Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.21.2.1
      1  1.21.2.1  thorpej /* $NetBSD: adwlib.c,v 1.21.2.1 2001/09/13 01:15:37 thorpej Exp $        */
      2       1.1    dante 
      3       1.1    dante /*
      4       1.1    dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5       1.1    dante  *
      6       1.7    dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7       1.1    dante  * All rights reserved.
      8       1.1    dante  *
      9       1.1    dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10       1.1    dante  *
     11       1.1    dante  * Redistribution and use in source and binary forms, with or without
     12       1.1    dante  * modification, are permitted provided that the following conditions
     13       1.1    dante  * are met:
     14       1.1    dante  * 1. Redistributions of source code must retain the above copyright
     15       1.1    dante  *    notice, this list of conditions and the following disclaimer.
     16       1.1    dante  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1    dante  *    notice, this list of conditions and the following disclaimer in the
     18       1.1    dante  *    documentation and/or other materials provided with the distribution.
     19       1.1    dante  * 3. All advertising materials mentioning features or use of this software
     20       1.1    dante  *    must display the following acknowledgement:
     21       1.1    dante  *        This product includes software developed by the NetBSD
     22       1.1    dante  *        Foundation, Inc. and its contributors.
     23       1.1    dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.1    dante  *    contributors may be used to endorse or promote products derived
     25       1.1    dante  *    from this software without specific prior written permission.
     26       1.1    dante  *
     27       1.1    dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.1    dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.1    dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.1    dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.1    dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.1    dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.1    dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.1    dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.1    dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.1    dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.1    dante  * POSSIBILITY OF SUCH DAMAGE.
     38       1.1    dante  */
     39       1.1    dante /*
     40       1.1    dante  * Ported from:
     41       1.1    dante  */
     42       1.1    dante /*
     43       1.1    dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44       1.7    dante  *
     45      1.10    dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46       1.1    dante  * All Rights Reserved.
     47       1.1    dante  *
     48       1.1    dante  * Redistribution and use in source and binary forms, with or without
     49       1.1    dante  * modification, are permitted provided that redistributions of source
     50       1.1    dante  * code retain the above copyright notice and this comment without
     51       1.1    dante  * modification.
     52       1.1    dante  */
     53       1.1    dante 
     54       1.1    dante #include <sys/types.h>
     55       1.1    dante #include <sys/param.h>
     56       1.1    dante #include <sys/systm.h>
     57       1.1    dante #include <sys/malloc.h>
     58       1.1    dante #include <sys/kernel.h>
     59       1.1    dante #include <sys/queue.h>
     60       1.1    dante #include <sys/device.h>
     61       1.1    dante 
     62       1.1    dante #include <machine/bus.h>
     63       1.1    dante #include <machine/intr.h>
     64       1.1    dante 
     65       1.1    dante #include <dev/scsipi/scsi_all.h>
     66       1.1    dante #include <dev/scsipi/scsipi_all.h>
     67       1.1    dante #include <dev/scsipi/scsiconf.h>
     68       1.1    dante 
     69       1.7    dante #include <dev/pci/pcidevs.h>
     70       1.7    dante 
     71      1.19      mrg #include <uvm/uvm_extern.h>
     72       1.1    dante 
     73       1.1    dante #include <dev/ic/adwlib.h>
     74      1.16    dante #include <dev/ic/adwmcode.h>
     75       1.1    dante #include <dev/ic/adw.h>
     76       1.1    dante 
     77       1.1    dante 
     78       1.1    dante /* Static Functions */
     79       1.1    dante 
     80      1.17    dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     81      1.17    dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     82      1.17    dante 								u_int8_t));
     83      1.17    dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     84      1.17    dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     85      1.17    dante 								ADW_DVC_CFG *));
     86      1.17    dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87      1.17    dante 								ADW_DVC_CFG *));
     88      1.17    dante 
     89      1.17    dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     90      1.17    dante      							ADW_EEPROM *));
     91      1.17    dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92      1.17    dante 					                 ADW_EEPROM *));
     93      1.16    dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     94      1.16    dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     95      1.17    dante 
     96      1.16    dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97       1.1    dante 
     98      1.16    dante static void AdwSleepMilliSecond __P((u_int32_t));
     99      1.16    dante static void AdwDelayMicroSecond __P((u_int32_t));
    100       1.1    dante 
    101       1.1    dante 
    102       1.1    dante /*
    103       1.1    dante  * EEPROM Configuration.
    104       1.1    dante  *
    105       1.1    dante  * All drivers should use this structure to set the default EEPROM
    106       1.1    dante  * configuration. The BIOS now uses this structure when it is built.
    107      1.16    dante  * Additional structure information can be found in adwlib.h where
    108       1.1    dante  * the structure is defined.
    109       1.1    dante  */
    110      1.17    dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
    111      1.17    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    112      1.17    dante 	0x0000,			/* 01 cfg_msw */
    113      1.17    dante 	0xFFFF,			/* 02 disc_enable */
    114      1.17    dante 	0xFFFF,			/* 03 wdtr_able */
    115      1.17    dante 	{ 0xFFFF },		/* 04 sdtr_able */
    116      1.17    dante 	0xFFFF,			/* 05 start_motor */
    117      1.17    dante 	0xFFFF,			/* 06 tagqng_able */
    118      1.17    dante 	0xFFFF,			/* 07 bios_scan */
    119      1.17    dante 	0,			/* 08 scam_tolerant */
    120      1.17    dante 	7,			/* 09 adapter_scsi_id */
    121      1.17    dante 	0,			/*    bios_boot_delay */
    122      1.17    dante 	3,			/* 10 scsi_reset_delay */
    123      1.17    dante 	0,			/*    bios_id_lun */
    124      1.17    dante 	0,			/* 11 termination */
    125      1.17    dante 	0,			/*    reserved1 */
    126      1.17    dante 	0xFFE7,			/* 12 bios_ctrl */
    127      1.17    dante 	{ 0xFFFF },		/* 13 ultra_able */
    128      1.17    dante 	{ 0 },			/* 14 reserved2 */
    129      1.17    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    130      1.17    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    131      1.17    dante 	0,			/* 16 dvc_cntl */
    132      1.17    dante 	{ 0 },			/* 17 bug_fix */
    133      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    134      1.17    dante 	0,			/* 21 check_sum */
    135      1.17    dante 	{			/* 22-29 oem_name[16] */
    136      1.17    dante 	  0,0,0,0,0,0,0,0,
    137      1.17    dante 	  0,0,0,0,0,0,0,0
    138      1.17    dante 	},
    139      1.17    dante 	0,			/* 30 dvc_err_code */
    140      1.17    dante 	0,			/* 31 adv_err_code */
    141      1.17    dante 	0,			/* 32 adv_err_addr */
    142      1.17    dante 	0,			/* 33 saved_dvc_err_code */
    143      1.17    dante 	0,			/* 34 saved_adv_err_code */
    144      1.17    dante 	0			/* 35 saved_adv_err_addr */
    145       1.7    dante };
    146       1.7    dante 
    147      1.17    dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    148       1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    149       1.7    dante 	0x0000,			/* 01 cfg_msw */
    150       1.7    dante 	0xFFFF,			/* 02 disc_enable */
    151       1.7    dante 	0xFFFF,			/* 03 wdtr_able */
    152      1.17    dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    153       1.7    dante 	0xFFFF,			/* 05 start_motor */
    154       1.7    dante 	0xFFFF,			/* 06 tagqng_able */
    155       1.7    dante 	0xFFFF,			/* 07 bios_scan */
    156       1.7    dante 	0,			/* 08 scam_tolerant */
    157       1.7    dante 	7,			/* 09 adapter_scsi_id */
    158       1.7    dante 	0,			/*    bios_boot_delay */
    159       1.7    dante 	3,			/* 10 scsi_reset_delay */
    160       1.7    dante 	0,			/*    bios_id_lun */
    161       1.7    dante 	0,			/* 11 termination_se */
    162       1.7    dante 	0,			/*    termination_lvd */
    163       1.7    dante 	0xFFE7,			/* 12 bios_ctrl */
    164      1.17    dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    165      1.17    dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    166      1.16    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    167      1.16    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    168       1.7    dante 	0,			/* 16 dvc_cntl */
    169      1.17    dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    170      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    171       1.7    dante 	0,			/* 21 check_sum */
    172      1.17    dante 	{			/* 22-29 oem_name[16] */
    173      1.17    dante 	  0,0,0,0,0,0,0,0,
    174      1.17    dante 	  0,0,0,0,0,0,0,0
    175      1.17    dante 	},
    176       1.7    dante 	0,			/* 30 dvc_err_code */
    177       1.7    dante 	0,			/* 31 adv_err_code */
    178       1.7    dante 	0,			/* 32 adv_err_addr */
    179       1.7    dante 	0,			/* 33 saved_dvc_err_code */
    180       1.7    dante 	0,			/* 34 saved_adv_err_code */
    181       1.7    dante 	0,			/* 35 saved_adv_err_addr */
    182      1.17    dante 	{			/* 36-55 reserved1[16] */
    183      1.17    dante 	  0,0,0,0,0,0,0,0,0,0,
    184      1.17    dante 	  0,0,0,0,0,0,0,0,0,0
    185      1.17    dante 	},
    186       1.7    dante 	0,			/* 56 cisptr_lsw */
    187       1.7    dante 	0,			/* 57 cisprt_msw */
    188       1.7    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    189       1.7    dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    190      1.17    dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    191       1.1    dante };
    192       1.1    dante 
    193      1.17    dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    194      1.10    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    195      1.10    dante 	0x0000,			/* 01 cfg_msw */
    196      1.10    dante 	0xFFFF,			/* 02 disc_enable */
    197      1.10    dante 	0xFFFF,			/* 03 wdtr_able */
    198      1.17    dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    199      1.10    dante 	0xFFFF,			/* 05 start_motor */
    200      1.10    dante 	0xFFFF,			/* 06 tagqng_able */
    201      1.10    dante 	0xFFFF,			/* 07 bios_scan */
    202      1.10    dante 	0,			/* 08 scam_tolerant */
    203      1.10    dante 	7,			/* 09 adapter_scsi_id */
    204      1.10    dante 	0,			/*    bios_boot_delay */
    205      1.10    dante 	3,			/* 10 scsi_reset_delay */
    206      1.10    dante 	0,			/*    bios_id_lun */
    207      1.10    dante 	0,			/* 11 termination_se */
    208      1.10    dante 	0,			/*    termination_lvd */
    209      1.10    dante 	0xFFE7,			/* 12 bios_ctrl */
    210      1.17    dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    211      1.17    dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    212      1.16    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    213      1.16    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    214      1.10    dante 	0,			/* 16 dvc_cntl */
    215      1.17    dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    216      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    217      1.10    dante 	0,			/* 21 check_sum */
    218      1.17    dante 	{			/* 22-29 oem_name[16] */
    219      1.17    dante 	  0,0,0,0,0,0,0,0,
    220      1.17    dante 	  0,0,0,0,0,0,0,0
    221      1.17    dante 	},
    222      1.10    dante 	0,			/* 30 dvc_err_code */
    223      1.10    dante 	0,			/* 31 adv_err_code */
    224      1.10    dante 	0,			/* 32 adv_err_addr */
    225      1.10    dante 	0,			/* 33 saved_dvc_err_code */
    226      1.10    dante 	0,			/* 34 saved_adv_err_code */
    227      1.10    dante 	0,			/* 35 saved_adv_err_addr */
    228      1.17    dante 	{			/* 36-55 reserved1[16] */
    229      1.17    dante 	  0,0,0,0,0,0,0,0,0,0,
    230      1.17    dante 	  0,0,0,0,0,0,0,0,0,0
    231      1.17    dante 	},
    232      1.10    dante 	0,			/* 56 cisptr_lsw */
    233      1.10    dante 	0,			/* 57 cisprt_msw */
    234      1.10    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    235      1.10    dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    236      1.17    dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    237      1.10    dante };
    238      1.10    dante 
    239      1.17    dante 
    240       1.1    dante /*
    241      1.17    dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    242      1.17    dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    243      1.17    dante  * all of this is done.
    244       1.1    dante  *
    245       1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    246       1.1    dante  * then 0 is returned.
    247      1.17    dante  *
    248      1.17    dante  * Note: Chip is stopped on entry.
    249      1.17    dante  */
    250      1.17    dante int
    251      1.17    dante AdwInitFromEEPROM(sc)
    252      1.17    dante ADW_SOFTC      *sc;
    253      1.17    dante {
    254      1.17    dante 	bus_space_tag_t iot = sc->sc_iot;
    255      1.17    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    256      1.17    dante 	ADW_EEPROM		eep_config;
    257      1.17    dante 	u_int16_t		warn_code;
    258      1.17    dante 	u_int16_t		sdtr_speed = 0;
    259      1.17    dante 	u_int8_t		tid, termination;
    260      1.17    dante 	int			i, j;
    261      1.17    dante 
    262      1.17    dante 
    263      1.17    dante 	warn_code = 0;
    264      1.17    dante 
    265      1.17    dante 	/*
    266      1.17    dante 	 * Read the board's EEPROM configuration.
    267      1.17    dante 	 *
    268      1.17    dante 	 * Set default values if a bad checksum is found.
    269      1.17    dante 	 *
    270      1.17    dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    271      1.17    dante 	 */
    272      1.17    dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    273      1.17    dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    274      1.17    dante 
    275      1.17    dante 		/*
    276      1.17    dante 		 * Set EEPROM default values.
    277      1.17    dante 		 */
    278      1.17    dante 		switch(sc->chip_type) {
    279      1.17    dante 		case ADW_CHIP_ASC3550:
    280      1.17    dante 			eep_config = adw_3550_Default_EEPROM;
    281      1.17    dante 			break;
    282      1.17    dante 		case ADW_CHIP_ASC38C0800:
    283      1.17    dante 			eep_config = adw_38C0800_Default_EEPROM;
    284      1.17    dante 			break;
    285      1.17    dante 		case ADW_CHIP_ASC38C1600:
    286      1.17    dante 			eep_config = adw_38C1600_Default_EEPROM;
    287      1.17    dante 
    288      1.21    lukem #if 0
    289      1.21    lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    290      1.21    lukem #endif
    291      1.17    dante 			if (sc->cfg.pci_slot_info != 0) {
    292      1.17    dante 				u_int8_t lsw_msb;
    293      1.17    dante 
    294      1.17    dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    295      1.17    dante 				/*
    296      1.17    dante 				 * Set Function 1 EEPROM Word 0 MSB
    297      1.17    dante 				 *
    298      1.17    dante 				 * Clear the BIOS_ENABLE (bit 14) and
    299      1.17    dante 				 * INTAB (bit 11) EEPROM bits.
    300      1.17    dante 				 *
    301      1.17    dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    302      1.17    dante 				 * SPARC Ultra 60 and old Mac system booting
    303      1.17    dante 				 * problem. The Expansion ROM must
    304      1.17    dante 				 * be disabled in Function 1 for these systems.
    305      1.17    dante 				 */
    306      1.17    dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    307      1.17    dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    308      1.17    dante 				/*
    309      1.17    dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    310      1.17    dante 				 * indicates the Function 1 interrupt line is
    311      1.17    dante 				 * wired to INTA.
    312      1.17    dante 				 *
    313      1.17    dante 				 * Set/Clear Bit 11 (INTAB) from
    314      1.17    dante 				 * the GPIO bit 0 input:
    315      1.17    dante 				 *   1 - Function 1 intr line wired to INT A.
    316      1.17    dante 				 *   0 - Function 1 intr line wired to INT B.
    317      1.17    dante 				 *
    318      1.17    dante 				 * Note: Adapter boards always have Function 0
    319      1.17    dante 				 * wired to INTA.
    320      1.17    dante 				 * Put all 5 GPIO bits in input mode and then
    321      1.17    dante 				 * read their input values.
    322      1.17    dante 				 */
    323      1.17    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    324      1.17    dante 							IOPB_GPIO_CNTL, 0);
    325      1.17    dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    326      1.17    dante 						IOPB_GPIO_DATA) & 0x01) {
    327      1.17    dante 					/*
    328      1.17    dante 					 * Function 1 interrupt wired to INTA;
    329      1.17    dante 					 * Set EEPROM bit.
    330      1.17    dante 					 */
    331      1.17    dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    332      1.17    dante 							 & 0xFF;
    333      1.17    dante 				 }
    334      1.17    dante 				 eep_config.cfg_lsw &= 0x00FF;
    335      1.17    dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    336      1.17    dante 			}
    337      1.17    dante 			break;
    338      1.17    dante 		}
    339      1.17    dante 
    340      1.17    dante 		/*
    341      1.17    dante 		 * Assume the 6 byte board serial number that was read
    342      1.17    dante 		 * from EEPROM is correct even if the EEPROM checksum
    343      1.17    dante 		 * failed.
    344      1.17    dante 		 */
    345      1.17    dante 		for (i=2, j=1; i>=0; i--, j++) {
    346      1.17    dante 		eep_config.serial_number[i] =
    347      1.17    dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    348      1.17    dante 		}
    349      1.17    dante 
    350      1.17    dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    351      1.17    dante 	}
    352      1.17    dante 	/*
    353      1.17    dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    354      1.17    dante 	 * that was read.
    355      1.17    dante 	 *
    356      1.17    dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    357      1.17    dante 	 */
    358      1.17    dante 	sc->wdtr_able = eep_config.wdtr_able;
    359      1.17    dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    360      1.17    dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    361      1.17    dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    362      1.17    dante 	} else {
    363      1.17    dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    364      1.17    dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    365      1.17    dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    366      1.17    dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    367      1.17    dante 	}
    368      1.17    dante 	sc->ppr_able = 0;
    369      1.17    dante 	sc->tagqng_able = eep_config.tagqng_able;
    370      1.17    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    371      1.17    dante 	sc->max_host_qng = eep_config.max_host_qng;
    372      1.17    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    373      1.17    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    374      1.17    dante 	sc->start_motor = eep_config.start_motor;
    375      1.17    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    376      1.17    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    377      1.17    dante 	sc->no_scam = eep_config.scam_tolerant;
    378      1.17    dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    379      1.17    dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    380      1.17    dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    381      1.17    dante 
    382      1.17    dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    383      1.17    dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    384      1.17    dante 		sc->sdtr_able = 0;
    385      1.17    dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    386      1.17    dante 			if (tid == 0) {
    387      1.17    dante 				sdtr_speed = sc->sdtr_speed1;
    388      1.17    dante 			} else if (tid == 4) {
    389      1.17    dante 				sdtr_speed = sc->sdtr_speed2;
    390      1.17    dante 			} else if (tid == 8) {
    391      1.17    dante 				sdtr_speed = sc->sdtr_speed3;
    392      1.17    dante 			} else if (tid == 12) {
    393      1.17    dante 				sdtr_speed = sc->sdtr_speed4;
    394      1.17    dante 			}
    395      1.17    dante 			if (sdtr_speed & ADW_MAX_TID) {
    396      1.17    dante 				sc->sdtr_able |= (1 << tid);
    397      1.17    dante 			}
    398      1.17    dante 			sdtr_speed >>= 4;
    399      1.17    dante 		}
    400      1.17    dante 	}
    401      1.17    dante 
    402      1.17    dante 	/*
    403      1.17    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    404      1.17    dante 	 * maximum queuing (max. 63, min. 4).
    405      1.17    dante 	 */
    406      1.17    dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    407      1.17    dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    408      1.17    dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    409      1.17    dante 	{
    410      1.17    dante 		/* If the value is zero, assume it is uninitialized. */
    411      1.17    dante 		if (eep_config.max_host_qng == 0) {
    412      1.17    dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413      1.17    dante 		} else {
    414      1.17    dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    415      1.17    dante 		}
    416      1.17    dante 	}
    417      1.17    dante 
    418      1.17    dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    419      1.17    dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    420      1.17    dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    421      1.17    dante 		/* If the value is zero, assume it is uninitialized. */
    422      1.17    dante 		if (eep_config.max_dvc_qng == 0) {
    423      1.17    dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    424      1.17    dante 		} else {
    425      1.17    dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    426      1.17    dante 		}
    427      1.17    dante 	}
    428      1.17    dante 
    429      1.17    dante 	/*
    430      1.17    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    431      1.17    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    432      1.17    dante 	 */
    433      1.17    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    434      1.17    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    435      1.17    dante 	}
    436      1.17    dante 
    437      1.17    dante 	/*
    438      1.17    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    439      1.17    dante 	 * values based on possibly adjusted EEPROM values.
    440      1.17    dante 	 */
    441      1.17    dante 	sc->max_host_qng = eep_config.max_host_qng;
    442      1.17    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    443      1.17    dante 
    444      1.17    dante 
    445      1.17    dante 	/*
    446      1.17    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    447      1.17    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    448      1.17    dante 	 *
    449      1.17    dante 	 * If the termination is specified with a non-zero 'termination'
    450      1.17    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    451      1.17    dante 	 * 'termination' field appropriately.
    452      1.17    dante 	 */
    453      1.17    dante 
    454      1.17    dante 	switch(sc->chip_type) {
    455      1.17    dante 	case ADW_CHIP_ASC3550:
    456      1.17    dante 		sc->cfg.termination = 0;	/* auto termination */
    457      1.17    dante 		switch(eep_config.termination_se) {
    458      1.17    dante 		case 3:
    459      1.17    dante 			/* Enable manual control with low on / high on. */
    460      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    461      1.17    dante 		case 2:
    462      1.17    dante 			/* Enable manual control with low off / high on. */
    463      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    464      1.17    dante 		case 1:
    465      1.17    dante 			/* Enable manual control with low off / high off. */
    466      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    467      1.17    dante 		case 0:
    468      1.17    dante 			break;
    469      1.17    dante 		default:
    470      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    471      1.17    dante 		}
    472      1.17    dante 		break;
    473      1.17    dante 
    474      1.17    dante 	case ADW_CHIP_ASC38C0800:
    475      1.17    dante 	case ADW_CHIP_ASC38C1600:
    476      1.17    dante 		switch(eep_config.termination_se) {
    477      1.17    dante 		case 0:
    478      1.17    dante 			/* auto termination for SE */
    479      1.17    dante 			termination = 0;
    480      1.17    dante 			break;
    481      1.17    dante 		case 1:
    482      1.17    dante 			/* Enable manual control with low off / high off. */
    483      1.17    dante 			termination = 0;
    484      1.17    dante 			break;
    485      1.17    dante 		case 2:
    486      1.17    dante 			/* Enable manual control with low off / high on. */
    487      1.17    dante 			termination = ADW_TERM_SE_HI;
    488      1.17    dante 			break;
    489      1.17    dante 		case 3:
    490      1.17    dante 			/* Enable manual control with low on / high on. */
    491      1.17    dante 			termination = ADW_TERM_SE;
    492      1.17    dante 			break;
    493      1.17    dante 		default:
    494      1.17    dante 			/*
    495      1.17    dante 			 * The EEPROM 'termination_se' field contains a
    496      1.17    dante 			 * bad value. Use automatic termination instead.
    497      1.17    dante 			 */
    498      1.17    dante 			termination = 0;
    499      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    500      1.17    dante 		}
    501      1.17    dante 
    502      1.17    dante 		switch(eep_config.termination_lvd) {
    503      1.17    dante 		case 0:
    504      1.17    dante 			/* auto termination for LVD */
    505      1.17    dante 			sc->cfg.termination = termination;
    506      1.17    dante 			break;
    507      1.17    dante 		case 1:
    508      1.17    dante 			/* Enable manual control with low off / high off. */
    509      1.17    dante 			sc->cfg.termination = termination;
    510      1.17    dante 			break;
    511      1.17    dante 		case 2:
    512      1.17    dante 			/* Enable manual control with low off / high on. */
    513      1.17    dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    514      1.17    dante 			break;
    515      1.17    dante 		case 3:
    516      1.17    dante 			/* Enable manual control with low on / high on. */
    517      1.17    dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    518      1.17    dante 			break;
    519      1.17    dante 		default:
    520      1.17    dante 			/*
    521      1.17    dante 			 * The EEPROM 'termination_lvd' field contains a
    522      1.17    dante 			 * bad value. Use automatic termination instead.
    523      1.17    dante 			 */
    524      1.17    dante 			sc->cfg.termination = termination;
    525      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    526      1.17    dante 		}
    527      1.17    dante 		break;
    528      1.17    dante 	}
    529      1.17    dante 
    530      1.17    dante 	return warn_code;
    531      1.17    dante }
    532      1.17    dante 
    533      1.17    dante 
    534      1.17    dante /*
    535      1.17    dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    536      1.17    dante  *
    537      1.17    dante  * On failure return the error code.
    538       1.1    dante  */
    539       1.1    dante int
    540      1.17    dante AdwInitDriver(sc)
    541       1.2    dante ADW_SOFTC      *sc;
    542       1.1    dante {
    543       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    544       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    545      1.17    dante 	u_int16_t	error_code;
    546       1.7    dante 	int		word;
    547      1.17    dante 	int		i;
    548      1.16    dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    549       1.7    dante 								0x40-0x8F. */
    550      1.17    dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    551       1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    552      1.17    dante 	u_int8_t	tid;
    553       1.1    dante 
    554       1.1    dante 
    555      1.17    dante 	error_code = 0;
    556       1.1    dante 
    557       1.1    dante 	/*
    558       1.1    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    559       1.1    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    560       1.1    dante 	 * so its region must be saved and restored.
    561       1.1    dante 	 *
    562       1.1    dante 	 * Note: This code makes the assumption, which is currently true,
    563       1.1    dante 	 * that a chip reset does not clear RISC LRAM.
    564       1.1    dante 	 */
    565      1.16    dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    566      1.16    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    567       1.7    dante 	}
    568       1.7    dante 
    569       1.7    dante 	/*
    570       1.7    dante 	 * Save current per TID negotiated values.
    571       1.7    dante 	 */
    572      1.17    dante 	switch (sc->chip_type) {
    573      1.17    dante 	case ADW_CHIP_ASC3550:
    574      1.17    dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    575      1.17    dante 
    576      1.17    dante 			u_int16_t  bios_version, major, minor;
    577      1.17    dante 
    578      1.17    dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    579      1.17    dante 					ADW_MC_BIOSMEM) / 2];
    580      1.17    dante 			major = (bios_version  >> 12) & 0xF;
    581      1.17    dante 			minor = (bios_version  >> 8) & 0xF;
    582      1.17    dante 			if (major < 3 || (major == 3 && minor == 1)) {
    583      1.17    dante 			    /*
    584      1.17    dante 			     * BIOS 3.1 and earlier location of
    585      1.17    dante 			     * 'wdtr_able' variable.
    586      1.17    dante 			     */
    587      1.17    dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    588      1.17    dante 			} else {
    589      1.17    dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    590      1.17    dante 					    wdtr_able);
    591      1.17    dante 			}
    592      1.17    dante 		}
    593      1.17    dante 		break;
    594       1.7    dante 
    595      1.17    dante 	case ADW_CHIP_ASC38C1600:
    596      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    597      1.17    dante 		/* FALLTHROUGH */
    598      1.17    dante 	case ADW_CHIP_ASC38C0800:
    599      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    600      1.17    dante 		break;
    601       1.7    dante 	}
    602      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    603      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    604       1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    605      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    606       1.7    dante 			max_cmd[tid]);
    607       1.1    dante 	}
    608       1.1    dante 
    609       1.1    dante 	/*
    610      1.17    dante 	 * Perform a RAM Built-In Self Test
    611       1.1    dante 	 */
    612      1.17    dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    613      1.17    dante 		return error_code;
    614      1.17    dante 	}
    615       1.7    dante 
    616      1.17    dante 	/*
    617      1.17    dante 	 * Load the Microcode
    618       1.7    dante 	 */
    619      1.17    dante 	;
    620      1.17    dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    621      1.17    dante 		return error_code;
    622       1.1    dante 	}
    623       1.1    dante 
    624       1.1    dante 	/*
    625      1.17    dante 	 * Read microcode version and date.
    626       1.7    dante 	 */
    627      1.17    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    628      1.17    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    629       1.7    dante 
    630       1.7    dante 	/*
    631      1.17    dante 	 * If the PCI Configuration Command Register "Parity Error Response
    632      1.17    dante 	 * Control" Bit was clear (0), then set the microcode variable
    633      1.17    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    634      1.17    dante 	 * to ignore DMA parity errors.
    635       1.1    dante 	 */
    636      1.17    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    637      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    638      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    639      1.17    dante 					word | CONTROL_FLAG_IGNORE_PERR);
    640       1.1    dante 	}
    641       1.1    dante 
    642      1.17    dante 	switch (sc->chip_type) {
    643      1.17    dante 	case ADW_CHIP_ASC3550:
    644      1.17    dante 		/*
    645      1.17    dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    646      1.17    dante 		 * FIFO threshold of 128 bytes.
    647      1.17    dante 		 * This register is only accessible to the host.
    648      1.17    dante 		 */
    649      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    650      1.17    dante 				START_CTL_EMFU | READ_CMD_MRM);
    651      1.17    dante 		break;
    652       1.7    dante 
    653      1.17    dante 	case ADW_CHIP_ASC38C0800:
    654      1.17    dante 		/*
    655      1.17    dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    656      1.17    dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    657      1.17    dante 		 * cable detection and then we are able to read C_DET[3:0].
    658      1.17    dante 		 *
    659      1.17    dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    660      1.17    dante 		 * Microcode Default Value' section below.
    661      1.17    dante 		 */
    662      1.17    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    663      1.17    dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    664      1.17    dante 				| ADW_DIS_TERM_DRV);
    665       1.1    dante 
    666      1.17    dante 		/*
    667      1.17    dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    668      1.17    dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    669      1.17    dante 		 *
    670      1.17    dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    671      1.17    dante 		 * 256 bytes.
    672      1.17    dante 		 *
    673      1.17    dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    674      1.17    dante 		 */
    675      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    676      1.17    dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    677      1.17    dante 						| START_CTL_TH | READ_CMD_MRM);
    678      1.17    dante 		break;
    679       1.1    dante 
    680      1.17    dante 	case ADW_CHIP_ASC38C1600:
    681      1.17    dante 		/*
    682      1.17    dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    683      1.17    dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    684      1.17    dante 		 * cable detection and then we are able to read C_DET[3:0].
    685      1.17    dante 		 *
    686      1.17    dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    687      1.17    dante 		 * Microcode Default Value' section below.
    688      1.17    dante 		 */
    689      1.17    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    690      1.17    dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    691      1.17    dante 				| ADW_DIS_TERM_DRV);
    692       1.1    dante 
    693      1.17    dante 		/*
    694      1.17    dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    695      1.17    dante 		 * Phase Protection) disable bit is not set, then set the
    696      1.17    dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    697      1.17    dante 		 * enable AIPP checking and encoding.
    698      1.17    dante 		 */
    699      1.17    dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    700      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    701      1.17    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    702      1.17    dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    703      1.17    dante 		}
    704       1.1    dante 
    705      1.17    dante 		/*
    706      1.17    dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    707      1.17    dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    708      1.17    dante 		 */
    709      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    710      1.17    dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    711      1.17    dante 		break;
    712       1.1    dante 	}
    713       1.7    dante 
    714       1.1    dante 	/*
    715       1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    716      1.17    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    717       1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
    718       1.7    dante 	 *
    719      1.16    dante 	 * If SCSI Bus Resets have been disabled, then directly set
    720       1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    721       1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    722       1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
    723       1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    724       1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
    725       1.7    dante 	 */
    726       1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    727      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    728      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    729       1.7    dante 	}
    730       1.7    dante 
    731       1.7    dante 	/*
    732       1.7    dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    733       1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    734       1.7    dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    735       1.7    dante 	 * with a device.
    736       1.7    dante 	 *
    737       1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    738       1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    739       1.7    dante 	 * without determining here whether the device supports SDTR.
    740       1.7    dante 	 */
    741      1.17    dante 	switch (sc->chip_type) {
    742      1.17    dante 	case ADW_CHIP_ASC3550:
    743      1.17    dante 		word = 0;
    744      1.17    dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    745      1.17    dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    746      1.17    dante 				/* Set Ultra speed for TID 'tid'. */
    747      1.17    dante 				word |= (0x3 << (4 * (tid % 4)));
    748      1.17    dante 			} else {
    749      1.17    dante 				/* Set Fast speed for TID 'tid'. */
    750      1.17    dante 				word |= (0x2 << (4 * (tid % 4)));
    751      1.17    dante 			}
    752      1.17    dante 			/* Check if done with sdtr_speed1. */
    753      1.17    dante 			if (tid == 3) {
    754      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    755      1.17    dante 						ADW_MC_SDTR_SPEED1, word);
    756      1.17    dante 				word = 0;
    757      1.17    dante 			/* Check if done with sdtr_speed2. */
    758      1.17    dante 			} else if (tid == 7) {
    759      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    760      1.17    dante 						ADW_MC_SDTR_SPEED2, word);
    761      1.17    dante 				word = 0;
    762      1.17    dante 			/* Check if done with sdtr_speed3. */
    763      1.17    dante 			} else if (tid == 11) {
    764      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    765      1.17    dante 						ADW_MC_SDTR_SPEED3, word);
    766      1.17    dante 				word = 0;
    767      1.17    dante 			/* Check if done with sdtr_speed4. */
    768      1.17    dante 			} else if (tid == 15) {
    769      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    770      1.17    dante 						ADW_MC_SDTR_SPEED4, word);
    771      1.17    dante 				/* End of loop. */
    772      1.17    dante 			}
    773       1.7    dante 		}
    774      1.17    dante 
    775      1.17    dante 		/*
    776      1.17    dante 		 * Set microcode operating variable for the
    777      1.17    dante 		 * disconnect per TID bitmask.
    778      1.17    dante 		 */
    779      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    780      1.17    dante 							sc->cfg.disc_enable);
    781      1.17    dante 		break;
    782      1.17    dante 
    783      1.17    dante 	case ADW_CHIP_ASC38C0800:
    784      1.17    dante 		/* FALLTHROUGH */
    785      1.17    dante 	case ADW_CHIP_ASC38C1600:
    786      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    787      1.17    dante 							sc->cfg.disc_enable);
    788      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    789      1.17    dante 							sc->sdtr_speed1);
    790      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    791      1.17    dante 							sc->sdtr_speed2);
    792      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    793      1.17    dante 							sc->sdtr_speed3);
    794      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    795      1.17    dante 							sc->sdtr_speed4);
    796      1.17    dante 		break;
    797       1.7    dante 	}
    798       1.1    dante 
    799       1.1    dante 
    800       1.1    dante 	/*
    801       1.1    dante 	 * Set SCSI_CFG0 Microcode Default Value.
    802       1.1    dante 	 *
    803       1.1    dante 	 * The microcode will set the SCSI_CFG0 register using this value
    804       1.1    dante 	 * after it is started below.
    805       1.1    dante 	 */
    806      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    807      1.10    dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    808      1.10    dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    809       1.2    dante 
    810       1.1    dante 
    811      1.17    dante 	switch(sc->chip_type) {
    812      1.17    dante 	case ADW_CHIP_ASC3550:
    813      1.17    dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    814      1.17    dante 		break;
    815       1.1    dante 
    816      1.17    dante 	case ADW_CHIP_ASC38C0800:
    817      1.17    dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    818      1.17    dante 		break;
    819       1.7    dante 
    820      1.17    dante 	case ADW_CHIP_ASC38C1600:
    821      1.17    dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    822      1.17    dante 		break;
    823       1.7    dante 	}
    824      1.17    dante 	if(error_code) {
    825      1.17    dante 		return error_code;
    826       1.1    dante 	}
    827       1.7    dante 
    828       1.1    dante 	/*
    829       1.1    dante 	 * Set SEL_MASK Microcode Default Value
    830       1.1    dante 	 *
    831       1.1    dante 	 * The microcode will set the SEL_MASK register using this value
    832       1.1    dante 	 * after it is started below.
    833       1.1    dante 	 */
    834      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    835       1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    836       1.7    dante 
    837      1.17    dante 	/*
    838      1.17    dante 	 * Create and Initialize Host->RISC Carrier lists
    839      1.17    dante 	 */
    840      1.17    dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    841      1.17    dante 						sc->sc_control->carriers);
    842      1.16    dante 
    843       1.7    dante 	/*
    844       1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    845       1.7    dante 	 */
    846       1.7    dante 
    847       1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    848      1.16    dante 		return ADW_IERR_NO_CARRIER;
    849       1.7    dante 	}
    850      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    851      1.12    dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    852       1.7    dante 
    853       1.7    dante 	/*
    854       1.7    dante 	 * The first command issued will be placed in the stopper carrier.
    855       1.7    dante 	 */
    856  1.21.2.1  thorpej 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    857       1.1    dante 
    858       1.1    dante 	/*
    859       1.7    dante 	 * Set RISC ICQ physical address start value.
    860       1.7    dante 	 */
    861  1.21.2.1  thorpej 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    862       1.7    dante 
    863       1.7    dante 	/*
    864      1.17    dante 	 * Initialize the COMMA register to the same value otherwise
    865      1.17    dante 	 * the RISC will prematurely detect a command is available.
    866      1.17    dante 	 */
    867      1.17    dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    868      1.17    dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    869  1.21.2.1  thorpej 						le32toh(sc->icq_sp->carr_ba));
    870      1.17    dante 	}
    871      1.17    dante 
    872      1.17    dante 	/*
    873       1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    874       1.1    dante 	 */
    875       1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    876      1.16    dante 		return ADW_IERR_NO_CARRIER;
    877       1.1    dante 	}
    878      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    879      1.12    dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    880       1.1    dante 
    881       1.1    dante 	/*
    882       1.7    dante 	 * The first command completed by the RISC will be placed in
    883       1.7    dante 	 * the stopper.
    884       1.1    dante 	 *
    885      1.12    dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    886      1.16    dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    887       1.1    dante 	 */
    888  1.21.2.1  thorpej 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    889       1.1    dante 
    890       1.1    dante 	/*
    891       1.7    dante 	 * Set RISC IRQ physical address start value.
    892       1.1    dante 	 */
    893  1.21.2.1  thorpej 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    894       1.7    dante 	sc->carr_pending_cnt = 0;
    895       1.1    dante 
    896       1.1    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    897       1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    898      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    899       1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    900       1.1    dante 
    901       1.1    dante 	/* finally, finally, gentlemen, start your engine */
    902       1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    903       1.2    dante 
    904       1.7    dante 	/*
    905       1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    906       1.7    dante 	 * Resets should be performed. The RISC has to be running
    907       1.7    dante 	 * to issue a SCSI Bus Reset.
    908       1.7    dante 	 */
    909       1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    910       1.7    dante 	{
    911       1.7    dante 		/*
    912       1.7    dante 		 * If the BIOS Signature is present in memory, restore the
    913       1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
    914       1.7    dante 		 * a SCSI Bus Reset.
    915       1.7    dante 		 */
    916      1.16    dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    917       1.7    dante 				0x55AA) {
    918       1.7    dante 			/*
    919       1.7    dante 			 * Restore per TID negotiated values.
    920       1.7    dante 			 */
    921      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    922       1.7    dante 					wdtr_able);
    923      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    924       1.7    dante 					sdtr_able);
    925      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    926       1.7    dante 					tagqng_able);
    927       1.7    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    928       1.7    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    929      1.17    dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    930      1.17    dante 						max_cmd[tid]);
    931       1.7    dante 			}
    932       1.7    dante 		} else {
    933      1.16    dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    934      1.17    dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    935       1.7    dante 			}
    936       1.7    dante 		}
    937       1.7    dante 	}
    938       1.7    dante 
    939      1.17    dante 	return error_code;
    940       1.1    dante }
    941       1.1    dante 
    942      1.17    dante 
    943       1.1    dante int
    944      1.17    dante AdwRamSelfTest(iot, ioh, chip_type)
    945      1.17    dante 	bus_space_tag_t iot;
    946      1.17    dante 	bus_space_handle_t ioh;
    947      1.17    dante 	u_int8_t chip_type;
    948       1.1    dante {
    949      1.17    dante 	int		i;
    950       1.7    dante 	u_int8_t	byte;
    951       1.1    dante 
    952       1.1    dante 
    953      1.17    dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    954      1.17    dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    955      1.17    dante 		/*
    956      1.17    dante 		 * RAM BIST (RAM Built-In Self Test)
    957      1.17    dante 		 *
    958      1.17    dante 		 * Address : I/O base + offset 0x38h register (byte).
    959      1.17    dante 		 * Function: Bit 7-6(RW) : RAM mode
    960      1.17    dante 		 *			    Normal Mode   : 0x00
    961      1.17    dante 		 *			    Pre-test Mode : 0x40
    962      1.17    dante 		 *			    RAM Test Mode : 0x80
    963      1.17    dante 		 *	     Bit 5	 : unused
    964      1.17    dante 		 *	     Bit 4(RO)   : Done bit
    965      1.17    dante 		 *	     Bit 3-0(RO) : Status
    966      1.17    dante 		 *			    Host Error    : 0x08
    967      1.17    dante 		 *			    Int_RAM Error : 0x04
    968      1.17    dante 		 *			    RISC Error    : 0x02
    969      1.17    dante 		 *			    SCSI Error    : 0x01
    970      1.17    dante 		 *			    No Error	  : 0x00
    971      1.17    dante 		 *
    972      1.17    dante 		 * Note: RAM BIST code should be put right here, before loading
    973      1.17    dante 		 * the microcode and after saving the RISC memory BIOS region.
    974      1.17    dante 		 */
    975       1.1    dante 
    976      1.17    dante 		/*
    977      1.17    dante 		 * LRAM Pre-test
    978      1.17    dante 		 *
    979      1.17    dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    980      1.17    dante 		 * 10 milliseconds.
    981      1.17    dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    982      1.17    dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    983      1.17    dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    984      1.17    dante 		 */
    985      1.17    dante 		for (i = 0; i < 2; i++) {
    986      1.17    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    987      1.17    dante 					PRE_TEST_MODE);
    988      1.17    dante 			 /* Wait for 10ms before reading back. */
    989      1.17    dante 			AdwSleepMilliSecond(10);
    990      1.17    dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    991      1.17    dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    992      1.17    dante 					PRE_TEST_VALUE) {
    993      1.17    dante 				return ADW_IERR_BIST_PRE_TEST;
    994      1.17    dante 			}
    995       1.7    dante 
    996      1.17    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    997      1.17    dante 								NORMAL_MODE);
    998      1.17    dante 			/* Wait for 10ms before reading back. */
    999      1.17    dante 			AdwSleepMilliSecond(10);
   1000      1.17    dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1001      1.17    dante 			    != NORMAL_VALUE) {
   1002      1.17    dante 				return ADW_IERR_BIST_PRE_TEST;
   1003      1.17    dante 			}
   1004      1.17    dante 		}
   1005       1.2    dante 
   1006      1.17    dante 		/*
   1007      1.17    dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1008      1.17    dante 		 *
   1009      1.17    dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1010      1.17    dante 		 * 10 milliseconds.
   1011      1.17    dante 		 * If Done bit not set or Status not 0, save register byte,
   1012      1.17    dante 		 * set the err_code, and return an error.
   1013      1.17    dante 		 */
   1014      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1015      1.17    dante 		/* Wait for 10ms before checking status. */
   1016      1.17    dante 		AdwSleepMilliSecond(10);
   1017       1.1    dante 
   1018       1.7    dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1019      1.17    dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1020      1.17    dante 			/* Get here if Done bit not set or Status not 0. */
   1021      1.17    dante 			return ADW_IERR_BIST_RAM_TEST;
   1022       1.1    dante 		}
   1023       1.1    dante 
   1024      1.17    dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1025       1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1026       1.1    dante 	}
   1027       1.7    dante 
   1028      1.17    dante 	return 0;
   1029      1.17    dante }
   1030      1.17    dante 
   1031       1.7    dante 
   1032      1.17    dante int
   1033      1.17    dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1034      1.17    dante 	bus_space_tag_t iot;
   1035      1.17    dante 	bus_space_handle_t ioh;
   1036      1.17    dante 	u_int16_t *bios_mem;
   1037      1.17    dante 	u_int8_t chip_type;
   1038      1.17    dante {
   1039      1.17    dante 	u_int8_t	*mcode_data;
   1040      1.17    dante 	u_int32_t	 mcode_chksum;
   1041      1.17    dante 	u_int16_t	 mcode_size;
   1042      1.17    dante 	u_int32_t	sum;
   1043      1.17    dante 	u_int16_t	code_sum;
   1044      1.17    dante 	int		begin_addr;
   1045      1.17    dante 	int		end_addr;
   1046      1.17    dante 	int		word;
   1047      1.17    dante 	int		adw_memsize;
   1048      1.17    dante 	int		adw_mcode_expanded_size;
   1049      1.17    dante 	int		i, j;
   1050       1.7    dante 
   1051      1.17    dante 
   1052      1.17    dante 	switch(chip_type) {
   1053      1.17    dante 	case ADW_CHIP_ASC3550:
   1054      1.17    dante 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1055      1.17    dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1056      1.17    dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1057      1.17    dante 		adw_memsize = ADW_3550_MEMSIZE;
   1058      1.17    dante 		break;
   1059      1.17    dante 
   1060      1.17    dante 	case ADW_CHIP_ASC38C0800:
   1061      1.17    dante 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1062      1.17    dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1063      1.17    dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1064      1.17    dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1065      1.17    dante 		break;
   1066      1.17    dante 
   1067      1.17    dante 	case ADW_CHIP_ASC38C1600:
   1068      1.17    dante 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1069      1.17    dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1070      1.17    dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1071      1.17    dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1072      1.17    dante 		break;
   1073      1.17    dante 	}
   1074       1.1    dante 
   1075       1.1    dante 	/*
   1076       1.7    dante 	 * Write the microcode image to RISC memory starting at address 0.
   1077       1.1    dante 	 */
   1078       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1079       1.7    dante 
   1080       1.7    dante 	/* Assume the following compressed format of the microcode buffer:
   1081       1.7    dante 	 *
   1082       1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
   1083       1.7    dante 	 *  by the following byte codes:
   1084       1.7    dante 	 *
   1085       1.7    dante 	 *    1-Byte Code:
   1086       1.7    dante 	 *	00: Emit word 0 in table.
   1087       1.7    dante 	 *	01: Emit word 1 in table.
   1088       1.7    dante 	 *	.
   1089       1.7    dante 	 *	FD: Emit word 253 in table.
   1090       1.7    dante 	 *
   1091       1.7    dante 	 *    Multi-Byte Code:
   1092       1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1093       1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1094       1.7    dante 	 */
   1095       1.7    dante 	word = 0;
   1096      1.17    dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1097      1.17    dante 		if (mcode_data[i] == 0xff) {
   1098      1.17    dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1099       1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1100      1.17    dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1101      1.17    dante 				  mcode_data[i + 2]));
   1102       1.7    dante 				word++;
   1103       1.7    dante 			}
   1104       1.7    dante 			i += 3;
   1105      1.17    dante 		} else if (mcode_data[i] == 0xfe) {
   1106      1.17    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1107      1.17    dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1108      1.17    dante 			    mcode_data[i + 1]));
   1109       1.7    dante 			i += 2;
   1110       1.7    dante 			word++;
   1111       1.1    dante 		} else {
   1112       1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1113      1.17    dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1114      1.17    dante 			 mcode_data[mcode_data[i] * 2]));
   1115       1.7    dante 			word++;
   1116       1.1    dante 		}
   1117       1.1    dante 	}
   1118       1.7    dante 
   1119       1.7    dante 	/*
   1120       1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
   1121       1.7    dante 	 * the expanded mcode size.
   1122       1.7    dante 	 */
   1123       1.7    dante 	word *= 2;
   1124      1.17    dante 	adw_mcode_expanded_size = word;
   1125       1.7    dante 
   1126       1.1    dante 	/*
   1127      1.17    dante 	 * Clear the rest of the Internal RAM.
   1128       1.1    dante 	 */
   1129      1.17    dante 	for (; word < adw_memsize; word += 2) {
   1130       1.7    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1131       1.1    dante 	}
   1132       1.7    dante 
   1133       1.1    dante 	/*
   1134       1.7    dante 	 * Verify the microcode checksum.
   1135       1.1    dante 	 */
   1136       1.7    dante 	sum = 0;
   1137       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1138       1.7    dante 
   1139      1.17    dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1140       1.7    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1141       1.7    dante 	}
   1142       1.1    dante 
   1143      1.17    dante 	if (sum != mcode_chksum) {
   1144      1.17    dante 		return ADW_IERR_MCODE_CHKSUM;
   1145       1.7    dante 	}
   1146       1.1    dante 
   1147       1.1    dante 	/*
   1148       1.7    dante 	 * Restore the RISC memory BIOS region.
   1149       1.1    dante 	 */
   1150      1.16    dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1151      1.17    dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1152      1.17    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1153      1.17    dante 								bios_mem[i]);
   1154      1.17    dante 		} else {
   1155      1.17    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156      1.17    dante 								bios_mem[i]);
   1157      1.17    dante 		}
   1158       1.7    dante 	}
   1159       1.1    dante 
   1160       1.7    dante 	/*
   1161       1.7    dante 	 * Calculate and write the microcode code checksum to the microcode
   1162      1.16    dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1163       1.7    dante 	 */
   1164      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1165      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1166       1.7    dante 	code_sum = 0;
   1167       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1168       1.7    dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1169       1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1170       1.1    dante 	}
   1171      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1172       1.1    dante 
   1173       1.7    dante 	/*
   1174      1.17    dante 	 * Set the chip type.
   1175       1.7    dante 	 */
   1176      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1177      1.17    dante 
   1178      1.17    dante 	return 0;
   1179      1.17    dante }
   1180      1.17    dante 
   1181      1.17    dante 
   1182      1.17    dante int
   1183      1.17    dante AdwASC3550Cabling(iot, ioh, cfg)
   1184      1.17    dante 	bus_space_tag_t iot;
   1185      1.17    dante 	bus_space_handle_t ioh;
   1186      1.17    dante 	ADW_DVC_CFG *cfg;
   1187      1.17    dante {
   1188      1.17    dante 	u_int16_t	scsi_cfg1;
   1189      1.17    dante 
   1190       1.1    dante 
   1191       1.7    dante 	/*
   1192      1.17    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1193      1.17    dante 	 *
   1194      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1195      1.17    dante 	 * after it is started below.
   1196       1.7    dante 	 */
   1197      1.17    dante 
   1198      1.17    dante 	/* Read current SCSI_CFG1 Register value. */
   1199      1.17    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1200       1.1    dante 
   1201       1.7    dante 	/*
   1202      1.17    dante 	 * If all three connectors are in use in ASC3550, return an error.
   1203       1.7    dante 	 */
   1204      1.17    dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1205      1.17    dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1206      1.17    dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1207      1.17    dante 	}
   1208       1.7    dante 
   1209       1.7    dante 	/*
   1210      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1211      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1212      1.17    dante 	 * found.
   1213       1.7    dante 	 */
   1214      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1215      1.17    dante 		return ADW_IERR_REVERSED_CABLE;
   1216       1.7    dante 	}
   1217       1.7    dante 
   1218       1.7    dante 	/*
   1219      1.17    dante 	 * If this is a differential board and a single-ended device
   1220      1.17    dante 	 * is attached to one of the connectors, return an error.
   1221       1.7    dante 	 */
   1222      1.17    dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1223      1.17    dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1224      1.17    dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1225      1.17    dante 	}
   1226       1.7    dante 
   1227       1.7    dante 	/*
   1228      1.17    dante 	 * If automatic termination control is enabled, then set the
   1229      1.17    dante 	 * termination value based on a table listed in a_condor.h.
   1230       1.7    dante 	 *
   1231      1.17    dante 	 * If manual termination was specified with an EEPROM setting
   1232      1.17    dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1233      1.17    dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1234       1.7    dante 	 */
   1235      1.17    dante 	if (cfg->termination == 0) {
   1236      1.17    dante 		/*
   1237      1.17    dante 		 * The software always controls termination by setting
   1238      1.17    dante 		 * TERM_CTL_SEL.
   1239      1.17    dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1240      1.17    dante 		 * termination.
   1241      1.17    dante 		 */
   1242      1.17    dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1243      1.17    dante 
   1244      1.17    dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1245      1.17    dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1246      1.17    dante 			case 0x3: case 0x7: case 0xB:
   1247      1.17    dante 			case 0xD: case 0xE: case 0xF:
   1248      1.17    dante 				cfg->termination |=
   1249      1.17    dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1250      1.17    dante 				break;
   1251      1.17    dante 
   1252      1.17    dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1253      1.17    dante 			case 0x1: case 0x5: case 0x9:
   1254      1.17    dante 			case 0xA: case 0xC:
   1255      1.17    dante 				cfg->termination |= ADW_TERM_CTL_H;
   1256      1.17    dante 				break;
   1257      1.17    dante 
   1258      1.17    dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1259      1.17    dante 			case 0x2: case 0x6:
   1260      1.17    dante 				break;
   1261      1.17    dante 		}
   1262       1.7    dante 	}
   1263       1.7    dante 
   1264       1.7    dante 	/*
   1265      1.17    dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1266      1.17    dante 	 */
   1267      1.17    dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1268      1.17    dante 
   1269      1.17    dante 	/*
   1270      1.17    dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1271      1.17    dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1272      1.17    dante 	 * referenced, because the hardware internally inverts
   1273      1.17    dante 	 * the Termination High and Low bits if TERM_POL is set.
   1274      1.17    dante 	 */
   1275      1.17    dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1276      1.17    dante 
   1277      1.17    dante 	/*
   1278      1.17    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1279      1.17    dante 	 *
   1280      1.17    dante 	 * Set filter value and possibly modified termination control
   1281      1.17    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1282       1.7    dante 	 *
   1283      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1284      1.17    dante 	 * after it is started below.
   1285       1.7    dante 	 */
   1286      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1287      1.17    dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1288       1.7    dante 
   1289       1.7    dante 	/*
   1290      1.17    dante 	 * Set MEM_CFG Microcode Default Value
   1291       1.7    dante 	 *
   1292      1.17    dante 	 * The microcode will set the MEM_CFG register using this value
   1293       1.7    dante 	 * after it is started below.
   1294      1.17    dante 	 *
   1295      1.17    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1296      1.17    dante 	 * are defined.
   1297      1.17    dante 	 *
   1298      1.17    dante 	 * ASC-3550 has 8KB internal memory.
   1299       1.7    dante 	 */
   1300      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1301      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1302      1.17    dante 
   1303      1.17    dante 	return 0;
   1304      1.17    dante }
   1305      1.17    dante 
   1306      1.17    dante 
   1307      1.17    dante int
   1308      1.17    dante AdwASC38C0800Cabling(iot, ioh, cfg)
   1309      1.17    dante 	bus_space_tag_t iot;
   1310      1.17    dante 	bus_space_handle_t ioh;
   1311      1.17    dante 	ADW_DVC_CFG *cfg;
   1312      1.17    dante {
   1313      1.17    dante 	u_int16_t	scsi_cfg1;
   1314      1.17    dante 
   1315       1.7    dante 
   1316       1.7    dante 	/*
   1317       1.7    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1318       1.7    dante 	 *
   1319       1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1320       1.7    dante 	 * after it is started below.
   1321       1.7    dante 	 */
   1322       1.7    dante 
   1323       1.7    dante 	/* Read current SCSI_CFG1 Register value. */
   1324       1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1325       1.7    dante 
   1326       1.7    dante 	/*
   1327      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1328      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1329      1.17    dante 	 * found.
   1330       1.7    dante 	 */
   1331      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1332      1.16    dante 		return ADW_IERR_REVERSED_CABLE;
   1333       1.7    dante 	}
   1334       1.7    dante 
   1335       1.7    dante 	/*
   1336      1.17    dante 	 * All kind of combinations of devices attached to one of four
   1337      1.17    dante 	 * connectors are acceptable except HVD device attached.
   1338      1.17    dante 	 * For example, LVD device can be attached to SE connector while
   1339      1.17    dante 	 * SE device attached to LVD connector.
   1340      1.17    dante 	 * If LVD device attached to SE connector, it only runs up to
   1341      1.17    dante 	 * Ultra speed.
   1342      1.17    dante 	 *
   1343      1.17    dante 	 * If an HVD device is attached to one of LVD connectors, return
   1344      1.17    dante 	 * an error.
   1345      1.17    dante 	 * However, there is no way to detect HVD device attached to
   1346      1.17    dante 	 * SE connectors.
   1347       1.7    dante 	 */
   1348       1.7    dante 	if (scsi_cfg1 & ADW_HVD) {
   1349      1.16    dante 		return ADW_IERR_HVD_DEVICE;
   1350       1.7    dante 	}
   1351       1.7    dante 
   1352       1.7    dante 	/*
   1353       1.7    dante 	 * If either SE or LVD automatic termination control is enabled, then
   1354       1.7    dante 	 * set the termination value based on a table listed in a_condor.h.
   1355       1.7    dante 	 *
   1356       1.7    dante 	 * If manual termination was specified with an EEPROM setting then
   1357      1.17    dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1358      1.17    dante 	 * to be 'ored' into SCSI_CFG1.
   1359       1.7    dante 	 */
   1360      1.17    dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1361       1.7    dante 		/* SE automatic termination control is enabled. */
   1362       1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1363       1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1364       1.7    dante 			case 0x1: case 0x2: case 0x3:
   1365      1.17    dante 				cfg->termination |= ADW_TERM_SE;
   1366       1.7    dante 				break;
   1367       1.7    dante 
   1368       1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1369       1.7    dante 			case 0x0:
   1370      1.17    dante 				cfg->termination |= ADW_TERM_SE_HI;
   1371       1.7    dante 				break;
   1372       1.7    dante 		}
   1373       1.7    dante 	}
   1374       1.7    dante 
   1375      1.17    dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1376       1.7    dante 		/* LVD automatic termination control is enabled. */
   1377       1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1378       1.7    dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1379       1.7    dante 			case 0x4: case 0x8: case 0xC:
   1380      1.17    dante 				cfg->termination |= ADW_TERM_LVD;
   1381       1.7    dante 				break;
   1382       1.7    dante 
   1383       1.7    dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1384       1.7    dante 			case 0x0:
   1385       1.7    dante 				break;
   1386       1.7    dante 		}
   1387       1.7    dante 	}
   1388       1.7    dante 
   1389       1.7    dante 	/*
   1390       1.7    dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1391       1.7    dante 	 */
   1392       1.7    dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1393       1.7    dante 
   1394       1.7    dante 	/*
   1395       1.7    dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1396       1.7    dante 	 */
   1397      1.17    dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1398       1.7    dante 
   1399       1.7    dante 	/*
   1400      1.17    dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1401      1.17    dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1402      1.17    dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1403       1.7    dante 	 */
   1404       1.7    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1405      1.17    dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1406       1.7    dante 
   1407       1.7    dante 	/*
   1408       1.7    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1409       1.7    dante 	 *
   1410       1.7    dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1411       1.7    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1412       1.7    dante 	 *
   1413       1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1414       1.7    dante 	 * after it is started below.
   1415       1.7    dante 	 */
   1416      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1417       1.7    dante 
   1418       1.7    dante 	/*
   1419       1.7    dante 	 * Set MEM_CFG Microcode Default Value
   1420       1.7    dante 	 *
   1421       1.7    dante 	 * The microcode will set the MEM_CFG register using this value
   1422       1.7    dante 	 * after it is started below.
   1423       1.7    dante 	 *
   1424       1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1425       1.7    dante 	 * are defined.
   1426       1.7    dante 	 *
   1427       1.7    dante 	 * ASC-38C0800 has 16KB internal memory.
   1428       1.7    dante 	 */
   1429      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1430      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1431       1.7    dante 
   1432      1.17    dante 	return 0;
   1433      1.17    dante }
   1434       1.7    dante 
   1435       1.7    dante 
   1436      1.17    dante int
   1437      1.17    dante AdwASC38C1600Cabling(iot, ioh, cfg)
   1438      1.17    dante 	bus_space_tag_t iot;
   1439      1.17    dante 	bus_space_handle_t ioh;
   1440      1.17    dante 	ADW_DVC_CFG *cfg;
   1441      1.17    dante {
   1442      1.17    dante 	u_int16_t	scsi_cfg1;
   1443       1.7    dante 
   1444       1.7    dante 
   1445       1.7    dante 	/*
   1446      1.17    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1447      1.17    dante 	 *
   1448      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1449      1.17    dante 	 * after it is started below.
   1450      1.17    dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1451      1.17    dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1452       1.7    dante 	 */
   1453       1.7    dante 
   1454      1.17    dante 	/* Read current SCSI_CFG1 Register value. */
   1455      1.17    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1456       1.7    dante 
   1457       1.7    dante 	/*
   1458      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1459      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1460      1.17    dante 	 * found.
   1461       1.7    dante 	 */
   1462      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1463      1.17    dante 		return ADW_IERR_REVERSED_CABLE;
   1464       1.7    dante 	}
   1465       1.7    dante 
   1466       1.7    dante 	/*
   1467      1.17    dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1468      1.17    dante 	 * can not be connected to either connector. An LVD device or SE device
   1469      1.17    dante 	 * may be connected to either connecor. If an SE device is connected,
   1470      1.17    dante 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1471       1.7    dante 	 *
   1472      1.17    dante 	 * If an HVD device is attached, return an error.
   1473       1.7    dante 	 */
   1474      1.17    dante 	if (scsi_cfg1 & ADW_HVD) {
   1475      1.17    dante 		return ADW_IERR_HVD_DEVICE;
   1476      1.17    dante 	}
   1477       1.7    dante 
   1478       1.7    dante 	/*
   1479      1.17    dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1480      1.17    dante 	 * termination because there are two connectors for each function.
   1481      1.17    dante 	 * Each function may use either LVD or SE mode.
   1482      1.17    dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1483      1.17    dante 	 * used for each function.
   1484      1.17    dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1485      1.17    dante 	 * for the function, then set the termination value based on a table
   1486      1.17    dante 	 * listed in adwlib.h.
   1487      1.17    dante 	 *
   1488      1.17    dante 	 * If manual termination is specified in the EEPROM for the function,
   1489      1.17    dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1490      1.17    dante 	 * ready to be 'ored' into SCSI_CFG1.
   1491       1.7    dante 	 */
   1492      1.17    dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1493      1.17    dante 		/* SE automatic termination control is enabled. */
   1494      1.17    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1495      1.17    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1496      1.17    dante 			case 0x1: case 0x2: case 0x3:
   1497      1.17    dante 				cfg->termination |= ADW_TERM_SE;
   1498      1.17    dante 				break;
   1499       1.7    dante 
   1500      1.17    dante 			case 0x0:
   1501      1.21    lukem #if 0
   1502      1.17    dante 	/* !!!!TODO!!!! */
   1503      1.21    lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1504      1.17    dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1505      1.21    lukem 				}
   1506      1.21    lukem 				else
   1507      1.21    lukem #endif
   1508      1.21    lukem 				{
   1509      1.17    dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1510      1.17    dante 					cfg->termination |= ADW_TERM_SE_HI;
   1511      1.21    lukem 				}
   1512      1.17    dante 				break;
   1513      1.10    dante 			}
   1514       1.7    dante 	}
   1515       1.7    dante 
   1516      1.17    dante 	/*
   1517      1.17    dante 	 * Clear any set TERM_SE bits.
   1518      1.17    dante 	 */
   1519      1.17    dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1520       1.7    dante 
   1521       1.7    dante 	/*
   1522      1.17    dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1523       1.7    dante 	 */
   1524      1.17    dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1525       1.7    dante 
   1526       1.7    dante 	/*
   1527      1.17    dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1528      1.17    dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1529      1.17    dante 	 * Register Value.
   1530       1.7    dante 	 */
   1531      1.17    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1532       1.7    dante 
   1533       1.7    dante 	/*
   1534      1.17    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1535      1.17    dante 	 *
   1536      1.17    dante 	 * Set possibly modified termination control bits in the Microcode
   1537      1.17    dante 	 * SCSI_CFG1 Register Value.
   1538       1.7    dante 	 *
   1539      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1540      1.17    dante 	 * after it is started below.
   1541       1.7    dante 	 */
   1542      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1543       1.7    dante 
   1544      1.17    dante 	/*
   1545      1.17    dante 	 * Set MEM_CFG Microcode Default Value
   1546      1.17    dante 	 *
   1547      1.17    dante 	 * The microcode will set the MEM_CFG register using this value
   1548      1.17    dante 	 * after it is started below.
   1549      1.17    dante 	 *
   1550      1.17    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1551      1.17    dante 	 * are defined.
   1552      1.17    dante 	 *
   1553      1.17    dante 	 * ASC-38C1600 has 32KB internal memory.
   1554      1.17    dante 	 */
   1555      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1556      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1557       1.7    dante 
   1558      1.17    dante 	return 0;
   1559       1.7    dante }
   1560       1.7    dante 
   1561       1.7    dante 
   1562       1.7    dante /*
   1563       1.7    dante  * Read EEPROM configuration into the specified buffer.
   1564       1.7    dante  *
   1565       1.7    dante  * Return a checksum based on the EEPROM configuration read.
   1566       1.7    dante  */
   1567       1.7    dante static u_int16_t
   1568      1.17    dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1569       1.7    dante 	bus_space_tag_t		iot;
   1570       1.7    dante 	bus_space_handle_t	ioh;
   1571      1.17    dante 	ADW_EEPROM		*cfg_buf;
   1572       1.7    dante {
   1573       1.7    dante 	u_int16_t	       wval, chksum;
   1574       1.7    dante 	u_int16_t	       *wbuf;
   1575       1.7    dante 	int		    eep_addr;
   1576       1.7    dante 
   1577       1.7    dante 
   1578       1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   1579       1.7    dante 	chksum = 0;
   1580       1.7    dante 
   1581       1.7    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1582      1.10    dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1583      1.10    dante 		eep_addr++, wbuf++) {
   1584      1.16    dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1585       1.7    dante 		chksum += wval;
   1586       1.7    dante 		*wbuf = wval;
   1587       1.7    dante 	}
   1588       1.7    dante 
   1589      1.16    dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1590       1.7    dante 	wbuf++;
   1591       1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1592       1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1593       1.7    dante 			eep_addr++, wbuf++) {
   1594      1.16    dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1595       1.7    dante 	}
   1596       1.7    dante 
   1597       1.7    dante 	return chksum;
   1598       1.7    dante }
   1599       1.7    dante 
   1600       1.7    dante 
   1601       1.7    dante /*
   1602       1.7    dante  * Read the EEPROM from specified location
   1603       1.7    dante  */
   1604       1.7    dante static u_int16_t
   1605      1.16    dante AdwReadEEPWord(iot, ioh, eep_word_addr)
   1606       1.7    dante 	bus_space_tag_t		iot;
   1607       1.7    dante 	bus_space_handle_t	ioh;
   1608       1.7    dante 	int			eep_word_addr;
   1609       1.7    dante {
   1610       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1611       1.7    dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1612      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1613       1.7    dante 
   1614       1.7    dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1615       1.7    dante }
   1616       1.7    dante 
   1617       1.7    dante 
   1618       1.7    dante /*
   1619       1.7    dante  * Wait for EEPROM command to complete
   1620       1.7    dante  */
   1621       1.7    dante static void
   1622      1.16    dante AdwWaitEEPCmd(iot, ioh)
   1623       1.7    dante 	bus_space_tag_t		iot;
   1624       1.7    dante 	bus_space_handle_t	ioh;
   1625       1.7    dante {
   1626       1.7    dante 	int eep_delay_ms;
   1627       1.7    dante 
   1628       1.7    dante 
   1629       1.7    dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1630       1.7    dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1631       1.7    dante 				ASC_EEP_CMD_DONE) {
   1632       1.7    dante 			break;
   1633       1.7    dante 		}
   1634      1.16    dante 		AdwSleepMilliSecond(1);
   1635       1.7    dante 	}
   1636       1.7    dante 
   1637       1.7    dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1638       1.7    dante }
   1639       1.7    dante 
   1640       1.7    dante 
   1641       1.7    dante /*
   1642       1.7    dante  * Write the EEPROM from 'cfg_buf'.
   1643       1.7    dante  */
   1644       1.7    dante static void
   1645      1.17    dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1646      1.10    dante 	bus_space_tag_t		iot;
   1647      1.10    dante 	bus_space_handle_t	ioh;
   1648      1.17    dante 	ADW_EEPROM		*cfg_buf;
   1649      1.10    dante {
   1650      1.10    dante 	u_int16_t *wbuf;
   1651      1.10    dante 	u_int16_t addr, chksum;
   1652      1.10    dante 
   1653      1.10    dante 
   1654      1.10    dante 	wbuf = (u_int16_t *) cfg_buf;
   1655      1.10    dante 	chksum = 0;
   1656      1.10    dante 
   1657      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1658      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1659      1.10    dante 
   1660      1.10    dante 	/*
   1661      1.10    dante 	 * Write EEPROM from word 0 to word 20
   1662      1.10    dante 	 */
   1663      1.10    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1664      1.10    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1665      1.10    dante 		chksum += *wbuf;
   1666      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1667      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1668      1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   1669      1.16    dante 		AdwWaitEEPCmd(iot, ioh);
   1670      1.16    dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1671      1.10    dante 	}
   1672      1.10    dante 
   1673      1.10    dante 	/*
   1674      1.10    dante 	 * Write EEPROM checksum at word 21
   1675      1.10    dante 	 */
   1676      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1677      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1678      1.10    dante 			ASC_EEP_CMD_WRITE | addr);
   1679      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1680      1.10    dante 	wbuf++;        /* skip over check_sum */
   1681      1.10    dante 
   1682      1.10    dante 	/*
   1683      1.10    dante 	 * Write EEPROM OEM name at words 22 to 29
   1684      1.10    dante 	 */
   1685      1.10    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1686      1.10    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1687      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1688      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1689      1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   1690      1.16    dante 		AdwWaitEEPCmd(iot, ioh);
   1691      1.10    dante 	}
   1692      1.10    dante 
   1693      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1694      1.10    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1695      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1696      1.10    dante 
   1697      1.10    dante 	return;
   1698      1.10    dante }
   1699      1.10    dante 
   1700      1.10    dante 
   1701      1.10    dante /*
   1702      1.16    dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1703       1.7    dante  *
   1704       1.7    dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1705       1.7    dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1706       1.7    dante  *   RISC to notify it a new command is ready to be executed.
   1707       1.1    dante  *
   1708       1.7    dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1709       1.7    dante  * set to SCSI_MAX_RETRY.
   1710       1.1    dante  *
   1711       1.7    dante  * Return:
   1712       1.7    dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1713       1.7    dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1714       1.7    dante  *                       request completes.
   1715       1.7    dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1716       1.7    dante  *                       host IC error.
   1717       1.1    dante  */
   1718       1.7    dante int
   1719      1.16    dante AdwExeScsiQueue(sc, scsiq)
   1720       1.7    dante ADW_SOFTC	*sc;
   1721       1.7    dante ADW_SCSI_REQ_Q	*scsiq;
   1722       1.1    dante {
   1723       1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   1724       1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1725       1.7    dante 	ADW_CCB		*ccb;
   1726       1.7    dante 	long		req_size;
   1727       1.7    dante 	u_int32_t	req_paddr;
   1728      1.10    dante 	ADW_CARRIER	*new_carrp;
   1729       1.7    dante 
   1730       1.7    dante 	/*
   1731       1.7    dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1732       1.7    dante 	 */
   1733       1.7    dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1734       1.7    dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1735       1.7    dante 		scsiq->done_status = QD_WITH_ERROR;
   1736       1.7    dante 		return ADW_ERROR;
   1737       1.7    dante 	}
   1738       1.7    dante 
   1739      1.10    dante 	/*
   1740      1.10    dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1741      1.10    dante 	 */
   1742      1.10    dante 
   1743       1.7    dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1744       1.7    dante 
   1745       1.7    dante 	/*
   1746      1.16    dante 	 * Allocate a carrier and initialize fields.
   1747       1.7    dante 	 */
   1748       1.7    dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1749       1.7    dante 		return ADW_BUSY;
   1750       1.7    dante 	}
   1751      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1752      1.12    dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1753       1.7    dante 	sc->carr_pending_cnt++;
   1754       1.7    dante 
   1755       1.7    dante 	/*
   1756      1.12    dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1757       1.7    dante 	 * to the stopper value. The current stopper will be changed
   1758       1.7    dante 	 * below to point to the new stopper.
   1759       1.7    dante 	 */
   1760  1.21.2.1  thorpej 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1761       1.7    dante 
   1762       1.7    dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1763       1.7    dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1764       1.7    dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1765       1.7    dante 
   1766       1.7    dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1767  1.21.2.1  thorpej 	scsiq->scsiq_rptr = htole32(req_paddr);
   1768       1.7    dante 
   1769       1.7    dante 	/*
   1770      1.12    dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1771       1.7    dante 	 * order during initialization.
   1772       1.7    dante 	 */
   1773      1.12    dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1774      1.12    dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1775       1.1    dante 
   1776       1.7    dante 	/*
   1777       1.7    dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1778       1.7    dante 	 * the microcode. The newly allocated stopper will become the new
   1779       1.7    dante 	 * stopper.
   1780       1.7    dante 	 */
   1781  1.21.2.1  thorpej 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1782       1.1    dante 
   1783       1.1    dante 	/*
   1784      1.12    dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1785       1.7    dante 	 * physical address of the new stopper. The RISC can only
   1786       1.7    dante 	 * follow physical addresses.
   1787       1.1    dante 	 */
   1788      1.12    dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1789       1.1    dante 
   1790      1.12    dante #if ADW_DEBUG
   1791      1.12    dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1792      1.12    dante 			sc->icq_sp->carr_id,
   1793      1.12    dante 			sc->icq_sp->carr_ba,
   1794      1.12    dante 			sc->icq_sp->areq_ba,
   1795      1.12    dante 			sc->icq_sp->next_ba);
   1796      1.12    dante #endif
   1797       1.1    dante 	/*
   1798       1.7    dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1799       1.1    dante 	 */
   1800       1.7    dante 	sc->icq_sp = new_carrp;
   1801      1.11    dante 
   1802      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1803      1.16    dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1804       1.7    dante 		/*
   1805      1.10    dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1806      1.10    dante 		 * pointer.
   1807      1.10    dante 		 */
   1808      1.20   itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1809      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1810      1.10    dante 			/*
   1811      1.10    dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1812      1.10    dante 			 * command 'clr_tickle_a' does not work unless the host
   1813      1.10    dante 			 * value is cleared.
   1814      1.10    dante 			 */
   1815      1.10    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1816      1.20   itojun 					ADW_TICKLE_NOP);
   1817      1.10    dante 		}
   1818      1.16    dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1819      1.10    dante 		/*
   1820      1.10    dante 		 * Notify the RISC a carrier is ready by writing the physical
   1821      1.10    dante 		 * address of the new carrier stopper to the COMMA register.
   1822       1.7    dante 		 */
   1823      1.10    dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1824  1.21.2.1  thorpej 				le32toh(new_carrp->carr_ba));
   1825       1.7    dante 	}
   1826       1.7    dante 
   1827      1.10    dante 	/*
   1828      1.10    dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1829      1.10    dante 	 */
   1830      1.10    dante 
   1831       1.7    dante 	return ADW_SUCCESS;
   1832       1.1    dante }
   1833       1.1    dante 
   1834       1.7    dante 
   1835       1.7    dante void
   1836      1.16    dante AdwResetChip(iot, ioh)
   1837       1.7    dante 	bus_space_tag_t iot;
   1838       1.7    dante 	bus_space_handle_t ioh;
   1839       1.1    dante {
   1840       1.7    dante 
   1841       1.7    dante 	/*
   1842       1.7    dante 	 * Reset Chip.
   1843       1.7    dante 	 */
   1844       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1845       1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   1846      1.16    dante 	AdwSleepMilliSecond(100);
   1847       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1848       1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1849       1.1    dante }
   1850       1.1    dante 
   1851       1.7    dante 
   1852       1.1    dante /*
   1853       1.1    dante  * Reset SCSI Bus and purge all outstanding requests.
   1854       1.1    dante  *
   1855       1.1    dante  * Return Value:
   1856       1.7    dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1857       1.7    dante  *      ADW_FALSE(0) -  Microcode command failed.
   1858       1.7    dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1859       1.7    dante  *                      may be hung which requires driver recovery.
   1860       1.1    dante  */
   1861       1.1    dante int
   1862      1.16    dante AdwResetCCB(sc)
   1863       1.7    dante ADW_SOFTC	*sc;
   1864       1.1    dante {
   1865       1.7    dante 	int	    status;
   1866       1.7    dante 
   1867       1.7    dante 	/*
   1868       1.7    dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1869       1.7    dante 	 * the SCSI Bus Reset signal.
   1870       1.7    dante 	 */
   1871      1.16    dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1872      1.11    dante 	if (status != ADW_TRUE) {
   1873       1.7    dante 		return status;
   1874       1.7    dante 	}
   1875       1.7    dante 
   1876       1.7    dante 	/*
   1877       1.7    dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1878       1.7    dante 	 *
   1879       1.7    dante 	 * The hold time delay is done on the host because the RISC has no
   1880       1.7    dante 	 * microsecond accurate timer.
   1881       1.7    dante 	 */
   1882      1.16    dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1883       1.1    dante 
   1884       1.7    dante 	/*
   1885       1.7    dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1886       1.7    dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1887       1.7    dante 	 */
   1888      1.16    dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1889      1.11    dante 	if (status != ADW_TRUE) {
   1890       1.7    dante 		return status;
   1891       1.7    dante 	}
   1892       1.1    dante 
   1893      1.16    dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1894       1.1    dante 
   1895       1.1    dante 	return status;
   1896       1.1    dante }
   1897       1.1    dante 
   1898       1.7    dante 
   1899       1.1    dante /*
   1900       1.7    dante  * Reset chip and SCSI Bus.
   1901       1.7    dante  *
   1902       1.7    dante  * Return Value:
   1903       1.7    dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1904       1.7    dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1905       1.1    dante  */
   1906       1.7    dante int
   1907      1.16    dante AdwResetSCSIBus(sc)
   1908       1.7    dante ADW_SOFTC	*sc;
   1909       1.1    dante {
   1910       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   1911       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1912       1.7    dante 	int		status;
   1913      1.10    dante 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1914       1.7    dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1915       1.7    dante 	u_int16_t	bios_sig;
   1916       1.7    dante 
   1917       1.7    dante 
   1918       1.7    dante 	/*
   1919       1.7    dante 	 * Save current per TID negotiated values.
   1920       1.7    dante 	 */
   1921      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1922      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1923      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1924      1.16    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1925      1.10    dante 	}
   1926      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1927      1.11    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1928      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1929       1.7    dante 			max_cmd[tid]);
   1930       1.7    dante 	}
   1931       1.7    dante 
   1932       1.7    dante 	/*
   1933      1.17    dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1934      1.17    dante 	 * by clearing the BIOS signature word.
   1935       1.7    dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1936       1.7    dante 	 * needed if the BIOS signature word is present.
   1937       1.7    dante 	 */
   1938      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1939      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1940       1.7    dante 
   1941       1.7    dante 	/*
   1942       1.7    dante 	 * Stop chip and reset it.
   1943       1.7    dante 	 */
   1944       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1945       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1946       1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   1947      1.16    dante 	AdwSleepMilliSecond(100);
   1948       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1949       1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1950       1.7    dante 
   1951       1.7    dante 	/*
   1952       1.7    dante 	 * Reset Adv Library error code, if any, and try
   1953       1.7    dante 	 * re-initializing the chip.
   1954      1.17    dante 	 * Then translate initialization return value to status value.
   1955       1.7    dante 	 */
   1956      1.17    dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1957       1.1    dante 
   1958       1.7    dante 	/*
   1959       1.7    dante 	 * Restore the BIOS signature word.
   1960       1.7    dante 	 */
   1961      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1962       1.1    dante 
   1963       1.1    dante 	/*
   1964       1.7    dante 	 * Restore per TID negotiated values.
   1965       1.1    dante 	 */
   1966      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1967      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1968      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1969      1.16    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1970      1.10    dante 	}
   1971      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1972       1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1973      1.16    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1974       1.7    dante 			max_cmd[tid]);
   1975       1.7    dante 	}
   1976       1.1    dante 
   1977       1.7    dante 	return status;
   1978       1.1    dante }
   1979       1.1    dante 
   1980       1.1    dante 
   1981       1.1    dante /*
   1982       1.1    dante  * Adv Library Interrupt Service Routine
   1983       1.1    dante  *
   1984       1.1    dante  *  This function is called by a driver's interrupt service routine.
   1985       1.1    dante  *  The function disables and re-enables interrupts.
   1986       1.1    dante  *
   1987       1.7    dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1988       1.1    dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1989       1.1    dante  *
   1990      1.16    dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1991       1.1    dante  *  when there is no hardware interrupt condition present. It will
   1992       1.1    dante  *  always check for completed idle commands and microcode requests.
   1993       1.1    dante  *  This is an important feature that shouldn't be changed because it
   1994       1.1    dante  *  allows commands to be completed from polling mode loops.
   1995       1.1    dante  *
   1996       1.1    dante  * Return:
   1997       1.1    dante  *   ADW_TRUE(1) - interrupt was pending
   1998       1.1    dante  *   ADW_FALSE(0) - no interrupt was pending
   1999       1.1    dante  */
   2000       1.1    dante int
   2001      1.16    dante AdwISR(sc)
   2002       1.7    dante ADW_SOFTC	*sc;
   2003       1.1    dante {
   2004       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2005       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2006       1.7    dante 	u_int8_t	int_stat;
   2007       1.7    dante 	u_int16_t	target_bit;
   2008       1.7    dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2009       1.7    dante 	u_int32_t	irq_next_pa;
   2010       1.7    dante 	ADW_SCSI_REQ_Q	*scsiq;
   2011       1.7    dante 	ADW_CCB		*ccb;
   2012      1.11    dante 	int		s;
   2013      1.11    dante 
   2014       1.1    dante 
   2015      1.11    dante 	s = splbio();
   2016       1.1    dante 
   2017       1.1    dante 	/* Reading the register clears the interrupt. */
   2018       1.1    dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2019       1.1    dante 
   2020       1.7    dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2021       1.7    dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2022      1.11    dante 		splx(s);
   2023       1.7    dante 		return ADW_FALSE;
   2024       1.1    dante 	}
   2025       1.7    dante 
   2026       1.7    dante 	/*
   2027       1.7    dante 	 * Notify the driver of an asynchronous microcode condition by
   2028       1.7    dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2029      1.16    dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2030       1.1    dante 	 */
   2031       1.7    dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2032       1.7    dante 		u_int8_t intrb_code;
   2033       1.7    dante 
   2034      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2035      1.10    dante 
   2036      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2037      1.16    dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2038      1.10    dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2039      1.10    dante 				sc->carr_pending_cnt != 0) {
   2040      1.10    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2041      1.20   itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2042      1.16    dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2043      1.10    dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2044      1.20   itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2045      1.10    dante 				}
   2046      1.10    dante 			}
   2047       1.7    dante 		}
   2048       1.7    dante 
   2049       1.7    dante 		if (sc->async_callback != 0) {
   2050       1.7    dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2051       1.1    dante 		}
   2052       1.1    dante 	}
   2053       1.7    dante 
   2054       1.1    dante 	/*
   2055       1.7    dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2056       1.1    dante 	 */
   2057  1.21.2.1  thorpej 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2058       1.7    dante 	{
   2059      1.12    dante #if ADW_DEBUG
   2060      1.12    dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2061      1.12    dante 				sc->irq_sp->carr_id,
   2062      1.12    dante 				sc->irq_sp->carr_ba,
   2063      1.12    dante 				sc->irq_sp->areq_ba,
   2064      1.12    dante 				sc->irq_sp->next_ba);
   2065      1.12    dante #endif
   2066       1.7    dante 		/*
   2067      1.10    dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2068      1.10    dante 		 * structure.
   2069      1.12    dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2070       1.7    dante 		 *
   2071       1.7    dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2072      1.12    dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2073      1.10    dante 		 * The conversion below complements the conversion of
   2074      1.16    dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2075       1.7    dante 		 */
   2076      1.12    dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2077       1.7    dante 		scsiq = &ccb->scsiq;
   2078      1.12    dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2079       1.7    dante 
   2080      1.10    dante 		/*
   2081      1.10    dante 		 * Request finished with good status and the queue was not
   2082      1.10    dante 		 * DMAed to host memory by the firmware. Set all status fields
   2083      1.10    dante 		 * to indicate good status.
   2084      1.10    dante 		 */
   2085  1.21.2.1  thorpej 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2086      1.10    dante 			scsiq->done_status = QD_NO_ERROR;
   2087      1.10    dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2088      1.10    dante 			scsiq->data_cnt = 0L;
   2089       1.7    dante 		}
   2090       1.1    dante 
   2091       1.1    dante 		/*
   2092       1.7    dante 		 * Advance the stopper pointer to the next carrier
   2093       1.7    dante 		 * ignoring the lower four bits. Free the previous
   2094       1.7    dante 		 * stopper carrier.
   2095       1.1    dante 		 */
   2096       1.7    dante 		free_carrp = sc->irq_sp;
   2097      1.16    dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2098       1.7    dante 
   2099      1.16    dante 		free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
   2100      1.16    dante 					: sc->carr_freelist->carr_ba;
   2101       1.7    dante 		sc->carr_freelist = free_carrp;
   2102       1.7    dante 		sc->carr_pending_cnt--;
   2103       1.1    dante 
   2104       1.1    dante 
   2105       1.1    dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2106       1.1    dante 
   2107       1.1    dante 		/*
   2108       1.1    dante 		 * Clear request microcode control flag.
   2109       1.1    dante 		 */
   2110       1.1    dante 		scsiq->cntl = 0;
   2111       1.1    dante 
   2112       1.1    dante 		/*
   2113       1.1    dante 		 * Check Condition handling
   2114       1.1    dante 		 */
   2115       1.1    dante 		/*
   2116       1.1    dante 		 * If the command that completed was a SCSI INQUIRY and
   2117       1.1    dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2118       1.1    dante 		 * command information for the device.
   2119       1.1    dante 		 */
   2120       1.7    dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2121      1.10    dante 		    scsiq->cdb[0] == INQUIRY &&
   2122      1.10    dante 		    scsiq->target_lun == 0) {
   2123      1.16    dante 			AdwInquiryHandling(sc, scsiq);
   2124       1.1    dante 		}
   2125       1.1    dante 
   2126       1.1    dante 		/*
   2127       1.1    dante 		 * Notify the driver of the completed request by passing
   2128       1.1    dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2129       1.1    dante 		 */
   2130       1.7    dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2131       1.1    dante 		/*
   2132       1.1    dante 		 * Note: After the driver callback function is called, 'scsiq'
   2133       1.1    dante 		 * can no longer be referenced.
   2134       1.1    dante 		 *
   2135       1.1    dante 		 * Fall through and continue processing other completed
   2136       1.1    dante 		 * requests...
   2137       1.1    dante 		 */
   2138       1.1    dante 	}
   2139      1.11    dante 
   2140      1.11    dante 	splx(s);
   2141       1.7    dante 
   2142       1.7    dante 	return ADW_TRUE;
   2143       1.1    dante }
   2144       1.1    dante 
   2145       1.7    dante 
   2146       1.1    dante /*
   2147       1.1    dante  * Send an idle command to the chip and wait for completion.
   2148       1.1    dante  *
   2149       1.7    dante  * Command completion is polled for once per microsecond.
   2150       1.7    dante  *
   2151       1.7    dante  * The function can be called from anywhere including an interrupt handler.
   2152      1.10    dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2153       1.7    dante  * functions to prevent reentrancy.
   2154       1.1    dante  *
   2155       1.1    dante  * Return Values:
   2156       1.1    dante  *   ADW_TRUE - command completed successfully
   2157       1.1    dante  *   ADW_FALSE - command failed
   2158       1.7    dante  *   ADW_ERROR - command timed out
   2159       1.1    dante  */
   2160       1.1    dante int
   2161      1.16    dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2162       1.7    dante ADW_SOFTC      *sc;
   2163       1.7    dante u_int16_t       idle_cmd;
   2164       1.7    dante u_int32_t       idle_cmd_parameter;
   2165       1.1    dante {
   2166       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2167       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2168      1.13    dante 	u_int16_t	result;
   2169      1.10    dante 	u_int32_t	i, j, s;
   2170       1.1    dante 
   2171      1.10    dante 	s = splbio();
   2172       1.7    dante 
   2173       1.7    dante 	/*
   2174       1.7    dante 	 * Clear the idle command status which is set by the microcode
   2175       1.7    dante 	 * to a non-zero value to indicate when the command is completed.
   2176       1.7    dante 	 */
   2177      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2178       1.1    dante 
   2179       1.1    dante 	/*
   2180       1.1    dante 	 * Write the idle command value after the idle command parameter
   2181       1.1    dante 	 * has been written to avoid a race condition. If the order is not
   2182       1.1    dante 	 * followed, the microcode may process the idle command before the
   2183       1.1    dante 	 * parameters have been written to LRAM.
   2184       1.1    dante 	 */
   2185      1.16    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2186      1.13    dante 			idle_cmd_parameter);
   2187      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2188       1.1    dante 
   2189       1.1    dante 	/*
   2190       1.7    dante 	 * Tickle the RISC to tell it to process the idle command.
   2191       1.1    dante 	 */
   2192      1.20   itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2193      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2194       1.1    dante 		/*
   2195       1.7    dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2196       1.7    dante 		 * command 'clr_tickle_b' does not work unless the host
   2197       1.7    dante 		 * value is cleared.
   2198       1.1    dante 		 */
   2199      1.20   itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2200       1.7    dante 	}
   2201       1.1    dante 
   2202       1.7    dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2203       1.7    dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2204       1.7    dante 		/* Poll once each microsecond for command completion. */
   2205       1.7    dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2206      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2207      1.17    dante 									result);
   2208       1.7    dante 			if (result != 0) {
   2209      1.10    dante 				splx(s);
   2210       1.7    dante 				return result;
   2211       1.7    dante 			}
   2212      1.16    dante 			AdwDelayMicroSecond(1);
   2213       1.7    dante 		}
   2214       1.1    dante 	}
   2215       1.1    dante 
   2216      1.10    dante 	splx(s);
   2217       1.7    dante 	return ADW_ERROR;
   2218       1.1    dante }
   2219       1.1    dante 
   2220       1.1    dante 
   2221       1.1    dante /*
   2222       1.1    dante  * Inquiry Information Byte 7 Handling
   2223       1.1    dante  *
   2224       1.1    dante  * Handle SCSI Inquiry Command information for a device by setting
   2225       1.2    dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2226       1.1    dante  * Queuing.
   2227       1.1    dante  */
   2228       1.1    dante static void
   2229      1.16    dante AdwInquiryHandling(sc, scsiq)
   2230       1.7    dante ADW_SOFTC	*sc;
   2231       1.7    dante ADW_SCSI_REQ_Q *scsiq;
   2232       1.1    dante {
   2233       1.9    dante #ifndef FAILSAFE
   2234       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2235       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2236       1.7    dante 	u_int8_t		tid;
   2237      1.13    dante 	struct scsipi_inquiry_data *inq;
   2238       1.7    dante 	u_int16_t		tidmask;
   2239       1.7    dante 	u_int16_t		cfg_word;
   2240       1.7    dante 
   2241       1.1    dante 
   2242       1.1    dante 	/*
   2243      1.16    dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2244       1.1    dante 	 * to be available.
   2245       1.1    dante 	 *
   2246       1.1    dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2247       1.1    dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2248       1.1    dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2249       1.1    dante 	 * microcode to the transfer residual count.
   2250       1.1    dante 	 */
   2251       1.7    dante 
   2252       1.2    dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2253       1.1    dante 		return;
   2254       1.1    dante 	}
   2255       1.7    dante 
   2256       1.1    dante 	tid = scsiq->target_id;
   2257       1.7    dante 
   2258      1.13    dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2259       1.1    dante 
   2260       1.1    dante 	/*
   2261       1.1    dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2262       1.1    dante 	 */
   2263      1.13    dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2264      1.13    dante 	    ((inq->version & SID_ANSII) < 2)) {
   2265       1.1    dante 		return;
   2266       1.2    dante 	} else {
   2267       1.1    dante 		/*
   2268       1.1    dante 		 * INQUIRY Byte 7 Handling
   2269       1.1    dante 		 *
   2270       1.1    dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2271       1.1    dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2272       1.1    dante 		 * is enabled in the EEPROM and the device supports the
   2273       1.1    dante 		 * feature, then enable it in the microcode.
   2274       1.1    dante 		 */
   2275       1.1    dante 
   2276       1.1    dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2277       1.7    dante 
   2278       1.1    dante 		/*
   2279       1.1    dante 		 * Wide Transfers
   2280       1.1    dante 		 *
   2281       1.1    dante 		 * If the EEPROM enabled WDTR for the device and the device
   2282       1.1    dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2283       1.1    dante 		 * device's 'wdtr_able' bit and write the new value to the
   2284       1.1    dante 		 * microcode.
   2285       1.1    dante 		 */
   2286       1.7    dante #ifdef SCSI_ADW_WDTR_DISABLE
   2287       1.8    dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2288       1.7    dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2289      1.13    dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2290      1.16    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2291       1.7    dante 					cfg_word);
   2292       1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2293       1.1    dante 				cfg_word |= tidmask;
   2294      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2295       1.7    dante 						cfg_word);
   2296       1.1    dante 
   2297       1.1    dante 				/*
   2298      1.16    dante 				 * Clear the microcode "SDTR negotiation" and
   2299      1.16    dante 				 * "WDTR negotiation" done indicators for the
   2300      1.16    dante 				 * target to cause it to negotiate with the new
   2301      1.16    dante 				 * setting set above.
   2302       1.7    dante 				 * WDTR when accepted causes the target to enter
   2303      1.16    dante 				 * asynchronous mode, so SDTR must be negotiated
   2304       1.1    dante 				 */
   2305      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306       1.7    dante 						cfg_word);
   2307       1.7    dante 				cfg_word &= ~tidmask;
   2308      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309       1.7    dante 						cfg_word);
   2310      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2311       1.7    dante 						cfg_word);
   2312       1.1    dante 				cfg_word &= ~tidmask;
   2313      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2314       1.7    dante 						cfg_word);
   2315       1.1    dante 			}
   2316       1.1    dante 		}
   2317       1.7    dante 
   2318       1.1    dante 		/*
   2319       1.1    dante 		 * Synchronous Transfers
   2320       1.1    dante 		 *
   2321       1.1    dante 		 * If the EEPROM enabled SDTR for the device and the device
   2322       1.1    dante 		 * supports synchronous transfers, then turn on the device's
   2323       1.1    dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2324       1.1    dante 		 */
   2325       1.7    dante #ifdef SCSI_ADW_SDTR_DISABLE
   2326       1.8    dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2327       1.7    dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2328      1.13    dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2329      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2330       1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2331       1.1    dante 				cfg_word |= tidmask;
   2332      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2333       1.7    dante 						cfg_word);
   2334       1.1    dante 
   2335       1.1    dante 				/*
   2336      1.16    dante 				 * Clear the microcode "SDTR negotiation"
   2337      1.16    dante 				 * done indicator for the target to cause it
   2338      1.16    dante 				 * to negotiate with the new setting set above.
   2339       1.1    dante 				 */
   2340      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2341       1.7    dante 						cfg_word);
   2342       1.1    dante 				cfg_word &= ~tidmask;
   2343      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2344       1.7    dante 						cfg_word);
   2345      1.10    dante 			}
   2346      1.10    dante 		}
   2347      1.10    dante 		/*
   2348      1.10    dante 		 * If the Inquiry data included enough space for the SPI-3
   2349      1.10    dante 		 * Clocking field, then check if DT mode is supported.
   2350      1.10    dante 		 */
   2351      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2352      1.17    dante 		   (scsiq->cdb[4] >= 57 ||
   2353      1.17    dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2354      1.10    dante 			/*
   2355      1.10    dante 			 * PPR (Parallel Protocol Request) Capable
   2356      1.10    dante 			 *
   2357      1.10    dante 			 * If the device supports DT mode, then it must be
   2358      1.10    dante 			 * PPR capable.
   2359      1.10    dante 			 * The PPR message will be used in place of the SDTR
   2360      1.10    dante 			 * and WDTR messages to negotiate synchronous speed
   2361      1.10    dante 			 * and offset, transfer width, and protocol options.
   2362      1.10    dante 			 */
   2363      1.15    dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2364      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2365      1.10    dante 						sc->ppr_able);
   2366      1.10    dante 				sc->ppr_able |= tidmask;
   2367      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2368      1.10    dante 						sc->ppr_able);
   2369       1.1    dante 			}
   2370       1.1    dante 		}
   2371       1.7    dante 
   2372       1.1    dante 		/*
   2373       1.7    dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2374       1.7    dante 		 * device supports Tag Queueing, then turn on the device's
   2375       1.1    dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2376       1.7    dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2377       1.1    dante 		 * value.
   2378       1.1    dante 		 *
   2379       1.1    dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2380       1.1    dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2381       1.1    dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2382       1.1    dante 		 * bugs will at least work with the BIOS.
   2383       1.1    dante 		 */
   2384       1.7    dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2385       1.8    dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2386       1.7    dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2387      1.13    dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2388      1.16    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2389       1.7    dante 					cfg_word);
   2390       1.1    dante 			cfg_word |= tidmask;
   2391      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2392       1.7    dante 					cfg_word);
   2393       1.7    dante 
   2394       1.1    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2395      1.16    dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2396       1.7    dante 					sc->max_dvc_qng);
   2397       1.1    dante 		}
   2398       1.9    dante 	}
   2399       1.7    dante #endif /* FAILSAFE */
   2400       1.1    dante }
   2401       1.1    dante 
   2402       1.7    dante 
   2403       1.1    dante static void
   2404      1.16    dante AdwSleepMilliSecond(n)
   2405       1.7    dante u_int32_t	n;
   2406       1.1    dante {
   2407       1.1    dante 
   2408       1.1    dante 	DELAY(n * 1000);
   2409       1.1    dante }
   2410       1.1    dante 
   2411       1.7    dante 
   2412       1.1    dante static void
   2413      1.16    dante AdwDelayMicroSecond(n)
   2414       1.7    dante u_int32_t	n;
   2415       1.1    dante {
   2416       1.1    dante 
   2417       1.1    dante 	DELAY(n);
   2418       1.1    dante }
   2419       1.7    dante 
   2420