic/adw.h>
76 1.1 dante
77 1.1 dante
78 1.1 dante /* Static Functions */
79 1.1 dante
80 1.17 dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
81 1.17 dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
82 1.17 dante u_int8_t));
83 1.17 dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
84 1.17 dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
85 1.17 dante ADW_DVC_CFG *));
86 1.17 dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 1.17 dante ADW_DVC_CFG *));
88 1.17 dante
89 1.17 dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
90 1.17 dante ADW_EEPROM *));
91 1.17 dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 1.17 dante ADW_EEPROM *));
93 1.16 dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
94 1.16 dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
95 1.17 dante
96 1.16 dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
97 1.1 dante
98 1.16 dante static void AdwSleepMilliSecond __P((u_int32_t));
99 1.16 dante static void AdwDelayMicroSecond __P((u_int32_t));
100 1.1 dante
101 1.1 dante
102 1.1 dante /*
103 1.1 dante * EEPROM Configuration.
104 1.1 dante *
105 1.1 dante * All drivers should use this structure to set the default EEPROM
106 1.1 dante * configuration. The BIOS now uses this structure when it is built.
107 1.16 dante * Additional structure information can be found in adwlib.h where
108 1.1 dante * the structure is defined.
109 1.1 dante */
110 1.17 dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
111 1.17 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
112 1.17 dante 0x0000, /* 01 cfg_msw */
113 1.17 dante 0xFFFF, /* 02 disc_enable */
114 1.17 dante 0xFFFF, /* 03 wdtr_able */
115 1.17 dante { 0xFFFF }, /* 04 sdtr_able */
116 1.17 dante 0xFFFF, /* 05 start_motor */
117 1.17 dante 0xFFFF, /* 06 tagqng_able */
118 1.17 dante 0xFFFF, /* 07 bios_scan */
119 1.17 dante 0, /* 08 scam_tolerant */
120 1.17 dante 7, /* 09 adapter_scsi_id */
121 1.17 dante 0, /* bios_boot_delay */
122 1.17 dante 3, /* 10 scsi_reset_delay */
123 1.17 dante 0, /* bios_id_lun */
124 1.17 dante 0, /* 11 termination */
125 1.17 dante 0, /* reserved1 */
126 1.17 dante 0xFFE7, /* 12 bios_ctrl */
127 1.17 dante { 0xFFFF }, /* 13 ultra_able */
128 1.17 dante { 0 }, /* 14 reserved2 */
129 1.17 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
130 1.17 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
131 1.17 dante 0, /* 16 dvc_cntl */
132 1.17 dante { 0 }, /* 17 bug_fix */
133 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
134 1.17 dante 0, /* 21 check_sum */
135 1.17 dante { /* 22-29 oem_name[16] */
136 1.17 dante 0,0,0,0,0,0,0,0,
137 1.17 dante 0,0,0,0,0,0,0,0
138 1.17 dante },
139 1.17 dante 0, /* 30 dvc_err_code */
140 1.17 dante 0, /* 31 adv_err_code */
141 1.17 dante 0, /* 32 adv_err_addr */
142 1.17 dante 0, /* 33 saved_dvc_err_code */
143 1.17 dante 0, /* 34 saved_adv_err_code */
144 1.17 dante 0 /* 35 saved_adv_err_addr */
145 1.7 dante };
146 1.7 dante
147 1.17 dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
148 1.7 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
149 1.7 dante 0x0000, /* 01 cfg_msw */
150 1.7 dante 0xFFFF, /* 02 disc_enable */
151 1.7 dante 0xFFFF, /* 03 wdtr_able */
152 1.17 dante { 0x4444 }, /* 04 sdtr_speed1 */
153 1.7 dante 0xFFFF, /* 05 start_motor */
154 1.7 dante 0xFFFF, /* 06 tagqng_able */
155 1.7 dante 0xFFFF, /* 07 bios_scan */
156 1.7 dante 0, /* 08 scam_tolerant */
157 1.7 dante 7, /* 09 adapter_scsi_id */
158 1.7 dante 0, /* bios_boot_delay */
159 1.7 dante 3, /* 10 scsi_reset_delay */
160 1.7 dante 0, /* bios_id_lun */
161 1.7 dante 0, /* 11 termination_se */
162 1.7 dante 0, /* termination_lvd */
163 1.7 dante 0xFFE7, /* 12 bios_ctrl */
164 1.17 dante { 0x4444 }, /* 13 sdtr_speed2 */
165 1.17 dante { 0x4444 }, /* 14 sdtr_speed3 */
166 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
167 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
168 1.7 dante 0, /* 16 dvc_cntl */
169 1.17 dante { 0x4444 }, /* 17 sdtr_speed4 */
170 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
171 1.7 dante 0, /* 21 check_sum */
172 1.17 dante { /* 22-29 oem_name[16] */
173 1.17 dante 0,0,0,0,0,0,0,0,
174 1.17 dante 0,0,0,0,0,0,0,0
175 1.17 dante },
176 1.7 dante 0, /* 30 dvc_err_code */
177 1.7 dante 0, /* 31 adv_err_code */
178 1.7 dante 0, /* 32 adv_err_addr */
179 1.7 dante 0, /* 33 saved_dvc_err_code */
180 1.7 dante 0, /* 34 saved_adv_err_code */
181 1.7 dante 0, /* 35 saved_adv_err_addr */
182 1.17 dante { /* 36-55 reserved1[16] */
183 1.17 dante 0,0,0,0,0,0,0,0,0,0,
184 1.17 dante 0,0,0,0,0,0,0,0,0,0
185 1.17 dante },
186 1.7 dante 0, /* 56 cisptr_lsw */
187 1.7 dante 0, /* 57 cisprt_msw */
188 1.7 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
189 1.7 dante PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
190 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
191 1.1 dante };
192 1.1 dante
193 1.17 dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
194 1.10 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
195 1.10 dante 0x0000, /* 01 cfg_msw */
196 1.10 dante 0xFFFF, /* 02 disc_enable */
197 1.10 dante 0xFFFF, /* 03 wdtr_able */
198 1.17 dante { 0x5555 }, /* 04 sdtr_speed1 */
199 1.10 dante 0xFFFF, /* 05 start_motor */
200 1.10 dante 0xFFFF, /* 06 tagqng_able */
201 1.10 dante 0xFFFF, /* 07 bios_scan */
202 1.10 dante 0, /* 08 scam_tolerant */
203 1.10 dante 7, /* 09 adapter_scsi_id */
204 1.10 dante 0, /* bios_boot_delay */
205 1.10 dante 3, /* 10 scsi_reset_delay */
206 1.10 dante 0, /* bios_id_lun */
207 1.10 dante 0, /* 11 termination_se */
208 1.10 dante 0, /* termination_lvd */
209 1.10 dante 0xFFE7, /* 12 bios_ctrl */
210 1.17 dante { 0x5555 }, /* 13 sdtr_speed2 */
211 1.17 dante { 0x5555 }, /* 14 sdtr_speed3 */
212 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
213 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
214 1.10 dante 0, /* 16 dvc_cntl */
215 1.17 dante { 0x5555 }, /* 17 sdtr_speed4 */
216 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
217 1.10 dante 0, /* 21 check_sum */
218 1.17 dante { /* 22-29 oem_name[16] */
219 1.17 dante 0,0,0,0,0,0,0,0,
220 1.17 dante 0,0,0,0,0,0,0,0
221 1.17 dante },
222 1.10 dante 0, /* 30 dvc_err_code */
223 1.10 dante 0, /* 31 adv_err_code */
224 1.10 dante 0, /* 32 adv_err_addr */
225 1.10 dante 0, /* 33 saved_dvc_err_code */
226 1.10 dante 0, /* 34 saved_adv_err_code */
227 1.10 dante 0, /* 35 saved_adv_err_addr */
228 1.17 dante { /* 36-55 reserved1[16] */
229 1.17 dante 0,0,0,0,0,0,0,0,0,0,
230 1.17 dante 0,0,0,0,0,0,0,0,0,0
231 1.17 dante },
232 1.10 dante 0, /* 56 cisptr_lsw */
233 1.10 dante 0, /* 57 cisprt_msw */
234 1.10 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
235 1.10 dante PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
236 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
237 1.10 dante };
238 1.10 dante
239 1.17 dante
240 1.1 dante /*
241 1.17 dante * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
242 1.17 dante * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
243 1.17 dante * all of this is done.
244 1.1 dante *
245 1.1 dante * For a non-fatal error return a warning code. If there are no warnings
246 1.1 dante * then 0 is returned.
247 1.17 dante *
248 1.17 dante * Note: Chip is stopped on entry.
249 1.17 dante */
250 1.17 dante int
251 1.17 dante AdwInitFromEEPROM(sc)
252 1.17 dante ADW_SOFTC *sc;
253 1.17 dante {
254 1.17 dante bus_space_tag_t iot = sc->sc_iot;
255 1.17 dante bus_space_handle_t ioh = sc->sc_ioh;
256 1.17 dante ADW_EEPROM eep_config;
257 1.17 dante u_int16_t warn_code;
258 1.17 dante u_int16_t sdtr_speed = 0;
259 1.17 dante u_int8_t tid, termination;
260 1.17 dante int i, j;
261 1.17 dante
262 1.17 dante
263 1.17 dante warn_code = 0;
264 1.17 dante
265 1.17 dante /*
266 1.17 dante * Read the board's EEPROM configuration.
267 1.17 dante *
268 1.17 dante * Set default values if a bad checksum is found.
269 1.17 dante *
270 1.17 dante * XXX - Don't handle big-endian access to EEPROM yet.
271 1.17 dante */
272 1.17 dante if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
273 1.17 dante warn_code |= ADW_WARN_EEPROM_CHKSUM;
274 1.17 dante
275 1.17 dante /*
276 1.17 dante * Set EEPROM default values.
277 1.17 dante */
278 1.17 dante switch(sc->chip_type) {
279 1.17 dante case ADW_CHIP_ASC3550:
280 1.17 dante eep_config = adw_3550_Default_EEPROM;
281 1.17 dante break;
282 1.17 dante case ADW_CHIP_ASC38C0800:
283 1.17 dante eep_config = adw_38C0800_Default_EEPROM;
284 1.17 dante break;
285 1.17 dante case ADW_CHIP_ASC38C1600:
286 1.17 dante eep_config = adw_38C1600_Default_EEPROM;
287 1.17 dante
288 1.21 lukem #if 0
289 1.21 lukem XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
290 1.21 lukem #endif
291 1.17 dante if (sc->cfg.pci_slot_info != 0) {
292 1.17 dante u_int8_t lsw_msb;
293 1.17 dante
294 1.17 dante lsw_msb = eep_config.cfg_lsw >> 8;
295 1.17 dante /*
296 1.17 dante * Set Function 1 EEPROM Word 0 MSB
297 1.17 dante *
298 1.17 dante * Clear the BIOS_ENABLE (bit 14) and
299 1.17 dante * INTAB (bit 11) EEPROM bits.
300 1.17 dante *
301 1.17 dante * Disable Bit 14 (BIOS_ENABLE) to fix
302 1.17 dante * SPARC Ultra 60 and old Mac system booting
303 1.17 dante * problem. The Expansion ROM must
304 1.17 dante * be disabled in Function 1 for these systems.
305 1.17 dante */
306 1.17 dante lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
307 1.17 dante ADW_EEPROM_INTAB) >> 8) & 0xFF);
308 1.17 dante /*
309 1.17 dante * Set the INTAB (bit 11) if the GPIO 0 input
310 1.17 dante * indicates the Function 1 interrupt line is
311 1.17 dante * wired to INTA.
312 1.17 dante *
313 1.17 dante * Set/Clear Bit 11 (INTAB) from
314 1.17 dante * the GPIO bit 0 input:
315 1.17 dante * 1 - Function 1 intr line wired to INT A.
316 1.17 dante * 0 - Function 1 intr line wired to INT B.
317 1.17 dante *
318 1.17 dante * Note: Adapter boards always have Function 0
319 1.17 dante * wired to INTA.
320 1.17 dante * Put all 5 GPIO bits in input mode and then
321 1.17 dante * read their input values.
322 1.17 dante */
323 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
324 1.17 dante IOPB_GPIO_CNTL, 0);
325 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh,
326 1.17 dante IOPB_GPIO_DATA) & 0x01) {
327 1.17 dante /*
328 1.17 dante * Function 1 interrupt wired to INTA;
329 1.17 dante * Set EEPROM bit.
330 1.17 dante */
331 1.17 dante lsw_msb |= (ADW_EEPROM_INTAB >> 8)
332 1.17 dante & 0xFF;
333 1.17 dante }
334 1.17 dante eep_config.cfg_lsw &= 0x00FF;
335 1.17 dante eep_config.cfg_lsw |= lsw_msb << 8;
336 1.17 dante }
337 1.17 dante break;
338 1.17 dante }
339 1.17 dante
340 1.17 dante /*
341 1.17 dante * Assume the 6 byte board serial number that was read
342 1.17 dante * from EEPROM is correct even if the EEPROM checksum
343 1.17 dante * failed.
344 1.17 dante */
345 1.17 dante for (i=2, j=1; i>=0; i--, j++) {
346 1.17 dante eep_config.serial_number[i] =
347 1.17 dante AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
348 1.17 dante }
349 1.17 dante
350 1.17 dante AdwSetEEPROMConfig(iot, ioh, &eep_config);
351 1.17 dante }
352 1.17 dante /*
353 1.17 dante * Set sc and sc->cfg variables from the EEPROM configuration
354 1.17 dante * that was read.
355 1.17 dante *
356 1.17 dante * This is the mapping of EEPROM fields to Adw Library fields.
357 1.17 dante */
358 1.17 dante sc->wdtr_able = eep_config.wdtr_able;
359 1.17 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
360 1.17 dante sc->sdtr_able = eep_config.sdtr1.sdtr_able;
361 1.17 dante sc->ultra_able = eep_config.sdtr2.ultra_able;
362 1.17 dante } else {
363 1.17 dante sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
364 1.17 dante sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
365 1.17 dante sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
366 1.17 dante sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
367 1.17 dante }
368 1.17 dante sc->ppr_able = 0;
369 1.17 dante sc->tagqng_able = eep_config.tagqng_able;
370 1.17 dante sc->cfg.disc_enable = eep_config.disc_enable;
371 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
372 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
373 1.17 dante sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
374 1.17 dante sc->start_motor = eep_config.start_motor;
375 1.17 dante sc->scsi_reset_wait = eep_config.scsi_reset_delay;
376 1.17 dante sc->bios_ctrl = eep_config.bios_ctrl;
377 1.17 dante sc->no_scam = eep_config.scam_tolerant;
378 1.17 dante sc->cfg.serial1 = eep_config.serial_number[0];
379 1.17 dante sc->cfg.serial2 = eep_config.serial_number[1];
380 1.17 dante sc->cfg.serial3 = eep_config.serial_number[2];
381 1.17 dante
382 1.17 dante if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
383 1.17 dante sc->chip_type == ADW_CHIP_ASC38C1600) {
384 1.17 dante sc->sdtr_able = 0;
385 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
386 1.17 dante if (tid == 0) {
387 1.17 dante sdtr_speed = sc->sdtr_speed1;
388 1.17 dante } else if (tid == 4) {
389 1.17 dante sdtr_speed = sc->sdtr_speed2;
390 1.17 dante } else if (tid == 8) {
391 1.17 dante sdtr_speed = sc->sdtr_speed3;
392 1.17 dante } else if (tid == 12) {
393 1.17 dante sdtr_speed = sc->sdtr_speed4;
394 1.17 dante }
395 1.17 dante if (sdtr_speed & ADW_MAX_TID) {
396 1.17 dante sc->sdtr_able |= (1 << tid);
397 1.17 dante }
398 1.17 dante sdtr_speed >>= 4;
399 1.17 dante }
400 1.17 dante }
401 1.17 dante
402 1.17 dante /*
403 1.17 dante * Set the host maximum queuing (max. 253, min. 16) and the per device
404 1.17 dante * maximum queuing (max. 63, min. 4).
405 1.17 dante */
406 1.17 dante if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
407 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
408 1.17 dante } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
409 1.17 dante {
410 1.17 dante /* If the value is zero, assume it is uninitialized. */
411 1.17 dante if (eep_config.max_host_qng == 0) {
412 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
413 1.17 dante } else {
414 1.17 dante eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
415 1.17 dante }
416 1.17 dante }
417 1.17 dante
418 1.17 dante if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
419 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
420 1.17 dante } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
421 1.17 dante /* If the value is zero, assume it is uninitialized. */
422 1.17 dante if (eep_config.max_dvc_qng == 0) {
423 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
424 1.17 dante } else {
425 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
426 1.17 dante }
427 1.17 dante }
428 1.17 dante
429 1.17 dante /*
430 1.17 dante * If 'max_dvc_qng' is greater than 'max_host_qng', then
431 1.17 dante * set 'max_dvc_qng' to 'max_host_qng'.
432 1.17 dante */
433 1.17 dante if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
434 1.17 dante eep_config.max_dvc_qng = eep_config.max_host_qng;
435 1.17 dante }
436 1.17 dante
437 1.17 dante /*
438 1.17 dante * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
439 1.17 dante * values based on possibly adjusted EEPROM values.
440 1.17 dante */
441 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
442 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
443 1.17 dante
444 1.17 dante
445 1.17 dante /*
446 1.17 dante * If the EEPROM 'termination' field is set to automatic (0), then set
447 1.17 dante * the ADV_DVC_CFG 'termination' field to automatic also.
448 1.17 dante *
449 1.17 dante * If the termination is specified with a non-zero 'termination'
450 1.17 dante * value check that a legal value is set and set the ADV_DVC_CFG
451 1.17 dante * 'termination' field appropriately.
452 1.17 dante */
453 1.17 dante
454 1.17 dante switch(sc->chip_type) {
455 1.17 dante case ADW_CHIP_ASC3550:
456 1.17 dante sc->cfg.termination = 0; /* auto termination */
457 1.17 dante switch(eep_config.termination_se) {
458 1.17 dante case 3:
459 1.17 dante /* Enable manual control with low on / high on. */
460 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_L;
461 1.17 dante case 2:
462 1.17 dante /* Enable manual control with low off / high on. */
463 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_H;
464 1.17 dante case 1:
465 1.17 dante /* Enable manual control with low off / high off. */
466 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_SEL;
467 1.17 dante case 0:
468 1.17 dante break;
469 1.17 dante default:
470 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
471 1.17 dante }
472 1.17 dante break;
473 1.17 dante
474 1.17 dante case ADW_CHIP_ASC38C0800:
475 1.17 dante case ADW_CHIP_ASC38C1600:
476 1.17 dante switch(eep_config.termination_se) {
477 1.17 dante case 0:
478 1.17 dante /* auto termination for SE */
479 1.17 dante termination = 0;
480 1.17 dante break;
481 1.17 dante case 1:
482 1.17 dante /* Enable manual control with low off / high off. */
483 1.17 dante termination = 0;
484 1.17 dante break;
485 1.17 dante case 2:
486 1.17 dante /* Enable manual control with low off / high on. */
487 1.17 dante termination = ADW_TERM_SE_HI;
488 1.17 dante break;
489 1.17 dante case 3:
490 1.17 dante /* Enable manual control with low on / high on. */
491 1.17 dante termination = ADW_TERM_SE;
492 1.17 dante break;
493 1.17 dante default:
494 1.17 dante /*
495 1.17 dante * The EEPROM 'termination_se' field contains a
496 1.17 dante * bad value. Use automatic termination instead.
497 1.17 dante */
498 1.17 dante termination = 0;
499 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
500 1.17 dante }
501 1.17 dante
502 1.17 dante switch(eep_config.termination_lvd) {
503 1.17 dante case 0:
504 1.17 dante /* auto termination for LVD */
505 1.17 dante sc->cfg.termination = termination;
506 1.17 dante break;
507 1.17 dante case 1:
508 1.17 dante /* Enable manual control with low off / high off. */
509 1.17 dante sc->cfg.termination = termination;
510 1.17 dante break;
511 1.17 dante case 2:
512 1.17 dante /* Enable manual control with low off / high on. */
513 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD_HI;
514 1.17 dante break;
515 1.17 dante case 3:
516 1.17 dante /* Enable manual control with low on / high on. */
517 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD;
518 1.17 dante break;
519 1.17 dante default:
520 1.17 dante /*
521 1.17 dante * The EEPROM 'termination_lvd' field contains a
522 1.17 dante * bad value. Use automatic termination instead.
523 1.17 dante */
524 1.17 dante sc->cfg.termination = termination;
525 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
526 1.17 dante }
527 1.17 dante break;
528 1.17 dante }
529 1.17 dante
530 1.17 dante return warn_code;
531 1.17 dante }
532 1.17 dante
533 1.17 dante
534 1.17 dante /*
535 1.17 dante * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
536 1.17 dante *
537 1.17 dante * On failure return the error code.
538 1.1 dante */
539 1.1 dante int
540 1.17 dante AdwInitDriver(sc)
541 1.2 dante ADW_SOFTC *sc;
542 1.1 dante {
543 1.2 dante bus_space_tag_t iot = sc->sc_iot;
544 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
545 1.17 dante u_int16_t error_code;
546 1.7 dante int word;
547 1.17 dante int i;
548 1.16 dante u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
549 1.7 dante 0x40-0x8F. */
550 1.17 dante u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
551 1.7 dante u_int8_t max_cmd[ADW_MAX_TID + 1];
552 1.17 dante u_int8_t tid;
553 1.1 dante
554 1.1 dante
555 1.17 dante error_code = 0;
556 1.1 dante
557 1.1 dante /*
558 1.1 dante * Save the RISC memory BIOS region before writing the microcode.
559 1.1 dante * The BIOS may already be loaded and using its RISC LRAM region
560 1.1 dante * so its region must be saved and restored.
561 1.1 dante *
562 1.1 dante * Note: This code makes the assumption, which is currently true,
563 1.1 dante * that a chip reset does not clear RISC LRAM.
564 1.1 dante */
565 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
566 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
567 1.7 dante }
568 1.7 dante
569 1.7 dante /*
570 1.7 dante * Save current per TID negotiated values.
571 1.7 dante */
572 1.17 dante switch (sc->chip_type) {
573 1.17 dante case ADW_CHIP_ASC3550:
574 1.17 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
575 1.17 dante
576 1.17 dante u_int16_t bios_version, major, minor;
577 1.17 dante
578 1.17 dante bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
579 1.17 dante ADW_MC_BIOSMEM) / 2];
580 1.17 dante major = (bios_version >> 12) & 0xF;
581 1.17 dante minor = (bios_version >> 8) & 0xF;
582 1.17 dante if (major < 3 || (major == 3 && minor == 1)) {
583 1.17 dante /*
584 1.17 dante * BIOS 3.1 and earlier location of
585 1.17 dante * 'wdtr_able' variable.
586 1.17 dante */
587 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
588 1.17 dante } else {
589 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
590 1.17 dante wdtr_able);
591 1.17 dante }
592 1.17 dante }
593 1.17 dante break;
594 1.7 dante
595 1.17 dante case ADW_CHIP_ASC38C1600:
596 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
597 1.17 dante /* FALLTHROUGH */
598 1.17 dante case ADW_CHIP_ASC38C0800:
599 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
600 1.17 dante break;
601 1.7 dante }
602 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
603 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
604 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
605 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
606 1.7 dante max_cmd[tid]);
607 1.1 dante }
608 1.1 dante
609 1.1 dante /*
610 1.17 dante * Perform a RAM Built-In Self Test
611 1.1 dante */
612 1.17 dante if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
613 1.17 dante return error_code;
614 1.17 dante }
615 1.7 dante
616 1.17 dante /*
617 1.17 dante * Load the Microcode
618 1.7 dante */
619 1.17 dante ;
620 1.17 dante if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
621 1.17 dante return error_code;
622 1.1 dante }
623 1.1 dante
624 1.1 dante /*
625 1.17 dante * Read microcode version and date.
626 1.7 dante */
627 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
628 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
629 1.7 dante
630 1.7 dante /*
631 1.17 dante * If the PCI Configuration Command Register "Parity Error Response
632 1.17 dante * Control" Bit was clear (0), then set the microcode variable
633 1.17 dante * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
634 1.17 dante * to ignore DMA parity errors.
635 1.1 dante */
636 1.17 dante if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
637 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
638 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
639 1.17 dante word | CONTROL_FLAG_IGNORE_PERR);
640 1.1 dante }
641 1.1 dante
642 1.17 dante switch (sc->chip_type) {
643 1.17 dante case ADW_CHIP_ASC3550:
644 1.17 dante /*
645 1.17 dante * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
646 1.17 dante * FIFO threshold of 128 bytes.
647 1.17 dante * This register is only accessible to the host.
648 1.17 dante */
649 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
650 1.17 dante START_CTL_EMFU | READ_CMD_MRM);
651 1.17 dante break;
652 1.7 dante
653 1.17 dante case ADW_CHIP_ASC38C0800:
654 1.17 dante /*
655 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
656 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
657 1.17 dante * cable detection and then we are able to read C_DET[3:0].
658 1.17 dante *
659 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
660 1.17 dante * Microcode Default Value' section below.
661 1.17 dante */
662 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
663 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
664 1.17 dante | ADW_DIS_TERM_DRV);
665 1.1 dante
666 1.17 dante /*
667 1.17 dante * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
668 1.17 dante * START_CTL_TH [3:2] bits for the default FIFO threshold.
669 1.17 dante *
670 1.17 dante * Note: ASC-38C0800 FIFO threshold has been changed to
671 1.17 dante * 256 bytes.
672 1.17 dante *
673 1.17 dante * For DMA Errata #4 set the BC_THRESH_ENB bit.
674 1.17 dante */
675 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
676 1.17 dante BC_THRESH_ENB | FIFO_THRESH_80B
677 1.17 dante | START_CTL_TH | READ_CMD_MRM);
678 1.17 dante break;
679 1.1 dante
680 1.17 dante case ADW_CHIP_ASC38C1600:
681 1.17 dante /*
682 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
683 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
684 1.17 dante * cable detection and then we are able to read C_DET[3:0].
685 1.17 dante *
686 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
687 1.17 dante * Microcode Default Value' section below.
688 1.17 dante */
689 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
690 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
691 1.17 dante | ADW_DIS_TERM_DRV);
692 1.1 dante
693 1.17 dante /*
694 1.17 dante * If the BIOS control flag AIPP (Asynchronous Information
695 1.17 dante * Phase Protection) disable bit is not set, then set the
696 1.17 dante * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
697 1.17 dante * enable AIPP checking and encoding.
698 1.17 dante */
699 1.17 dante if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
700 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
701 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
702 1.17 dante word | CONTROL_FLAG_ENABLE_AIPP);
703 1.17 dante }
704 1.1 dante
705 1.17 dante /*
706 1.17 dante * For ASC-38C1600 use DMA_CFG0 default values:
707 1.17 dante * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
708 1.17 dante */
709 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
710 1.17 dante FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
711 1.17 dante break;
712 1.1 dante }
713 1.7 dante
714 1.1 dante /*
715 1.7 dante * Microcode operating variables for WDTR, SDTR, and command tag
716 1.17 dante * queuing will be set in AdvInquiryHandling() based on what a
717 1.7 dante * device reports it is capable of in Inquiry byte 7.
718 1.7 dante *
719 1.16 dante * If SCSI Bus Resets have been disabled, then directly set
720 1.7 dante * SDTR and WDTR from the EEPROM configuration. This will allow
721 1.7 dante * the BIOS and warm boot to work without a SCSI bus hang on
722 1.7 dante * the Inquiry caused by host and target mismatched DTR values.
723 1.7 dante * Without the SCSI Bus Reset, before an Inquiry a device can't
724 1.7 dante * be assumed to be in Asynchronous, Narrow mode.
725 1.7 dante */
726 1.7 dante if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
727 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
728 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
729 1.7 dante }
730 1.7 dante
731 1.7 dante /*
732 1.7 dante * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
733 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
734 1.7 dante * bitmask. These values determine the maximum SDTR speed negotiated
735 1.7 dante * with a device.
736 1.7 dante *
737 1.7 dante * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
738 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
739 1.7 dante * without determining here whether the device supports SDTR.
740 1.7 dante */
741 1.17 dante switch (sc->chip_type) {
742 1.17 dante case ADW_CHIP_ASC3550:
743 1.17 dante word = 0;
744 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
745 1.17 dante if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
746 1.17 dante /* Set Ultra speed for TID 'tid'. */
747 1.17 dante word |= (0x3 << (4 * (tid % 4)));
748 1.17 dante } else {
749 1.17 dante /* Set Fast speed for TID 'tid'. */
750 1.17 dante word |= (0x2 << (4 * (tid % 4)));
751 1.17 dante }
752 1.17 dante /* Check if done with sdtr_speed1. */
753 1.17 dante if (tid == 3) {
754 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
755 1.17 dante ADW_MC_SDTR_SPEED1, word);
756 1.17 dante word = 0;
757 1.17 dante /* Check if done with sdtr_speed2. */
758 1.17 dante } else if (tid == 7) {
759 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
760 1.17 dante ADW_MC_SDTR_SPEED2, word);
761 1.17 dante word = 0;
762 1.17 dante /* Check if done with sdtr_speed3. */
763 1.17 dante } else if (tid == 11) {
764 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
765 1.17 dante ADW_MC_SDTR_SPEED3, word);
766 1.17 dante word = 0;
767 1.17 dante /* Check if done with sdtr_speed4. */
768 1.17 dante } else if (tid == 15) {
769 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
770 1.17 dante ADW_MC_SDTR_SPEED4, word);
771 1.17 dante /* End of loop. */
772 1.17 dante }
773 1.7 dante }
774 1.17 dante
775 1.17 dante /*
776 1.17 dante * Set microcode operating variable for the
777 1.17 dante * disconnect per TID bitmask.
778 1.17 dante */
779 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
780 1.17 dante sc->cfg.disc_enable);
781 1.17 dante break;
782 1.17 dante
783 1.17 dante case ADW_CHIP_ASC38C0800:
784 1.17 dante /* FALLTHROUGH */
785 1.17 dante case ADW_CHIP_ASC38C1600:
786 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
787 1.17 dante sc->cfg.disc_enable);
788 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
789 1.17 dante sc->sdtr_speed1);
790 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
791 1.17 dante sc->sdtr_speed2);
792 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
793 1.17 dante sc->sdtr_speed3);
794 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
795 1.17 dante sc->sdtr_speed4);
796 1.17 dante break;
797 1.7 dante }
798 1.1 dante
799 1.1 dante
800 1.1 dante /*
801 1.1 dante * Set SCSI_CFG0 Microcode Default Value.
802 1.1 dante *
803 1.1 dante * The microcode will set the SCSI_CFG0 register using this value
804 1.1 dante * after it is started below.
805 1.1 dante */
806 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
807 1.10 dante ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
808 1.10 dante ADW_OUR_ID_EN | sc->chip_scsi_id);
809 1.2 dante
810 1.1 dante
811 1.17 dante switch(sc->chip_type) {
812 1.17 dante case ADW_CHIP_ASC3550:
813 1.17 dante error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
814 1.17 dante break;
815 1.1 dante
816 1.17 dante case ADW_CHIP_ASC38C0800:
817 1.17 dante error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
818 1.17 dante break;
819 1.7 dante
820 1.17 dante case ADW_CHIP_ASC38C1600:
821 1.17 dante error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
822 1.17 dante break;
823 1.7 dante }
824 1.17 dante if(error_code) {
825 1.17 dante return error_code;
826 1.1 dante }
827 1.7 dante
828 1.1 dante /*
829 1.1 dante * Set SEL_MASK Microcode Default Value
830 1.1 dante *
831 1.1 dante * The microcode will set the SEL_MASK register using this value
832 1.1 dante * after it is started below.
833 1.1 dante */
834 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
835 1.7 dante ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
836 1.7 dante
837 1.17 dante /*
838 1.17 dante * Create and Initialize Host->RISC Carrier lists
839 1.17 dante */
840 1.17 dante sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
841 1.17 dante sc->sc_control->carriers);
842 1.16 dante
843 1.7 dante /*
844 1.7 dante * Set-up the Host->RISC Initiator Command Queue (ICQ).
845 1.7 dante */
846 1.7 dante
847 1.7 dante if ((sc->icq_sp = sc->carr_freelist) == NULL) {
848 1.16 dante return ADW_IERR_NO_CARRIER;
849 1.7 dante }
850 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
851 1.12 dante ASC_GET_CARRP(sc->icq_sp->next_ba));
852 1.7 dante
853 1.7 dante /*
854 1.7 dante * The first command issued will be placed in the stopper carrier.
855 1.7 dante */
856 1.12 dante sc->icq_sp->next_ba = ASC_CQ_STOPPER;
857 1.1 dante
858 1.1 dante /*
859 1.7 dante * Set RISC ICQ physical address start value.
860 1.7 dante */
861 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
862 1.7 dante
863 1.7 dante /*
864 1.17 dante * Initialize the COMMA register to the same value otherwise
865 1.17 dante * the RISC will prematurely detect a command is available.
866 1.17 dante */
867 1.17 dante if(sc->chip_type == ADW_CHIP_ASC38C1600) {
868 1.17 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
869 1.17 dante sc->icq_sp->carr_ba);
870 1.17 dante }
871 1.17 dante
872 1.17 dante /*
873 1.7 dante * Set-up the RISC->Host Initiator Response Queue (IRQ).
874 1.1 dante */
875 1.7 dante if ((sc->irq_sp = sc->carr_freelist) == NULL) {
876 1.16 dante return ADW_IERR_NO_CARRIER;
877 1.1 dante }
878 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
879 1.12 dante ASC_GET_CARRP(sc->irq_sp->next_ba));
880 1.1 dante
881 1.1 dante /*
882 1.7 dante * The first command completed by the RISC will be placed in
883 1.7 dante * the stopper.
884 1.1 dante *
885 1.12 dante * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
886 1.16 dante * completed the RISC will set the ASC_RQ_DONE bit.
887 1.1 dante */
888 1.12 dante sc->irq_sp->next_ba = ASC_CQ_STOPPER;
889 1.1 dante
890 1.1 dante /*
891 1.7 dante * Set RISC IRQ physical address start value.
892 1.1 dante */
893 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
894 1.7 dante sc->carr_pending_cnt = 0;
895 1.1 dante
896 1.1 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
897 1.7 dante (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
898 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
899 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
900 1.1 dante
901 1.1 dante /* finally, finally, gentlemen, start your engine */
902 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
903 1.2 dante
904 1.7 dante /*
905 1.7 dante * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
906 1.7 dante * Resets should be performed. The RISC has to be running
907 1.7 dante * to issue a SCSI Bus Reset.
908 1.7 dante */
909 1.7 dante if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
910 1.7 dante {
911 1.7 dante /*
912 1.7 dante * If the BIOS Signature is present in memory, restore the
913 1.7 dante * BIOS Handshake Configuration Table and do not perform
914 1.7 dante * a SCSI Bus Reset.
915 1.7 dante */
916 1.16 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
917 1.7 dante 0x55AA) {
918 1.7 dante /*
919 1.7 dante * Restore per TID negotiated values.
920 1.7 dante */
921 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
922 1.7 dante wdtr_able);
923 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
924 1.7 dante sdtr_able);
925 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
926 1.7 dante tagqng_able);
927 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
928 1.7 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
929 1.17 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
930 1.17 dante max_cmd[tid]);
931 1.7 dante }
932 1.7 dante } else {
933 1.16 dante if (AdwResetCCB(sc) != ADW_TRUE) {
934 1.17 dante error_code = ADW_WARN_BUSRESET_ERROR;
935 1.7 dante }
936 1.7 dante }
937 1.7 dante }
938 1.7 dante
939 1.17 dante return error_code;
940 1.1 dante }
941 1.1 dante
942 1.17 dante
943 1.1 dante int
944 1.17 dante AdwRamSelfTest(iot, ioh, chip_type)
945 1.17 dante bus_space_tag_t iot;
946 1.17 dante bus_space_handle_t ioh;
947 1.17 dante u_int8_t chip_type;
948 1.1 dante {
949 1.17 dante int i;
950 1.7 dante u_int8_t byte;
951 1.1 dante
952 1.1 dante
953 1.17 dante if ((chip_type == ADW_CHIP_ASC38C0800) ||
954 1.17 dante (chip_type == ADW_CHIP_ASC38C1600)) {
955 1.17 dante /*
956 1.17 dante * RAM BIST (RAM Built-In Self Test)
957 1.17 dante *
958 1.17 dante * Address : I/O base + offset 0x38h register (byte).
959 1.17 dante * Function: Bit 7-6(RW) : RAM mode
960 1.17 dante * Normal Mode : 0x00
961 1.17 dante * Pre-test Mode : 0x40
962 1.17 dante * RAM Test Mode : 0x80
963 1.17 dante * Bit 5 : unused
964 1.17 dante * Bit 4(RO) : Done bit
965 1.17 dante * Bit 3-0(RO) : Status
966 1.17 dante * Host Error : 0x08
967 1.17 dante * Int_RAM Error : 0x04
968 1.17 dante * RISC Error : 0x02
969 1.17 dante * SCSI Error : 0x01
970 1.17 dante * No Error : 0x00
971 1.17 dante *
972 1.17 dante * Note: RAM BIST code should be put right here, before loading
973 1.17 dante * the microcode and after saving the RISC memory BIOS region.
974 1.17 dante */
975 1.1 dante
976 1.17 dante /*
977 1.17 dante * LRAM Pre-test
978 1.17 dante *
979 1.17 dante * Write PRE_TEST_MODE (0x40) to register and wait for
980 1.17 dante * 10 milliseconds.
981 1.17 dante * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
982 1.17 dante * return an error. Reset to NORMAL_MODE (0x00) and do again.
983 1.17 dante * If cannot reset to NORMAL_MODE, return an error too.
984 1.17 dante */
985 1.17 dante for (i = 0; i < 2; i++) {
986 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
987 1.17 dante PRE_TEST_MODE);
988 1.17 dante /* Wait for 10ms before reading back. */
989 1.17 dante AdwSleepMilliSecond(10);
990 1.17 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
991 1.17 dante if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
992 1.17 dante PRE_TEST_VALUE) {
993 1.17 dante return ADW_IERR_BIST_PRE_TEST;
994 1.17 dante }
995 1.7 dante
996 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
997 1.17 dante NORMAL_MODE);
998 1.17 dante /* Wait for 10ms before reading back. */
999 1.17 dante AdwSleepMilliSecond(10);
1000 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1001 1.17 dante != NORMAL_VALUE) {
1002 1.17 dante return ADW_IERR_BIST_PRE_TEST;
1003 1.17 dante }
1004 1.17 dante }
1005 1.2 dante
1006 1.17 dante /*
1007 1.17 dante * LRAM Test - It takes about 1.5 ms to run through the test.
1008 1.17 dante *
1009 1.17 dante * Write RAM_TEST_MODE (0x80) to register and wait for
1010 1.17 dante * 10 milliseconds.
1011 1.17 dante * If Done bit not set or Status not 0, save register byte,
1012 1.17 dante * set the err_code, and return an error.
1013 1.17 dante */
1014 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1015 1.17 dante /* Wait for 10ms before checking status. */
1016 1.17 dante AdwSleepMilliSecond(10);
1017 1.1 dante
1018 1.7 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1019 1.17 dante if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1020 1.17 dante /* Get here if Done bit not set or Status not 0. */
1021 1.17 dante return ADW_IERR_BIST_RAM_TEST;
1022 1.1 dante }
1023 1.1 dante
1024 1.17 dante /* We need to reset back to normal mode after LRAM test passes*/
1025 1.7 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1026 1.1 dante }
1027 1.7 dante
1028 1.17 dante return 0;
1029 1.17 dante }
1030 1.17 dante
1031 1.7 dante
1032 1.17 dante int
1033 1.17 dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1034 1.17 dante bus_space_tag_t iot;
1035 1.17 dante bus_space_handle_t ioh;
1036 1.17 dante u_int16_t *bios_mem;
1037 1.17 dante u_int8_t chip_type;
1038 1.17 dante {
1039 1.17 dante u_int8_t *mcode_data;
1040 1.17 dante u_int32_t mcode_chksum;
1041 1.17 dante u_int16_t mcode_size;
1042 1.17 dante u_int32_t sum;
1043 1.17 dante u_int16_t code_sum;
1044 1.17 dante int begin_addr;
1045 1.17 dante int end_addr;
1046 1.17 dante int word;
1047 1.17 dante int adw_memsize;
1048 1.17 dante int adw_mcode_expanded_size;
1049 1.17 dante int i, j;
1050 1.7 dante
1051 1.17 dante
1052 1.17 dante switch(chip_type) {
1053 1.17 dante case ADW_CHIP_ASC3550:
1054 1.17 dante mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1055 1.17 dante mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1056 1.17 dante mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1057 1.17 dante adw_memsize = ADW_3550_MEMSIZE;
1058 1.17 dante break;
1059 1.17 dante
1060 1.17 dante case ADW_CHIP_ASC38C0800:
1061 1.17 dante mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1062 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1063 1.17 dante mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1064 1.17 dante adw_memsize = ADW_38C0800_MEMSIZE;
1065 1.17 dante break;
1066 1.17 dante
1067 1.17 dante case ADW_CHIP_ASC38C1600:
1068 1.17 dante mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1069 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1070 1.17 dante mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1071 1.17 dante adw_memsize = ADW_38C1600_MEMSIZE;
1072 1.17 dante break;
1073 1.17 dante }
1074 1.1 dante
1075 1.1 dante /*
1076 1.7 dante * Write the microcode image to RISC memory starting at address 0.
1077 1.1 dante */
1078 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1079 1.7 dante
1080 1.7 dante /* Assume the following compressed format of the microcode buffer:
1081 1.7 dante *
1082 1.7 dante * 254 word (508 byte) table indexed by byte code followed
1083 1.7 dante * by the following byte codes:
1084 1.7 dante *
1085 1.7 dante * 1-Byte Code:
1086 1.7 dante * 00: Emit word 0 in table.
1087 1.7 dante * 01: Emit word 1 in table.
1088 1.7 dante * .
1089 1.7 dante * FD: Emit word 253 in table.
1090 1.7 dante *
1091 1.7 dante * Multi-Byte Code:
1092 1.7 dante * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1093 1.7 dante * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1094 1.7 dante */
1095 1.7 dante word = 0;
1096 1.17 dante for (i = 253 * 2; i < mcode_size; i++) {
1097 1.17 dante if (mcode_data[i] == 0xff) {
1098 1.17 dante for (j = 0; j < mcode_data[i + 1]; j++) {
1099 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1100 1.17 dante (((u_int16_t)mcode_data[i + 3] << 8) |
1101 1.17 dante mcode_data[i + 2]));
1102 1.7 dante word++;
1103 1.7 dante }
1104 1.7 dante i += 3;
1105 1.17 dante } else if (mcode_data[i] == 0xfe) {
1106 1.17 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107 1.17 dante (((u_int16_t)mcode_data[i + 2] << 8) |
1108 1.17 dante mcode_data[i + 1]));
1109 1.7 dante i += 2;
1110 1.7 dante word++;
1111 1.1 dante } else {
1112 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1113 1.17 dante mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1114 1.17 dante mcode_data[mcode_data[i] * 2]));
1115 1.7 dante word++;
1116 1.1 dante }
1117 1.1 dante }
1118 1.7 dante
1119 1.7 dante /*
1120 1.7 dante * Set 'word' for later use to clear the rest of memory and save
1121 1.7 dante * the expanded mcode size.
1122 1.7 dante */
1123 1.7 dante word *= 2;
1124 1.17 dante adw_mcode_expanded_size = word;
1125 1.7 dante
1126 1.1 dante /*
1127 1.17 dante * Clear the rest of the Internal RAM.
1128 1.1 dante */
1129 1.17 dante for (; word < adw_memsize; word += 2) {
1130 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1131 1.1 dante }
1132 1.7 dante
1133 1.1 dante /*
1134 1.7 dante * Verify the microcode checksum.
1135 1.1 dante */
1136 1.7 dante sum = 0;
1137 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1138 1.7 dante
1139 1.17 dante for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1140 1.7 dante sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1141 1.7 dante }
1142 1.1 dante
1143 1.17 dante if (sum != mcode_chksum) {
1144 1.17 dante return ADW_IERR_MCODE_CHKSUM;
1145 1.7 dante }
1146 1.1 dante
1147 1.1 dante /*
1148 1.7 dante * Restore the RISC memory BIOS region.
1149 1.1 dante */
1150 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1151 1.17 dante if(chip_type == ADW_CHIP_ASC3550) {
1152 1.17 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1153 1.17 dante bios_mem[i]);
1154 1.17 dante } else {
1155 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1156 1.17 dante bios_mem[i]);
1157 1.17 dante }
1158 1.7 dante }
1159 1.1 dante
1160 1.7 dante /*
1161 1.7 dante * Calculate and write the microcode code checksum to the microcode
1162 1.16 dante * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1163 1.7 dante */
1164 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1165 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1166 1.7 dante code_sum = 0;
1167 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1168 1.7 dante for (word = begin_addr; word < end_addr; word += 2) {
1169 1.7 dante code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1170 1.1 dante }
1171 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1172 1.1 dante
1173 1.7 dante /*
1174 1.17 dante * Set the chip type.
1175 1.7 dante */
1176 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1177 1.17 dante
1178 1.17 dante return 0;
1179 1.17 dante }
1180 1.17 dante
1181 1.17 dante
1182 1.17 dante int
1183 1.17 dante AdwASC3550Cabling(iot, ioh, cfg)
1184 1.17 dante bus_space_tag_t iot;
1185 1.17 dante bus_space_handle_t ioh;
1186 1.17 dante ADW_DVC_CFG *cfg;
1187 1.17 dante {
1188 1.17 dante u_int16_t scsi_cfg1;
1189 1.17 dante
1190 1.1 dante
1191 1.7 dante /*
1192 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1193 1.17 dante *
1194 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1195 1.17 dante * after it is started below.
1196 1.7 dante */
1197 1.17 dante
1198 1.17 dante /* Read current SCSI_CFG1 Register value. */
1199 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1200 1.1 dante
1201 1.7 dante /*
1202 1.17 dante * If all three connectors are in use in ASC3550, return an error.
1203 1.7 dante */
1204 1.17 dante if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1205 1.17 dante (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1206 1.17 dante return ADW_IERR_ILLEGAL_CONNECTION;
1207 1.17 dante }
1208 1.7 dante
1209 1.7 dante /*
1210 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1211 1.17 dante * will be set. Check for and return an error if this condition is
1212 1.17 dante * found.
1213 1.7 dante */
1214 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1215 1.17 dante return ADW_IERR_REVERSED_CABLE;
1216 1.7 dante }
1217 1.7 dante
1218 1.7 dante /*
1219 1.17 dante * If this is a differential board and a single-ended device
1220 1.17 dante * is attached to one of the connectors, return an error.
1221 1.7 dante */
1222 1.17 dante if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1223 1.17 dante (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1224 1.17 dante return ADW_IERR_SINGLE_END_DEVICE;
1225 1.17 dante }
1226 1.7 dante
1227 1.7 dante /*
1228 1.17 dante * If automatic termination control is enabled, then set the
1229 1.17 dante * termination value based on a table listed in a_condor.h.
1230 1.7 dante *
1231 1.17 dante * If manual termination was specified with an EEPROM setting
1232 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and
1233 1.17 dante * is ready to be 'ored' into SCSI_CFG1.
1234 1.7 dante */
1235 1.17 dante if (cfg->termination == 0) {
1236 1.17 dante /*
1237 1.17 dante * The software always controls termination by setting
1238 1.17 dante * TERM_CTL_SEL.
1239 1.17 dante * If TERM_CTL_SEL were set to 0, the hardware would set
1240 1.17 dante * termination.
1241 1.17 dante */
1242 1.17 dante cfg->termination |= ADW_TERM_CTL_SEL;
1243 1.17 dante
1244 1.17 dante switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1245 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: on */
1246 1.17 dante case 0x3: case 0x7: case 0xB:
1247 1.17 dante case 0xD: case 0xE: case 0xF:
1248 1.17 dante cfg->termination |=
1249 1.17 dante (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1250 1.17 dante break;
1251 1.17 dante
1252 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: off */
1253 1.17 dante case 0x1: case 0x5: case 0x9:
1254 1.17 dante case 0xA: case 0xC:
1255 1.17 dante cfg->termination |= ADW_TERM_CTL_H;
1256 1.17 dante break;
1257 1.17 dante
1258 1.17 dante /* TERM_CTL_H: off, TERM_CTL_L: off */
1259 1.17 dante case 0x2: case 0x6:
1260 1.17 dante break;
1261 1.17 dante }
1262 1.7 dante }
1263 1.7 dante
1264 1.7 dante /*
1265 1.17 dante * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1266 1.17 dante */
1267 1.17 dante scsi_cfg1 &= ~ADW_TERM_CTL;
1268 1.17 dante
1269 1.17 dante /*
1270 1.17 dante * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1271 1.17 dante * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1272 1.17 dante * referenced, because the hardware internally inverts
1273 1.17 dante * the Termination High and Low bits if TERM_POL is set.
1274 1.17 dante */
1275 1.17 dante scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1276 1.17 dante
1277 1.17 dante /*
1278 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1279 1.17 dante *
1280 1.17 dante * Set filter value and possibly modified termination control
1281 1.17 dante * bits in the Microcode SCSI_CFG1 Register Value.
1282 1.7 dante *
1283 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1284 1.17 dante * after it is started below.
1285 1.7 dante */
1286 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1287 1.17 dante ADW_FLTR_DISABLE | scsi_cfg1);
1288 1.7 dante
1289 1.7 dante /*
1290 1.17 dante * Set MEM_CFG Microcode Default Value
1291 1.7 dante *
1292 1.17 dante * The microcode will set the MEM_CFG register using this value
1293 1.7 dante * after it is started below.
1294 1.17 dante *
1295 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1296 1.17 dante * are defined.
1297 1.17 dante *
1298 1.17 dante * ASC-3550 has 8KB internal memory.
1299 1.7 dante */
1300 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1301 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1302 1.17 dante
1303 1.17 dante return 0;
1304 1.17 dante }
1305 1.17 dante
1306 1.17 dante
1307 1.17 dante int
1308 1.17 dante AdwASC38C0800Cabling(iot, ioh, cfg)
1309 1.17 dante bus_space_tag_t iot;
1310 1.17 dante bus_space_handle_t ioh;
1311 1.17 dante ADW_DVC_CFG *cfg;
1312 1.17 dante {
1313 1.17 dante u_int16_t scsi_cfg1;
1314 1.17 dante
1315 1.7 dante
1316 1.7 dante /*
1317 1.7 dante * Determine SCSI_CFG1 Microcode Default Value.
1318 1.7 dante *
1319 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1320 1.7 dante * after it is started below.
1321 1.7 dante */
1322 1.7 dante
1323 1.7 dante /* Read current SCSI_CFG1 Register value. */
1324 1.7 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1325 1.7 dante
1326 1.7 dante /*
1327 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1328 1.17 dante * will be set. Check for and return an error if this condition is
1329 1.17 dante * found.
1330 1.7 dante */
1331 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1332 1.16 dante return ADW_IERR_REVERSED_CABLE;
1333 1.7 dante }
1334 1.7 dante
1335 1.7 dante /*
1336 1.17 dante * All kind of combinations of devices attached to one of four
1337 1.17 dante * connectors are acceptable except HVD device attached.
1338 1.17 dante * For example, LVD device can be attached to SE connector while
1339 1.17 dante * SE device attached to LVD connector.
1340 1.17 dante * If LVD device attached to SE connector, it only runs up to
1341 1.17 dante * Ultra speed.
1342 1.17 dante *
1343 1.17 dante * If an HVD device is attached to one of LVD connectors, return
1344 1.17 dante * an error.
1345 1.17 dante * However, there is no way to detect HVD device attached to
1346 1.17 dante * SE connectors.
1347 1.7 dante */
1348 1.7 dante if (scsi_cfg1 & ADW_HVD) {
1349 1.16 dante return ADW_IERR_HVD_DEVICE;
1350 1.7 dante }
1351 1.7 dante
1352 1.7 dante /*
1353 1.7 dante * If either SE or LVD automatic termination control is enabled, then
1354 1.7 dante * set the termination value based on a table listed in a_condor.h.
1355 1.7 dante *
1356 1.7 dante * If manual termination was specified with an EEPROM setting then
1357 1.17 dante * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1358 1.17 dante * to be 'ored' into SCSI_CFG1.
1359 1.7 dante */
1360 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1361 1.7 dante /* SE automatic termination control is enabled. */
1362 1.7 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1363 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1364 1.7 dante case 0x1: case 0x2: case 0x3:
1365 1.17 dante cfg->termination |= ADW_TERM_SE;
1366 1.7 dante break;
1367 1.7 dante
1368 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: off */
1369 1.7 dante case 0x0:
1370 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1371 1.7 dante break;
1372 1.7 dante }
1373 1.7 dante }
1374 1.7 dante
1375 1.17 dante if ((cfg->termination & ADW_TERM_LVD) == 0) {
1376 1.7 dante /* LVD automatic termination control is enabled. */
1377 1.7 dante switch(scsi_cfg1 & ADW_C_DET_LVD) {
1378 1.7 dante /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1379 1.7 dante case 0x4: case 0x8: case 0xC:
1380 1.17 dante cfg->termination |= ADW_TERM_LVD;
1381 1.7 dante break;
1382 1.7 dante
1383 1.7 dante /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1384 1.7 dante case 0x0:
1385 1.7 dante break;
1386 1.7 dante }
1387 1.7 dante }
1388 1.7 dante
1389 1.7 dante /*
1390 1.7 dante * Clear any set TERM_SE and TERM_LVD bits.
1391 1.7 dante */
1392 1.7 dante scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1393 1.7 dante
1394 1.7 dante /*
1395 1.7 dante * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1396 1.7 dante */
1397 1.17 dante scsi_cfg1 |= (~cfg->termination & 0xF0);
1398 1.7 dante
1399 1.7 dante /*
1400 1.17 dante * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1401 1.17 dante * HVD/LVD/SE bits and set possibly modified termination control bits
1402 1.17 dante * in the Microcode SCSI_CFG1 Register Value.
1403 1.7 dante */
1404 1.7 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1405 1.17 dante ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1406 1.7 dante
1407 1.7 dante /*
1408 1.7 dante * Set SCSI_CFG1 Microcode Default Value
1409 1.7 dante *
1410 1.7 dante * Set possibly modified termination control and reset DIS_TERM_DRV
1411 1.7 dante * bits in the Microcode SCSI_CFG1 Register Value.
1412 1.7 dante *
1413 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1414 1.7 dante * after it is started below.
1415 1.7 dante */
1416 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1417 1.7 dante
1418 1.7 dante /*
1419 1.7 dante * Set MEM_CFG Microcode Default Value
1420 1.7 dante *
1421 1.7 dante * The microcode will set the MEM_CFG register using this value
1422 1.7 dante * after it is started below.
1423 1.7 dante *
1424 1.7 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1425 1.7 dante * are defined.
1426 1.7 dante *
1427 1.7 dante * ASC-38C0800 has 16KB internal memory.
1428 1.7 dante */
1429 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1430 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1431 1.7 dante
1432 1.17 dante return 0;
1433 1.17 dante }
1434 1.7 dante
1435 1.7 dante
1436 1.17 dante int
1437 1.17 dante AdwASC38C1600Cabling(iot, ioh, cfg)
1438 1.17 dante bus_space_tag_t iot;
1439 1.17 dante bus_space_handle_t ioh;
1440 1.17 dante ADW_DVC_CFG *cfg;
1441 1.17 dante {
1442 1.17 dante u_int16_t scsi_cfg1;
1443 1.7 dante
1444 1.7 dante
1445 1.7 dante /*
1446 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1447 1.17 dante *
1448 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1449 1.17 dante * after it is started below.
1450 1.17 dante * Each ASC-38C1600 function has only two cable detect bits.
1451 1.17 dante * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1452 1.7 dante */
1453 1.7 dante
1454 1.17 dante /* Read current SCSI_CFG1 Register value. */
1455 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1456 1.7 dante
1457 1.7 dante /*
1458 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1459 1.17 dante * will be set. Check for and return an error if this condition is
1460 1.17 dante * found.
1461 1.7 dante */
1462 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1463 1.17 dante return ADW_IERR_REVERSED_CABLE;
1464 1.7 dante }
1465 1.7 dante
1466 1.7 dante /*
1467 1.17 dante * Each ASC-38C1600 function has two connectors. Only an HVD device
1468 1.17 dante * can not be connected to either connector. An LVD device or SE device
1469 1.17 dante * may be connected to either connecor. If an SE device is connected,
1470 1.17 dante * then at most Ultra speed (20 Mhz) can be used on both connectors.
1471 1.7 dante *
1472 1.17 dante * If an HVD device is attached, return an error.
1473 1.7 dante */
1474 1.17 dante if (scsi_cfg1 & ADW_HVD) {
1475 1.17 dante return ADW_IERR_HVD_DEVICE;
1476 1.17 dante }
1477 1.7 dante
1478 1.7 dante /*
1479 1.17 dante * Each function in the ASC-38C1600 uses only the SE cable detect and
1480 1.17 dante * termination because there are two connectors for each function.
1481 1.17 dante * Each function may use either LVD or SE mode.
1482 1.17 dante * Corresponding the SE automatic termination control EEPROM bits are
1483 1.17 dante * used for each function.
1484 1.17 dante * Each function has its own EEPROM. If SE automatic control is enabled
1485 1.17 dante * for the function, then set the termination value based on a table
1486 1.17 dante * listed in adwlib.h.
1487 1.17 dante *
1488 1.17 dante * If manual termination is specified in the EEPROM for the function,
1489 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and is
1490 1.17 dante * ready to be 'ored' into SCSI_CFG1.
1491 1.7 dante */
1492 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1493 1.17 dante /* SE automatic termination control is enabled. */
1494 1.17 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1495 1.17 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1496 1.17 dante case 0x1: case 0x2: case 0x3:
1497 1.17 dante cfg->termination |= ADW_TERM_SE;
1498 1.17 dante break;
1499 1.7 dante
1500 1.17 dante case 0x0:
1501 1.21 lukem #if 0
1502 1.17 dante /* !!!!TODO!!!! */
1503 1.21 lukem if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1504 1.17 dante /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1505 1.21 lukem }
1506 1.21 lukem else
1507 1.21 lukem #endif
1508 1.21 lukem {
1509 1.17 dante /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1510 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1511 1.21 lukem }
1512 1.17 dante break;
1513 1.10 dante }
1514 1.7 dante }
1515 1.7 dante
1516 1.17 dante /*
1517 1.17 dante * Clear any set TERM_SE bits.
1518 1.17 dante */
1519 1.17 dante scsi_cfg1 &= ~ADW_TERM_SE;
1520 1.7 dante
1521 1.7 dante /*
1522 1.17 dante * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1523 1.7 dante */
1524 1.17 dante scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1525 1.7 dante
1526 1.7 dante /*
1527 1.17 dante * Clear Big Endian and Terminator Polarity bits and set possibly
1528 1.17 dante * modified termination control bits in the Microcode SCSI_CFG1
1529 1.17 dante * Register Value.
1530 1.7 dante */
1531 1.17 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1532 1.7 dante
1533 1.7 dante /*
1534 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1535 1.17 dante *
1536 1.17 dante * Set possibly modified termination control bits in the Microcode
1537 1.17 dante * SCSI_CFG1 Register Value.
1538 1.7 dante *
1539 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1540 1.17 dante * after it is started below.
1541 1.7 dante */
1542 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1543 1.7 dante
1544 1.17 dante /*
1545 1.17 dante * Set MEM_CFG Microcode Default Value
1546 1.17 dante *
1547 1.17 dante * The microcode will set the MEM_CFG register using this value
1548 1.17 dante * after it is started below.
1549 1.17 dante *
1550 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1551 1.17 dante * are defined.
1552 1.17 dante *
1553 1.17 dante * ASC-38C1600 has 32KB internal memory.
1554 1.17 dante */
1555 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1556 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1557 1.7 dante
1558 1.17 dante return 0;
1559 1.7 dante }
1560 1.7 dante
1561 1.7 dante
1562 1.7 dante /*
1563 1.7 dante * Read EEPROM configuration into the specified buffer.
1564 1.7 dante *
1565 1.7 dante * Return a checksum based on the EEPROM configuration read.
1566 1.7 dante */
1567 1.7 dante static u_int16_t
1568 1.17 dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1569 1.7 dante bus_space_tag_t iot;
1570 1.7 dante bus_space_handle_t ioh;
1571 1.17 dante ADW_EEPROM *cfg_buf;
1572 1.7 dante {
1573 1.7 dante u_int16_t wval, chksum;
1574 1.7 dante u_int16_t *wbuf;
1575 1.7 dante int eep_addr;
1576 1.7 dante
1577 1.7 dante
1578 1.7 dante wbuf = (u_int16_t *) cfg_buf;
1579 1.7 dante chksum = 0;
1580 1.7 dante
1581 1.7 dante for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1582 1.10 dante eep_addr < ASC_EEP_DVC_CFG_END;
1583 1.10 dante eep_addr++, wbuf++) {
1584 1.16 dante wval = AdwReadEEPWord(iot, ioh, eep_addr);
1585 1.7 dante chksum += wval;
1586 1.7 dante *wbuf = wval;
1587 1.7 dante }
1588 1.7 dante
1589 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1590 1.7 dante wbuf++;
1591 1.7 dante for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1592 1.7 dante eep_addr < ASC_EEP_MAX_WORD_ADDR;
1593 1.7 dante eep_addr++, wbuf++) {
1594 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1595 1.7 dante }
1596 1.7 dante
1597 1.7 dante return chksum;
1598 1.7 dante }
1599 1.7 dante
1600 1.7 dante
1601 1.7 dante /*
1602 1.7 dante * Read the EEPROM from specified location
1603 1.7 dante */
1604 1.7 dante static u_int16_t
1605 1.16 dante AdwReadEEPWord(iot, ioh, eep_word_addr)
1606 1.7 dante bus_space_tag_t iot;
1607 1.7 dante bus_space_handle_t ioh;
1608 1.7 dante int eep_word_addr;
1609 1.7 dante {
1610 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1611 1.7 dante ASC_EEP_CMD_READ | eep_word_addr);
1612 1.16 dante AdwWaitEEPCmd(iot, ioh);
1613 1.7 dante
1614 1.7 dante return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1615 1.7 dante }
1616 1.7 dante
1617 1.7 dante
1618 1.7 dante /*
1619 1.7 dante * Wait for EEPROM command to complete
1620 1.7 dante */
1621 1.7 dante static void
1622 1.16 dante AdwWaitEEPCmd(iot, ioh)
1623 1.7 dante bus_space_tag_t iot;
1624 1.7 dante bus_space_handle_t ioh;
1625 1.7 dante {
1626 1.7 dante int eep_delay_ms;
1627 1.7 dante
1628 1.7 dante
1629 1.7 dante for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1630 1.7 dante if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1631 1.7 dante ASC_EEP_CMD_DONE) {
1632 1.7 dante break;
1633 1.7 dante }
1634 1.16 dante AdwSleepMilliSecond(1);
1635 1.7 dante }
1636 1.7 dante
1637 1.7 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1638 1.7 dante }
1639 1.7 dante
1640 1.7 dante
1641 1.7 dante /*
1642 1.7 dante * Write the EEPROM from 'cfg_buf'.
1643 1.7 dante */
1644 1.7 dante static void
1645 1.17 dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1646 1.10 dante bus_space_tag_t iot;
1647 1.10 dante bus_space_handle_t ioh;
1648 1.17 dante ADW_EEPROM *cfg_buf;
1649 1.10 dante {
1650 1.10 dante u_int16_t *wbuf;
1651 1.10 dante u_int16_t addr, chksum;
1652 1.10 dante
1653 1.10 dante
1654 1.10 dante wbuf = (u_int16_t *) cfg_buf;
1655 1.10 dante chksum = 0;
1656 1.10 dante
1657 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1658 1.16 dante AdwWaitEEPCmd(iot, ioh);
1659 1.10 dante
1660 1.10 dante /*
1661 1.10 dante * Write EEPROM from word 0 to word 20
1662 1.10 dante */
1663 1.10 dante for (addr = ASC_EEP_DVC_CFG_BEGIN;
1664 1.10 dante addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1665 1.10 dante chksum += *wbuf;
1666 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1667 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1668 1.10 dante ASC_EEP_CMD_WRITE | addr);
1669 1.16 dante AdwWaitEEPCmd(iot, ioh);
1670 1.16 dante AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1671 1.10 dante }
1672 1.10 dante
1673 1.10 dante /*
1674 1.10 dante * Write EEPROM checksum at word 21
1675 1.10 dante */
1676 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1677 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1678 1.10 dante ASC_EEP_CMD_WRITE | addr);
1679 1.16 dante AdwWaitEEPCmd(iot, ioh);
1680 1.10 dante wbuf++; /* skip over check_sum */
1681 1.10 dante
1682 1.10 dante /*
1683 1.10 dante * Write EEPROM OEM name at words 22 to 29
1684 1.10 dante */
1685 1.10 dante for (addr = ASC_EEP_DVC_CTL_BEGIN;
1686 1.10 dante addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1687 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1688 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1689 1.10 dante ASC_EEP_CMD_WRITE | addr);
1690 1.16 dante AdwWaitEEPCmd(iot, ioh);
1691 1.10 dante }
1692 1.10 dante
1693 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1694 1.10 dante ASC_EEP_CMD_WRITE_DISABLE);
1695 1.16 dante AdwWaitEEPCmd(iot, ioh);
1696 1.10 dante
1697 1.10 dante return;
1698 1.10 dante }
1699 1.10 dante
1700 1.10 dante
1701 1.10 dante /*
1702 1.16 dante * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1703 1.7 dante *
1704 1.7 dante * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1705 1.7 dante * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1706 1.7 dante * RISC to notify it a new command is ready to be executed.
1707 1.1 dante *
1708 1.7 dante * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1709 1.7 dante * set to SCSI_MAX_RETRY.
1710 1.1 dante *
1711 1.7 dante * Return:
1712 1.7 dante * ADW_SUCCESS(1) - The request was successfully queued.
1713 1.7 dante * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1714 1.7 dante * request completes.
1715 1.7 dante * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1716 1.7 dante * host IC error.
1717 1.1 dante */
1718 1.7 dante int
1719 1.16 dante AdwExeScsiQueue(sc, scsiq)
1720 1.7 dante ADW_SOFTC *sc;
1721 1.7 dante ADW_SCSI_REQ_Q *scsiq;
1722 1.1 dante {
1723 1.7 dante bus_space_tag_t iot = sc->sc_iot;
1724 1.7 dante bus_space_handle_t ioh = sc->sc_ioh;
1725 1.7 dante ADW_CCB *ccb;
1726 1.7 dante long req_size;
1727 1.7 dante u_int32_t req_paddr;
1728 1.10 dante ADW_CARRIER *new_carrp;
1729 1.7 dante
1730 1.7 dante /*
1731 1.7 dante * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1732 1.7 dante */
1733 1.7 dante if (scsiq->target_id > ADW_MAX_TID) {
1734 1.7 dante scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1735 1.7 dante scsiq->done_status = QD_WITH_ERROR;
1736 1.7 dante return ADW_ERROR;
1737 1.7 dante }
1738 1.7 dante
1739 1.10 dante /*
1740 1.10 dante * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1741 1.10 dante */
1742 1.10 dante
1743 1.7 dante ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1744 1.7 dante
1745 1.7 dante /*
1746 1.16 dante * Allocate a carrier and initialize fields.
1747 1.7 dante */
1748 1.7 dante if ((new_carrp = sc->carr_freelist) == NULL) {
1749 1.7 dante return ADW_BUSY;
1750 1.7 dante }
1751 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1752 1.12 dante ASC_GET_CARRP(new_carrp->next_ba));
1753 1.7 dante sc->carr_pending_cnt++;
1754 1.7 dante
1755 1.7 dante /*
1756 1.12 dante * Set the carrier to be a stopper by setting 'next_ba'
1757 1.7 dante * to the stopper value. The current stopper will be changed
1758 1.7 dante * below to point to the new stopper.
1759 1.7 dante */
1760 1.12 dante new_carrp->next_ba = ASC_CQ_STOPPER;
1761 1.7 dante
1762 1.7 dante req_size = sizeof(ADW_SCSI_REQ_Q);
1763 1.7 dante req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1764 1.7 dante ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1765 1.7 dante
1766 1.7 dante /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1767 1.7 dante scsiq->scsiq_rptr = req_paddr;
1768 1.7 dante
1769 1.7 dante /*
1770 1.12 dante * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1771 1.7 dante * order during initialization.
1772 1.7 dante */
1773 1.12 dante scsiq->carr_ba = sc->icq_sp->carr_ba;
1774 1.12 dante scsiq->carr_va = sc->icq_sp->carr_ba;
1775 1.1 dante
1776 1.7 dante /*
1777 1.7 dante * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1778 1.7 dante * the microcode. The newly allocated stopper will become the new
1779 1.7 dante * stopper.
1780 1.7 dante */
1781 1.12 dante sc->icq_sp->areq_ba = req_paddr;
1782 1.1 dante
1783 1.1 dante /*
1784 1.12 dante * Set the 'next_ba' pointer for the old stopper to be the
1785 1.7 dante * physical address of the new stopper. The RISC can only
1786 1.7 dante * follow physical addresses.
1787 1.1 dante */
1788 1.12 dante sc->icq_sp->next_ba = new_carrp->carr_ba;
1789 1.1 dante
1790 1.12 dante #if ADW_DEBUG
1791 1.12 dante printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1792 1.12 dante sc->icq_sp->carr_id,
1793 1.12 dante sc->icq_sp->carr_ba,
1794 1.12 dante sc->icq_sp->areq_ba,
1795 1.12 dante sc->icq_sp->next_ba);
1796 1.12 dante #endif
1797 1.1 dante /*
1798 1.7 dante * Set the host adapter stopper pointer to point to the new carrier.
1799 1.1 dante */
1800 1.7 dante sc->icq_sp = new_carrp;
1801 1.11 dante
1802 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
1803 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
1804 1.7 dante /*
1805 1.10 dante * Tickle the RISC to tell it to read its Command Queue Head
1806 1.10 dante * pointer.
1807 1.10 dante */
1808 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1809 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
1810 1.10 dante /*
1811 1.10 dante * Clear the tickle value. In the ASC-3550 the RISC flag
1812 1.10 dante * command 'clr_tickle_a' does not work unless the host
1813 1.10 dante * value is cleared.
1814 1.10 dante */
1815 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1816 1.20 itojun ADW_TICKLE_NOP);
1817 1.10 dante }
1818 1.16 dante } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1819 1.10 dante /*
1820 1.10 dante * Notify the RISC a carrier is ready by writing the physical
1821 1.10 dante * address of the new carrier stopper to the COMMA register.
1822 1.7 dante */
1823 1.10 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1824 1.12 dante new_carrp->carr_ba);
1825 1.7 dante }
1826 1.7 dante
1827 1.10 dante /*
1828 1.10 dante * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1829 1.10 dante */
1830 1.10 dante
1831 1.7 dante return ADW_SUCCESS;
1832 1.1 dante }
1833 1.1 dante
1834 1.7 dante
1835 1.7 dante void
1836 1.16 dante AdwResetChip(iot, ioh)
1837 1.7 dante bus_space_tag_t iot;
1838 1.7 dante bus_space_handle_t ioh;
1839 1.1 dante {
1840 1.7 dante
1841 1.7 dante /*
1842 1.7 dante * Reset Chip.
1843 1.7 dante */
1844 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1845 1.7 dante ADW_CTRL_REG_CMD_RESET);
1846 1.16 dante AdwSleepMilliSecond(100);
1847 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1848 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1849 1.1 dante }
1850 1.1 dante
1851 1.7 dante
1852 1.1 dante /*
1853 1.1 dante * Reset SCSI Bus and purge all outstanding requests.
1854 1.1 dante *
1855 1.1 dante * Return Value:
1856 1.7 dante * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1857 1.7 dante * ADW_FALSE(0) - Microcode command failed.
1858 1.7 dante * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1859 1.7 dante * may be hung which requires driver recovery.
1860 1.1 dante */
1861 1.1 dante int
1862 1.16 dante AdwResetCCB(sc)
1863 1.7 dante ADW_SOFTC *sc;
1864 1.1 dante {
1865 1.7 dante int status;
1866 1.7 dante
1867 1.7 dante /*
1868 1.7 dante * Send the SCSI Bus Reset idle start idle command which asserts
1869 1.7 dante * the SCSI Bus Reset signal.
1870 1.7 dante */
1871 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1872 1.11 dante if (status != ADW_TRUE) {
1873 1.7 dante return status;
1874 1.7 dante }
1875 1.7 dante
1876 1.7 dante /*
1877 1.7 dante * Delay for the specified SCSI Bus Reset hold time.
1878 1.7 dante *
1879 1.7 dante * The hold time delay is done on the host because the RISC has no
1880 1.7 dante * microsecond accurate timer.
1881 1.7 dante */
1882 1.16 dante AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1883 1.1 dante
1884 1.7 dante /*
1885 1.7 dante * Send the SCSI Bus Reset end idle command which de-asserts
1886 1.7 dante * the SCSI Bus Reset signal and purges any pending requests.
1887 1.7 dante */
1888 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1889 1.11 dante if (status != ADW_TRUE) {
1890 1.7 dante return status;
1891 1.7 dante }
1892 1.1 dante
1893 1.16 dante AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1894 1.1 dante
1895 1.1 dante return status;
1896 1.1 dante }
1897 1.1 dante
1898 1.7 dante
1899 1.1 dante /*
1900 1.7 dante * Reset chip and SCSI Bus.
1901 1.7 dante *
1902 1.7 dante * Return Value:
1903 1.7 dante * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1904 1.7 dante * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1905 1.1 dante */
1906 1.7 dante int
1907 1.16 dante AdwResetSCSIBus(sc)
1908 1.7 dante ADW_SOFTC *sc;
1909 1.1 dante {
1910 1.2 dante bus_space_tag_t iot = sc->sc_iot;
1911 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
1912 1.7 dante int status;
1913 1.10 dante u_int16_t wdtr_able, sdtr_able, ppr_able, tagqng_able;
1914 1.7 dante u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1915 1.7 dante u_int16_t bios_sig;
1916 1.7 dante
1917 1.7 dante
1918 1.7 dante /*
1919 1.7 dante * Save current per TID negotiated values.
1920 1.7 dante */
1921 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1922 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1923 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1924 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1925 1.10 dante }
1926 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1927 1.11 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1928 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1929 1.7 dante max_cmd[tid]);
1930 1.7 dante }
1931 1.7 dante
1932 1.7 dante /*
1933 1.17 dante * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1934 1.17 dante * by clearing the BIOS signature word.
1935 1.7 dante * The initialization functions assumes a SCSI Bus Reset is not
1936 1.7 dante * needed if the BIOS signature word is present.
1937 1.7 dante */
1938 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1939 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1940 1.7 dante
1941 1.7 dante /*
1942 1.7 dante * Stop chip and reset it.
1943 1.7 dante */
1944 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1945 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1946 1.7 dante ADW_CTRL_REG_CMD_RESET);
1947 1.16 dante AdwSleepMilliSecond(100);
1948 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1949 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1950 1.7 dante
1951 1.7 dante /*
1952 1.7 dante * Reset Adv Library error code, if any, and try
1953 1.7 dante * re-initializing the chip.
1954 1.17 dante * Then translate initialization return value to status value.
1955 1.7 dante */
1956 1.17 dante status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1957 1.1 dante
1958 1.7 dante /*
1959 1.7 dante * Restore the BIOS signature word.
1960 1.7 dante */
1961 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1962 1.1 dante
1963 1.1 dante /*
1964 1.7 dante * Restore per TID negotiated values.
1965 1.1 dante */
1966 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1967 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1968 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1969 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1970 1.10 dante }
1971 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1972 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1973 1.16 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1974 1.7 dante max_cmd[tid]);
1975 1.7 dante }
1976 1.1 dante
1977 1.7 dante return status;
1978 1.1 dante }
1979 1.1 dante
1980 1.1 dante
1981 1.1 dante /*
1982 1.1 dante * Adv Library Interrupt Service Routine
1983 1.1 dante *
1984 1.1 dante * This function is called by a driver's interrupt service routine.
1985 1.1 dante * The function disables and re-enables interrupts.
1986 1.1 dante *
1987 1.7 dante * When a microcode idle command is completed, the ADV_DVC_VAR
1988 1.1 dante * 'idle_cmd_done' field is set to ADW_TRUE.
1989 1.1 dante *
1990 1.16 dante * Note: AdwISR() can be called when interrupts are disabled or even
1991 1.1 dante * when there is no hardware interrupt condition present. It will
1992 1.1 dante * always check for completed idle commands and microcode requests.
1993 1.1 dante * This is an important feature that shouldn't be changed because it
1994 1.1 dante * allows commands to be completed from polling mode loops.
1995 1.1 dante *
1996 1.1 dante * Return:
1997 1.1 dante * ADW_TRUE(1) - interrupt was pending
1998 1.1 dante * ADW_FALSE(0) - no interrupt was pending
1999 1.1 dante */
2000 1.1 dante int
2001 1.16 dante AdwISR(sc)
2002 1.7 dante ADW_SOFTC *sc;
2003 1.1 dante {
2004 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2005 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2006 1.7 dante u_int8_t int_stat;
2007 1.7 dante u_int16_t target_bit;
2008 1.7 dante ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2009 1.7 dante u_int32_t irq_next_pa;
2010 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2011 1.7 dante ADW_CCB *ccb;
2012 1.11 dante int s;
2013 1.11 dante
2014 1.1 dante
2015 1.11 dante s = splbio();
2016 1.1 dante
2017 1.1 dante /* Reading the register clears the interrupt. */
2018 1.1 dante int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2019 1.1 dante
2020 1.7 dante if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2021 1.7 dante ADW_INTR_STATUS_INTRC)) == 0) {
2022 1.11 dante splx(s);
2023 1.7 dante return ADW_FALSE;
2024 1.1 dante }
2025 1.7 dante
2026 1.7 dante /*
2027 1.7 dante * Notify the driver of an asynchronous microcode condition by
2028 1.7 dante * calling the ADV_DVC_VAR.async_callback function. The function
2029 1.16 dante * is passed the microcode ADW_MC_INTRB_CODE byte value.
2030 1.1 dante */
2031 1.7 dante if (int_stat & ADW_INTR_STATUS_INTRB) {
2032 1.7 dante u_int8_t intrb_code;
2033 1.7 dante
2034 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2035 1.10 dante
2036 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
2037 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
2038 1.10 dante if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2039 1.10 dante sc->carr_pending_cnt != 0) {
2040 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2041 1.20 itojun IOPB_TICKLE, ADW_TICKLE_A);
2042 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2043 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2044 1.20 itojun IOPB_TICKLE, ADW_TICKLE_NOP);
2045 1.10 dante }
2046 1.10 dante }
2047 1.7 dante }
2048 1.7 dante
2049 1.7 dante if (sc->async_callback != 0) {
2050 1.7 dante (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2051 1.1 dante }
2052 1.1 dante }
2053 1.7 dante
2054 1.1 dante /*
2055 1.7 dante * Check if the IRQ stopper carrier contains a completed request.
2056 1.1 dante */
2057 1.12 dante while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
2058 1.7 dante {
2059 1.12 dante #if ADW_DEBUG
2060 1.12 dante printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2061 1.12 dante sc->irq_sp->carr_id,
2062 1.12 dante sc->irq_sp->carr_ba,
2063 1.12 dante sc->irq_sp->areq_ba,
2064 1.12 dante sc->irq_sp->next_ba);
2065 1.12 dante #endif
2066 1.7 dante /*
2067 1.10 dante * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2068 1.10 dante * structure.
2069 1.12 dante * The RISC will have set 'areq_ba' to a virtual address.
2070 1.7 dante *
2071 1.7 dante * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2072 1.12 dante * field to the carrier ADV_CARR_T.areq_ba field.
2073 1.10 dante * The conversion below complements the conversion of
2074 1.16 dante * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2075 1.7 dante */
2076 1.12 dante ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2077 1.7 dante scsiq = &ccb->scsiq;
2078 1.12 dante scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2079 1.7 dante
2080 1.10 dante /*
2081 1.10 dante * Request finished with good status and the queue was not
2082 1.10 dante * DMAed to host memory by the firmware. Set all status fields
2083 1.10 dante * to indicate good status.
2084 1.10 dante */
2085 1.10 dante if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
2086 1.10 dante scsiq->done_status = QD_NO_ERROR;
2087 1.10 dante scsiq->host_status = scsiq->scsi_status = 0;
2088 1.10 dante scsiq->data_cnt = 0L;
2089 1.7 dante }
2090 1.1 dante
2091 1.1 dante /*
2092 1.7 dante * Advance the stopper pointer to the next carrier
2093 1.7 dante * ignoring the lower four bits. Free the previous
2094 1.7 dante * stopper carrier.
2095 1.1 dante */
2096 1.7 dante free_carrp = sc->irq_sp;
2097 1.16 dante sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2098 1.7 dante
2099 1.16 dante free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2100 1.16 dante : sc->carr_freelist->carr_ba;
2101 1.7 dante sc->carr_freelist = free_carrp;
2102 1.7 dante sc->carr_pending_cnt--;
2103 1.1 dante
2104 1.1 dante
2105 1.1 dante target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2106 1.1 dante
2107 1.1 dante /*
2108 1.1 dante * Clear request microcode control flag.
2109 1.1 dante */
2110 1.1 dante scsiq->cntl = 0;
2111 1.1 dante
2112 1.1 dante /*
2113 1.1 dante * Check Condition handling
2114 1.1 dante */
2115 1.1 dante /*
2116 1.1 dante * If the command that completed was a SCSI INQUIRY and
2117 1.1 dante * LUN 0 was sent the command, then process the INQUIRY
2118 1.1 dante * command information for the device.
2119 1.1 dante */
2120 1.7 dante if (scsiq->done_status == QD_NO_ERROR &&
2121 1.10 dante scsiq->cdb[0] == INQUIRY &&
2122 1.10 dante scsiq->target_lun == 0) {
2123 1.16 dante AdwInquiryHandling(sc, scsiq);
2124 1.1 dante }
2125 1.1 dante
2126 1.1 dante /*
2127 1.1 dante * Notify the driver of the completed request by passing
2128 1.1 dante * the ADW_SCSI_REQ_Q pointer to its callback function.
2129 1.1 dante */
2130 1.7 dante (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2131 1.1 dante /*
2132 1.1 dante * Note: After the driver callback function is called, 'scsiq'
2133 1.1 dante * can no longer be referenced.
2134 1.1 dante *
2135 1.1 dante * Fall through and continue processing other completed
2136 1.1 dante * requests...
2137 1.1 dante */
2138 1.1 dante }
2139 1.11 dante
2140 1.11 dante splx(s);
2141 1.7 dante
2142 1.7 dante return ADW_TRUE;
2143 1.1 dante }
2144 1.1 dante
2145 1.7 dante
2146 1.1 dante /*
2147 1.1 dante * Send an idle command to the chip and wait for completion.
2148 1.1 dante *
2149 1.7 dante * Command completion is polled for once per microsecond.
2150 1.7 dante *
2151 1.7 dante * The function can be called from anywhere including an interrupt handler.
2152 1.10 dante * But the function is not re-entrant, so it uses the splbio/splx()
2153 1.7 dante * functions to prevent reentrancy.
2154 1.1 dante *
2155 1.1 dante * Return Values:
2156 1.1 dante * ADW_TRUE - command completed successfully
2157 1.1 dante * ADW_FALSE - command failed
2158 1.7 dante * ADW_ERROR - command timed out
2159 1.1 dante */
2160 1.1 dante int
2161 1.16 dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2162 1.7 dante ADW_SOFTC *sc;
2163 1.7 dante u_int16_t idle_cmd;
2164 1.7 dante u_int32_t idle_cmd_parameter;
2165 1.1 dante {
2166 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2167 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2168 1.13 dante u_int16_t result;
2169 1.10 dante u_int32_t i, j, s;
2170 1.1 dante
2171 1.10 dante s = splbio();
2172 1.7 dante
2173 1.7 dante /*
2174 1.7 dante * Clear the idle command status which is set by the microcode
2175 1.7 dante * to a non-zero value to indicate when the command is completed.
2176 1.7 dante */
2177 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2178 1.1 dante
2179 1.1 dante /*
2180 1.1 dante * Write the idle command value after the idle command parameter
2181 1.1 dante * has been written to avoid a race condition. If the order is not
2182 1.1 dante * followed, the microcode may process the idle command before the
2183 1.1 dante * parameters have been written to LRAM.
2184 1.1 dante */
2185 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2186 1.13 dante idle_cmd_parameter);
2187 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2188 1.1 dante
2189 1.1 dante /*
2190 1.7 dante * Tickle the RISC to tell it to process the idle command.
2191 1.1 dante */
2192 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2193 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2194 1.1 dante /*
2195 1.7 dante * Clear the tickle value. In the ASC-3550 the RISC flag
2196 1.7 dante * command 'clr_tickle_b' does not work unless the host
2197 1.7 dante * value is cleared.
2198 1.1 dante */
2199 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2200 1.7 dante }
2201 1.1 dante
2202 1.7 dante /* Wait for up to 100 millisecond for the idle command to timeout. */
2203 1.7 dante for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2204 1.7 dante /* Poll once each microsecond for command completion. */
2205 1.7 dante for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2206 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2207 1.17 dante result);
2208 1.7 dante if (result != 0) {
2209 1.10 dante splx(s);
2210 1.7 dante return result;
2211 1.7 dante }
2212 1.16 dante AdwDelayMicroSecond(1);
2213 1.7 dante }
2214 1.1 dante }
2215 1.1 dante
2216 1.10 dante splx(s);
2217 1.7 dante return ADW_ERROR;
2218 1.1 dante }
2219 1.1 dante
2220 1.1 dante
2221 1.1 dante /*
2222 1.1 dante * Inquiry Information Byte 7 Handling
2223 1.1 dante *
2224 1.1 dante * Handle SCSI Inquiry Command information for a device by setting
2225 1.2 dante * microcode operating variables that affect WDTR, SDTR, and Tag
2226 1.1 dante * Queuing.
2227 1.1 dante */
2228 1.1 dante static void
2229 1.16 dante AdwInquiryHandling(sc, scsiq)
2230 1.7 dante ADW_SOFTC *sc;
2231 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2232 1.1 dante {
2233 1.9 dante #ifndef FAILSAFE
2234 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2235 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2236 1.7 dante u_int8_t tid;
2237 1.13 dante struct scsipi_inquiry_data *inq;
2238 1.7 dante u_int16_t tidmask;
2239 1.7 dante u_int16_t cfg_word;
2240 1.7 dante
2241 1.1 dante
2242 1.1 dante /*
2243 1.16 dante * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2244 1.1 dante * to be available.
2245 1.1 dante *
2246 1.1 dante * If less than 8 bytes of INQUIRY information were requested or less
2247 1.1 dante * than 8 bytes were transferred, then return. cdb[4] is the request
2248 1.1 dante * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2249 1.1 dante * microcode to the transfer residual count.
2250 1.1 dante */
2251 1.7 dante
2252 1.2 dante if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2253 1.1 dante return;
2254 1.1 dante }
2255 1.7 dante
2256 1.1 dante tid = scsiq->target_id;
2257 1.7 dante
2258 1.13 dante inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2259 1.1 dante
2260 1.1 dante /*
2261 1.1 dante * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2262 1.1 dante */
2263 1.13 dante if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2264 1.13 dante ((inq->version & SID_ANSII) < 2)) {
2265 1.1 dante return;
2266 1.2 dante } else {
2267 1.1 dante /*
2268 1.1 dante * INQUIRY Byte 7 Handling
2269 1.1 dante *
2270 1.1 dante * Use a device's INQUIRY byte 7 to determine whether it
2271 1.1 dante * supports WDTR, SDTR, and Tag Queuing. If the feature
2272 1.1 dante * is enabled in the EEPROM and the device supports the
2273 1.1 dante * feature, then enable it in the microcode.
2274 1.1 dante */
2275 1.1 dante
2276 1.1 dante tidmask = ADW_TID_TO_TIDMASK(tid);
2277 1.7 dante
2278 1.1 dante /*
2279 1.1 dante * Wide Transfers
2280 1.1 dante *
2281 1.1 dante * If the EEPROM enabled WDTR for the device and the device
2282 1.1 dante * supports wide bus (16 bit) transfers, then turn on the
2283 1.1 dante * device's 'wdtr_able' bit and write the new value to the
2284 1.1 dante * microcode.
2285 1.1 dante */
2286 1.7 dante #ifdef SCSI_ADW_WDTR_DISABLE
2287 1.8 dante if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2288 1.7 dante #endif /* SCSI_ADW_WDTR_DISABLE */
2289 1.13 dante if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2290 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2291 1.7 dante cfg_word);
2292 1.2 dante if ((cfg_word & tidmask) == 0) {
2293 1.1 dante cfg_word |= tidmask;
2294 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2295 1.7 dante cfg_word);
2296 1.1 dante
2297 1.1 dante /*
2298 1.16 dante * Clear the microcode "SDTR negotiation" and
2299 1.16 dante * "WDTR negotiation" done indicators for the
2300 1.16 dante * target to cause it to negotiate with the new
2301 1.16 dante * setting set above.
2302 1.7 dante * WDTR when accepted causes the target to enter
2303 1.16 dante * asynchronous mode, so SDTR must be negotiated
2304 1.1 dante */
2305 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2306 1.7 dante cfg_word);
2307 1.7 dante cfg_word &= ~tidmask;
2308 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2309 1.7 dante cfg_word);
2310 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2311 1.7 dante cfg_word);
2312 1.1 dante cfg_word &= ~tidmask;
2313 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2314 1.7 dante cfg_word);
2315 1.1 dante }
2316 1.1 dante }
2317 1.7 dante
2318 1.1 dante /*
2319 1.1 dante * Synchronous Transfers
2320 1.1 dante *
2321 1.1 dante * If the EEPROM enabled SDTR for the device and the device
2322 1.1 dante * supports synchronous transfers, then turn on the device's
2323 1.1 dante * 'sdtr_able' bit. Write the new value to the microcode.
2324 1.1 dante */
2325 1.7 dante #ifdef SCSI_ADW_SDTR_DISABLE
2326 1.8 dante if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2327 1.7 dante #endif /* SCSI_ADW_SDTR_DISABLE */
2328 1.13 dante if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2329 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2330 1.2 dante if ((cfg_word & tidmask) == 0) {
2331 1.1 dante cfg_word |= tidmask;
2332 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2333 1.7 dante cfg_word);
2334 1.1 dante
2335 1.1 dante /*
2336 1.16 dante * Clear the microcode "SDTR negotiation"
2337 1.16 dante * done indicator for the target to cause it
2338 1.16 dante * to negotiate with the new setting set above.
2339 1.1 dante */
2340 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2341 1.7 dante cfg_word);
2342 1.1 dante cfg_word &= ~tidmask;
2343 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2344 1.7 dante cfg_word);
2345 1.10 dante }
2346 1.10 dante }
2347 1.10 dante /*
2348 1.10 dante * If the Inquiry data included enough space for the SPI-3
2349 1.10 dante * Clocking field, then check if DT mode is supported.
2350 1.10 dante */
2351 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2352 1.17 dante (scsiq->cdb[4] >= 57 ||
2353 1.17 dante (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2354 1.10 dante /*
2355 1.10 dante * PPR (Parallel Protocol Request) Capable
2356 1.10 dante *
2357 1.10 dante * If the device supports DT mode, then it must be
2358 1.10 dante * PPR capable.
2359 1.10 dante * The PPR message will be used in place of the SDTR
2360 1.10 dante * and WDTR messages to negotiate synchronous speed
2361 1.10 dante * and offset, transfer width, and protocol options.
2362 1.10 dante */
2363 1.15 dante if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2364 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2365 1.10 dante sc->ppr_able);
2366 1.10 dante sc->ppr_able |= tidmask;
2367 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2368 1.10 dante sc->ppr_able);
2369 1.1 dante }
2370 1.1 dante }
2371 1.7 dante
2372 1.1 dante /*
2373 1.7 dante * If the EEPROM enabled Tag Queuing for the device and the
2374 1.7 dante * device supports Tag Queueing, then turn on the device's
2375 1.1 dante * 'tagqng_enable' bit in the microcode and set the microcode
2376 1.7 dante * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2377 1.1 dante * value.
2378 1.1 dante *
2379 1.1 dante * Tag Queuing is disabled for the BIOS which runs in polled
2380 1.1 dante * mode and would see no benefit from Tag Queuing. Also by
2381 1.1 dante * disabling Tag Queuing in the BIOS devices with Tag Queuing
2382 1.1 dante * bugs will at least work with the BIOS.
2383 1.1 dante */
2384 1.7 dante #ifdef SCSI_ADW_TAGQ_DISABLE
2385 1.8 dante if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2386 1.7 dante #endif /* SCSI_ADW_TAGQ_DISABLE */
2387 1.13 dante if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2388 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2389 1.7 dante cfg_word);
2390 1.1 dante cfg_word |= tidmask;
2391 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2392 1.7 dante cfg_word);
2393 1.7 dante
2394 1.1 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
2395 1.16 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
2396 1.7 dante sc->max_dvc_qng);
2397 1.1 dante }
2398 1.9 dante }
2399 1.7 dante #endif /* FAILSAFE */
2400 1.1 dante }
2401 1.1 dante
2402 1.7 dante
2403 1.1 dante static void
2404 1.16 dante AdwSleepMilliSecond(n)
2405 1.7 dante u_int32_t n;
2406 1.1 dante {
2407 1.1 dante
2408 1.1 dante DELAY(n * 1000);
2409 1.1 dante }
2410 1.1 dante
2411 1.7 dante
2412 1.1 dante static void
2413 1.16 dante AdwDelayMicroSecond(n)
2414 1.7 dante u_int32_t n;
2415 1.1 dante {
2416 1.1 dante
2417 1.1 dante DELAY(n);
2418 1.1 dante }
2419 1.7 dante
2420