Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.25.2.6
      1  1.25.2.6    skrll /* $NetBSD: adwlib.c,v 1.25.2.6 2005/11/10 14:04:13 skrll Exp $        */
      2       1.1    dante 
      3       1.1    dante /*
      4       1.1    dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5       1.1    dante  *
      6       1.7    dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7       1.1    dante  * All rights reserved.
      8       1.1    dante  *
      9       1.1    dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10       1.1    dante  *
     11       1.1    dante  * Redistribution and use in source and binary forms, with or without
     12       1.1    dante  * modification, are permitted provided that the following conditions
     13       1.1    dante  * are met:
     14       1.1    dante  * 1. Redistributions of source code must retain the above copyright
     15       1.1    dante  *    notice, this list of conditions and the following disclaimer.
     16       1.1    dante  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1    dante  *    notice, this list of conditions and the following disclaimer in the
     18       1.1    dante  *    documentation and/or other materials provided with the distribution.
     19       1.1    dante  * 3. All advertising materials mentioning features or use of this software
     20       1.1    dante  *    must display the following acknowledgement:
     21       1.1    dante  *        This product includes software developed by the NetBSD
     22       1.1    dante  *        Foundation, Inc. and its contributors.
     23       1.1    dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.1    dante  *    contributors may be used to endorse or promote products derived
     25       1.1    dante  *    from this software without specific prior written permission.
     26       1.1    dante  *
     27       1.1    dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.1    dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.1    dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.1    dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.1    dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.1    dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.1    dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.1    dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.1    dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.1    dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.1    dante  * POSSIBILITY OF SUCH DAMAGE.
     38       1.1    dante  */
     39       1.1    dante /*
     40       1.1    dante  * Ported from:
     41       1.1    dante  */
     42       1.1    dante /*
     43       1.1    dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  1.25.2.5    skrll  *
     45      1.10    dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46       1.1    dante  * All Rights Reserved.
     47       1.1    dante  *
     48       1.1    dante  * Redistribution and use in source and binary forms, with or without
     49       1.1    dante  * modification, are permitted provided that redistributions of source
     50       1.1    dante  * code retain the above copyright notice and this comment without
     51       1.1    dante  * modification.
     52       1.1    dante  */
     53      1.23    lukem 
     54      1.23    lukem #include <sys/cdefs.h>
     55  1.25.2.6    skrll __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.25.2.6 2005/11/10 14:04:13 skrll Exp $");
     56       1.1    dante 
     57       1.1    dante #include <sys/param.h>
     58       1.1    dante #include <sys/systm.h>
     59       1.1    dante #include <sys/malloc.h>
     60       1.1    dante #include <sys/kernel.h>
     61       1.1    dante #include <sys/queue.h>
     62       1.1    dante #include <sys/device.h>
     63       1.1    dante 
     64       1.1    dante #include <machine/bus.h>
     65       1.1    dante #include <machine/intr.h>
     66       1.1    dante 
     67       1.1    dante #include <dev/scsipi/scsi_all.h>
     68       1.1    dante #include <dev/scsipi/scsipi_all.h>
     69       1.1    dante #include <dev/scsipi/scsiconf.h>
     70       1.1    dante 
     71       1.7    dante #include <dev/pci/pcidevs.h>
     72       1.7    dante 
     73      1.19      mrg #include <uvm/uvm_extern.h>
     74       1.1    dante 
     75       1.1    dante #include <dev/ic/adwlib.h>
     76      1.16    dante #include <dev/ic/adwmcode.h>
     77       1.1    dante #include <dev/ic/adw.h>
     78       1.1    dante 
     79       1.1    dante 
     80       1.1    dante /* Static Functions */
     81       1.1    dante 
     82  1.25.2.4    skrll int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     83  1.25.2.4    skrll int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     84  1.25.2.4    skrll int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85  1.25.2.4    skrll int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     86  1.25.2.4    skrll int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     87  1.25.2.4    skrll 
     88  1.25.2.4    skrll static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89  1.25.2.4    skrll      							ADW_EEPROM *);
     90  1.25.2.4    skrll static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     91  1.25.2.4    skrll 					                 ADW_EEPROM *);
     92  1.25.2.4    skrll static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     93  1.25.2.4    skrll static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     94      1.17    dante 
     95  1.25.2.4    skrll static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     96       1.1    dante 
     97  1.25.2.4    skrll static void AdwSleepMilliSecond(u_int32_t);
     98  1.25.2.4    skrll static void AdwDelayMicroSecond(u_int32_t);
     99       1.1    dante 
    100       1.1    dante 
    101       1.1    dante /*
    102       1.1    dante  * EEPROM Configuration.
    103       1.1    dante  *
    104       1.1    dante  * All drivers should use this structure to set the default EEPROM
    105       1.1    dante  * configuration. The BIOS now uses this structure when it is built.
    106      1.16    dante  * Additional structure information can be found in adwlib.h where
    107       1.1    dante  * the structure is defined.
    108       1.1    dante  */
    109      1.17    dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
    110      1.17    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    111      1.17    dante 	0x0000,			/* 01 cfg_msw */
    112      1.17    dante 	0xFFFF,			/* 02 disc_enable */
    113      1.17    dante 	0xFFFF,			/* 03 wdtr_able */
    114      1.17    dante 	{ 0xFFFF },		/* 04 sdtr_able */
    115      1.17    dante 	0xFFFF,			/* 05 start_motor */
    116      1.17    dante 	0xFFFF,			/* 06 tagqng_able */
    117      1.17    dante 	0xFFFF,			/* 07 bios_scan */
    118      1.17    dante 	0,			/* 08 scam_tolerant */
    119      1.17    dante 	7,			/* 09 adapter_scsi_id */
    120      1.17    dante 	0,			/*    bios_boot_delay */
    121      1.17    dante 	3,			/* 10 scsi_reset_delay */
    122      1.17    dante 	0,			/*    bios_id_lun */
    123      1.17    dante 	0,			/* 11 termination */
    124      1.17    dante 	0,			/*    reserved1 */
    125      1.17    dante 	0xFFE7,			/* 12 bios_ctrl */
    126      1.17    dante 	{ 0xFFFF },		/* 13 ultra_able */
    127      1.17    dante 	{ 0 },			/* 14 reserved2 */
    128      1.17    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    129      1.17    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    130      1.17    dante 	0,			/* 16 dvc_cntl */
    131      1.17    dante 	{ 0 },			/* 17 bug_fix */
    132      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    133      1.17    dante 	0,			/* 21 check_sum */
    134      1.17    dante 	{			/* 22-29 oem_name[16] */
    135      1.17    dante 	  0,0,0,0,0,0,0,0,
    136      1.17    dante 	  0,0,0,0,0,0,0,0
    137      1.17    dante 	},
    138      1.17    dante 	0,			/* 30 dvc_err_code */
    139      1.17    dante 	0,			/* 31 adv_err_code */
    140      1.17    dante 	0,			/* 32 adv_err_addr */
    141      1.17    dante 	0,			/* 33 saved_dvc_err_code */
    142      1.17    dante 	0,			/* 34 saved_adv_err_code */
    143      1.17    dante 	0			/* 35 saved_adv_err_addr */
    144       1.7    dante };
    145       1.7    dante 
    146      1.17    dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    147       1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    148       1.7    dante 	0x0000,			/* 01 cfg_msw */
    149       1.7    dante 	0xFFFF,			/* 02 disc_enable */
    150       1.7    dante 	0xFFFF,			/* 03 wdtr_able */
    151      1.17    dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    152       1.7    dante 	0xFFFF,			/* 05 start_motor */
    153       1.7    dante 	0xFFFF,			/* 06 tagqng_able */
    154       1.7    dante 	0xFFFF,			/* 07 bios_scan */
    155       1.7    dante 	0,			/* 08 scam_tolerant */
    156       1.7    dante 	7,			/* 09 adapter_scsi_id */
    157       1.7    dante 	0,			/*    bios_boot_delay */
    158       1.7    dante 	3,			/* 10 scsi_reset_delay */
    159       1.7    dante 	0,			/*    bios_id_lun */
    160       1.7    dante 	0,			/* 11 termination_se */
    161       1.7    dante 	0,			/*    termination_lvd */
    162       1.7    dante 	0xFFE7,			/* 12 bios_ctrl */
    163      1.17    dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    164      1.17    dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    165      1.16    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    166      1.16    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    167       1.7    dante 	0,			/* 16 dvc_cntl */
    168      1.17    dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    169      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    170       1.7    dante 	0,			/* 21 check_sum */
    171      1.17    dante 	{			/* 22-29 oem_name[16] */
    172      1.17    dante 	  0,0,0,0,0,0,0,0,
    173      1.17    dante 	  0,0,0,0,0,0,0,0
    174      1.17    dante 	},
    175       1.7    dante 	0,			/* 30 dvc_err_code */
    176       1.7    dante 	0,			/* 31 adv_err_code */
    177       1.7    dante 	0,			/* 32 adv_err_addr */
    178       1.7    dante 	0,			/* 33 saved_dvc_err_code */
    179       1.7    dante 	0,			/* 34 saved_adv_err_code */
    180       1.7    dante 	0,			/* 35 saved_adv_err_addr */
    181      1.17    dante 	{			/* 36-55 reserved1[16] */
    182      1.17    dante 	  0,0,0,0,0,0,0,0,0,0,
    183      1.17    dante 	  0,0,0,0,0,0,0,0,0,0
    184      1.17    dante 	},
    185       1.7    dante 	0,			/* 56 cisptr_lsw */
    186       1.7    dante 	0,			/* 57 cisprt_msw */
    187       1.7    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    188       1.7    dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    189      1.17    dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    190       1.1    dante };
    191       1.1    dante 
    192      1.17    dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    193      1.10    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    194      1.10    dante 	0x0000,			/* 01 cfg_msw */
    195      1.10    dante 	0xFFFF,			/* 02 disc_enable */
    196      1.10    dante 	0xFFFF,			/* 03 wdtr_able */
    197      1.17    dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    198      1.10    dante 	0xFFFF,			/* 05 start_motor */
    199      1.10    dante 	0xFFFF,			/* 06 tagqng_able */
    200      1.10    dante 	0xFFFF,			/* 07 bios_scan */
    201      1.10    dante 	0,			/* 08 scam_tolerant */
    202      1.10    dante 	7,			/* 09 adapter_scsi_id */
    203      1.10    dante 	0,			/*    bios_boot_delay */
    204      1.10    dante 	3,			/* 10 scsi_reset_delay */
    205      1.10    dante 	0,			/*    bios_id_lun */
    206      1.10    dante 	0,			/* 11 termination_se */
    207      1.10    dante 	0,			/*    termination_lvd */
    208      1.10    dante 	0xFFE7,			/* 12 bios_ctrl */
    209      1.17    dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    210      1.17    dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    211      1.16    dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    212      1.16    dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    213      1.10    dante 	0,			/* 16 dvc_cntl */
    214      1.17    dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    215      1.17    dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    216      1.10    dante 	0,			/* 21 check_sum */
    217      1.17    dante 	{			/* 22-29 oem_name[16] */
    218      1.17    dante 	  0,0,0,0,0,0,0,0,
    219      1.17    dante 	  0,0,0,0,0,0,0,0
    220      1.17    dante 	},
    221      1.10    dante 	0,			/* 30 dvc_err_code */
    222      1.10    dante 	0,			/* 31 adv_err_code */
    223      1.10    dante 	0,			/* 32 adv_err_addr */
    224      1.10    dante 	0,			/* 33 saved_dvc_err_code */
    225      1.10    dante 	0,			/* 34 saved_adv_err_code */
    226      1.10    dante 	0,			/* 35 saved_adv_err_addr */
    227      1.17    dante 	{			/* 36-55 reserved1[16] */
    228      1.17    dante 	  0,0,0,0,0,0,0,0,0,0,
    229      1.17    dante 	  0,0,0,0,0,0,0,0,0,0
    230      1.17    dante 	},
    231      1.10    dante 	0,			/* 56 cisptr_lsw */
    232      1.10    dante 	0,			/* 57 cisprt_msw */
    233      1.10    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    234      1.10    dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    235      1.17    dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    236      1.10    dante };
    237      1.10    dante 
    238      1.17    dante 
    239       1.1    dante /*
    240      1.17    dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    241      1.17    dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    242      1.17    dante  * all of this is done.
    243       1.1    dante  *
    244       1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    245       1.1    dante  * then 0 is returned.
    246      1.17    dante  *
    247      1.17    dante  * Note: Chip is stopped on entry.
    248      1.17    dante  */
    249      1.17    dante int
    250      1.17    dante AdwInitFromEEPROM(sc)
    251      1.17    dante ADW_SOFTC      *sc;
    252      1.17    dante {
    253      1.17    dante 	bus_space_tag_t iot = sc->sc_iot;
    254      1.17    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    255      1.17    dante 	ADW_EEPROM		eep_config;
    256      1.17    dante 	u_int16_t		warn_code;
    257      1.17    dante 	u_int16_t		sdtr_speed = 0;
    258      1.17    dante 	u_int8_t		tid, termination;
    259      1.17    dante 	int			i, j;
    260      1.17    dante 
    261      1.17    dante 
    262      1.17    dante 	warn_code = 0;
    263      1.17    dante 
    264      1.17    dante 	/*
    265      1.17    dante 	 * Read the board's EEPROM configuration.
    266      1.17    dante 	 *
    267      1.17    dante 	 * Set default values if a bad checksum is found.
    268      1.17    dante 	 *
    269      1.17    dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    270      1.17    dante 	 */
    271      1.17    dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    272      1.17    dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    273      1.17    dante 
    274      1.17    dante 		/*
    275      1.17    dante 		 * Set EEPROM default values.
    276      1.17    dante 		 */
    277      1.17    dante 		switch(sc->chip_type) {
    278      1.17    dante 		case ADW_CHIP_ASC3550:
    279      1.17    dante 			eep_config = adw_3550_Default_EEPROM;
    280      1.17    dante 			break;
    281      1.17    dante 		case ADW_CHIP_ASC38C0800:
    282      1.17    dante 			eep_config = adw_38C0800_Default_EEPROM;
    283      1.17    dante 			break;
    284      1.17    dante 		case ADW_CHIP_ASC38C1600:
    285      1.17    dante 			eep_config = adw_38C1600_Default_EEPROM;
    286      1.17    dante 
    287      1.21    lukem #if 0
    288      1.21    lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    289      1.21    lukem #endif
    290      1.17    dante 			if (sc->cfg.pci_slot_info != 0) {
    291      1.17    dante 				u_int8_t lsw_msb;
    292      1.17    dante 
    293      1.17    dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    294      1.17    dante 				/*
    295      1.17    dante 				 * Set Function 1 EEPROM Word 0 MSB
    296      1.17    dante 				 *
    297      1.17    dante 				 * Clear the BIOS_ENABLE (bit 14) and
    298      1.17    dante 				 * INTAB (bit 11) EEPROM bits.
    299      1.17    dante 				 *
    300      1.17    dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    301      1.17    dante 				 * SPARC Ultra 60 and old Mac system booting
    302      1.17    dante 				 * problem. The Expansion ROM must
    303      1.17    dante 				 * be disabled in Function 1 for these systems.
    304      1.17    dante 				 */
    305      1.17    dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    306      1.17    dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    307      1.17    dante 				/*
    308      1.17    dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    309      1.17    dante 				 * indicates the Function 1 interrupt line is
    310      1.17    dante 				 * wired to INTA.
    311      1.17    dante 				 *
    312      1.17    dante 				 * Set/Clear Bit 11 (INTAB) from
    313      1.17    dante 				 * the GPIO bit 0 input:
    314      1.17    dante 				 *   1 - Function 1 intr line wired to INT A.
    315      1.17    dante 				 *   0 - Function 1 intr line wired to INT B.
    316      1.17    dante 				 *
    317      1.17    dante 				 * Note: Adapter boards always have Function 0
    318      1.17    dante 				 * wired to INTA.
    319      1.17    dante 				 * Put all 5 GPIO bits in input mode and then
    320      1.17    dante 				 * read their input values.
    321      1.17    dante 				 */
    322      1.17    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    323      1.17    dante 							IOPB_GPIO_CNTL, 0);
    324      1.17    dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    325      1.17    dante 						IOPB_GPIO_DATA) & 0x01) {
    326      1.17    dante 					/*
    327      1.17    dante 					 * Function 1 interrupt wired to INTA;
    328      1.17    dante 					 * Set EEPROM bit.
    329      1.17    dante 					 */
    330      1.17    dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    331      1.17    dante 							 & 0xFF;
    332      1.17    dante 				 }
    333      1.17    dante 				 eep_config.cfg_lsw &= 0x00FF;
    334      1.17    dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    335      1.17    dante 			}
    336      1.17    dante 			break;
    337      1.17    dante 		}
    338      1.17    dante 
    339      1.17    dante 		/*
    340      1.17    dante 		 * Assume the 6 byte board serial number that was read
    341      1.17    dante 		 * from EEPROM is correct even if the EEPROM checksum
    342      1.17    dante 		 * failed.
    343      1.17    dante 		 */
    344      1.17    dante 		for (i=2, j=1; i>=0; i--, j++) {
    345      1.17    dante 		eep_config.serial_number[i] =
    346      1.17    dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    347      1.17    dante 		}
    348      1.17    dante 
    349      1.17    dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    350      1.17    dante 	}
    351      1.17    dante 	/*
    352      1.17    dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    353      1.17    dante 	 * that was read.
    354      1.17    dante 	 *
    355      1.17    dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    356      1.17    dante 	 */
    357      1.17    dante 	sc->wdtr_able = eep_config.wdtr_able;
    358      1.17    dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    359      1.17    dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    360      1.17    dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    361      1.17    dante 	} else {
    362      1.17    dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    363      1.17    dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    364      1.17    dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    365      1.17    dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    366      1.17    dante 	}
    367      1.17    dante 	sc->ppr_able = 0;
    368      1.17    dante 	sc->tagqng_able = eep_config.tagqng_able;
    369      1.17    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    370      1.17    dante 	sc->max_host_qng = eep_config.max_host_qng;
    371      1.17    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    372      1.17    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    373      1.17    dante 	sc->start_motor = eep_config.start_motor;
    374      1.17    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    375      1.17    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    376      1.17    dante 	sc->no_scam = eep_config.scam_tolerant;
    377      1.17    dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    378      1.17    dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    379      1.17    dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    380      1.17    dante 
    381      1.17    dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    382      1.17    dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    383      1.17    dante 		sc->sdtr_able = 0;
    384      1.17    dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    385      1.17    dante 			if (tid == 0) {
    386      1.17    dante 				sdtr_speed = sc->sdtr_speed1;
    387      1.17    dante 			} else if (tid == 4) {
    388      1.17    dante 				sdtr_speed = sc->sdtr_speed2;
    389      1.17    dante 			} else if (tid == 8) {
    390      1.17    dante 				sdtr_speed = sc->sdtr_speed3;
    391      1.17    dante 			} else if (tid == 12) {
    392      1.17    dante 				sdtr_speed = sc->sdtr_speed4;
    393      1.17    dante 			}
    394      1.17    dante 			if (sdtr_speed & ADW_MAX_TID) {
    395      1.17    dante 				sc->sdtr_able |= (1 << tid);
    396      1.17    dante 			}
    397      1.17    dante 			sdtr_speed >>= 4;
    398      1.17    dante 		}
    399      1.17    dante 	}
    400      1.17    dante 
    401      1.17    dante 	/*
    402      1.17    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    403      1.17    dante 	 * maximum queuing (max. 63, min. 4).
    404      1.17    dante 	 */
    405      1.17    dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    406      1.17    dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    407      1.17    dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    408      1.17    dante 	{
    409      1.17    dante 		/* If the value is zero, assume it is uninitialized. */
    410      1.17    dante 		if (eep_config.max_host_qng == 0) {
    411      1.17    dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    412      1.17    dante 		} else {
    413      1.17    dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    414      1.17    dante 		}
    415      1.17    dante 	}
    416      1.17    dante 
    417      1.17    dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    418      1.17    dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    419      1.17    dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    420      1.17    dante 		/* If the value is zero, assume it is uninitialized. */
    421      1.17    dante 		if (eep_config.max_dvc_qng == 0) {
    422      1.17    dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    423      1.17    dante 		} else {
    424      1.17    dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    425      1.17    dante 		}
    426      1.17    dante 	}
    427      1.17    dante 
    428      1.17    dante 	/*
    429      1.17    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    430      1.17    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    431      1.17    dante 	 */
    432      1.17    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    433      1.17    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    434      1.17    dante 	}
    435      1.17    dante 
    436      1.17    dante 	/*
    437      1.17    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    438      1.17    dante 	 * values based on possibly adjusted EEPROM values.
    439      1.17    dante 	 */
    440      1.17    dante 	sc->max_host_qng = eep_config.max_host_qng;
    441      1.17    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    442      1.17    dante 
    443      1.17    dante 
    444      1.17    dante 	/*
    445      1.17    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    446      1.17    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    447      1.17    dante 	 *
    448      1.17    dante 	 * If the termination is specified with a non-zero 'termination'
    449      1.17    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    450      1.17    dante 	 * 'termination' field appropriately.
    451      1.17    dante 	 */
    452      1.17    dante 
    453      1.17    dante 	switch(sc->chip_type) {
    454      1.17    dante 	case ADW_CHIP_ASC3550:
    455      1.17    dante 		sc->cfg.termination = 0;	/* auto termination */
    456      1.17    dante 		switch(eep_config.termination_se) {
    457      1.17    dante 		case 3:
    458      1.17    dante 			/* Enable manual control with low on / high on. */
    459      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    460      1.17    dante 		case 2:
    461      1.17    dante 			/* Enable manual control with low off / high on. */
    462      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    463      1.17    dante 		case 1:
    464      1.17    dante 			/* Enable manual control with low off / high off. */
    465      1.17    dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    466      1.17    dante 		case 0:
    467      1.17    dante 			break;
    468      1.17    dante 		default:
    469      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    470      1.17    dante 		}
    471      1.17    dante 		break;
    472      1.17    dante 
    473      1.17    dante 	case ADW_CHIP_ASC38C0800:
    474      1.17    dante 	case ADW_CHIP_ASC38C1600:
    475      1.17    dante 		switch(eep_config.termination_se) {
    476      1.17    dante 		case 0:
    477      1.17    dante 			/* auto termination for SE */
    478      1.17    dante 			termination = 0;
    479      1.17    dante 			break;
    480      1.17    dante 		case 1:
    481      1.17    dante 			/* Enable manual control with low off / high off. */
    482      1.17    dante 			termination = 0;
    483      1.17    dante 			break;
    484      1.17    dante 		case 2:
    485      1.17    dante 			/* Enable manual control with low off / high on. */
    486      1.17    dante 			termination = ADW_TERM_SE_HI;
    487      1.17    dante 			break;
    488      1.17    dante 		case 3:
    489      1.17    dante 			/* Enable manual control with low on / high on. */
    490      1.17    dante 			termination = ADW_TERM_SE;
    491      1.17    dante 			break;
    492      1.17    dante 		default:
    493      1.17    dante 			/*
    494      1.17    dante 			 * The EEPROM 'termination_se' field contains a
    495      1.17    dante 			 * bad value. Use automatic termination instead.
    496      1.17    dante 			 */
    497      1.17    dante 			termination = 0;
    498      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    499      1.17    dante 		}
    500      1.17    dante 
    501      1.17    dante 		switch(eep_config.termination_lvd) {
    502      1.17    dante 		case 0:
    503      1.17    dante 			/* auto termination for LVD */
    504      1.17    dante 			sc->cfg.termination = termination;
    505      1.17    dante 			break;
    506      1.17    dante 		case 1:
    507      1.17    dante 			/* Enable manual control with low off / high off. */
    508      1.17    dante 			sc->cfg.termination = termination;
    509      1.17    dante 			break;
    510      1.17    dante 		case 2:
    511      1.17    dante 			/* Enable manual control with low off / high on. */
    512      1.17    dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    513      1.17    dante 			break;
    514      1.17    dante 		case 3:
    515      1.17    dante 			/* Enable manual control with low on / high on. */
    516      1.17    dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    517      1.17    dante 			break;
    518      1.17    dante 		default:
    519      1.17    dante 			/*
    520      1.17    dante 			 * The EEPROM 'termination_lvd' field contains a
    521      1.17    dante 			 * bad value. Use automatic termination instead.
    522      1.17    dante 			 */
    523      1.17    dante 			sc->cfg.termination = termination;
    524      1.17    dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    525      1.17    dante 		}
    526      1.17    dante 		break;
    527      1.17    dante 	}
    528      1.17    dante 
    529      1.17    dante 	return warn_code;
    530      1.17    dante }
    531      1.17    dante 
    532      1.17    dante 
    533      1.17    dante /*
    534      1.17    dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    535      1.17    dante  *
    536      1.17    dante  * On failure return the error code.
    537       1.1    dante  */
    538       1.1    dante int
    539      1.17    dante AdwInitDriver(sc)
    540       1.2    dante ADW_SOFTC      *sc;
    541       1.1    dante {
    542       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    543       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    544      1.17    dante 	u_int16_t	error_code;
    545       1.7    dante 	int		word;
    546      1.17    dante 	int		i;
    547      1.16    dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    548       1.7    dante 								0x40-0x8F. */
    549      1.17    dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    550       1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    551      1.17    dante 	u_int8_t	tid;
    552       1.1    dante 
    553       1.1    dante 
    554      1.17    dante 	error_code = 0;
    555       1.1    dante 
    556       1.1    dante 	/*
    557       1.1    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    558       1.1    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    559       1.1    dante 	 * so its region must be saved and restored.
    560       1.1    dante 	 *
    561       1.1    dante 	 * Note: This code makes the assumption, which is currently true,
    562       1.1    dante 	 * that a chip reset does not clear RISC LRAM.
    563       1.1    dante 	 */
    564      1.16    dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    565      1.16    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    566       1.7    dante 	}
    567       1.7    dante 
    568       1.7    dante 	/*
    569       1.7    dante 	 * Save current per TID negotiated values.
    570       1.7    dante 	 */
    571      1.17    dante 	switch (sc->chip_type) {
    572      1.17    dante 	case ADW_CHIP_ASC3550:
    573      1.17    dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    574      1.17    dante 
    575      1.17    dante 			u_int16_t  bios_version, major, minor;
    576      1.17    dante 
    577      1.17    dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    578      1.17    dante 					ADW_MC_BIOSMEM) / 2];
    579      1.17    dante 			major = (bios_version  >> 12) & 0xF;
    580      1.17    dante 			minor = (bios_version  >> 8) & 0xF;
    581      1.17    dante 			if (major < 3 || (major == 3 && minor == 1)) {
    582      1.17    dante 			    /*
    583      1.17    dante 			     * BIOS 3.1 and earlier location of
    584      1.17    dante 			     * 'wdtr_able' variable.
    585      1.17    dante 			     */
    586      1.17    dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    587      1.17    dante 			} else {
    588      1.17    dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    589      1.17    dante 					    wdtr_able);
    590      1.17    dante 			}
    591      1.17    dante 		}
    592      1.17    dante 		break;
    593       1.7    dante 
    594      1.17    dante 	case ADW_CHIP_ASC38C1600:
    595      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    596      1.17    dante 		/* FALLTHROUGH */
    597      1.17    dante 	case ADW_CHIP_ASC38C0800:
    598      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    599      1.17    dante 		break;
    600       1.7    dante 	}
    601      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    602      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    603       1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    604      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    605       1.7    dante 			max_cmd[tid]);
    606       1.1    dante 	}
    607       1.1    dante 
    608       1.1    dante 	/*
    609      1.17    dante 	 * Perform a RAM Built-In Self Test
    610       1.1    dante 	 */
    611      1.17    dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    612      1.17    dante 		return error_code;
    613      1.17    dante 	}
    614       1.7    dante 
    615      1.17    dante 	/*
    616      1.17    dante 	 * Load the Microcode
    617       1.7    dante 	 */
    618      1.17    dante 	;
    619      1.17    dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    620      1.17    dante 		return error_code;
    621       1.1    dante 	}
    622       1.1    dante 
    623       1.1    dante 	/*
    624      1.17    dante 	 * Read microcode version and date.
    625       1.7    dante 	 */
    626      1.17    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    627      1.17    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    628       1.7    dante 
    629       1.7    dante 	/*
    630      1.17    dante 	 * If the PCI Configuration Command Register "Parity Error Response
    631      1.17    dante 	 * Control" Bit was clear (0), then set the microcode variable
    632      1.17    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    633      1.17    dante 	 * to ignore DMA parity errors.
    634       1.1    dante 	 */
    635      1.17    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    636      1.17    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    637      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    638      1.17    dante 					word | CONTROL_FLAG_IGNORE_PERR);
    639       1.1    dante 	}
    640       1.1    dante 
    641      1.17    dante 	switch (sc->chip_type) {
    642      1.17    dante 	case ADW_CHIP_ASC3550:
    643      1.17    dante 		/*
    644      1.17    dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    645      1.17    dante 		 * FIFO threshold of 128 bytes.
    646      1.17    dante 		 * This register is only accessible to the host.
    647      1.17    dante 		 */
    648      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    649      1.17    dante 				START_CTL_EMFU | READ_CMD_MRM);
    650      1.17    dante 		break;
    651       1.7    dante 
    652      1.17    dante 	case ADW_CHIP_ASC38C0800:
    653      1.17    dante 		/*
    654      1.17    dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    655      1.17    dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    656      1.17    dante 		 * cable detection and then we are able to read C_DET[3:0].
    657      1.17    dante 		 *
    658      1.17    dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    659      1.17    dante 		 * Microcode Default Value' section below.
    660      1.17    dante 		 */
    661      1.17    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    662      1.17    dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    663      1.17    dante 				| ADW_DIS_TERM_DRV);
    664       1.1    dante 
    665      1.17    dante 		/*
    666      1.17    dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    667      1.17    dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    668      1.17    dante 		 *
    669      1.17    dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    670      1.17    dante 		 * 256 bytes.
    671      1.17    dante 		 *
    672      1.17    dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    673      1.17    dante 		 */
    674      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    675      1.17    dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    676      1.17    dante 						| START_CTL_TH | READ_CMD_MRM);
    677      1.17    dante 		break;
    678       1.1    dante 
    679      1.17    dante 	case ADW_CHIP_ASC38C1600:
    680      1.17    dante 		/*
    681      1.17    dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    682      1.17    dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    683      1.17    dante 		 * cable detection and then we are able to read C_DET[3:0].
    684      1.17    dante 		 *
    685      1.17    dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    686      1.17    dante 		 * Microcode Default Value' section below.
    687      1.17    dante 		 */
    688      1.17    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    689      1.17    dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    690      1.17    dante 				| ADW_DIS_TERM_DRV);
    691       1.1    dante 
    692      1.17    dante 		/*
    693      1.17    dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    694      1.17    dante 		 * Phase Protection) disable bit is not set, then set the
    695      1.17    dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    696      1.17    dante 		 * enable AIPP checking and encoding.
    697      1.17    dante 		 */
    698      1.17    dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    699      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    700      1.17    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    701      1.17    dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    702      1.17    dante 		}
    703       1.1    dante 
    704      1.17    dante 		/*
    705      1.17    dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    706      1.17    dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    707      1.17    dante 		 */
    708      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    709      1.17    dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    710      1.17    dante 		break;
    711       1.1    dante 	}
    712       1.7    dante 
    713       1.1    dante 	/*
    714       1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    715      1.17    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    716       1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
    717       1.7    dante 	 *
    718      1.16    dante 	 * If SCSI Bus Resets have been disabled, then directly set
    719       1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    720       1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    721       1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
    722       1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    723       1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
    724       1.7    dante 	 */
    725       1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    726      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    727      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    728       1.7    dante 	}
    729       1.7    dante 
    730       1.7    dante 	/*
    731       1.7    dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    732       1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    733       1.7    dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    734       1.7    dante 	 * with a device.
    735       1.7    dante 	 *
    736       1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    737       1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    738       1.7    dante 	 * without determining here whether the device supports SDTR.
    739       1.7    dante 	 */
    740      1.17    dante 	switch (sc->chip_type) {
    741      1.17    dante 	case ADW_CHIP_ASC3550:
    742      1.17    dante 		word = 0;
    743      1.17    dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    744      1.17    dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    745      1.17    dante 				/* Set Ultra speed for TID 'tid'. */
    746      1.17    dante 				word |= (0x3 << (4 * (tid % 4)));
    747      1.17    dante 			} else {
    748      1.17    dante 				/* Set Fast speed for TID 'tid'. */
    749      1.17    dante 				word |= (0x2 << (4 * (tid % 4)));
    750      1.17    dante 			}
    751      1.17    dante 			/* Check if done with sdtr_speed1. */
    752      1.17    dante 			if (tid == 3) {
    753      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    754      1.17    dante 						ADW_MC_SDTR_SPEED1, word);
    755      1.17    dante 				word = 0;
    756      1.17    dante 			/* Check if done with sdtr_speed2. */
    757      1.17    dante 			} else if (tid == 7) {
    758      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    759      1.17    dante 						ADW_MC_SDTR_SPEED2, word);
    760      1.17    dante 				word = 0;
    761      1.17    dante 			/* Check if done with sdtr_speed3. */
    762      1.17    dante 			} else if (tid == 11) {
    763      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    764      1.17    dante 						ADW_MC_SDTR_SPEED3, word);
    765      1.17    dante 				word = 0;
    766      1.17    dante 			/* Check if done with sdtr_speed4. */
    767      1.17    dante 			} else if (tid == 15) {
    768      1.17    dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    769      1.17    dante 						ADW_MC_SDTR_SPEED4, word);
    770      1.17    dante 				/* End of loop. */
    771      1.17    dante 			}
    772       1.7    dante 		}
    773      1.17    dante 
    774      1.17    dante 		/*
    775      1.17    dante 		 * Set microcode operating variable for the
    776      1.17    dante 		 * disconnect per TID bitmask.
    777      1.17    dante 		 */
    778      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    779      1.17    dante 							sc->cfg.disc_enable);
    780      1.17    dante 		break;
    781      1.17    dante 
    782      1.17    dante 	case ADW_CHIP_ASC38C0800:
    783      1.17    dante 		/* FALLTHROUGH */
    784      1.17    dante 	case ADW_CHIP_ASC38C1600:
    785      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    786      1.17    dante 							sc->cfg.disc_enable);
    787      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    788      1.17    dante 							sc->sdtr_speed1);
    789      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    790      1.17    dante 							sc->sdtr_speed2);
    791      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    792      1.17    dante 							sc->sdtr_speed3);
    793      1.17    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    794      1.17    dante 							sc->sdtr_speed4);
    795      1.17    dante 		break;
    796       1.7    dante 	}
    797       1.1    dante 
    798       1.1    dante 
    799       1.1    dante 	/*
    800       1.1    dante 	 * Set SCSI_CFG0 Microcode Default Value.
    801       1.1    dante 	 *
    802       1.1    dante 	 * The microcode will set the SCSI_CFG0 register using this value
    803       1.1    dante 	 * after it is started below.
    804       1.1    dante 	 */
    805      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    806      1.10    dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    807      1.10    dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    808       1.2    dante 
    809       1.1    dante 
    810      1.17    dante 	switch(sc->chip_type) {
    811      1.17    dante 	case ADW_CHIP_ASC3550:
    812      1.17    dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    813      1.17    dante 		break;
    814       1.1    dante 
    815      1.17    dante 	case ADW_CHIP_ASC38C0800:
    816      1.17    dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    817      1.17    dante 		break;
    818       1.7    dante 
    819      1.17    dante 	case ADW_CHIP_ASC38C1600:
    820      1.17    dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    821      1.17    dante 		break;
    822       1.7    dante 	}
    823      1.17    dante 	if(error_code) {
    824      1.17    dante 		return error_code;
    825       1.1    dante 	}
    826       1.7    dante 
    827       1.1    dante 	/*
    828       1.1    dante 	 * Set SEL_MASK Microcode Default Value
    829       1.1    dante 	 *
    830       1.1    dante 	 * The microcode will set the SEL_MASK register using this value
    831       1.1    dante 	 * after it is started below.
    832       1.1    dante 	 */
    833      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    834       1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    835       1.7    dante 
    836      1.17    dante 	/*
    837      1.17    dante 	 * Create and Initialize Host->RISC Carrier lists
    838      1.17    dante 	 */
    839      1.17    dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    840      1.17    dante 						sc->sc_control->carriers);
    841      1.16    dante 
    842       1.7    dante 	/*
    843       1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    844       1.7    dante 	 */
    845       1.7    dante 
    846       1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    847      1.16    dante 		return ADW_IERR_NO_CARRIER;
    848       1.7    dante 	}
    849      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    850      1.12    dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    851       1.7    dante 
    852       1.7    dante 	/*
    853       1.7    dante 	 * The first command issued will be placed in the stopper carrier.
    854       1.7    dante 	 */
    855      1.22   briggs 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    856       1.1    dante 
    857       1.1    dante 	/*
    858       1.7    dante 	 * Set RISC ICQ physical address start value.
    859       1.7    dante 	 */
    860      1.22   briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    861       1.7    dante 
    862       1.7    dante 	/*
    863      1.17    dante 	 * Initialize the COMMA register to the same value otherwise
    864      1.17    dante 	 * the RISC will prematurely detect a command is available.
    865      1.17    dante 	 */
    866      1.17    dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    867      1.17    dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    868      1.22   briggs 						le32toh(sc->icq_sp->carr_ba));
    869      1.17    dante 	}
    870      1.17    dante 
    871      1.17    dante 	/*
    872       1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    873       1.1    dante 	 */
    874       1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    875      1.16    dante 		return ADW_IERR_NO_CARRIER;
    876       1.1    dante 	}
    877      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    878      1.12    dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    879       1.1    dante 
    880       1.1    dante 	/*
    881       1.7    dante 	 * The first command completed by the RISC will be placed in
    882       1.7    dante 	 * the stopper.
    883       1.1    dante 	 *
    884      1.12    dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    885      1.16    dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    886       1.1    dante 	 */
    887      1.22   briggs 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    888       1.1    dante 
    889       1.1    dante 	/*
    890       1.7    dante 	 * Set RISC IRQ physical address start value.
    891       1.1    dante 	 */
    892      1.22   briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    893       1.7    dante 	sc->carr_pending_cnt = 0;
    894       1.1    dante 
    895       1.1    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    896       1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    897      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    898       1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    899       1.1    dante 
    900       1.1    dante 	/* finally, finally, gentlemen, start your engine */
    901       1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    902       1.2    dante 
    903       1.7    dante 	/*
    904       1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    905       1.7    dante 	 * Resets should be performed. The RISC has to be running
    906       1.7    dante 	 * to issue a SCSI Bus Reset.
    907       1.7    dante 	 */
    908       1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    909       1.7    dante 	{
    910       1.7    dante 		/*
    911       1.7    dante 		 * If the BIOS Signature is present in memory, restore the
    912       1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
    913       1.7    dante 		 * a SCSI Bus Reset.
    914       1.7    dante 		 */
    915      1.16    dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    916       1.7    dante 				0x55AA) {
    917       1.7    dante 			/*
    918       1.7    dante 			 * Restore per TID negotiated values.
    919       1.7    dante 			 */
    920      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    921       1.7    dante 					wdtr_able);
    922      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    923       1.7    dante 					sdtr_able);
    924      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    925       1.7    dante 					tagqng_able);
    926       1.7    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    927       1.7    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    928      1.17    dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    929      1.17    dante 						max_cmd[tid]);
    930       1.7    dante 			}
    931       1.7    dante 		} else {
    932      1.16    dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    933      1.17    dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    934       1.7    dante 			}
    935       1.7    dante 		}
    936       1.7    dante 	}
    937       1.7    dante 
    938      1.17    dante 	return error_code;
    939       1.1    dante }
    940       1.1    dante 
    941      1.17    dante 
    942       1.1    dante int
    943      1.17    dante AdwRamSelfTest(iot, ioh, chip_type)
    944      1.17    dante 	bus_space_tag_t iot;
    945      1.17    dante 	bus_space_handle_t ioh;
    946      1.17    dante 	u_int8_t chip_type;
    947       1.1    dante {
    948      1.17    dante 	int		i;
    949       1.7    dante 	u_int8_t	byte;
    950       1.1    dante 
    951       1.1    dante 
    952      1.17    dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    953      1.17    dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    954      1.17    dante 		/*
    955      1.17    dante 		 * RAM BIST (RAM Built-In Self Test)
    956      1.17    dante 		 *
    957      1.17    dante 		 * Address : I/O base + offset 0x38h register (byte).
    958      1.17    dante 		 * Function: Bit 7-6(RW) : RAM mode
    959      1.17    dante 		 *			    Normal Mode   : 0x00
    960      1.17    dante 		 *			    Pre-test Mode : 0x40
    961      1.17    dante 		 *			    RAM Test Mode : 0x80
    962      1.17    dante 		 *	     Bit 5	 : unused
    963      1.17    dante 		 *	     Bit 4(RO)   : Done bit
    964      1.17    dante 		 *	     Bit 3-0(RO) : Status
    965      1.17    dante 		 *			    Host Error    : 0x08
    966      1.17    dante 		 *			    Int_RAM Error : 0x04
    967      1.17    dante 		 *			    RISC Error    : 0x02
    968      1.17    dante 		 *			    SCSI Error    : 0x01
    969      1.17    dante 		 *			    No Error	  : 0x00
    970      1.17    dante 		 *
    971      1.17    dante 		 * Note: RAM BIST code should be put right here, before loading
    972      1.17    dante 		 * the microcode and after saving the RISC memory BIOS region.
    973      1.17    dante 		 */
    974       1.1    dante 
    975      1.17    dante 		/*
    976      1.17    dante 		 * LRAM Pre-test
    977      1.17    dante 		 *
    978      1.17    dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    979      1.17    dante 		 * 10 milliseconds.
    980      1.17    dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    981      1.17    dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    982      1.17    dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    983      1.17    dante 		 */
    984      1.17    dante 		for (i = 0; i < 2; i++) {
    985      1.17    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    986      1.17    dante 					PRE_TEST_MODE);
    987      1.17    dante 			 /* Wait for 10ms before reading back. */
    988      1.17    dante 			AdwSleepMilliSecond(10);
    989      1.17    dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    990      1.17    dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    991      1.17    dante 					PRE_TEST_VALUE) {
    992      1.17    dante 				return ADW_IERR_BIST_PRE_TEST;
    993      1.17    dante 			}
    994       1.7    dante 
    995      1.17    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    996      1.17    dante 								NORMAL_MODE);
    997      1.17    dante 			/* Wait for 10ms before reading back. */
    998      1.17    dante 			AdwSleepMilliSecond(10);
    999      1.17    dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1000      1.17    dante 			    != NORMAL_VALUE) {
   1001      1.17    dante 				return ADW_IERR_BIST_PRE_TEST;
   1002      1.17    dante 			}
   1003      1.17    dante 		}
   1004       1.2    dante 
   1005      1.17    dante 		/*
   1006      1.17    dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1007      1.17    dante 		 *
   1008      1.17    dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1009      1.17    dante 		 * 10 milliseconds.
   1010      1.17    dante 		 * If Done bit not set or Status not 0, save register byte,
   1011      1.17    dante 		 * set the err_code, and return an error.
   1012      1.17    dante 		 */
   1013      1.17    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1014      1.17    dante 		/* Wait for 10ms before checking status. */
   1015      1.17    dante 		AdwSleepMilliSecond(10);
   1016       1.1    dante 
   1017       1.7    dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1018      1.17    dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1019      1.17    dante 			/* Get here if Done bit not set or Status not 0. */
   1020      1.17    dante 			return ADW_IERR_BIST_RAM_TEST;
   1021       1.1    dante 		}
   1022       1.1    dante 
   1023      1.17    dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1024       1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1025       1.1    dante 	}
   1026       1.7    dante 
   1027      1.17    dante 	return 0;
   1028      1.17    dante }
   1029      1.17    dante 
   1030       1.7    dante 
   1031      1.17    dante int
   1032      1.17    dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1033      1.17    dante 	bus_space_tag_t iot;
   1034      1.17    dante 	bus_space_handle_t ioh;
   1035      1.17    dante 	u_int16_t *bios_mem;
   1036      1.17    dante 	u_int8_t chip_type;
   1037      1.17    dante {
   1038  1.25.2.6    skrll 	const u_int8_t	*mcode_data;
   1039      1.17    dante 	u_int32_t	 mcode_chksum;
   1040      1.17    dante 	u_int16_t	 mcode_size;
   1041      1.17    dante 	u_int32_t	sum;
   1042      1.17    dante 	u_int16_t	code_sum;
   1043      1.17    dante 	int		begin_addr;
   1044      1.17    dante 	int		end_addr;
   1045      1.17    dante 	int		word;
   1046      1.17    dante 	int		adw_memsize;
   1047      1.17    dante 	int		adw_mcode_expanded_size;
   1048      1.17    dante 	int		i, j;
   1049       1.7    dante 
   1050      1.17    dante 
   1051      1.17    dante 	switch(chip_type) {
   1052      1.17    dante 	case ADW_CHIP_ASC3550:
   1053  1.25.2.6    skrll 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1054      1.17    dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1055      1.17    dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1056      1.17    dante 		adw_memsize = ADW_3550_MEMSIZE;
   1057      1.17    dante 		break;
   1058      1.17    dante 
   1059      1.17    dante 	case ADW_CHIP_ASC38C0800:
   1060  1.25.2.6    skrll 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1061      1.17    dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1062      1.17    dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1063      1.17    dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1064      1.17    dante 		break;
   1065      1.17    dante 
   1066      1.17    dante 	case ADW_CHIP_ASC38C1600:
   1067  1.25.2.6    skrll 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1068      1.17    dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1069      1.17    dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1070      1.17    dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1071      1.17    dante 		break;
   1072  1.25.2.1    skrll 
   1073  1.25.2.1    skrll 	default:
   1074  1.25.2.1    skrll 		return (EINVAL);
   1075      1.17    dante 	}
   1076       1.1    dante 
   1077       1.1    dante 	/*
   1078       1.7    dante 	 * Write the microcode image to RISC memory starting at address 0.
   1079       1.1    dante 	 */
   1080       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1081       1.7    dante 
   1082       1.7    dante 	/* Assume the following compressed format of the microcode buffer:
   1083       1.7    dante 	 *
   1084       1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
   1085       1.7    dante 	 *  by the following byte codes:
   1086       1.7    dante 	 *
   1087       1.7    dante 	 *    1-Byte Code:
   1088       1.7    dante 	 *	00: Emit word 0 in table.
   1089       1.7    dante 	 *	01: Emit word 1 in table.
   1090       1.7    dante 	 *	.
   1091       1.7    dante 	 *	FD: Emit word 253 in table.
   1092       1.7    dante 	 *
   1093       1.7    dante 	 *    Multi-Byte Code:
   1094       1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1095       1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1096       1.7    dante 	 */
   1097       1.7    dante 	word = 0;
   1098      1.17    dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1099      1.17    dante 		if (mcode_data[i] == 0xff) {
   1100      1.17    dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1101       1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1102      1.17    dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1103      1.17    dante 				  mcode_data[i + 2]));
   1104       1.7    dante 				word++;
   1105       1.7    dante 			}
   1106       1.7    dante 			i += 3;
   1107      1.17    dante 		} else if (mcode_data[i] == 0xfe) {
   1108      1.17    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1109      1.17    dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1110      1.17    dante 			    mcode_data[i + 1]));
   1111       1.7    dante 			i += 2;
   1112       1.7    dante 			word++;
   1113       1.1    dante 		} else {
   1114       1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1115      1.17    dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1116      1.17    dante 			 mcode_data[mcode_data[i] * 2]));
   1117       1.7    dante 			word++;
   1118       1.1    dante 		}
   1119       1.1    dante 	}
   1120       1.7    dante 
   1121       1.7    dante 	/*
   1122       1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
   1123       1.7    dante 	 * the expanded mcode size.
   1124       1.7    dante 	 */
   1125       1.7    dante 	word *= 2;
   1126      1.17    dante 	adw_mcode_expanded_size = word;
   1127       1.7    dante 
   1128       1.1    dante 	/*
   1129      1.17    dante 	 * Clear the rest of the Internal RAM.
   1130       1.1    dante 	 */
   1131      1.17    dante 	for (; word < adw_memsize; word += 2) {
   1132       1.7    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1133       1.1    dante 	}
   1134       1.7    dante 
   1135       1.1    dante 	/*
   1136       1.7    dante 	 * Verify the microcode checksum.
   1137       1.1    dante 	 */
   1138       1.7    dante 	sum = 0;
   1139       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1140       1.7    dante 
   1141      1.17    dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1142       1.7    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1143       1.7    dante 	}
   1144       1.1    dante 
   1145      1.17    dante 	if (sum != mcode_chksum) {
   1146      1.17    dante 		return ADW_IERR_MCODE_CHKSUM;
   1147       1.7    dante 	}
   1148       1.1    dante 
   1149       1.1    dante 	/*
   1150       1.7    dante 	 * Restore the RISC memory BIOS region.
   1151       1.1    dante 	 */
   1152      1.16    dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1153      1.17    dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1154      1.17    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1155      1.17    dante 								bios_mem[i]);
   1156      1.17    dante 		} else {
   1157      1.17    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1158      1.17    dante 								bios_mem[i]);
   1159      1.17    dante 		}
   1160       1.7    dante 	}
   1161       1.1    dante 
   1162       1.7    dante 	/*
   1163       1.7    dante 	 * Calculate and write the microcode code checksum to the microcode
   1164      1.16    dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1165       1.7    dante 	 */
   1166      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1167      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1168       1.7    dante 	code_sum = 0;
   1169       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1170       1.7    dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1171       1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1172       1.1    dante 	}
   1173      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1174       1.1    dante 
   1175       1.7    dante 	/*
   1176      1.17    dante 	 * Set the chip type.
   1177       1.7    dante 	 */
   1178      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1179      1.17    dante 
   1180      1.17    dante 	return 0;
   1181      1.17    dante }
   1182      1.17    dante 
   1183      1.17    dante 
   1184      1.17    dante int
   1185      1.17    dante AdwASC3550Cabling(iot, ioh, cfg)
   1186      1.17    dante 	bus_space_tag_t iot;
   1187      1.17    dante 	bus_space_handle_t ioh;
   1188      1.17    dante 	ADW_DVC_CFG *cfg;
   1189      1.17    dante {
   1190      1.17    dante 	u_int16_t	scsi_cfg1;
   1191      1.17    dante 
   1192       1.1    dante 
   1193       1.7    dante 	/*
   1194      1.17    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1195      1.17    dante 	 *
   1196      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1197      1.17    dante 	 * after it is started below.
   1198       1.7    dante 	 */
   1199      1.17    dante 
   1200      1.17    dante 	/* Read current SCSI_CFG1 Register value. */
   1201      1.17    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1202       1.1    dante 
   1203       1.7    dante 	/*
   1204      1.17    dante 	 * If all three connectors are in use in ASC3550, return an error.
   1205       1.7    dante 	 */
   1206      1.17    dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1207      1.17    dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1208      1.17    dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1209      1.17    dante 	}
   1210       1.7    dante 
   1211       1.7    dante 	/*
   1212      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1213      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1214      1.17    dante 	 * found.
   1215       1.7    dante 	 */
   1216      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1217      1.17    dante 		return ADW_IERR_REVERSED_CABLE;
   1218       1.7    dante 	}
   1219       1.7    dante 
   1220       1.7    dante 	/*
   1221      1.17    dante 	 * If this is a differential board and a single-ended device
   1222      1.17    dante 	 * is attached to one of the connectors, return an error.
   1223       1.7    dante 	 */
   1224      1.17    dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1225      1.17    dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1226      1.17    dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1227      1.17    dante 	}
   1228       1.7    dante 
   1229       1.7    dante 	/*
   1230      1.17    dante 	 * If automatic termination control is enabled, then set the
   1231      1.17    dante 	 * termination value based on a table listed in a_condor.h.
   1232       1.7    dante 	 *
   1233      1.17    dante 	 * If manual termination was specified with an EEPROM setting
   1234      1.17    dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1235      1.17    dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1236       1.7    dante 	 */
   1237      1.17    dante 	if (cfg->termination == 0) {
   1238      1.17    dante 		/*
   1239      1.17    dante 		 * The software always controls termination by setting
   1240      1.17    dante 		 * TERM_CTL_SEL.
   1241      1.17    dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1242      1.17    dante 		 * termination.
   1243      1.17    dante 		 */
   1244      1.17    dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1245      1.17    dante 
   1246      1.17    dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1247      1.17    dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1248      1.17    dante 			case 0x3: case 0x7: case 0xB:
   1249      1.17    dante 			case 0xD: case 0xE: case 0xF:
   1250      1.17    dante 				cfg->termination |=
   1251      1.17    dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1252      1.17    dante 				break;
   1253      1.17    dante 
   1254      1.17    dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1255      1.17    dante 			case 0x1: case 0x5: case 0x9:
   1256      1.17    dante 			case 0xA: case 0xC:
   1257      1.17    dante 				cfg->termination |= ADW_TERM_CTL_H;
   1258      1.17    dante 				break;
   1259      1.17    dante 
   1260      1.17    dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1261      1.17    dante 			case 0x2: case 0x6:
   1262      1.17    dante 				break;
   1263      1.17    dante 		}
   1264       1.7    dante 	}
   1265       1.7    dante 
   1266       1.7    dante 	/*
   1267      1.17    dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1268      1.17    dante 	 */
   1269      1.17    dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1270      1.17    dante 
   1271      1.17    dante 	/*
   1272      1.17    dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1273      1.17    dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1274      1.17    dante 	 * referenced, because the hardware internally inverts
   1275      1.17    dante 	 * the Termination High and Low bits if TERM_POL is set.
   1276      1.17    dante 	 */
   1277      1.17    dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1278      1.17    dante 
   1279      1.17    dante 	/*
   1280      1.17    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1281      1.17    dante 	 *
   1282      1.17    dante 	 * Set filter value and possibly modified termination control
   1283      1.17    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1284       1.7    dante 	 *
   1285      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1286      1.17    dante 	 * after it is started below.
   1287       1.7    dante 	 */
   1288      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1289      1.17    dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1290       1.7    dante 
   1291       1.7    dante 	/*
   1292      1.17    dante 	 * Set MEM_CFG Microcode Default Value
   1293       1.7    dante 	 *
   1294      1.17    dante 	 * The microcode will set the MEM_CFG register using this value
   1295       1.7    dante 	 * after it is started below.
   1296      1.17    dante 	 *
   1297      1.17    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1298      1.17    dante 	 * are defined.
   1299      1.17    dante 	 *
   1300      1.17    dante 	 * ASC-3550 has 8KB internal memory.
   1301       1.7    dante 	 */
   1302      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1303      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1304      1.17    dante 
   1305      1.17    dante 	return 0;
   1306      1.17    dante }
   1307      1.17    dante 
   1308      1.17    dante 
   1309      1.17    dante int
   1310      1.17    dante AdwASC38C0800Cabling(iot, ioh, cfg)
   1311      1.17    dante 	bus_space_tag_t iot;
   1312      1.17    dante 	bus_space_handle_t ioh;
   1313      1.17    dante 	ADW_DVC_CFG *cfg;
   1314      1.17    dante {
   1315      1.17    dante 	u_int16_t	scsi_cfg1;
   1316      1.17    dante 
   1317       1.7    dante 
   1318       1.7    dante 	/*
   1319       1.7    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1320       1.7    dante 	 *
   1321       1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1322       1.7    dante 	 * after it is started below.
   1323       1.7    dante 	 */
   1324       1.7    dante 
   1325       1.7    dante 	/* Read current SCSI_CFG1 Register value. */
   1326       1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1327       1.7    dante 
   1328       1.7    dante 	/*
   1329      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1330      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1331      1.17    dante 	 * found.
   1332       1.7    dante 	 */
   1333      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1334      1.16    dante 		return ADW_IERR_REVERSED_CABLE;
   1335       1.7    dante 	}
   1336       1.7    dante 
   1337       1.7    dante 	/*
   1338      1.17    dante 	 * All kind of combinations of devices attached to one of four
   1339      1.17    dante 	 * connectors are acceptable except HVD device attached.
   1340      1.17    dante 	 * For example, LVD device can be attached to SE connector while
   1341      1.17    dante 	 * SE device attached to LVD connector.
   1342      1.17    dante 	 * If LVD device attached to SE connector, it only runs up to
   1343      1.17    dante 	 * Ultra speed.
   1344      1.17    dante 	 *
   1345      1.17    dante 	 * If an HVD device is attached to one of LVD connectors, return
   1346      1.17    dante 	 * an error.
   1347      1.17    dante 	 * However, there is no way to detect HVD device attached to
   1348      1.17    dante 	 * SE connectors.
   1349       1.7    dante 	 */
   1350       1.7    dante 	if (scsi_cfg1 & ADW_HVD) {
   1351      1.16    dante 		return ADW_IERR_HVD_DEVICE;
   1352       1.7    dante 	}
   1353       1.7    dante 
   1354       1.7    dante 	/*
   1355       1.7    dante 	 * If either SE or LVD automatic termination control is enabled, then
   1356       1.7    dante 	 * set the termination value based on a table listed in a_condor.h.
   1357       1.7    dante 	 *
   1358       1.7    dante 	 * If manual termination was specified with an EEPROM setting then
   1359      1.17    dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1360      1.17    dante 	 * to be 'ored' into SCSI_CFG1.
   1361       1.7    dante 	 */
   1362      1.17    dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1363       1.7    dante 		/* SE automatic termination control is enabled. */
   1364       1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1365       1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1366       1.7    dante 			case 0x1: case 0x2: case 0x3:
   1367      1.17    dante 				cfg->termination |= ADW_TERM_SE;
   1368       1.7    dante 				break;
   1369       1.7    dante 
   1370       1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1371       1.7    dante 			case 0x0:
   1372      1.17    dante 				cfg->termination |= ADW_TERM_SE_HI;
   1373       1.7    dante 				break;
   1374       1.7    dante 		}
   1375       1.7    dante 	}
   1376       1.7    dante 
   1377      1.17    dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1378       1.7    dante 		/* LVD automatic termination control is enabled. */
   1379       1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1380       1.7    dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1381       1.7    dante 			case 0x4: case 0x8: case 0xC:
   1382      1.17    dante 				cfg->termination |= ADW_TERM_LVD;
   1383       1.7    dante 				break;
   1384       1.7    dante 
   1385       1.7    dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1386       1.7    dante 			case 0x0:
   1387       1.7    dante 				break;
   1388       1.7    dante 		}
   1389       1.7    dante 	}
   1390       1.7    dante 
   1391       1.7    dante 	/*
   1392       1.7    dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1393       1.7    dante 	 */
   1394       1.7    dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1395       1.7    dante 
   1396       1.7    dante 	/*
   1397       1.7    dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1398       1.7    dante 	 */
   1399      1.17    dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1400       1.7    dante 
   1401       1.7    dante 	/*
   1402      1.17    dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1403      1.17    dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1404      1.17    dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1405       1.7    dante 	 */
   1406       1.7    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1407      1.17    dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1408       1.7    dante 
   1409       1.7    dante 	/*
   1410       1.7    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1411       1.7    dante 	 *
   1412       1.7    dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1413       1.7    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1414       1.7    dante 	 *
   1415       1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1416       1.7    dante 	 * after it is started below.
   1417       1.7    dante 	 */
   1418      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1419       1.7    dante 
   1420       1.7    dante 	/*
   1421       1.7    dante 	 * Set MEM_CFG Microcode Default Value
   1422       1.7    dante 	 *
   1423       1.7    dante 	 * The microcode will set the MEM_CFG register using this value
   1424       1.7    dante 	 * after it is started below.
   1425       1.7    dante 	 *
   1426       1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1427       1.7    dante 	 * are defined.
   1428       1.7    dante 	 *
   1429       1.7    dante 	 * ASC-38C0800 has 16KB internal memory.
   1430       1.7    dante 	 */
   1431      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1432      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1433       1.7    dante 
   1434      1.17    dante 	return 0;
   1435      1.17    dante }
   1436       1.7    dante 
   1437       1.7    dante 
   1438      1.17    dante int
   1439      1.17    dante AdwASC38C1600Cabling(iot, ioh, cfg)
   1440      1.17    dante 	bus_space_tag_t iot;
   1441      1.17    dante 	bus_space_handle_t ioh;
   1442      1.17    dante 	ADW_DVC_CFG *cfg;
   1443      1.17    dante {
   1444      1.17    dante 	u_int16_t	scsi_cfg1;
   1445       1.7    dante 
   1446       1.7    dante 
   1447       1.7    dante 	/*
   1448      1.17    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1449      1.17    dante 	 *
   1450      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1451      1.17    dante 	 * after it is started below.
   1452      1.17    dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1453      1.17    dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1454       1.7    dante 	 */
   1455       1.7    dante 
   1456      1.17    dante 	/* Read current SCSI_CFG1 Register value. */
   1457      1.17    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1458       1.7    dante 
   1459       1.7    dante 	/*
   1460      1.17    dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1461      1.17    dante 	 * will be set. Check for and return an error if this condition is
   1462      1.17    dante 	 * found.
   1463       1.7    dante 	 */
   1464      1.17    dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1465      1.17    dante 		return ADW_IERR_REVERSED_CABLE;
   1466       1.7    dante 	}
   1467       1.7    dante 
   1468       1.7    dante 	/*
   1469      1.17    dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1470  1.25.2.1    skrll 	 * cannot be connected to either connector. An LVD device or SE device
   1471  1.25.2.1    skrll 	 * may be connected to either connector. If an SE device is connected,
   1472      1.25  tsutsui 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1473       1.7    dante 	 *
   1474      1.17    dante 	 * If an HVD device is attached, return an error.
   1475       1.7    dante 	 */
   1476      1.17    dante 	if (scsi_cfg1 & ADW_HVD) {
   1477      1.17    dante 		return ADW_IERR_HVD_DEVICE;
   1478      1.17    dante 	}
   1479       1.7    dante 
   1480       1.7    dante 	/*
   1481      1.17    dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1482      1.17    dante 	 * termination because there are two connectors for each function.
   1483      1.17    dante 	 * Each function may use either LVD or SE mode.
   1484      1.17    dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1485      1.17    dante 	 * used for each function.
   1486      1.17    dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1487      1.17    dante 	 * for the function, then set the termination value based on a table
   1488      1.17    dante 	 * listed in adwlib.h.
   1489      1.17    dante 	 *
   1490      1.17    dante 	 * If manual termination is specified in the EEPROM for the function,
   1491      1.17    dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1492      1.17    dante 	 * ready to be 'ored' into SCSI_CFG1.
   1493       1.7    dante 	 */
   1494      1.17    dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1495      1.17    dante 		/* SE automatic termination control is enabled. */
   1496      1.17    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1497      1.17    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1498      1.17    dante 			case 0x1: case 0x2: case 0x3:
   1499      1.17    dante 				cfg->termination |= ADW_TERM_SE;
   1500      1.17    dante 				break;
   1501       1.7    dante 
   1502      1.17    dante 			case 0x0:
   1503      1.21    lukem #if 0
   1504      1.17    dante 	/* !!!!TODO!!!! */
   1505      1.21    lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1506      1.17    dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1507      1.21    lukem 				}
   1508      1.21    lukem 				else
   1509      1.21    lukem #endif
   1510      1.21    lukem 				{
   1511      1.17    dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1512      1.17    dante 					cfg->termination |= ADW_TERM_SE_HI;
   1513      1.21    lukem 				}
   1514      1.17    dante 				break;
   1515      1.10    dante 			}
   1516       1.7    dante 	}
   1517       1.7    dante 
   1518      1.17    dante 	/*
   1519      1.17    dante 	 * Clear any set TERM_SE bits.
   1520      1.17    dante 	 */
   1521      1.17    dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1522       1.7    dante 
   1523       1.7    dante 	/*
   1524      1.17    dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1525       1.7    dante 	 */
   1526      1.17    dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1527       1.7    dante 
   1528       1.7    dante 	/*
   1529      1.17    dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1530      1.17    dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1531      1.17    dante 	 * Register Value.
   1532       1.7    dante 	 */
   1533      1.17    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1534       1.7    dante 
   1535       1.7    dante 	/*
   1536      1.17    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1537      1.17    dante 	 *
   1538      1.17    dante 	 * Set possibly modified termination control bits in the Microcode
   1539      1.17    dante 	 * SCSI_CFG1 Register Value.
   1540       1.7    dante 	 *
   1541      1.17    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1542      1.17    dante 	 * after it is started below.
   1543       1.7    dante 	 */
   1544      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1545       1.7    dante 
   1546      1.17    dante 	/*
   1547      1.17    dante 	 * Set MEM_CFG Microcode Default Value
   1548      1.17    dante 	 *
   1549      1.17    dante 	 * The microcode will set the MEM_CFG register using this value
   1550      1.17    dante 	 * after it is started below.
   1551      1.17    dante 	 *
   1552      1.17    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1553      1.17    dante 	 * are defined.
   1554      1.17    dante 	 *
   1555      1.17    dante 	 * ASC-38C1600 has 32KB internal memory.
   1556      1.17    dante 	 */
   1557      1.17    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1558      1.17    dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1559       1.7    dante 
   1560      1.17    dante 	return 0;
   1561       1.7    dante }
   1562       1.7    dante 
   1563       1.7    dante 
   1564       1.7    dante /*
   1565       1.7    dante  * Read EEPROM configuration into the specified buffer.
   1566       1.7    dante  *
   1567       1.7    dante  * Return a checksum based on the EEPROM configuration read.
   1568       1.7    dante  */
   1569       1.7    dante static u_int16_t
   1570      1.17    dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1571       1.7    dante 	bus_space_tag_t		iot;
   1572       1.7    dante 	bus_space_handle_t	ioh;
   1573      1.17    dante 	ADW_EEPROM		*cfg_buf;
   1574       1.7    dante {
   1575       1.7    dante 	u_int16_t	       wval, chksum;
   1576       1.7    dante 	u_int16_t	       *wbuf;
   1577       1.7    dante 	int		    eep_addr;
   1578       1.7    dante 
   1579       1.7    dante 
   1580       1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   1581       1.7    dante 	chksum = 0;
   1582       1.7    dante 
   1583       1.7    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1584      1.10    dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1585      1.10    dante 		eep_addr++, wbuf++) {
   1586      1.16    dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1587       1.7    dante 		chksum += wval;
   1588       1.7    dante 		*wbuf = wval;
   1589       1.7    dante 	}
   1590       1.7    dante 
   1591      1.16    dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1592       1.7    dante 	wbuf++;
   1593       1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1594       1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1595       1.7    dante 			eep_addr++, wbuf++) {
   1596      1.16    dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1597       1.7    dante 	}
   1598       1.7    dante 
   1599       1.7    dante 	return chksum;
   1600       1.7    dante }
   1601       1.7    dante 
   1602       1.7    dante 
   1603       1.7    dante /*
   1604       1.7    dante  * Read the EEPROM from specified location
   1605       1.7    dante  */
   1606       1.7    dante static u_int16_t
   1607      1.16    dante AdwReadEEPWord(iot, ioh, eep_word_addr)
   1608       1.7    dante 	bus_space_tag_t		iot;
   1609       1.7    dante 	bus_space_handle_t	ioh;
   1610       1.7    dante 	int			eep_word_addr;
   1611       1.7    dante {
   1612       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1613       1.7    dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1614      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1615       1.7    dante 
   1616       1.7    dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1617       1.7    dante }
   1618       1.7    dante 
   1619       1.7    dante 
   1620       1.7    dante /*
   1621       1.7    dante  * Wait for EEPROM command to complete
   1622       1.7    dante  */
   1623       1.7    dante static void
   1624      1.16    dante AdwWaitEEPCmd(iot, ioh)
   1625       1.7    dante 	bus_space_tag_t		iot;
   1626       1.7    dante 	bus_space_handle_t	ioh;
   1627       1.7    dante {
   1628       1.7    dante 	int eep_delay_ms;
   1629       1.7    dante 
   1630       1.7    dante 
   1631       1.7    dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1632       1.7    dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1633       1.7    dante 				ASC_EEP_CMD_DONE) {
   1634       1.7    dante 			break;
   1635       1.7    dante 		}
   1636      1.16    dante 		AdwSleepMilliSecond(1);
   1637       1.7    dante 	}
   1638       1.7    dante 
   1639       1.7    dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1640       1.7    dante }
   1641       1.7    dante 
   1642       1.7    dante 
   1643       1.7    dante /*
   1644       1.7    dante  * Write the EEPROM from 'cfg_buf'.
   1645       1.7    dante  */
   1646       1.7    dante static void
   1647      1.17    dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1648      1.10    dante 	bus_space_tag_t		iot;
   1649      1.10    dante 	bus_space_handle_t	ioh;
   1650      1.17    dante 	ADW_EEPROM		*cfg_buf;
   1651      1.10    dante {
   1652      1.10    dante 	u_int16_t *wbuf;
   1653      1.10    dante 	u_int16_t addr, chksum;
   1654      1.10    dante 
   1655      1.10    dante 
   1656      1.10    dante 	wbuf = (u_int16_t *) cfg_buf;
   1657      1.10    dante 	chksum = 0;
   1658      1.10    dante 
   1659      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1660      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1661      1.10    dante 
   1662      1.10    dante 	/*
   1663      1.10    dante 	 * Write EEPROM from word 0 to word 20
   1664      1.10    dante 	 */
   1665      1.10    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1666      1.10    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1667      1.10    dante 		chksum += *wbuf;
   1668      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1669      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1670      1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   1671      1.16    dante 		AdwWaitEEPCmd(iot, ioh);
   1672      1.16    dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1673      1.10    dante 	}
   1674      1.10    dante 
   1675      1.10    dante 	/*
   1676      1.10    dante 	 * Write EEPROM checksum at word 21
   1677      1.10    dante 	 */
   1678      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1679      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1680      1.10    dante 			ASC_EEP_CMD_WRITE | addr);
   1681      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1682      1.10    dante 	wbuf++;        /* skip over check_sum */
   1683      1.10    dante 
   1684      1.10    dante 	/*
   1685      1.10    dante 	 * Write EEPROM OEM name at words 22 to 29
   1686      1.10    dante 	 */
   1687      1.10    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1688      1.10    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1689      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1690      1.10    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1691      1.10    dante 				ASC_EEP_CMD_WRITE | addr);
   1692      1.16    dante 		AdwWaitEEPCmd(iot, ioh);
   1693      1.10    dante 	}
   1694      1.10    dante 
   1695      1.10    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1696      1.10    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1697      1.16    dante 	AdwWaitEEPCmd(iot, ioh);
   1698      1.10    dante 
   1699      1.10    dante 	return;
   1700      1.10    dante }
   1701      1.10    dante 
   1702      1.10    dante 
   1703      1.10    dante /*
   1704      1.16    dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1705       1.7    dante  *
   1706       1.7    dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1707       1.7    dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1708       1.7    dante  *   RISC to notify it a new command is ready to be executed.
   1709       1.1    dante  *
   1710       1.7    dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1711       1.7    dante  * set to SCSI_MAX_RETRY.
   1712       1.1    dante  *
   1713       1.7    dante  * Return:
   1714       1.7    dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1715       1.7    dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1716       1.7    dante  *                       request completes.
   1717       1.7    dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1718       1.7    dante  *                       host IC error.
   1719       1.1    dante  */
   1720       1.7    dante int
   1721      1.16    dante AdwExeScsiQueue(sc, scsiq)
   1722       1.7    dante ADW_SOFTC	*sc;
   1723       1.7    dante ADW_SCSI_REQ_Q	*scsiq;
   1724       1.1    dante {
   1725       1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   1726       1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1727       1.7    dante 	ADW_CCB		*ccb;
   1728       1.7    dante 	u_int32_t	req_paddr;
   1729      1.10    dante 	ADW_CARRIER	*new_carrp;
   1730       1.7    dante 
   1731       1.7    dante 	/*
   1732       1.7    dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1733       1.7    dante 	 */
   1734       1.7    dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1735       1.7    dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1736       1.7    dante 		scsiq->done_status = QD_WITH_ERROR;
   1737       1.7    dante 		return ADW_ERROR;
   1738       1.7    dante 	}
   1739       1.7    dante 
   1740      1.10    dante 	/*
   1741      1.10    dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1742      1.10    dante 	 */
   1743  1.25.2.5    skrll 
   1744       1.7    dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1745       1.7    dante 
   1746       1.7    dante 	/*
   1747      1.16    dante 	 * Allocate a carrier and initialize fields.
   1748       1.7    dante 	 */
   1749       1.7    dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1750       1.7    dante 		return ADW_BUSY;
   1751       1.7    dante 	}
   1752      1.16    dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1753      1.12    dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1754       1.7    dante 	sc->carr_pending_cnt++;
   1755       1.7    dante 
   1756       1.7    dante 	/*
   1757      1.12    dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1758       1.7    dante 	 * to the stopper value. The current stopper will be changed
   1759       1.7    dante 	 * below to point to the new stopper.
   1760       1.7    dante 	 */
   1761      1.22   briggs 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1762       1.7    dante 
   1763       1.7    dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1764       1.7    dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1765       1.7    dante 
   1766       1.7    dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1767      1.22   briggs 	scsiq->scsiq_rptr = htole32(req_paddr);
   1768       1.7    dante 
   1769       1.7    dante 	/*
   1770      1.12    dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1771       1.7    dante 	 * order during initialization.
   1772       1.7    dante 	 */
   1773      1.12    dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1774      1.12    dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1775       1.1    dante 
   1776       1.7    dante 	/*
   1777       1.7    dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1778       1.7    dante 	 * the microcode. The newly allocated stopper will become the new
   1779       1.7    dante 	 * stopper.
   1780       1.7    dante 	 */
   1781      1.22   briggs 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1782       1.1    dante 
   1783       1.1    dante 	/*
   1784      1.12    dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1785       1.7    dante 	 * physical address of the new stopper. The RISC can only
   1786       1.7    dante 	 * follow physical addresses.
   1787       1.1    dante 	 */
   1788      1.12    dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1789       1.1    dante 
   1790      1.12    dante #if ADW_DEBUG
   1791      1.12    dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1792      1.12    dante 			sc->icq_sp->carr_id,
   1793      1.12    dante 			sc->icq_sp->carr_ba,
   1794      1.12    dante 			sc->icq_sp->areq_ba,
   1795      1.12    dante 			sc->icq_sp->next_ba);
   1796      1.12    dante #endif
   1797       1.1    dante 	/*
   1798       1.7    dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1799       1.1    dante 	 */
   1800       1.7    dante 	sc->icq_sp = new_carrp;
   1801      1.11    dante 
   1802      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1803      1.16    dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1804       1.7    dante 		/*
   1805      1.10    dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1806      1.10    dante 		 * pointer.
   1807      1.10    dante 		 */
   1808      1.20   itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1809      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1810      1.10    dante 			/*
   1811      1.10    dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1812      1.10    dante 			 * command 'clr_tickle_a' does not work unless the host
   1813      1.10    dante 			 * value is cleared.
   1814      1.10    dante 			 */
   1815      1.10    dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1816      1.20   itojun 					ADW_TICKLE_NOP);
   1817      1.10    dante 		}
   1818      1.16    dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1819      1.10    dante 		/*
   1820      1.10    dante 		 * Notify the RISC a carrier is ready by writing the physical
   1821      1.10    dante 		 * address of the new carrier stopper to the COMMA register.
   1822       1.7    dante 		 */
   1823      1.10    dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1824      1.22   briggs 				le32toh(new_carrp->carr_ba));
   1825       1.7    dante 	}
   1826       1.7    dante 
   1827      1.10    dante 	/*
   1828      1.10    dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1829      1.10    dante 	 */
   1830  1.25.2.5    skrll 
   1831       1.7    dante 	return ADW_SUCCESS;
   1832       1.1    dante }
   1833       1.1    dante 
   1834       1.7    dante 
   1835       1.7    dante void
   1836      1.16    dante AdwResetChip(iot, ioh)
   1837       1.7    dante 	bus_space_tag_t iot;
   1838       1.7    dante 	bus_space_handle_t ioh;
   1839       1.1    dante {
   1840       1.7    dante 
   1841       1.7    dante 	/*
   1842       1.7    dante 	 * Reset Chip.
   1843       1.7    dante 	 */
   1844       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1845       1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   1846      1.16    dante 	AdwSleepMilliSecond(100);
   1847       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1848       1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1849       1.1    dante }
   1850       1.1    dante 
   1851       1.7    dante 
   1852       1.1    dante /*
   1853       1.1    dante  * Reset SCSI Bus and purge all outstanding requests.
   1854       1.1    dante  *
   1855       1.1    dante  * Return Value:
   1856       1.7    dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1857       1.7    dante  *      ADW_FALSE(0) -  Microcode command failed.
   1858       1.7    dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1859       1.7    dante  *                      may be hung which requires driver recovery.
   1860       1.1    dante  */
   1861       1.1    dante int
   1862      1.16    dante AdwResetCCB(sc)
   1863       1.7    dante ADW_SOFTC	*sc;
   1864       1.1    dante {
   1865       1.7    dante 	int	    status;
   1866       1.7    dante 
   1867       1.7    dante 	/*
   1868       1.7    dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1869       1.7    dante 	 * the SCSI Bus Reset signal.
   1870       1.7    dante 	 */
   1871      1.16    dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1872      1.11    dante 	if (status != ADW_TRUE) {
   1873       1.7    dante 		return status;
   1874       1.7    dante 	}
   1875       1.7    dante 
   1876       1.7    dante 	/*
   1877       1.7    dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1878       1.7    dante 	 *
   1879       1.7    dante 	 * The hold time delay is done on the host because the RISC has no
   1880       1.7    dante 	 * microsecond accurate timer.
   1881       1.7    dante 	 */
   1882      1.16    dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1883       1.1    dante 
   1884       1.7    dante 	/*
   1885       1.7    dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1886       1.7    dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1887       1.7    dante 	 */
   1888      1.16    dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1889      1.11    dante 	if (status != ADW_TRUE) {
   1890       1.7    dante 		return status;
   1891       1.7    dante 	}
   1892       1.1    dante 
   1893      1.16    dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1894       1.1    dante 
   1895       1.1    dante 	return status;
   1896       1.1    dante }
   1897       1.1    dante 
   1898       1.7    dante 
   1899       1.1    dante /*
   1900       1.7    dante  * Reset chip and SCSI Bus.
   1901       1.7    dante  *
   1902       1.7    dante  * Return Value:
   1903       1.7    dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1904       1.7    dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1905       1.1    dante  */
   1906       1.7    dante int
   1907      1.16    dante AdwResetSCSIBus(sc)
   1908       1.7    dante ADW_SOFTC	*sc;
   1909       1.1    dante {
   1910       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   1911       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1912       1.7    dante 	int		status;
   1913  1.25.2.1    skrll 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1914  1.25.2.1    skrll 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1915       1.7    dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1916       1.7    dante 	u_int16_t	bios_sig;
   1917       1.7    dante 
   1918       1.7    dante 
   1919       1.7    dante 	/*
   1920       1.7    dante 	 * Save current per TID negotiated values.
   1921       1.7    dante 	 */
   1922      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1923      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1924      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1925      1.16    dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1926      1.10    dante 	}
   1927      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1928      1.11    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1929      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1930       1.7    dante 			max_cmd[tid]);
   1931       1.7    dante 	}
   1932       1.7    dante 
   1933       1.7    dante 	/*
   1934      1.17    dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1935      1.17    dante 	 * by clearing the BIOS signature word.
   1936       1.7    dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1937       1.7    dante 	 * needed if the BIOS signature word is present.
   1938       1.7    dante 	 */
   1939      1.16    dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1940      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1941       1.7    dante 
   1942       1.7    dante 	/*
   1943       1.7    dante 	 * Stop chip and reset it.
   1944       1.7    dante 	 */
   1945       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1946       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1947       1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   1948      1.16    dante 	AdwSleepMilliSecond(100);
   1949       1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1950       1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1951       1.7    dante 
   1952       1.7    dante 	/*
   1953       1.7    dante 	 * Reset Adv Library error code, if any, and try
   1954       1.7    dante 	 * re-initializing the chip.
   1955      1.17    dante 	 * Then translate initialization return value to status value.
   1956       1.7    dante 	 */
   1957      1.17    dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1958       1.1    dante 
   1959       1.7    dante 	/*
   1960       1.7    dante 	 * Restore the BIOS signature word.
   1961       1.7    dante 	 */
   1962      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1963       1.1    dante 
   1964       1.1    dante 	/*
   1965       1.7    dante 	 * Restore per TID negotiated values.
   1966       1.1    dante 	 */
   1967      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1968      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1969      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1970      1.16    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1971      1.10    dante 	}
   1972      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1973       1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1974      1.16    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1975       1.7    dante 			max_cmd[tid]);
   1976       1.7    dante 	}
   1977       1.1    dante 
   1978       1.7    dante 	return status;
   1979       1.1    dante }
   1980       1.1    dante 
   1981       1.1    dante 
   1982       1.1    dante /*
   1983       1.1    dante  * Adv Library Interrupt Service Routine
   1984       1.1    dante  *
   1985       1.1    dante  *  This function is called by a driver's interrupt service routine.
   1986       1.1    dante  *  The function disables and re-enables interrupts.
   1987       1.1    dante  *
   1988       1.7    dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1989       1.1    dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1990       1.1    dante  *
   1991      1.16    dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1992       1.1    dante  *  when there is no hardware interrupt condition present. It will
   1993       1.1    dante  *  always check for completed idle commands and microcode requests.
   1994       1.1    dante  *  This is an important feature that shouldn't be changed because it
   1995       1.1    dante  *  allows commands to be completed from polling mode loops.
   1996       1.1    dante  *
   1997       1.1    dante  * Return:
   1998       1.1    dante  *   ADW_TRUE(1) - interrupt was pending
   1999       1.1    dante  *   ADW_FALSE(0) - no interrupt was pending
   2000       1.1    dante  */
   2001       1.1    dante int
   2002      1.16    dante AdwISR(sc)
   2003       1.7    dante ADW_SOFTC	*sc;
   2004       1.1    dante {
   2005       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2006       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2007       1.7    dante 	u_int8_t	int_stat;
   2008       1.7    dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2009       1.7    dante 	u_int32_t	irq_next_pa;
   2010       1.7    dante 	ADW_SCSI_REQ_Q	*scsiq;
   2011       1.7    dante 	ADW_CCB		*ccb;
   2012      1.11    dante 	int		s;
   2013      1.11    dante 
   2014       1.1    dante 
   2015      1.11    dante 	s = splbio();
   2016       1.1    dante 
   2017       1.1    dante 	/* Reading the register clears the interrupt. */
   2018       1.1    dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2019       1.1    dante 
   2020       1.7    dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2021       1.7    dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2022      1.11    dante 		splx(s);
   2023       1.7    dante 		return ADW_FALSE;
   2024       1.1    dante 	}
   2025       1.7    dante 
   2026       1.7    dante 	/*
   2027       1.7    dante 	 * Notify the driver of an asynchronous microcode condition by
   2028       1.7    dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2029      1.16    dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2030       1.1    dante 	 */
   2031       1.7    dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2032       1.7    dante 		u_int8_t intrb_code;
   2033       1.7    dante 
   2034      1.16    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2035      1.10    dante 
   2036      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2037      1.16    dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2038      1.10    dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2039      1.10    dante 				sc->carr_pending_cnt != 0) {
   2040      1.10    dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2041      1.20   itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2042      1.16    dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2043      1.10    dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2044      1.20   itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2045      1.10    dante 				}
   2046      1.10    dante 			}
   2047       1.7    dante 		}
   2048       1.7    dante 
   2049       1.7    dante 		if (sc->async_callback != 0) {
   2050       1.7    dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2051       1.1    dante 		}
   2052       1.1    dante 	}
   2053       1.7    dante 
   2054       1.1    dante 	/*
   2055       1.7    dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2056       1.1    dante 	 */
   2057      1.22   briggs 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2058       1.7    dante 	{
   2059      1.12    dante #if ADW_DEBUG
   2060      1.12    dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2061      1.12    dante 				sc->irq_sp->carr_id,
   2062      1.12    dante 				sc->irq_sp->carr_ba,
   2063      1.12    dante 				sc->irq_sp->areq_ba,
   2064      1.12    dante 				sc->irq_sp->next_ba);
   2065      1.12    dante #endif
   2066       1.7    dante 		/*
   2067      1.10    dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2068      1.10    dante 		 * structure.
   2069      1.12    dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2070       1.7    dante 		 *
   2071       1.7    dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2072      1.12    dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2073      1.10    dante 		 * The conversion below complements the conversion of
   2074      1.16    dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2075       1.7    dante 		 */
   2076      1.12    dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2077       1.7    dante 		scsiq = &ccb->scsiq;
   2078      1.12    dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2079       1.7    dante 
   2080      1.10    dante 		/*
   2081      1.10    dante 		 * Request finished with good status and the queue was not
   2082      1.10    dante 		 * DMAed to host memory by the firmware. Set all status fields
   2083      1.10    dante 		 * to indicate good status.
   2084      1.10    dante 		 */
   2085      1.22   briggs 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2086      1.10    dante 			scsiq->done_status = QD_NO_ERROR;
   2087      1.10    dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2088      1.10    dante 			scsiq->data_cnt = 0L;
   2089       1.7    dante 		}
   2090       1.1    dante 
   2091       1.1    dante 		/*
   2092       1.7    dante 		 * Advance the stopper pointer to the next carrier
   2093       1.7    dante 		 * ignoring the lower four bits. Free the previous
   2094       1.7    dante 		 * stopper carrier.
   2095       1.1    dante 		 */
   2096       1.7    dante 		free_carrp = sc->irq_sp;
   2097      1.16    dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2098       1.7    dante 
   2099  1.25.2.1    skrll 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2100      1.16    dante 					: sc->carr_freelist->carr_ba;
   2101       1.7    dante 		sc->carr_freelist = free_carrp;
   2102       1.7    dante 		sc->carr_pending_cnt--;
   2103       1.1    dante 
   2104       1.1    dante 		/*
   2105       1.1    dante 		 * Clear request microcode control flag.
   2106       1.1    dante 		 */
   2107       1.1    dante 		scsiq->cntl = 0;
   2108       1.1    dante 
   2109       1.1    dante 		/*
   2110       1.1    dante 		 * Check Condition handling
   2111       1.1    dante 		 */
   2112       1.1    dante 		/*
   2113       1.1    dante 		 * If the command that completed was a SCSI INQUIRY and
   2114       1.1    dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2115       1.1    dante 		 * command information for the device.
   2116       1.1    dante 		 */
   2117       1.7    dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2118      1.10    dante 		    scsiq->cdb[0] == INQUIRY &&
   2119      1.10    dante 		    scsiq->target_lun == 0) {
   2120      1.16    dante 			AdwInquiryHandling(sc, scsiq);
   2121       1.1    dante 		}
   2122       1.1    dante 
   2123       1.1    dante 		/*
   2124       1.1    dante 		 * Notify the driver of the completed request by passing
   2125       1.1    dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2126       1.1    dante 		 */
   2127       1.7    dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2128       1.1    dante 		/*
   2129       1.1    dante 		 * Note: After the driver callback function is called, 'scsiq'
   2130       1.1    dante 		 * can no longer be referenced.
   2131       1.1    dante 		 *
   2132       1.1    dante 		 * Fall through and continue processing other completed
   2133       1.1    dante 		 * requests...
   2134       1.1    dante 		 */
   2135       1.1    dante 	}
   2136      1.11    dante 
   2137      1.11    dante 	splx(s);
   2138       1.7    dante 
   2139       1.7    dante 	return ADW_TRUE;
   2140       1.1    dante }
   2141       1.1    dante 
   2142       1.7    dante 
   2143       1.1    dante /*
   2144       1.1    dante  * Send an idle command to the chip and wait for completion.
   2145       1.1    dante  *
   2146       1.7    dante  * Command completion is polled for once per microsecond.
   2147       1.7    dante  *
   2148       1.7    dante  * The function can be called from anywhere including an interrupt handler.
   2149      1.10    dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2150       1.7    dante  * functions to prevent reentrancy.
   2151       1.1    dante  *
   2152       1.1    dante  * Return Values:
   2153       1.1    dante  *   ADW_TRUE - command completed successfully
   2154       1.1    dante  *   ADW_FALSE - command failed
   2155       1.7    dante  *   ADW_ERROR - command timed out
   2156       1.1    dante  */
   2157       1.1    dante int
   2158      1.16    dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2159       1.7    dante ADW_SOFTC      *sc;
   2160       1.7    dante u_int16_t       idle_cmd;
   2161       1.7    dante u_int32_t       idle_cmd_parameter;
   2162       1.1    dante {
   2163       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2164       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2165      1.13    dante 	u_int16_t	result;
   2166      1.10    dante 	u_int32_t	i, j, s;
   2167       1.1    dante 
   2168      1.10    dante 	s = splbio();
   2169       1.7    dante 
   2170       1.7    dante 	/*
   2171       1.7    dante 	 * Clear the idle command status which is set by the microcode
   2172       1.7    dante 	 * to a non-zero value to indicate when the command is completed.
   2173       1.7    dante 	 */
   2174      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2175       1.1    dante 
   2176       1.1    dante 	/*
   2177       1.1    dante 	 * Write the idle command value after the idle command parameter
   2178       1.1    dante 	 * has been written to avoid a race condition. If the order is not
   2179       1.1    dante 	 * followed, the microcode may process the idle command before the
   2180       1.1    dante 	 * parameters have been written to LRAM.
   2181       1.1    dante 	 */
   2182      1.16    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2183      1.13    dante 			idle_cmd_parameter);
   2184      1.16    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2185       1.1    dante 
   2186       1.1    dante 	/*
   2187       1.7    dante 	 * Tickle the RISC to tell it to process the idle command.
   2188       1.1    dante 	 */
   2189      1.20   itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2190      1.16    dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2191       1.1    dante 		/*
   2192       1.7    dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2193       1.7    dante 		 * command 'clr_tickle_b' does not work unless the host
   2194       1.7    dante 		 * value is cleared.
   2195       1.1    dante 		 */
   2196      1.20   itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2197       1.7    dante 	}
   2198       1.1    dante 
   2199       1.7    dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2200       1.7    dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2201       1.7    dante 		/* Poll once each microsecond for command completion. */
   2202       1.7    dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2203      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2204      1.17    dante 									result);
   2205       1.7    dante 			if (result != 0) {
   2206      1.10    dante 				splx(s);
   2207       1.7    dante 				return result;
   2208       1.7    dante 			}
   2209      1.16    dante 			AdwDelayMicroSecond(1);
   2210       1.7    dante 		}
   2211       1.1    dante 	}
   2212       1.1    dante 
   2213      1.10    dante 	splx(s);
   2214       1.7    dante 	return ADW_ERROR;
   2215       1.1    dante }
   2216       1.1    dante 
   2217       1.1    dante 
   2218       1.1    dante /*
   2219       1.1    dante  * Inquiry Information Byte 7 Handling
   2220       1.1    dante  *
   2221       1.1    dante  * Handle SCSI Inquiry Command information for a device by setting
   2222       1.2    dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2223       1.1    dante  * Queuing.
   2224       1.1    dante  */
   2225       1.1    dante static void
   2226      1.16    dante AdwInquiryHandling(sc, scsiq)
   2227       1.7    dante ADW_SOFTC	*sc;
   2228       1.7    dante ADW_SCSI_REQ_Q *scsiq;
   2229       1.1    dante {
   2230       1.9    dante #ifndef FAILSAFE
   2231       1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2232       1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2233       1.7    dante 	u_int8_t		tid;
   2234      1.13    dante 	struct scsipi_inquiry_data *inq;
   2235       1.7    dante 	u_int16_t		tidmask;
   2236       1.7    dante 	u_int16_t		cfg_word;
   2237       1.7    dante 
   2238       1.1    dante 
   2239       1.1    dante 	/*
   2240      1.16    dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2241       1.1    dante 	 * to be available.
   2242       1.1    dante 	 *
   2243       1.1    dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2244       1.1    dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2245       1.1    dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2246       1.1    dante 	 * microcode to the transfer residual count.
   2247       1.1    dante 	 */
   2248       1.7    dante 
   2249       1.2    dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2250       1.1    dante 		return;
   2251       1.1    dante 	}
   2252       1.7    dante 
   2253       1.1    dante 	tid = scsiq->target_id;
   2254       1.7    dante 
   2255      1.13    dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2256       1.1    dante 
   2257       1.1    dante 	/*
   2258       1.1    dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2259       1.1    dante 	 */
   2260      1.13    dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2261      1.13    dante 	    ((inq->version & SID_ANSII) < 2)) {
   2262       1.1    dante 		return;
   2263       1.2    dante 	} else {
   2264       1.1    dante 		/*
   2265       1.1    dante 		 * INQUIRY Byte 7 Handling
   2266       1.1    dante 		 *
   2267       1.1    dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2268       1.1    dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2269       1.1    dante 		 * is enabled in the EEPROM and the device supports the
   2270       1.1    dante 		 * feature, then enable it in the microcode.
   2271       1.1    dante 		 */
   2272       1.1    dante 
   2273       1.1    dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2274       1.7    dante 
   2275       1.1    dante 		/*
   2276       1.1    dante 		 * Wide Transfers
   2277       1.1    dante 		 *
   2278       1.1    dante 		 * If the EEPROM enabled WDTR for the device and the device
   2279       1.1    dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2280       1.1    dante 		 * device's 'wdtr_able' bit and write the new value to the
   2281       1.1    dante 		 * microcode.
   2282       1.1    dante 		 */
   2283       1.7    dante #ifdef SCSI_ADW_WDTR_DISABLE
   2284       1.8    dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2285       1.7    dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2286      1.13    dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2287      1.16    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2288       1.7    dante 					cfg_word);
   2289       1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2290       1.1    dante 				cfg_word |= tidmask;
   2291      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2292       1.7    dante 						cfg_word);
   2293       1.1    dante 
   2294       1.1    dante 				/*
   2295      1.16    dante 				 * Clear the microcode "SDTR negotiation" and
   2296      1.16    dante 				 * "WDTR negotiation" done indicators for the
   2297      1.16    dante 				 * target to cause it to negotiate with the new
   2298      1.16    dante 				 * setting set above.
   2299       1.7    dante 				 * WDTR when accepted causes the target to enter
   2300      1.16    dante 				 * asynchronous mode, so SDTR must be negotiated
   2301       1.1    dante 				 */
   2302      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2303       1.7    dante 						cfg_word);
   2304       1.7    dante 				cfg_word &= ~tidmask;
   2305      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306       1.7    dante 						cfg_word);
   2307      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2308       1.7    dante 						cfg_word);
   2309       1.1    dante 				cfg_word &= ~tidmask;
   2310      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2311       1.7    dante 						cfg_word);
   2312       1.1    dante 			}
   2313       1.1    dante 		}
   2314       1.7    dante 
   2315       1.1    dante 		/*
   2316       1.1    dante 		 * Synchronous Transfers
   2317       1.1    dante 		 *
   2318       1.1    dante 		 * If the EEPROM enabled SDTR for the device and the device
   2319       1.1    dante 		 * supports synchronous transfers, then turn on the device's
   2320       1.1    dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2321       1.1    dante 		 */
   2322       1.7    dante #ifdef SCSI_ADW_SDTR_DISABLE
   2323       1.8    dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2324       1.7    dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2325      1.13    dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2326      1.17    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2327       1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2328       1.1    dante 				cfg_word |= tidmask;
   2329      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2330       1.7    dante 						cfg_word);
   2331       1.1    dante 
   2332       1.1    dante 				/*
   2333      1.16    dante 				 * Clear the microcode "SDTR negotiation"
   2334      1.16    dante 				 * done indicator for the target to cause it
   2335      1.16    dante 				 * to negotiate with the new setting set above.
   2336       1.1    dante 				 */
   2337      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2338       1.7    dante 						cfg_word);
   2339       1.1    dante 				cfg_word &= ~tidmask;
   2340      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2341       1.7    dante 						cfg_word);
   2342      1.10    dante 			}
   2343      1.10    dante 		}
   2344      1.10    dante 		/*
   2345      1.10    dante 		 * If the Inquiry data included enough space for the SPI-3
   2346      1.10    dante 		 * Clocking field, then check if DT mode is supported.
   2347      1.10    dante 		 */
   2348      1.16    dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2349      1.17    dante 		   (scsiq->cdb[4] >= 57 ||
   2350      1.17    dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2351      1.10    dante 			/*
   2352      1.10    dante 			 * PPR (Parallel Protocol Request) Capable
   2353      1.10    dante 			 *
   2354      1.10    dante 			 * If the device supports DT mode, then it must be
   2355      1.10    dante 			 * PPR capable.
   2356      1.10    dante 			 * The PPR message will be used in place of the SDTR
   2357      1.10    dante 			 * and WDTR messages to negotiate synchronous speed
   2358      1.10    dante 			 * and offset, transfer width, and protocol options.
   2359      1.10    dante 			 */
   2360      1.15    dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2361      1.16    dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2362      1.10    dante 						sc->ppr_able);
   2363      1.10    dante 				sc->ppr_able |= tidmask;
   2364      1.16    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2365      1.10    dante 						sc->ppr_able);
   2366       1.1    dante 			}
   2367       1.1    dante 		}
   2368       1.7    dante 
   2369       1.1    dante 		/*
   2370       1.7    dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2371       1.7    dante 		 * device supports Tag Queueing, then turn on the device's
   2372       1.1    dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2373       1.7    dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2374       1.1    dante 		 * value.
   2375       1.1    dante 		 *
   2376       1.1    dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2377       1.1    dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2378       1.1    dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2379       1.1    dante 		 * bugs will at least work with the BIOS.
   2380       1.1    dante 		 */
   2381       1.7    dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2382       1.8    dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2383       1.7    dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2384      1.13    dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2385      1.16    dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2386       1.7    dante 					cfg_word);
   2387       1.1    dante 			cfg_word |= tidmask;
   2388      1.16    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2389       1.7    dante 					cfg_word);
   2390       1.7    dante 
   2391       1.1    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2392      1.16    dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2393       1.7    dante 					sc->max_dvc_qng);
   2394       1.1    dante 		}
   2395       1.9    dante 	}
   2396       1.7    dante #endif /* FAILSAFE */
   2397       1.1    dante }
   2398       1.1    dante 
   2399       1.7    dante 
   2400       1.1    dante static void
   2401      1.16    dante AdwSleepMilliSecond(n)
   2402       1.7    dante u_int32_t	n;
   2403       1.1    dante {
   2404       1.1    dante 
   2405       1.1    dante 	DELAY(n * 1000);
   2406       1.1    dante }
   2407       1.1    dante 
   2408       1.7    dante 
   2409       1.1    dante static void
   2410      1.16    dante AdwDelayMicroSecond(n)
   2411       1.7    dante u_int32_t	n;
   2412       1.1    dante {
   2413       1.1    dante 
   2414       1.1    dante 	DELAY(n);
   2415       1.1    dante }
   2416       1.7    dante 
   2417