adwlib.c revision 1.28 1 1.28 christos /* $NetBSD: adwlib.c,v 1.28 2003/10/25 21:33:04 christos Exp $ */
2 1.1 dante
3 1.1 dante /*
4 1.1 dante * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 1.1 dante *
6 1.7 dante * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 1.1 dante * All rights reserved.
8 1.1 dante *
9 1.1 dante * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 1.1 dante *
11 1.1 dante * Redistribution and use in source and binary forms, with or without
12 1.1 dante * modification, are permitted provided that the following conditions
13 1.1 dante * are met:
14 1.1 dante * 1. Redistributions of source code must retain the above copyright
15 1.1 dante * notice, this list of conditions and the following disclaimer.
16 1.1 dante * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 dante * notice, this list of conditions and the following disclaimer in the
18 1.1 dante * documentation and/or other materials provided with the distribution.
19 1.1 dante * 3. All advertising materials mentioning features or use of this software
20 1.1 dante * must display the following acknowledgement:
21 1.1 dante * This product includes software developed by the NetBSD
22 1.1 dante * Foundation, Inc. and its contributors.
23 1.1 dante * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 dante * contributors may be used to endorse or promote products derived
25 1.1 dante * from this software without specific prior written permission.
26 1.1 dante *
27 1.1 dante * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 dante * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 dante * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 dante * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 dante * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 dante * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 dante * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 dante * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 dante * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 dante * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 dante * POSSIBILITY OF SUCH DAMAGE.
38 1.1 dante */
39 1.1 dante /*
40 1.1 dante * Ported from:
41 1.1 dante */
42 1.1 dante /*
43 1.1 dante * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 1.7 dante *
45 1.10 dante * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 1.1 dante * All Rights Reserved.
47 1.1 dante *
48 1.1 dante * Redistribution and use in source and binary forms, with or without
49 1.1 dante * modification, are permitted provided that redistributions of source
50 1.1 dante * code retain the above copyright notice and this comment without
51 1.1 dante * modification.
52 1.1 dante */
53 1.23 lukem
54 1.23 lukem #include <sys/cdefs.h>
55 1.28 christos __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.28 2003/10/25 21:33:04 christos Exp $");
56 1.1 dante
57 1.1 dante #include <sys/param.h>
58 1.1 dante #include <sys/systm.h>
59 1.1 dante #include <sys/malloc.h>
60 1.1 dante #include <sys/kernel.h>
61 1.1 dante #include <sys/queue.h>
62 1.1 dante #include <sys/device.h>
63 1.1 dante
64 1.1 dante #include <machine/bus.h>
65 1.1 dante #include <machine/intr.h>
66 1.1 dante
67 1.1 dante #include <dev/scsipi/scsi_all.h>
68 1.1 dante #include <dev/scsipi/scsipi_all.h>
69 1.1 dante #include <dev/scsipi/scsiconf.h>
70 1.1 dante
71 1.7 dante #include <dev/pci/pcidevs.h>
72 1.7 dante
73 1.19 mrg #include <uvm/uvm_extern.h>
74 1.1 dante
75 1.1 dante #include <dev/ic/adwlib.h>
76 1.16 dante #include <dev/ic/adwmcode.h>
77 1.1 dante #include <dev/ic/adw.h>
78 1.1 dante
79 1.1 dante
80 1.1 dante /* Static Functions */
81 1.1 dante
82 1.17 dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
83 1.17 dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
84 1.17 dante u_int8_t));
85 1.17 dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
86 1.17 dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 1.17 dante ADW_DVC_CFG *));
88 1.17 dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
89 1.17 dante ADW_DVC_CFG *));
90 1.17 dante
91 1.17 dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 1.17 dante ADW_EEPROM *));
93 1.17 dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
94 1.17 dante ADW_EEPROM *));
95 1.16 dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
96 1.16 dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
97 1.17 dante
98 1.16 dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
99 1.1 dante
100 1.16 dante static void AdwSleepMilliSecond __P((u_int32_t));
101 1.16 dante static void AdwDelayMicroSecond __P((u_int32_t));
102 1.1 dante
103 1.1 dante
104 1.1 dante /*
105 1.1 dante * EEPROM Configuration.
106 1.1 dante *
107 1.1 dante * All drivers should use this structure to set the default EEPROM
108 1.1 dante * configuration. The BIOS now uses this structure when it is built.
109 1.16 dante * Additional structure information can be found in adwlib.h where
110 1.1 dante * the structure is defined.
111 1.1 dante */
112 1.17 dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
113 1.17 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
114 1.17 dante 0x0000, /* 01 cfg_msw */
115 1.17 dante 0xFFFF, /* 02 disc_enable */
116 1.17 dante 0xFFFF, /* 03 wdtr_able */
117 1.17 dante { 0xFFFF }, /* 04 sdtr_able */
118 1.17 dante 0xFFFF, /* 05 start_motor */
119 1.17 dante 0xFFFF, /* 06 tagqng_able */
120 1.17 dante 0xFFFF, /* 07 bios_scan */
121 1.17 dante 0, /* 08 scam_tolerant */
122 1.17 dante 7, /* 09 adapter_scsi_id */
123 1.17 dante 0, /* bios_boot_delay */
124 1.17 dante 3, /* 10 scsi_reset_delay */
125 1.17 dante 0, /* bios_id_lun */
126 1.17 dante 0, /* 11 termination */
127 1.17 dante 0, /* reserved1 */
128 1.17 dante 0xFFE7, /* 12 bios_ctrl */
129 1.17 dante { 0xFFFF }, /* 13 ultra_able */
130 1.17 dante { 0 }, /* 14 reserved2 */
131 1.17 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
132 1.17 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
133 1.17 dante 0, /* 16 dvc_cntl */
134 1.17 dante { 0 }, /* 17 bug_fix */
135 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
136 1.17 dante 0, /* 21 check_sum */
137 1.17 dante { /* 22-29 oem_name[16] */
138 1.17 dante 0,0,0,0,0,0,0,0,
139 1.17 dante 0,0,0,0,0,0,0,0
140 1.17 dante },
141 1.17 dante 0, /* 30 dvc_err_code */
142 1.17 dante 0, /* 31 adv_err_code */
143 1.17 dante 0, /* 32 adv_err_addr */
144 1.17 dante 0, /* 33 saved_dvc_err_code */
145 1.17 dante 0, /* 34 saved_adv_err_code */
146 1.17 dante 0 /* 35 saved_adv_err_addr */
147 1.7 dante };
148 1.7 dante
149 1.17 dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
150 1.7 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
151 1.7 dante 0x0000, /* 01 cfg_msw */
152 1.7 dante 0xFFFF, /* 02 disc_enable */
153 1.7 dante 0xFFFF, /* 03 wdtr_able */
154 1.17 dante { 0x4444 }, /* 04 sdtr_speed1 */
155 1.7 dante 0xFFFF, /* 05 start_motor */
156 1.7 dante 0xFFFF, /* 06 tagqng_able */
157 1.7 dante 0xFFFF, /* 07 bios_scan */
158 1.7 dante 0, /* 08 scam_tolerant */
159 1.7 dante 7, /* 09 adapter_scsi_id */
160 1.7 dante 0, /* bios_boot_delay */
161 1.7 dante 3, /* 10 scsi_reset_delay */
162 1.7 dante 0, /* bios_id_lun */
163 1.7 dante 0, /* 11 termination_se */
164 1.7 dante 0, /* termination_lvd */
165 1.7 dante 0xFFE7, /* 12 bios_ctrl */
166 1.17 dante { 0x4444 }, /* 13 sdtr_speed2 */
167 1.17 dante { 0x4444 }, /* 14 sdtr_speed3 */
168 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
169 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
170 1.7 dante 0, /* 16 dvc_cntl */
171 1.17 dante { 0x4444 }, /* 17 sdtr_speed4 */
172 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
173 1.7 dante 0, /* 21 check_sum */
174 1.17 dante { /* 22-29 oem_name[16] */
175 1.17 dante 0,0,0,0,0,0,0,0,
176 1.17 dante 0,0,0,0,0,0,0,0
177 1.17 dante },
178 1.7 dante 0, /* 30 dvc_err_code */
179 1.7 dante 0, /* 31 adv_err_code */
180 1.7 dante 0, /* 32 adv_err_addr */
181 1.7 dante 0, /* 33 saved_dvc_err_code */
182 1.7 dante 0, /* 34 saved_adv_err_code */
183 1.7 dante 0, /* 35 saved_adv_err_addr */
184 1.17 dante { /* 36-55 reserved1[16] */
185 1.17 dante 0,0,0,0,0,0,0,0,0,0,
186 1.17 dante 0,0,0,0,0,0,0,0,0,0
187 1.17 dante },
188 1.7 dante 0, /* 56 cisptr_lsw */
189 1.7 dante 0, /* 57 cisprt_msw */
190 1.7 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
191 1.7 dante PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
192 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
193 1.1 dante };
194 1.1 dante
195 1.17 dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
196 1.10 dante ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
197 1.10 dante 0x0000, /* 01 cfg_msw */
198 1.10 dante 0xFFFF, /* 02 disc_enable */
199 1.10 dante 0xFFFF, /* 03 wdtr_able */
200 1.17 dante { 0x5555 }, /* 04 sdtr_speed1 */
201 1.10 dante 0xFFFF, /* 05 start_motor */
202 1.10 dante 0xFFFF, /* 06 tagqng_able */
203 1.10 dante 0xFFFF, /* 07 bios_scan */
204 1.10 dante 0, /* 08 scam_tolerant */
205 1.10 dante 7, /* 09 adapter_scsi_id */
206 1.10 dante 0, /* bios_boot_delay */
207 1.10 dante 3, /* 10 scsi_reset_delay */
208 1.10 dante 0, /* bios_id_lun */
209 1.10 dante 0, /* 11 termination_se */
210 1.10 dante 0, /* termination_lvd */
211 1.10 dante 0xFFE7, /* 12 bios_ctrl */
212 1.17 dante { 0x5555 }, /* 13 sdtr_speed2 */
213 1.17 dante { 0x5555 }, /* 14 sdtr_speed3 */
214 1.16 dante ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
215 1.16 dante ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
216 1.10 dante 0, /* 16 dvc_cntl */
217 1.17 dante { 0x5555 }, /* 17 sdtr_speed4 */
218 1.17 dante { 0,0,0 }, /* 18-20 serial_number[3] */
219 1.10 dante 0, /* 21 check_sum */
220 1.17 dante { /* 22-29 oem_name[16] */
221 1.17 dante 0,0,0,0,0,0,0,0,
222 1.17 dante 0,0,0,0,0,0,0,0
223 1.17 dante },
224 1.10 dante 0, /* 30 dvc_err_code */
225 1.10 dante 0, /* 31 adv_err_code */
226 1.10 dante 0, /* 32 adv_err_addr */
227 1.10 dante 0, /* 33 saved_dvc_err_code */
228 1.10 dante 0, /* 34 saved_adv_err_code */
229 1.10 dante 0, /* 35 saved_adv_err_addr */
230 1.17 dante { /* 36-55 reserved1[16] */
231 1.17 dante 0,0,0,0,0,0,0,0,0,0,
232 1.17 dante 0,0,0,0,0,0,0,0,0,0
233 1.17 dante },
234 1.10 dante 0, /* 56 cisptr_lsw */
235 1.10 dante 0, /* 57 cisprt_msw */
236 1.10 dante PCI_VENDOR_ADVSYS, /* 58 subsysvid */
237 1.10 dante PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
238 1.17 dante { 0,0,0,0 } /* 60-63 reserved2[4] */
239 1.10 dante };
240 1.10 dante
241 1.17 dante
242 1.1 dante /*
243 1.17 dante * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
244 1.17 dante * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
245 1.17 dante * all of this is done.
246 1.1 dante *
247 1.1 dante * For a non-fatal error return a warning code. If there are no warnings
248 1.1 dante * then 0 is returned.
249 1.17 dante *
250 1.17 dante * Note: Chip is stopped on entry.
251 1.17 dante */
252 1.17 dante int
253 1.17 dante AdwInitFromEEPROM(sc)
254 1.17 dante ADW_SOFTC *sc;
255 1.17 dante {
256 1.17 dante bus_space_tag_t iot = sc->sc_iot;
257 1.17 dante bus_space_handle_t ioh = sc->sc_ioh;
258 1.17 dante ADW_EEPROM eep_config;
259 1.17 dante u_int16_t warn_code;
260 1.17 dante u_int16_t sdtr_speed = 0;
261 1.17 dante u_int8_t tid, termination;
262 1.17 dante int i, j;
263 1.17 dante
264 1.17 dante
265 1.17 dante warn_code = 0;
266 1.17 dante
267 1.17 dante /*
268 1.17 dante * Read the board's EEPROM configuration.
269 1.17 dante *
270 1.17 dante * Set default values if a bad checksum is found.
271 1.17 dante *
272 1.17 dante * XXX - Don't handle big-endian access to EEPROM yet.
273 1.17 dante */
274 1.17 dante if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
275 1.17 dante warn_code |= ADW_WARN_EEPROM_CHKSUM;
276 1.17 dante
277 1.17 dante /*
278 1.17 dante * Set EEPROM default values.
279 1.17 dante */
280 1.17 dante switch(sc->chip_type) {
281 1.17 dante case ADW_CHIP_ASC3550:
282 1.17 dante eep_config = adw_3550_Default_EEPROM;
283 1.17 dante break;
284 1.17 dante case ADW_CHIP_ASC38C0800:
285 1.17 dante eep_config = adw_38C0800_Default_EEPROM;
286 1.17 dante break;
287 1.17 dante case ADW_CHIP_ASC38C1600:
288 1.17 dante eep_config = adw_38C1600_Default_EEPROM;
289 1.17 dante
290 1.21 lukem #if 0
291 1.21 lukem XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
292 1.21 lukem #endif
293 1.17 dante if (sc->cfg.pci_slot_info != 0) {
294 1.17 dante u_int8_t lsw_msb;
295 1.17 dante
296 1.17 dante lsw_msb = eep_config.cfg_lsw >> 8;
297 1.17 dante /*
298 1.17 dante * Set Function 1 EEPROM Word 0 MSB
299 1.17 dante *
300 1.17 dante * Clear the BIOS_ENABLE (bit 14) and
301 1.17 dante * INTAB (bit 11) EEPROM bits.
302 1.17 dante *
303 1.17 dante * Disable Bit 14 (BIOS_ENABLE) to fix
304 1.17 dante * SPARC Ultra 60 and old Mac system booting
305 1.17 dante * problem. The Expansion ROM must
306 1.17 dante * be disabled in Function 1 for these systems.
307 1.17 dante */
308 1.17 dante lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
309 1.17 dante ADW_EEPROM_INTAB) >> 8) & 0xFF);
310 1.17 dante /*
311 1.17 dante * Set the INTAB (bit 11) if the GPIO 0 input
312 1.17 dante * indicates the Function 1 interrupt line is
313 1.17 dante * wired to INTA.
314 1.17 dante *
315 1.17 dante * Set/Clear Bit 11 (INTAB) from
316 1.17 dante * the GPIO bit 0 input:
317 1.17 dante * 1 - Function 1 intr line wired to INT A.
318 1.17 dante * 0 - Function 1 intr line wired to INT B.
319 1.17 dante *
320 1.17 dante * Note: Adapter boards always have Function 0
321 1.17 dante * wired to INTA.
322 1.17 dante * Put all 5 GPIO bits in input mode and then
323 1.17 dante * read their input values.
324 1.17 dante */
325 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
326 1.17 dante IOPB_GPIO_CNTL, 0);
327 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh,
328 1.17 dante IOPB_GPIO_DATA) & 0x01) {
329 1.17 dante /*
330 1.17 dante * Function 1 interrupt wired to INTA;
331 1.17 dante * Set EEPROM bit.
332 1.17 dante */
333 1.17 dante lsw_msb |= (ADW_EEPROM_INTAB >> 8)
334 1.17 dante & 0xFF;
335 1.17 dante }
336 1.17 dante eep_config.cfg_lsw &= 0x00FF;
337 1.17 dante eep_config.cfg_lsw |= lsw_msb << 8;
338 1.17 dante }
339 1.17 dante break;
340 1.17 dante }
341 1.17 dante
342 1.17 dante /*
343 1.17 dante * Assume the 6 byte board serial number that was read
344 1.17 dante * from EEPROM is correct even if the EEPROM checksum
345 1.17 dante * failed.
346 1.17 dante */
347 1.17 dante for (i=2, j=1; i>=0; i--, j++) {
348 1.17 dante eep_config.serial_number[i] =
349 1.17 dante AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
350 1.17 dante }
351 1.17 dante
352 1.17 dante AdwSetEEPROMConfig(iot, ioh, &eep_config);
353 1.17 dante }
354 1.17 dante /*
355 1.17 dante * Set sc and sc->cfg variables from the EEPROM configuration
356 1.17 dante * that was read.
357 1.17 dante *
358 1.17 dante * This is the mapping of EEPROM fields to Adw Library fields.
359 1.17 dante */
360 1.17 dante sc->wdtr_able = eep_config.wdtr_able;
361 1.17 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
362 1.17 dante sc->sdtr_able = eep_config.sdtr1.sdtr_able;
363 1.17 dante sc->ultra_able = eep_config.sdtr2.ultra_able;
364 1.17 dante } else {
365 1.17 dante sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
366 1.17 dante sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
367 1.17 dante sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
368 1.17 dante sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
369 1.17 dante }
370 1.17 dante sc->ppr_able = 0;
371 1.17 dante sc->tagqng_able = eep_config.tagqng_able;
372 1.17 dante sc->cfg.disc_enable = eep_config.disc_enable;
373 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
374 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
375 1.17 dante sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
376 1.17 dante sc->start_motor = eep_config.start_motor;
377 1.17 dante sc->scsi_reset_wait = eep_config.scsi_reset_delay;
378 1.17 dante sc->bios_ctrl = eep_config.bios_ctrl;
379 1.17 dante sc->no_scam = eep_config.scam_tolerant;
380 1.17 dante sc->cfg.serial1 = eep_config.serial_number[0];
381 1.17 dante sc->cfg.serial2 = eep_config.serial_number[1];
382 1.17 dante sc->cfg.serial3 = eep_config.serial_number[2];
383 1.17 dante
384 1.17 dante if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
385 1.17 dante sc->chip_type == ADW_CHIP_ASC38C1600) {
386 1.17 dante sc->sdtr_able = 0;
387 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
388 1.17 dante if (tid == 0) {
389 1.17 dante sdtr_speed = sc->sdtr_speed1;
390 1.17 dante } else if (tid == 4) {
391 1.17 dante sdtr_speed = sc->sdtr_speed2;
392 1.17 dante } else if (tid == 8) {
393 1.17 dante sdtr_speed = sc->sdtr_speed3;
394 1.17 dante } else if (tid == 12) {
395 1.17 dante sdtr_speed = sc->sdtr_speed4;
396 1.17 dante }
397 1.17 dante if (sdtr_speed & ADW_MAX_TID) {
398 1.17 dante sc->sdtr_able |= (1 << tid);
399 1.17 dante }
400 1.17 dante sdtr_speed >>= 4;
401 1.17 dante }
402 1.17 dante }
403 1.17 dante
404 1.17 dante /*
405 1.17 dante * Set the host maximum queuing (max. 253, min. 16) and the per device
406 1.17 dante * maximum queuing (max. 63, min. 4).
407 1.17 dante */
408 1.17 dante if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
409 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
410 1.17 dante } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
411 1.17 dante {
412 1.17 dante /* If the value is zero, assume it is uninitialized. */
413 1.17 dante if (eep_config.max_host_qng == 0) {
414 1.17 dante eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
415 1.17 dante } else {
416 1.17 dante eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
417 1.17 dante }
418 1.17 dante }
419 1.17 dante
420 1.17 dante if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
421 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 1.17 dante } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
423 1.17 dante /* If the value is zero, assume it is uninitialized. */
424 1.17 dante if (eep_config.max_dvc_qng == 0) {
425 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
426 1.17 dante } else {
427 1.17 dante eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
428 1.17 dante }
429 1.17 dante }
430 1.17 dante
431 1.17 dante /*
432 1.17 dante * If 'max_dvc_qng' is greater than 'max_host_qng', then
433 1.17 dante * set 'max_dvc_qng' to 'max_host_qng'.
434 1.17 dante */
435 1.17 dante if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
436 1.17 dante eep_config.max_dvc_qng = eep_config.max_host_qng;
437 1.17 dante }
438 1.17 dante
439 1.17 dante /*
440 1.17 dante * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
441 1.17 dante * values based on possibly adjusted EEPROM values.
442 1.17 dante */
443 1.17 dante sc->max_host_qng = eep_config.max_host_qng;
444 1.17 dante sc->max_dvc_qng = eep_config.max_dvc_qng;
445 1.17 dante
446 1.17 dante
447 1.17 dante /*
448 1.17 dante * If the EEPROM 'termination' field is set to automatic (0), then set
449 1.17 dante * the ADV_DVC_CFG 'termination' field to automatic also.
450 1.17 dante *
451 1.17 dante * If the termination is specified with a non-zero 'termination'
452 1.17 dante * value check that a legal value is set and set the ADV_DVC_CFG
453 1.17 dante * 'termination' field appropriately.
454 1.17 dante */
455 1.17 dante
456 1.17 dante switch(sc->chip_type) {
457 1.17 dante case ADW_CHIP_ASC3550:
458 1.17 dante sc->cfg.termination = 0; /* auto termination */
459 1.17 dante switch(eep_config.termination_se) {
460 1.17 dante case 3:
461 1.17 dante /* Enable manual control with low on / high on. */
462 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_L;
463 1.17 dante case 2:
464 1.17 dante /* Enable manual control with low off / high on. */
465 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_H;
466 1.17 dante case 1:
467 1.17 dante /* Enable manual control with low off / high off. */
468 1.17 dante sc->cfg.termination |= ADW_TERM_CTL_SEL;
469 1.17 dante case 0:
470 1.17 dante break;
471 1.17 dante default:
472 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
473 1.17 dante }
474 1.17 dante break;
475 1.17 dante
476 1.17 dante case ADW_CHIP_ASC38C0800:
477 1.17 dante case ADW_CHIP_ASC38C1600:
478 1.17 dante switch(eep_config.termination_se) {
479 1.17 dante case 0:
480 1.17 dante /* auto termination for SE */
481 1.17 dante termination = 0;
482 1.17 dante break;
483 1.17 dante case 1:
484 1.17 dante /* Enable manual control with low off / high off. */
485 1.17 dante termination = 0;
486 1.17 dante break;
487 1.17 dante case 2:
488 1.17 dante /* Enable manual control with low off / high on. */
489 1.17 dante termination = ADW_TERM_SE_HI;
490 1.17 dante break;
491 1.17 dante case 3:
492 1.17 dante /* Enable manual control with low on / high on. */
493 1.17 dante termination = ADW_TERM_SE;
494 1.17 dante break;
495 1.17 dante default:
496 1.17 dante /*
497 1.17 dante * The EEPROM 'termination_se' field contains a
498 1.17 dante * bad value. Use automatic termination instead.
499 1.17 dante */
500 1.17 dante termination = 0;
501 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
502 1.17 dante }
503 1.17 dante
504 1.17 dante switch(eep_config.termination_lvd) {
505 1.17 dante case 0:
506 1.17 dante /* auto termination for LVD */
507 1.17 dante sc->cfg.termination = termination;
508 1.17 dante break;
509 1.17 dante case 1:
510 1.17 dante /* Enable manual control with low off / high off. */
511 1.17 dante sc->cfg.termination = termination;
512 1.17 dante break;
513 1.17 dante case 2:
514 1.17 dante /* Enable manual control with low off / high on. */
515 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD_HI;
516 1.17 dante break;
517 1.17 dante case 3:
518 1.17 dante /* Enable manual control with low on / high on. */
519 1.17 dante sc->cfg.termination = termination | ADW_TERM_LVD;
520 1.17 dante break;
521 1.17 dante default:
522 1.17 dante /*
523 1.17 dante * The EEPROM 'termination_lvd' field contains a
524 1.17 dante * bad value. Use automatic termination instead.
525 1.17 dante */
526 1.17 dante sc->cfg.termination = termination;
527 1.17 dante warn_code |= ADW_WARN_EEPROM_TERMINATION;
528 1.17 dante }
529 1.17 dante break;
530 1.17 dante }
531 1.17 dante
532 1.17 dante return warn_code;
533 1.17 dante }
534 1.17 dante
535 1.17 dante
536 1.17 dante /*
537 1.17 dante * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
538 1.17 dante *
539 1.17 dante * On failure return the error code.
540 1.1 dante */
541 1.1 dante int
542 1.17 dante AdwInitDriver(sc)
543 1.2 dante ADW_SOFTC *sc;
544 1.1 dante {
545 1.2 dante bus_space_tag_t iot = sc->sc_iot;
546 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
547 1.17 dante u_int16_t error_code;
548 1.7 dante int word;
549 1.17 dante int i;
550 1.16 dante u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
551 1.7 dante 0x40-0x8F. */
552 1.17 dante u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
553 1.7 dante u_int8_t max_cmd[ADW_MAX_TID + 1];
554 1.17 dante u_int8_t tid;
555 1.1 dante
556 1.1 dante
557 1.17 dante error_code = 0;
558 1.1 dante
559 1.1 dante /*
560 1.1 dante * Save the RISC memory BIOS region before writing the microcode.
561 1.1 dante * The BIOS may already be loaded and using its RISC LRAM region
562 1.1 dante * so its region must be saved and restored.
563 1.1 dante *
564 1.1 dante * Note: This code makes the assumption, which is currently true,
565 1.1 dante * that a chip reset does not clear RISC LRAM.
566 1.1 dante */
567 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
568 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
569 1.7 dante }
570 1.7 dante
571 1.7 dante /*
572 1.7 dante * Save current per TID negotiated values.
573 1.7 dante */
574 1.17 dante switch (sc->chip_type) {
575 1.17 dante case ADW_CHIP_ASC3550:
576 1.17 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
577 1.17 dante
578 1.17 dante u_int16_t bios_version, major, minor;
579 1.17 dante
580 1.17 dante bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
581 1.17 dante ADW_MC_BIOSMEM) / 2];
582 1.17 dante major = (bios_version >> 12) & 0xF;
583 1.17 dante minor = (bios_version >> 8) & 0xF;
584 1.17 dante if (major < 3 || (major == 3 && minor == 1)) {
585 1.17 dante /*
586 1.17 dante * BIOS 3.1 and earlier location of
587 1.17 dante * 'wdtr_able' variable.
588 1.17 dante */
589 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
590 1.17 dante } else {
591 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
592 1.17 dante wdtr_able);
593 1.17 dante }
594 1.17 dante }
595 1.17 dante break;
596 1.7 dante
597 1.17 dante case ADW_CHIP_ASC38C1600:
598 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
599 1.17 dante /* FALLTHROUGH */
600 1.17 dante case ADW_CHIP_ASC38C0800:
601 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
602 1.17 dante break;
603 1.7 dante }
604 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
605 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
606 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
607 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
608 1.7 dante max_cmd[tid]);
609 1.1 dante }
610 1.1 dante
611 1.1 dante /*
612 1.17 dante * Perform a RAM Built-In Self Test
613 1.1 dante */
614 1.17 dante if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
615 1.17 dante return error_code;
616 1.17 dante }
617 1.7 dante
618 1.17 dante /*
619 1.17 dante * Load the Microcode
620 1.7 dante */
621 1.17 dante ;
622 1.17 dante if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
623 1.17 dante return error_code;
624 1.1 dante }
625 1.1 dante
626 1.1 dante /*
627 1.17 dante * Read microcode version and date.
628 1.7 dante */
629 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
630 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
631 1.7 dante
632 1.7 dante /*
633 1.17 dante * If the PCI Configuration Command Register "Parity Error Response
634 1.17 dante * Control" Bit was clear (0), then set the microcode variable
635 1.17 dante * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
636 1.17 dante * to ignore DMA parity errors.
637 1.1 dante */
638 1.17 dante if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
639 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
640 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
641 1.17 dante word | CONTROL_FLAG_IGNORE_PERR);
642 1.1 dante }
643 1.1 dante
644 1.17 dante switch (sc->chip_type) {
645 1.17 dante case ADW_CHIP_ASC3550:
646 1.17 dante /*
647 1.17 dante * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
648 1.17 dante * FIFO threshold of 128 bytes.
649 1.17 dante * This register is only accessible to the host.
650 1.17 dante */
651 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
652 1.17 dante START_CTL_EMFU | READ_CMD_MRM);
653 1.17 dante break;
654 1.7 dante
655 1.17 dante case ADW_CHIP_ASC38C0800:
656 1.17 dante /*
657 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
658 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
659 1.17 dante * cable detection and then we are able to read C_DET[3:0].
660 1.17 dante *
661 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
662 1.17 dante * Microcode Default Value' section below.
663 1.17 dante */
664 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
665 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
666 1.17 dante | ADW_DIS_TERM_DRV);
667 1.1 dante
668 1.17 dante /*
669 1.17 dante * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
670 1.17 dante * START_CTL_TH [3:2] bits for the default FIFO threshold.
671 1.17 dante *
672 1.17 dante * Note: ASC-38C0800 FIFO threshold has been changed to
673 1.17 dante * 256 bytes.
674 1.17 dante *
675 1.17 dante * For DMA Errata #4 set the BC_THRESH_ENB bit.
676 1.17 dante */
677 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
678 1.17 dante BC_THRESH_ENB | FIFO_THRESH_80B
679 1.17 dante | START_CTL_TH | READ_CMD_MRM);
680 1.17 dante break;
681 1.1 dante
682 1.17 dante case ADW_CHIP_ASC38C1600:
683 1.17 dante /*
684 1.17 dante * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
685 1.17 dante * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
686 1.17 dante * cable detection and then we are able to read C_DET[3:0].
687 1.17 dante *
688 1.17 dante * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
689 1.17 dante * Microcode Default Value' section below.
690 1.17 dante */
691 1.17 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
692 1.17 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
693 1.17 dante | ADW_DIS_TERM_DRV);
694 1.1 dante
695 1.17 dante /*
696 1.17 dante * If the BIOS control flag AIPP (Asynchronous Information
697 1.17 dante * Phase Protection) disable bit is not set, then set the
698 1.17 dante * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
699 1.17 dante * enable AIPP checking and encoding.
700 1.17 dante */
701 1.17 dante if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
702 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
703 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
704 1.17 dante word | CONTROL_FLAG_ENABLE_AIPP);
705 1.17 dante }
706 1.1 dante
707 1.17 dante /*
708 1.17 dante * For ASC-38C1600 use DMA_CFG0 default values:
709 1.17 dante * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
710 1.17 dante */
711 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
712 1.17 dante FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
713 1.17 dante break;
714 1.1 dante }
715 1.7 dante
716 1.1 dante /*
717 1.7 dante * Microcode operating variables for WDTR, SDTR, and command tag
718 1.17 dante * queuing will be set in AdvInquiryHandling() based on what a
719 1.7 dante * device reports it is capable of in Inquiry byte 7.
720 1.7 dante *
721 1.16 dante * If SCSI Bus Resets have been disabled, then directly set
722 1.7 dante * SDTR and WDTR from the EEPROM configuration. This will allow
723 1.7 dante * the BIOS and warm boot to work without a SCSI bus hang on
724 1.7 dante * the Inquiry caused by host and target mismatched DTR values.
725 1.7 dante * Without the SCSI Bus Reset, before an Inquiry a device can't
726 1.7 dante * be assumed to be in Asynchronous, Narrow mode.
727 1.7 dante */
728 1.7 dante if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
729 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
730 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
731 1.7 dante }
732 1.7 dante
733 1.7 dante /*
734 1.7 dante * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
735 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
736 1.7 dante * bitmask. These values determine the maximum SDTR speed negotiated
737 1.7 dante * with a device.
738 1.7 dante *
739 1.7 dante * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
740 1.7 dante * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
741 1.7 dante * without determining here whether the device supports SDTR.
742 1.7 dante */
743 1.17 dante switch (sc->chip_type) {
744 1.17 dante case ADW_CHIP_ASC3550:
745 1.17 dante word = 0;
746 1.17 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
747 1.17 dante if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
748 1.17 dante /* Set Ultra speed for TID 'tid'. */
749 1.17 dante word |= (0x3 << (4 * (tid % 4)));
750 1.17 dante } else {
751 1.17 dante /* Set Fast speed for TID 'tid'. */
752 1.17 dante word |= (0x2 << (4 * (tid % 4)));
753 1.17 dante }
754 1.17 dante /* Check if done with sdtr_speed1. */
755 1.17 dante if (tid == 3) {
756 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
757 1.17 dante ADW_MC_SDTR_SPEED1, word);
758 1.17 dante word = 0;
759 1.17 dante /* Check if done with sdtr_speed2. */
760 1.17 dante } else if (tid == 7) {
761 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
762 1.17 dante ADW_MC_SDTR_SPEED2, word);
763 1.17 dante word = 0;
764 1.17 dante /* Check if done with sdtr_speed3. */
765 1.17 dante } else if (tid == 11) {
766 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
767 1.17 dante ADW_MC_SDTR_SPEED3, word);
768 1.17 dante word = 0;
769 1.17 dante /* Check if done with sdtr_speed4. */
770 1.17 dante } else if (tid == 15) {
771 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh,
772 1.17 dante ADW_MC_SDTR_SPEED4, word);
773 1.17 dante /* End of loop. */
774 1.17 dante }
775 1.7 dante }
776 1.17 dante
777 1.17 dante /*
778 1.17 dante * Set microcode operating variable for the
779 1.17 dante * disconnect per TID bitmask.
780 1.17 dante */
781 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
782 1.17 dante sc->cfg.disc_enable);
783 1.17 dante break;
784 1.17 dante
785 1.17 dante case ADW_CHIP_ASC38C0800:
786 1.17 dante /* FALLTHROUGH */
787 1.17 dante case ADW_CHIP_ASC38C1600:
788 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
789 1.17 dante sc->cfg.disc_enable);
790 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
791 1.17 dante sc->sdtr_speed1);
792 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
793 1.17 dante sc->sdtr_speed2);
794 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
795 1.17 dante sc->sdtr_speed3);
796 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
797 1.17 dante sc->sdtr_speed4);
798 1.17 dante break;
799 1.7 dante }
800 1.1 dante
801 1.1 dante
802 1.1 dante /*
803 1.1 dante * Set SCSI_CFG0 Microcode Default Value.
804 1.1 dante *
805 1.1 dante * The microcode will set the SCSI_CFG0 register using this value
806 1.1 dante * after it is started below.
807 1.1 dante */
808 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
809 1.10 dante ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
810 1.10 dante ADW_OUR_ID_EN | sc->chip_scsi_id);
811 1.2 dante
812 1.1 dante
813 1.17 dante switch(sc->chip_type) {
814 1.17 dante case ADW_CHIP_ASC3550:
815 1.17 dante error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
816 1.17 dante break;
817 1.1 dante
818 1.17 dante case ADW_CHIP_ASC38C0800:
819 1.17 dante error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
820 1.17 dante break;
821 1.7 dante
822 1.17 dante case ADW_CHIP_ASC38C1600:
823 1.17 dante error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
824 1.17 dante break;
825 1.7 dante }
826 1.17 dante if(error_code) {
827 1.17 dante return error_code;
828 1.1 dante }
829 1.7 dante
830 1.1 dante /*
831 1.1 dante * Set SEL_MASK Microcode Default Value
832 1.1 dante *
833 1.1 dante * The microcode will set the SEL_MASK register using this value
834 1.1 dante * after it is started below.
835 1.1 dante */
836 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
837 1.7 dante ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
838 1.7 dante
839 1.17 dante /*
840 1.17 dante * Create and Initialize Host->RISC Carrier lists
841 1.17 dante */
842 1.17 dante sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
843 1.17 dante sc->sc_control->carriers);
844 1.16 dante
845 1.7 dante /*
846 1.7 dante * Set-up the Host->RISC Initiator Command Queue (ICQ).
847 1.7 dante */
848 1.7 dante
849 1.7 dante if ((sc->icq_sp = sc->carr_freelist) == NULL) {
850 1.16 dante return ADW_IERR_NO_CARRIER;
851 1.7 dante }
852 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
853 1.12 dante ASC_GET_CARRP(sc->icq_sp->next_ba));
854 1.7 dante
855 1.7 dante /*
856 1.7 dante * The first command issued will be placed in the stopper carrier.
857 1.7 dante */
858 1.22 briggs sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
859 1.1 dante
860 1.1 dante /*
861 1.7 dante * Set RISC ICQ physical address start value.
862 1.7 dante */
863 1.22 briggs ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
864 1.7 dante
865 1.7 dante /*
866 1.17 dante * Initialize the COMMA register to the same value otherwise
867 1.17 dante * the RISC will prematurely detect a command is available.
868 1.17 dante */
869 1.17 dante if(sc->chip_type == ADW_CHIP_ASC38C1600) {
870 1.17 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
871 1.22 briggs le32toh(sc->icq_sp->carr_ba));
872 1.17 dante }
873 1.17 dante
874 1.17 dante /*
875 1.7 dante * Set-up the RISC->Host Initiator Response Queue (IRQ).
876 1.1 dante */
877 1.7 dante if ((sc->irq_sp = sc->carr_freelist) == NULL) {
878 1.16 dante return ADW_IERR_NO_CARRIER;
879 1.1 dante }
880 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
881 1.12 dante ASC_GET_CARRP(sc->irq_sp->next_ba));
882 1.1 dante
883 1.1 dante /*
884 1.7 dante * The first command completed by the RISC will be placed in
885 1.7 dante * the stopper.
886 1.1 dante *
887 1.12 dante * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
888 1.16 dante * completed the RISC will set the ASC_RQ_DONE bit.
889 1.1 dante */
890 1.22 briggs sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
891 1.1 dante
892 1.1 dante /*
893 1.7 dante * Set RISC IRQ physical address start value.
894 1.1 dante */
895 1.22 briggs ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
896 1.7 dante sc->carr_pending_cnt = 0;
897 1.1 dante
898 1.1 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
899 1.7 dante (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
900 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
901 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
902 1.1 dante
903 1.1 dante /* finally, finally, gentlemen, start your engine */
904 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
905 1.2 dante
906 1.7 dante /*
907 1.7 dante * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
908 1.7 dante * Resets should be performed. The RISC has to be running
909 1.7 dante * to issue a SCSI Bus Reset.
910 1.7 dante */
911 1.7 dante if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
912 1.7 dante {
913 1.7 dante /*
914 1.7 dante * If the BIOS Signature is present in memory, restore the
915 1.7 dante * BIOS Handshake Configuration Table and do not perform
916 1.7 dante * a SCSI Bus Reset.
917 1.7 dante */
918 1.16 dante if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
919 1.7 dante 0x55AA) {
920 1.7 dante /*
921 1.7 dante * Restore per TID negotiated values.
922 1.7 dante */
923 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
924 1.7 dante wdtr_able);
925 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
926 1.7 dante sdtr_able);
927 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
928 1.7 dante tagqng_able);
929 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
930 1.7 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
931 1.17 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
932 1.17 dante max_cmd[tid]);
933 1.7 dante }
934 1.7 dante } else {
935 1.16 dante if (AdwResetCCB(sc) != ADW_TRUE) {
936 1.17 dante error_code = ADW_WARN_BUSRESET_ERROR;
937 1.7 dante }
938 1.7 dante }
939 1.7 dante }
940 1.7 dante
941 1.17 dante return error_code;
942 1.1 dante }
943 1.1 dante
944 1.17 dante
945 1.1 dante int
946 1.17 dante AdwRamSelfTest(iot, ioh, chip_type)
947 1.17 dante bus_space_tag_t iot;
948 1.17 dante bus_space_handle_t ioh;
949 1.17 dante u_int8_t chip_type;
950 1.1 dante {
951 1.17 dante int i;
952 1.7 dante u_int8_t byte;
953 1.1 dante
954 1.1 dante
955 1.17 dante if ((chip_type == ADW_CHIP_ASC38C0800) ||
956 1.17 dante (chip_type == ADW_CHIP_ASC38C1600)) {
957 1.17 dante /*
958 1.17 dante * RAM BIST (RAM Built-In Self Test)
959 1.17 dante *
960 1.17 dante * Address : I/O base + offset 0x38h register (byte).
961 1.17 dante * Function: Bit 7-6(RW) : RAM mode
962 1.17 dante * Normal Mode : 0x00
963 1.17 dante * Pre-test Mode : 0x40
964 1.17 dante * RAM Test Mode : 0x80
965 1.17 dante * Bit 5 : unused
966 1.17 dante * Bit 4(RO) : Done bit
967 1.17 dante * Bit 3-0(RO) : Status
968 1.17 dante * Host Error : 0x08
969 1.17 dante * Int_RAM Error : 0x04
970 1.17 dante * RISC Error : 0x02
971 1.17 dante * SCSI Error : 0x01
972 1.17 dante * No Error : 0x00
973 1.17 dante *
974 1.17 dante * Note: RAM BIST code should be put right here, before loading
975 1.17 dante * the microcode and after saving the RISC memory BIOS region.
976 1.17 dante */
977 1.1 dante
978 1.17 dante /*
979 1.17 dante * LRAM Pre-test
980 1.17 dante *
981 1.17 dante * Write PRE_TEST_MODE (0x40) to register and wait for
982 1.17 dante * 10 milliseconds.
983 1.17 dante * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
984 1.17 dante * return an error. Reset to NORMAL_MODE (0x00) and do again.
985 1.17 dante * If cannot reset to NORMAL_MODE, return an error too.
986 1.17 dante */
987 1.17 dante for (i = 0; i < 2; i++) {
988 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
989 1.17 dante PRE_TEST_MODE);
990 1.17 dante /* Wait for 10ms before reading back. */
991 1.17 dante AdwSleepMilliSecond(10);
992 1.17 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
993 1.17 dante if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
994 1.17 dante PRE_TEST_VALUE) {
995 1.17 dante return ADW_IERR_BIST_PRE_TEST;
996 1.17 dante }
997 1.7 dante
998 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
999 1.17 dante NORMAL_MODE);
1000 1.17 dante /* Wait for 10ms before reading back. */
1001 1.17 dante AdwSleepMilliSecond(10);
1002 1.17 dante if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
1003 1.17 dante != NORMAL_VALUE) {
1004 1.17 dante return ADW_IERR_BIST_PRE_TEST;
1005 1.17 dante }
1006 1.17 dante }
1007 1.2 dante
1008 1.17 dante /*
1009 1.17 dante * LRAM Test - It takes about 1.5 ms to run through the test.
1010 1.17 dante *
1011 1.17 dante * Write RAM_TEST_MODE (0x80) to register and wait for
1012 1.17 dante * 10 milliseconds.
1013 1.17 dante * If Done bit not set or Status not 0, save register byte,
1014 1.17 dante * set the err_code, and return an error.
1015 1.17 dante */
1016 1.17 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1017 1.17 dante /* Wait for 10ms before checking status. */
1018 1.17 dante AdwSleepMilliSecond(10);
1019 1.1 dante
1020 1.7 dante byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1021 1.17 dante if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1022 1.17 dante /* Get here if Done bit not set or Status not 0. */
1023 1.17 dante return ADW_IERR_BIST_RAM_TEST;
1024 1.1 dante }
1025 1.1 dante
1026 1.17 dante /* We need to reset back to normal mode after LRAM test passes*/
1027 1.7 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1028 1.1 dante }
1029 1.7 dante
1030 1.17 dante return 0;
1031 1.17 dante }
1032 1.17 dante
1033 1.7 dante
1034 1.17 dante int
1035 1.17 dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1036 1.17 dante bus_space_tag_t iot;
1037 1.17 dante bus_space_handle_t ioh;
1038 1.17 dante u_int16_t *bios_mem;
1039 1.17 dante u_int8_t chip_type;
1040 1.17 dante {
1041 1.17 dante u_int8_t *mcode_data;
1042 1.17 dante u_int32_t mcode_chksum;
1043 1.17 dante u_int16_t mcode_size;
1044 1.17 dante u_int32_t sum;
1045 1.17 dante u_int16_t code_sum;
1046 1.17 dante int begin_addr;
1047 1.17 dante int end_addr;
1048 1.17 dante int word;
1049 1.17 dante int adw_memsize;
1050 1.17 dante int adw_mcode_expanded_size;
1051 1.17 dante int i, j;
1052 1.7 dante
1053 1.17 dante
1054 1.17 dante switch(chip_type) {
1055 1.17 dante case ADW_CHIP_ASC3550:
1056 1.17 dante mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1057 1.17 dante mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1058 1.17 dante mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1059 1.17 dante adw_memsize = ADW_3550_MEMSIZE;
1060 1.17 dante break;
1061 1.17 dante
1062 1.17 dante case ADW_CHIP_ASC38C0800:
1063 1.17 dante mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1064 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1065 1.17 dante mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1066 1.17 dante adw_memsize = ADW_38C0800_MEMSIZE;
1067 1.17 dante break;
1068 1.17 dante
1069 1.17 dante case ADW_CHIP_ASC38C1600:
1070 1.17 dante mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1071 1.17 dante mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1072 1.17 dante mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1073 1.17 dante adw_memsize = ADW_38C1600_MEMSIZE;
1074 1.17 dante break;
1075 1.27 christos default:
1076 1.27 christos mcode_data = NULL;
1077 1.27 christos mcode_chksum = 0;
1078 1.27 christos mcode_size = 0;
1079 1.27 christos adw_memsize = 0;
1080 1.17 dante }
1081 1.1 dante
1082 1.1 dante /*
1083 1.7 dante * Write the microcode image to RISC memory starting at address 0.
1084 1.1 dante */
1085 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1086 1.7 dante
1087 1.7 dante /* Assume the following compressed format of the microcode buffer:
1088 1.7 dante *
1089 1.7 dante * 254 word (508 byte) table indexed by byte code followed
1090 1.7 dante * by the following byte codes:
1091 1.7 dante *
1092 1.7 dante * 1-Byte Code:
1093 1.7 dante * 00: Emit word 0 in table.
1094 1.7 dante * 01: Emit word 1 in table.
1095 1.7 dante * .
1096 1.7 dante * FD: Emit word 253 in table.
1097 1.7 dante *
1098 1.7 dante * Multi-Byte Code:
1099 1.7 dante * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1100 1.7 dante * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1101 1.7 dante */
1102 1.7 dante word = 0;
1103 1.17 dante for (i = 253 * 2; i < mcode_size; i++) {
1104 1.17 dante if (mcode_data[i] == 0xff) {
1105 1.17 dante for (j = 0; j < mcode_data[i + 1]; j++) {
1106 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1107 1.17 dante (((u_int16_t)mcode_data[i + 3] << 8) |
1108 1.17 dante mcode_data[i + 2]));
1109 1.7 dante word++;
1110 1.7 dante }
1111 1.7 dante i += 3;
1112 1.17 dante } else if (mcode_data[i] == 0xfe) {
1113 1.17 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1114 1.17 dante (((u_int16_t)mcode_data[i + 2] << 8) |
1115 1.17 dante mcode_data[i + 1]));
1116 1.7 dante i += 2;
1117 1.7 dante word++;
1118 1.1 dante } else {
1119 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1120 1.17 dante mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1121 1.17 dante mcode_data[mcode_data[i] * 2]));
1122 1.7 dante word++;
1123 1.1 dante }
1124 1.1 dante }
1125 1.7 dante
1126 1.7 dante /*
1127 1.7 dante * Set 'word' for later use to clear the rest of memory and save
1128 1.7 dante * the expanded mcode size.
1129 1.7 dante */
1130 1.7 dante word *= 2;
1131 1.17 dante adw_mcode_expanded_size = word;
1132 1.7 dante
1133 1.1 dante /*
1134 1.17 dante * Clear the rest of the Internal RAM.
1135 1.1 dante */
1136 1.17 dante for (; word < adw_memsize; word += 2) {
1137 1.7 dante ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1138 1.1 dante }
1139 1.7 dante
1140 1.1 dante /*
1141 1.7 dante * Verify the microcode checksum.
1142 1.1 dante */
1143 1.7 dante sum = 0;
1144 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1145 1.7 dante
1146 1.17 dante for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1147 1.7 dante sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1148 1.7 dante }
1149 1.1 dante
1150 1.17 dante if (sum != mcode_chksum) {
1151 1.17 dante return ADW_IERR_MCODE_CHKSUM;
1152 1.7 dante }
1153 1.1 dante
1154 1.1 dante /*
1155 1.7 dante * Restore the RISC memory BIOS region.
1156 1.1 dante */
1157 1.16 dante for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1158 1.17 dante if(chip_type == ADW_CHIP_ASC3550) {
1159 1.17 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1160 1.17 dante bios_mem[i]);
1161 1.17 dante } else {
1162 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1163 1.17 dante bios_mem[i]);
1164 1.17 dante }
1165 1.7 dante }
1166 1.1 dante
1167 1.7 dante /*
1168 1.7 dante * Calculate and write the microcode code checksum to the microcode
1169 1.16 dante * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1170 1.7 dante */
1171 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1172 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1173 1.7 dante code_sum = 0;
1174 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1175 1.7 dante for (word = begin_addr; word < end_addr; word += 2) {
1176 1.7 dante code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1177 1.1 dante }
1178 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1179 1.1 dante
1180 1.7 dante /*
1181 1.17 dante * Set the chip type.
1182 1.7 dante */
1183 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1184 1.17 dante
1185 1.17 dante return 0;
1186 1.17 dante }
1187 1.17 dante
1188 1.17 dante
1189 1.17 dante int
1190 1.17 dante AdwASC3550Cabling(iot, ioh, cfg)
1191 1.17 dante bus_space_tag_t iot;
1192 1.17 dante bus_space_handle_t ioh;
1193 1.17 dante ADW_DVC_CFG *cfg;
1194 1.17 dante {
1195 1.17 dante u_int16_t scsi_cfg1;
1196 1.17 dante
1197 1.1 dante
1198 1.7 dante /*
1199 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1200 1.17 dante *
1201 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1202 1.17 dante * after it is started below.
1203 1.7 dante */
1204 1.17 dante
1205 1.17 dante /* Read current SCSI_CFG1 Register value. */
1206 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1207 1.1 dante
1208 1.7 dante /*
1209 1.17 dante * If all three connectors are in use in ASC3550, return an error.
1210 1.7 dante */
1211 1.17 dante if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1212 1.17 dante (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1213 1.17 dante return ADW_IERR_ILLEGAL_CONNECTION;
1214 1.17 dante }
1215 1.7 dante
1216 1.7 dante /*
1217 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1218 1.17 dante * will be set. Check for and return an error if this condition is
1219 1.17 dante * found.
1220 1.7 dante */
1221 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1222 1.17 dante return ADW_IERR_REVERSED_CABLE;
1223 1.7 dante }
1224 1.7 dante
1225 1.7 dante /*
1226 1.17 dante * If this is a differential board and a single-ended device
1227 1.17 dante * is attached to one of the connectors, return an error.
1228 1.7 dante */
1229 1.17 dante if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1230 1.17 dante (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1231 1.17 dante return ADW_IERR_SINGLE_END_DEVICE;
1232 1.17 dante }
1233 1.7 dante
1234 1.7 dante /*
1235 1.17 dante * If automatic termination control is enabled, then set the
1236 1.17 dante * termination value based on a table listed in a_condor.h.
1237 1.7 dante *
1238 1.17 dante * If manual termination was specified with an EEPROM setting
1239 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and
1240 1.17 dante * is ready to be 'ored' into SCSI_CFG1.
1241 1.7 dante */
1242 1.17 dante if (cfg->termination == 0) {
1243 1.17 dante /*
1244 1.17 dante * The software always controls termination by setting
1245 1.17 dante * TERM_CTL_SEL.
1246 1.17 dante * If TERM_CTL_SEL were set to 0, the hardware would set
1247 1.17 dante * termination.
1248 1.17 dante */
1249 1.17 dante cfg->termination |= ADW_TERM_CTL_SEL;
1250 1.17 dante
1251 1.17 dante switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1252 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: on */
1253 1.17 dante case 0x3: case 0x7: case 0xB:
1254 1.17 dante case 0xD: case 0xE: case 0xF:
1255 1.17 dante cfg->termination |=
1256 1.17 dante (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1257 1.17 dante break;
1258 1.17 dante
1259 1.17 dante /* TERM_CTL_H: on, TERM_CTL_L: off */
1260 1.17 dante case 0x1: case 0x5: case 0x9:
1261 1.17 dante case 0xA: case 0xC:
1262 1.17 dante cfg->termination |= ADW_TERM_CTL_H;
1263 1.17 dante break;
1264 1.17 dante
1265 1.17 dante /* TERM_CTL_H: off, TERM_CTL_L: off */
1266 1.17 dante case 0x2: case 0x6:
1267 1.17 dante break;
1268 1.17 dante }
1269 1.7 dante }
1270 1.7 dante
1271 1.7 dante /*
1272 1.17 dante * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1273 1.17 dante */
1274 1.17 dante scsi_cfg1 &= ~ADW_TERM_CTL;
1275 1.17 dante
1276 1.17 dante /*
1277 1.17 dante * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1278 1.17 dante * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1279 1.17 dante * referenced, because the hardware internally inverts
1280 1.17 dante * the Termination High and Low bits if TERM_POL is set.
1281 1.17 dante */
1282 1.17 dante scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1283 1.17 dante
1284 1.17 dante /*
1285 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1286 1.17 dante *
1287 1.17 dante * Set filter value and possibly modified termination control
1288 1.17 dante * bits in the Microcode SCSI_CFG1 Register Value.
1289 1.7 dante *
1290 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1291 1.17 dante * after it is started below.
1292 1.7 dante */
1293 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1294 1.17 dante ADW_FLTR_DISABLE | scsi_cfg1);
1295 1.7 dante
1296 1.7 dante /*
1297 1.17 dante * Set MEM_CFG Microcode Default Value
1298 1.7 dante *
1299 1.17 dante * The microcode will set the MEM_CFG register using this value
1300 1.7 dante * after it is started below.
1301 1.17 dante *
1302 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1303 1.17 dante * are defined.
1304 1.17 dante *
1305 1.17 dante * ASC-3550 has 8KB internal memory.
1306 1.7 dante */
1307 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1308 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1309 1.17 dante
1310 1.17 dante return 0;
1311 1.17 dante }
1312 1.17 dante
1313 1.17 dante
1314 1.17 dante int
1315 1.17 dante AdwASC38C0800Cabling(iot, ioh, cfg)
1316 1.17 dante bus_space_tag_t iot;
1317 1.17 dante bus_space_handle_t ioh;
1318 1.17 dante ADW_DVC_CFG *cfg;
1319 1.17 dante {
1320 1.17 dante u_int16_t scsi_cfg1;
1321 1.17 dante
1322 1.7 dante
1323 1.7 dante /*
1324 1.7 dante * Determine SCSI_CFG1 Microcode Default Value.
1325 1.7 dante *
1326 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1327 1.7 dante * after it is started below.
1328 1.7 dante */
1329 1.7 dante
1330 1.7 dante /* Read current SCSI_CFG1 Register value. */
1331 1.7 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1332 1.7 dante
1333 1.7 dante /*
1334 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1335 1.17 dante * will be set. Check for and return an error if this condition is
1336 1.17 dante * found.
1337 1.7 dante */
1338 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1339 1.16 dante return ADW_IERR_REVERSED_CABLE;
1340 1.7 dante }
1341 1.7 dante
1342 1.7 dante /*
1343 1.17 dante * All kind of combinations of devices attached to one of four
1344 1.17 dante * connectors are acceptable except HVD device attached.
1345 1.17 dante * For example, LVD device can be attached to SE connector while
1346 1.17 dante * SE device attached to LVD connector.
1347 1.17 dante * If LVD device attached to SE connector, it only runs up to
1348 1.17 dante * Ultra speed.
1349 1.17 dante *
1350 1.17 dante * If an HVD device is attached to one of LVD connectors, return
1351 1.17 dante * an error.
1352 1.17 dante * However, there is no way to detect HVD device attached to
1353 1.17 dante * SE connectors.
1354 1.7 dante */
1355 1.7 dante if (scsi_cfg1 & ADW_HVD) {
1356 1.16 dante return ADW_IERR_HVD_DEVICE;
1357 1.7 dante }
1358 1.7 dante
1359 1.7 dante /*
1360 1.7 dante * If either SE or LVD automatic termination control is enabled, then
1361 1.7 dante * set the termination value based on a table listed in a_condor.h.
1362 1.7 dante *
1363 1.7 dante * If manual termination was specified with an EEPROM setting then
1364 1.17 dante * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1365 1.17 dante * to be 'ored' into SCSI_CFG1.
1366 1.7 dante */
1367 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1368 1.7 dante /* SE automatic termination control is enabled. */
1369 1.7 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1370 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1371 1.7 dante case 0x1: case 0x2: case 0x3:
1372 1.17 dante cfg->termination |= ADW_TERM_SE;
1373 1.7 dante break;
1374 1.7 dante
1375 1.7 dante /* TERM_SE_HI: on, TERM_SE_LO: off */
1376 1.7 dante case 0x0:
1377 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1378 1.7 dante break;
1379 1.7 dante }
1380 1.7 dante }
1381 1.7 dante
1382 1.17 dante if ((cfg->termination & ADW_TERM_LVD) == 0) {
1383 1.7 dante /* LVD automatic termination control is enabled. */
1384 1.7 dante switch(scsi_cfg1 & ADW_C_DET_LVD) {
1385 1.7 dante /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1386 1.7 dante case 0x4: case 0x8: case 0xC:
1387 1.17 dante cfg->termination |= ADW_TERM_LVD;
1388 1.7 dante break;
1389 1.7 dante
1390 1.7 dante /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1391 1.7 dante case 0x0:
1392 1.7 dante break;
1393 1.7 dante }
1394 1.7 dante }
1395 1.7 dante
1396 1.7 dante /*
1397 1.7 dante * Clear any set TERM_SE and TERM_LVD bits.
1398 1.7 dante */
1399 1.7 dante scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1400 1.7 dante
1401 1.7 dante /*
1402 1.7 dante * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1403 1.7 dante */
1404 1.17 dante scsi_cfg1 |= (~cfg->termination & 0xF0);
1405 1.7 dante
1406 1.7 dante /*
1407 1.17 dante * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1408 1.17 dante * HVD/LVD/SE bits and set possibly modified termination control bits
1409 1.17 dante * in the Microcode SCSI_CFG1 Register Value.
1410 1.7 dante */
1411 1.7 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1412 1.17 dante ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1413 1.7 dante
1414 1.7 dante /*
1415 1.7 dante * Set SCSI_CFG1 Microcode Default Value
1416 1.7 dante *
1417 1.7 dante * Set possibly modified termination control and reset DIS_TERM_DRV
1418 1.7 dante * bits in the Microcode SCSI_CFG1 Register Value.
1419 1.7 dante *
1420 1.7 dante * The microcode will set the SCSI_CFG1 register using this value
1421 1.7 dante * after it is started below.
1422 1.7 dante */
1423 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1424 1.7 dante
1425 1.7 dante /*
1426 1.7 dante * Set MEM_CFG Microcode Default Value
1427 1.7 dante *
1428 1.7 dante * The microcode will set the MEM_CFG register using this value
1429 1.7 dante * after it is started below.
1430 1.7 dante *
1431 1.7 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1432 1.7 dante * are defined.
1433 1.7 dante *
1434 1.7 dante * ASC-38C0800 has 16KB internal memory.
1435 1.7 dante */
1436 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1437 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1438 1.7 dante
1439 1.17 dante return 0;
1440 1.17 dante }
1441 1.7 dante
1442 1.7 dante
1443 1.17 dante int
1444 1.17 dante AdwASC38C1600Cabling(iot, ioh, cfg)
1445 1.17 dante bus_space_tag_t iot;
1446 1.17 dante bus_space_handle_t ioh;
1447 1.17 dante ADW_DVC_CFG *cfg;
1448 1.17 dante {
1449 1.17 dante u_int16_t scsi_cfg1;
1450 1.7 dante
1451 1.7 dante
1452 1.7 dante /*
1453 1.17 dante * Determine SCSI_CFG1 Microcode Default Value.
1454 1.17 dante *
1455 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1456 1.17 dante * after it is started below.
1457 1.17 dante * Each ASC-38C1600 function has only two cable detect bits.
1458 1.17 dante * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1459 1.7 dante */
1460 1.7 dante
1461 1.17 dante /* Read current SCSI_CFG1 Register value. */
1462 1.17 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1463 1.7 dante
1464 1.7 dante /*
1465 1.17 dante * If the cable is reversed all of the SCSI_CTRL register signals
1466 1.17 dante * will be set. Check for and return an error if this condition is
1467 1.17 dante * found.
1468 1.7 dante */
1469 1.17 dante if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1470 1.17 dante return ADW_IERR_REVERSED_CABLE;
1471 1.7 dante }
1472 1.7 dante
1473 1.7 dante /*
1474 1.17 dante * Each ASC-38C1600 function has two connectors. Only an HVD device
1475 1.17 dante * can not be connected to either connector. An LVD device or SE device
1476 1.17 dante * may be connected to either connecor. If an SE device is connected,
1477 1.25 tsutsui * then at most Ultra speed (20 MHz) can be used on both connectors.
1478 1.7 dante *
1479 1.17 dante * If an HVD device is attached, return an error.
1480 1.7 dante */
1481 1.17 dante if (scsi_cfg1 & ADW_HVD) {
1482 1.17 dante return ADW_IERR_HVD_DEVICE;
1483 1.17 dante }
1484 1.7 dante
1485 1.7 dante /*
1486 1.17 dante * Each function in the ASC-38C1600 uses only the SE cable detect and
1487 1.17 dante * termination because there are two connectors for each function.
1488 1.17 dante * Each function may use either LVD or SE mode.
1489 1.17 dante * Corresponding the SE automatic termination control EEPROM bits are
1490 1.17 dante * used for each function.
1491 1.17 dante * Each function has its own EEPROM. If SE automatic control is enabled
1492 1.17 dante * for the function, then set the termination value based on a table
1493 1.17 dante * listed in adwlib.h.
1494 1.17 dante *
1495 1.17 dante * If manual termination is specified in the EEPROM for the function,
1496 1.17 dante * then 'termination' was set-up in AdwInitFromEEPROM() and is
1497 1.17 dante * ready to be 'ored' into SCSI_CFG1.
1498 1.7 dante */
1499 1.17 dante if ((cfg->termination & ADW_TERM_SE) == 0) {
1500 1.17 dante /* SE automatic termination control is enabled. */
1501 1.17 dante switch(scsi_cfg1 & ADW_C_DET_SE) {
1502 1.17 dante /* TERM_SE_HI: on, TERM_SE_LO: on */
1503 1.17 dante case 0x1: case 0x2: case 0x3:
1504 1.17 dante cfg->termination |= ADW_TERM_SE;
1505 1.17 dante break;
1506 1.7 dante
1507 1.17 dante case 0x0:
1508 1.21 lukem #if 0
1509 1.17 dante /* !!!!TODO!!!! */
1510 1.21 lukem if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1511 1.17 dante /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1512 1.21 lukem }
1513 1.21 lukem else
1514 1.21 lukem #endif
1515 1.21 lukem {
1516 1.17 dante /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1517 1.17 dante cfg->termination |= ADW_TERM_SE_HI;
1518 1.21 lukem }
1519 1.17 dante break;
1520 1.10 dante }
1521 1.7 dante }
1522 1.7 dante
1523 1.17 dante /*
1524 1.17 dante * Clear any set TERM_SE bits.
1525 1.17 dante */
1526 1.17 dante scsi_cfg1 &= ~ADW_TERM_SE;
1527 1.7 dante
1528 1.7 dante /*
1529 1.17 dante * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1530 1.7 dante */
1531 1.17 dante scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1532 1.7 dante
1533 1.7 dante /*
1534 1.17 dante * Clear Big Endian and Terminator Polarity bits and set possibly
1535 1.17 dante * modified termination control bits in the Microcode SCSI_CFG1
1536 1.17 dante * Register Value.
1537 1.7 dante */
1538 1.17 dante scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1539 1.7 dante
1540 1.7 dante /*
1541 1.17 dante * Set SCSI_CFG1 Microcode Default Value
1542 1.17 dante *
1543 1.17 dante * Set possibly modified termination control bits in the Microcode
1544 1.17 dante * SCSI_CFG1 Register Value.
1545 1.7 dante *
1546 1.17 dante * The microcode will set the SCSI_CFG1 register using this value
1547 1.17 dante * after it is started below.
1548 1.7 dante */
1549 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1550 1.7 dante
1551 1.17 dante /*
1552 1.17 dante * Set MEM_CFG Microcode Default Value
1553 1.17 dante *
1554 1.17 dante * The microcode will set the MEM_CFG register using this value
1555 1.17 dante * after it is started below.
1556 1.17 dante *
1557 1.17 dante * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1558 1.17 dante * are defined.
1559 1.17 dante *
1560 1.17 dante * ASC-38C1600 has 32KB internal memory.
1561 1.17 dante */
1562 1.17 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1563 1.17 dante ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1564 1.7 dante
1565 1.17 dante return 0;
1566 1.7 dante }
1567 1.7 dante
1568 1.7 dante
1569 1.7 dante /*
1570 1.7 dante * Read EEPROM configuration into the specified buffer.
1571 1.7 dante *
1572 1.7 dante * Return a checksum based on the EEPROM configuration read.
1573 1.7 dante */
1574 1.7 dante static u_int16_t
1575 1.17 dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1576 1.7 dante bus_space_tag_t iot;
1577 1.7 dante bus_space_handle_t ioh;
1578 1.17 dante ADW_EEPROM *cfg_buf;
1579 1.7 dante {
1580 1.7 dante u_int16_t wval, chksum;
1581 1.7 dante u_int16_t *wbuf;
1582 1.7 dante int eep_addr;
1583 1.7 dante
1584 1.7 dante
1585 1.7 dante wbuf = (u_int16_t *) cfg_buf;
1586 1.7 dante chksum = 0;
1587 1.7 dante
1588 1.7 dante for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1589 1.10 dante eep_addr < ASC_EEP_DVC_CFG_END;
1590 1.10 dante eep_addr++, wbuf++) {
1591 1.16 dante wval = AdwReadEEPWord(iot, ioh, eep_addr);
1592 1.7 dante chksum += wval;
1593 1.7 dante *wbuf = wval;
1594 1.7 dante }
1595 1.7 dante
1596 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1597 1.7 dante wbuf++;
1598 1.7 dante for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1599 1.7 dante eep_addr < ASC_EEP_MAX_WORD_ADDR;
1600 1.7 dante eep_addr++, wbuf++) {
1601 1.16 dante *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1602 1.7 dante }
1603 1.7 dante
1604 1.7 dante return chksum;
1605 1.7 dante }
1606 1.7 dante
1607 1.7 dante
1608 1.7 dante /*
1609 1.7 dante * Read the EEPROM from specified location
1610 1.7 dante */
1611 1.7 dante static u_int16_t
1612 1.16 dante AdwReadEEPWord(iot, ioh, eep_word_addr)
1613 1.7 dante bus_space_tag_t iot;
1614 1.7 dante bus_space_handle_t ioh;
1615 1.7 dante int eep_word_addr;
1616 1.7 dante {
1617 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1618 1.7 dante ASC_EEP_CMD_READ | eep_word_addr);
1619 1.16 dante AdwWaitEEPCmd(iot, ioh);
1620 1.7 dante
1621 1.7 dante return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1622 1.7 dante }
1623 1.7 dante
1624 1.7 dante
1625 1.7 dante /*
1626 1.7 dante * Wait for EEPROM command to complete
1627 1.7 dante */
1628 1.7 dante static void
1629 1.16 dante AdwWaitEEPCmd(iot, ioh)
1630 1.7 dante bus_space_tag_t iot;
1631 1.7 dante bus_space_handle_t ioh;
1632 1.7 dante {
1633 1.7 dante int eep_delay_ms;
1634 1.7 dante
1635 1.7 dante
1636 1.7 dante for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1637 1.7 dante if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1638 1.7 dante ASC_EEP_CMD_DONE) {
1639 1.7 dante break;
1640 1.7 dante }
1641 1.16 dante AdwSleepMilliSecond(1);
1642 1.7 dante }
1643 1.7 dante
1644 1.7 dante ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1645 1.7 dante }
1646 1.7 dante
1647 1.7 dante
1648 1.7 dante /*
1649 1.7 dante * Write the EEPROM from 'cfg_buf'.
1650 1.7 dante */
1651 1.7 dante static void
1652 1.17 dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1653 1.10 dante bus_space_tag_t iot;
1654 1.10 dante bus_space_handle_t ioh;
1655 1.17 dante ADW_EEPROM *cfg_buf;
1656 1.10 dante {
1657 1.10 dante u_int16_t *wbuf;
1658 1.10 dante u_int16_t addr, chksum;
1659 1.10 dante
1660 1.10 dante
1661 1.10 dante wbuf = (u_int16_t *) cfg_buf;
1662 1.10 dante chksum = 0;
1663 1.10 dante
1664 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1665 1.16 dante AdwWaitEEPCmd(iot, ioh);
1666 1.10 dante
1667 1.10 dante /*
1668 1.10 dante * Write EEPROM from word 0 to word 20
1669 1.10 dante */
1670 1.10 dante for (addr = ASC_EEP_DVC_CFG_BEGIN;
1671 1.10 dante addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1672 1.10 dante chksum += *wbuf;
1673 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1674 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1675 1.10 dante ASC_EEP_CMD_WRITE | addr);
1676 1.16 dante AdwWaitEEPCmd(iot, ioh);
1677 1.16 dante AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1678 1.10 dante }
1679 1.10 dante
1680 1.10 dante /*
1681 1.10 dante * Write EEPROM checksum at word 21
1682 1.10 dante */
1683 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1684 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1685 1.10 dante ASC_EEP_CMD_WRITE | addr);
1686 1.16 dante AdwWaitEEPCmd(iot, ioh);
1687 1.10 dante wbuf++; /* skip over check_sum */
1688 1.10 dante
1689 1.10 dante /*
1690 1.10 dante * Write EEPROM OEM name at words 22 to 29
1691 1.10 dante */
1692 1.10 dante for (addr = ASC_EEP_DVC_CTL_BEGIN;
1693 1.10 dante addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1694 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1695 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1696 1.10 dante ASC_EEP_CMD_WRITE | addr);
1697 1.16 dante AdwWaitEEPCmd(iot, ioh);
1698 1.10 dante }
1699 1.10 dante
1700 1.10 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1701 1.10 dante ASC_EEP_CMD_WRITE_DISABLE);
1702 1.16 dante AdwWaitEEPCmd(iot, ioh);
1703 1.10 dante
1704 1.10 dante return;
1705 1.10 dante }
1706 1.10 dante
1707 1.10 dante
1708 1.10 dante /*
1709 1.16 dante * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1710 1.7 dante *
1711 1.7 dante * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1712 1.7 dante * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1713 1.7 dante * RISC to notify it a new command is ready to be executed.
1714 1.1 dante *
1715 1.7 dante * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1716 1.7 dante * set to SCSI_MAX_RETRY.
1717 1.1 dante *
1718 1.7 dante * Return:
1719 1.7 dante * ADW_SUCCESS(1) - The request was successfully queued.
1720 1.7 dante * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1721 1.7 dante * request completes.
1722 1.7 dante * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1723 1.7 dante * host IC error.
1724 1.1 dante */
1725 1.7 dante int
1726 1.16 dante AdwExeScsiQueue(sc, scsiq)
1727 1.7 dante ADW_SOFTC *sc;
1728 1.7 dante ADW_SCSI_REQ_Q *scsiq;
1729 1.1 dante {
1730 1.7 dante bus_space_tag_t iot = sc->sc_iot;
1731 1.7 dante bus_space_handle_t ioh = sc->sc_ioh;
1732 1.7 dante ADW_CCB *ccb;
1733 1.7 dante long req_size;
1734 1.7 dante u_int32_t req_paddr;
1735 1.10 dante ADW_CARRIER *new_carrp;
1736 1.7 dante
1737 1.7 dante /*
1738 1.7 dante * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1739 1.7 dante */
1740 1.7 dante if (scsiq->target_id > ADW_MAX_TID) {
1741 1.7 dante scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1742 1.7 dante scsiq->done_status = QD_WITH_ERROR;
1743 1.7 dante return ADW_ERROR;
1744 1.7 dante }
1745 1.7 dante
1746 1.10 dante /*
1747 1.10 dante * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1748 1.10 dante */
1749 1.10 dante
1750 1.7 dante ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1751 1.7 dante
1752 1.7 dante /*
1753 1.16 dante * Allocate a carrier and initialize fields.
1754 1.7 dante */
1755 1.7 dante if ((new_carrp = sc->carr_freelist) == NULL) {
1756 1.7 dante return ADW_BUSY;
1757 1.7 dante }
1758 1.16 dante sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1759 1.12 dante ASC_GET_CARRP(new_carrp->next_ba));
1760 1.7 dante sc->carr_pending_cnt++;
1761 1.7 dante
1762 1.7 dante /*
1763 1.12 dante * Set the carrier to be a stopper by setting 'next_ba'
1764 1.7 dante * to the stopper value. The current stopper will be changed
1765 1.7 dante * below to point to the new stopper.
1766 1.7 dante */
1767 1.22 briggs new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
1768 1.7 dante
1769 1.7 dante req_size = sizeof(ADW_SCSI_REQ_Q);
1770 1.7 dante req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1771 1.7 dante ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1772 1.7 dante
1773 1.7 dante /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1774 1.22 briggs scsiq->scsiq_rptr = htole32(req_paddr);
1775 1.7 dante
1776 1.7 dante /*
1777 1.12 dante * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1778 1.7 dante * order during initialization.
1779 1.7 dante */
1780 1.12 dante scsiq->carr_ba = sc->icq_sp->carr_ba;
1781 1.12 dante scsiq->carr_va = sc->icq_sp->carr_ba;
1782 1.1 dante
1783 1.7 dante /*
1784 1.7 dante * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1785 1.7 dante * the microcode. The newly allocated stopper will become the new
1786 1.7 dante * stopper.
1787 1.7 dante */
1788 1.22 briggs sc->icq_sp->areq_ba = htole32(req_paddr);
1789 1.1 dante
1790 1.1 dante /*
1791 1.12 dante * Set the 'next_ba' pointer for the old stopper to be the
1792 1.7 dante * physical address of the new stopper. The RISC can only
1793 1.7 dante * follow physical addresses.
1794 1.1 dante */
1795 1.12 dante sc->icq_sp->next_ba = new_carrp->carr_ba;
1796 1.1 dante
1797 1.12 dante #if ADW_DEBUG
1798 1.12 dante printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1799 1.12 dante sc->icq_sp->carr_id,
1800 1.12 dante sc->icq_sp->carr_ba,
1801 1.12 dante sc->icq_sp->areq_ba,
1802 1.12 dante sc->icq_sp->next_ba);
1803 1.12 dante #endif
1804 1.1 dante /*
1805 1.7 dante * Set the host adapter stopper pointer to point to the new carrier.
1806 1.1 dante */
1807 1.7 dante sc->icq_sp = new_carrp;
1808 1.11 dante
1809 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
1810 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
1811 1.7 dante /*
1812 1.10 dante * Tickle the RISC to tell it to read its Command Queue Head
1813 1.10 dante * pointer.
1814 1.10 dante */
1815 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1816 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
1817 1.10 dante /*
1818 1.10 dante * Clear the tickle value. In the ASC-3550 the RISC flag
1819 1.10 dante * command 'clr_tickle_a' does not work unless the host
1820 1.10 dante * value is cleared.
1821 1.10 dante */
1822 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1823 1.20 itojun ADW_TICKLE_NOP);
1824 1.10 dante }
1825 1.16 dante } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1826 1.10 dante /*
1827 1.10 dante * Notify the RISC a carrier is ready by writing the physical
1828 1.10 dante * address of the new carrier stopper to the COMMA register.
1829 1.7 dante */
1830 1.10 dante ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1831 1.22 briggs le32toh(new_carrp->carr_ba));
1832 1.7 dante }
1833 1.7 dante
1834 1.10 dante /*
1835 1.10 dante * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1836 1.10 dante */
1837 1.10 dante
1838 1.7 dante return ADW_SUCCESS;
1839 1.1 dante }
1840 1.1 dante
1841 1.7 dante
1842 1.7 dante void
1843 1.16 dante AdwResetChip(iot, ioh)
1844 1.7 dante bus_space_tag_t iot;
1845 1.7 dante bus_space_handle_t ioh;
1846 1.1 dante {
1847 1.7 dante
1848 1.7 dante /*
1849 1.7 dante * Reset Chip.
1850 1.7 dante */
1851 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1852 1.7 dante ADW_CTRL_REG_CMD_RESET);
1853 1.16 dante AdwSleepMilliSecond(100);
1854 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1855 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1856 1.1 dante }
1857 1.1 dante
1858 1.7 dante
1859 1.1 dante /*
1860 1.1 dante * Reset SCSI Bus and purge all outstanding requests.
1861 1.1 dante *
1862 1.1 dante * Return Value:
1863 1.7 dante * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1864 1.7 dante * ADW_FALSE(0) - Microcode command failed.
1865 1.7 dante * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1866 1.7 dante * may be hung which requires driver recovery.
1867 1.1 dante */
1868 1.1 dante int
1869 1.16 dante AdwResetCCB(sc)
1870 1.7 dante ADW_SOFTC *sc;
1871 1.1 dante {
1872 1.7 dante int status;
1873 1.7 dante
1874 1.7 dante /*
1875 1.7 dante * Send the SCSI Bus Reset idle start idle command which asserts
1876 1.7 dante * the SCSI Bus Reset signal.
1877 1.7 dante */
1878 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1879 1.11 dante if (status != ADW_TRUE) {
1880 1.7 dante return status;
1881 1.7 dante }
1882 1.7 dante
1883 1.7 dante /*
1884 1.7 dante * Delay for the specified SCSI Bus Reset hold time.
1885 1.7 dante *
1886 1.7 dante * The hold time delay is done on the host because the RISC has no
1887 1.7 dante * microsecond accurate timer.
1888 1.7 dante */
1889 1.16 dante AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1890 1.1 dante
1891 1.7 dante /*
1892 1.7 dante * Send the SCSI Bus Reset end idle command which de-asserts
1893 1.7 dante * the SCSI Bus Reset signal and purges any pending requests.
1894 1.7 dante */
1895 1.16 dante status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1896 1.11 dante if (status != ADW_TRUE) {
1897 1.7 dante return status;
1898 1.7 dante }
1899 1.1 dante
1900 1.16 dante AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1901 1.1 dante
1902 1.1 dante return status;
1903 1.1 dante }
1904 1.1 dante
1905 1.7 dante
1906 1.1 dante /*
1907 1.7 dante * Reset chip and SCSI Bus.
1908 1.7 dante *
1909 1.7 dante * Return Value:
1910 1.7 dante * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1911 1.7 dante * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1912 1.1 dante */
1913 1.7 dante int
1914 1.16 dante AdwResetSCSIBus(sc)
1915 1.7 dante ADW_SOFTC *sc;
1916 1.1 dante {
1917 1.2 dante bus_space_tag_t iot = sc->sc_iot;
1918 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
1919 1.7 dante int status;
1920 1.28 christos u_int16_t wdtr_able, sdtr_able, tagqng_able;
1921 1.28 christos u_int16_t ppr_able = 0; /* XXX: gcc */
1922 1.7 dante u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1923 1.7 dante u_int16_t bios_sig;
1924 1.7 dante
1925 1.7 dante
1926 1.7 dante /*
1927 1.7 dante * Save current per TID negotiated values.
1928 1.7 dante */
1929 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1930 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1931 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1932 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1933 1.10 dante }
1934 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1935 1.11 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1936 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1937 1.7 dante max_cmd[tid]);
1938 1.7 dante }
1939 1.7 dante
1940 1.7 dante /*
1941 1.17 dante * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1942 1.17 dante * by clearing the BIOS signature word.
1943 1.7 dante * The initialization functions assumes a SCSI Bus Reset is not
1944 1.7 dante * needed if the BIOS signature word is present.
1945 1.7 dante */
1946 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1947 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1948 1.7 dante
1949 1.7 dante /*
1950 1.7 dante * Stop chip and reset it.
1951 1.7 dante */
1952 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1953 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1954 1.7 dante ADW_CTRL_REG_CMD_RESET);
1955 1.16 dante AdwSleepMilliSecond(100);
1956 1.7 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1957 1.7 dante ADW_CTRL_REG_CMD_WR_IO_REG);
1958 1.7 dante
1959 1.7 dante /*
1960 1.7 dante * Reset Adv Library error code, if any, and try
1961 1.7 dante * re-initializing the chip.
1962 1.17 dante * Then translate initialization return value to status value.
1963 1.7 dante */
1964 1.17 dante status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1965 1.1 dante
1966 1.7 dante /*
1967 1.7 dante * Restore the BIOS signature word.
1968 1.7 dante */
1969 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1970 1.1 dante
1971 1.1 dante /*
1972 1.7 dante * Restore per TID negotiated values.
1973 1.1 dante */
1974 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1975 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1976 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1977 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1978 1.10 dante }
1979 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1980 1.7 dante for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1981 1.16 dante ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1982 1.7 dante max_cmd[tid]);
1983 1.7 dante }
1984 1.1 dante
1985 1.7 dante return status;
1986 1.1 dante }
1987 1.1 dante
1988 1.1 dante
1989 1.1 dante /*
1990 1.1 dante * Adv Library Interrupt Service Routine
1991 1.1 dante *
1992 1.1 dante * This function is called by a driver's interrupt service routine.
1993 1.1 dante * The function disables and re-enables interrupts.
1994 1.1 dante *
1995 1.7 dante * When a microcode idle command is completed, the ADV_DVC_VAR
1996 1.1 dante * 'idle_cmd_done' field is set to ADW_TRUE.
1997 1.1 dante *
1998 1.16 dante * Note: AdwISR() can be called when interrupts are disabled or even
1999 1.1 dante * when there is no hardware interrupt condition present. It will
2000 1.1 dante * always check for completed idle commands and microcode requests.
2001 1.1 dante * This is an important feature that shouldn't be changed because it
2002 1.1 dante * allows commands to be completed from polling mode loops.
2003 1.1 dante *
2004 1.1 dante * Return:
2005 1.1 dante * ADW_TRUE(1) - interrupt was pending
2006 1.1 dante * ADW_FALSE(0) - no interrupt was pending
2007 1.1 dante */
2008 1.1 dante int
2009 1.16 dante AdwISR(sc)
2010 1.7 dante ADW_SOFTC *sc;
2011 1.1 dante {
2012 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2013 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2014 1.7 dante u_int8_t int_stat;
2015 1.7 dante u_int16_t target_bit;
2016 1.7 dante ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2017 1.7 dante u_int32_t irq_next_pa;
2018 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2019 1.7 dante ADW_CCB *ccb;
2020 1.11 dante int s;
2021 1.11 dante
2022 1.1 dante
2023 1.11 dante s = splbio();
2024 1.1 dante
2025 1.1 dante /* Reading the register clears the interrupt. */
2026 1.1 dante int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2027 1.1 dante
2028 1.7 dante if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2029 1.7 dante ADW_INTR_STATUS_INTRC)) == 0) {
2030 1.11 dante splx(s);
2031 1.7 dante return ADW_FALSE;
2032 1.1 dante }
2033 1.7 dante
2034 1.7 dante /*
2035 1.7 dante * Notify the driver of an asynchronous microcode condition by
2036 1.7 dante * calling the ADV_DVC_VAR.async_callback function. The function
2037 1.16 dante * is passed the microcode ADW_MC_INTRB_CODE byte value.
2038 1.1 dante */
2039 1.7 dante if (int_stat & ADW_INTR_STATUS_INTRB) {
2040 1.7 dante u_int8_t intrb_code;
2041 1.7 dante
2042 1.16 dante ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2043 1.10 dante
2044 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550 ||
2045 1.16 dante sc->chip_type == ADW_CHIP_ASC38C0800) {
2046 1.10 dante if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2047 1.10 dante sc->carr_pending_cnt != 0) {
2048 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2049 1.20 itojun IOPB_TICKLE, ADW_TICKLE_A);
2050 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2051 1.10 dante ADW_WRITE_BYTE_REGISTER(iot, ioh,
2052 1.20 itojun IOPB_TICKLE, ADW_TICKLE_NOP);
2053 1.10 dante }
2054 1.10 dante }
2055 1.7 dante }
2056 1.7 dante
2057 1.7 dante if (sc->async_callback != 0) {
2058 1.7 dante (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2059 1.1 dante }
2060 1.1 dante }
2061 1.7 dante
2062 1.1 dante /*
2063 1.7 dante * Check if the IRQ stopper carrier contains a completed request.
2064 1.1 dante */
2065 1.22 briggs while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
2066 1.7 dante {
2067 1.12 dante #if ADW_DEBUG
2068 1.12 dante printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2069 1.12 dante sc->irq_sp->carr_id,
2070 1.12 dante sc->irq_sp->carr_ba,
2071 1.12 dante sc->irq_sp->areq_ba,
2072 1.12 dante sc->irq_sp->next_ba);
2073 1.12 dante #endif
2074 1.7 dante /*
2075 1.10 dante * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2076 1.10 dante * structure.
2077 1.12 dante * The RISC will have set 'areq_ba' to a virtual address.
2078 1.7 dante *
2079 1.7 dante * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2080 1.12 dante * field to the carrier ADV_CARR_T.areq_ba field.
2081 1.10 dante * The conversion below complements the conversion of
2082 1.16 dante * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2083 1.7 dante */
2084 1.12 dante ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2085 1.7 dante scsiq = &ccb->scsiq;
2086 1.12 dante scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2087 1.7 dante
2088 1.10 dante /*
2089 1.10 dante * Request finished with good status and the queue was not
2090 1.10 dante * DMAed to host memory by the firmware. Set all status fields
2091 1.10 dante * to indicate good status.
2092 1.10 dante */
2093 1.22 briggs if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
2094 1.10 dante scsiq->done_status = QD_NO_ERROR;
2095 1.10 dante scsiq->host_status = scsiq->scsi_status = 0;
2096 1.10 dante scsiq->data_cnt = 0L;
2097 1.7 dante }
2098 1.1 dante
2099 1.1 dante /*
2100 1.7 dante * Advance the stopper pointer to the next carrier
2101 1.7 dante * ignoring the lower four bits. Free the previous
2102 1.7 dante * stopper carrier.
2103 1.1 dante */
2104 1.7 dante free_carrp = sc->irq_sp;
2105 1.16 dante sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2106 1.7 dante
2107 1.26 fvdl free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
2108 1.16 dante : sc->carr_freelist->carr_ba;
2109 1.7 dante sc->carr_freelist = free_carrp;
2110 1.7 dante sc->carr_pending_cnt--;
2111 1.1 dante
2112 1.1 dante
2113 1.1 dante target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2114 1.1 dante
2115 1.1 dante /*
2116 1.1 dante * Clear request microcode control flag.
2117 1.1 dante */
2118 1.1 dante scsiq->cntl = 0;
2119 1.1 dante
2120 1.1 dante /*
2121 1.1 dante * Check Condition handling
2122 1.1 dante */
2123 1.1 dante /*
2124 1.1 dante * If the command that completed was a SCSI INQUIRY and
2125 1.1 dante * LUN 0 was sent the command, then process the INQUIRY
2126 1.1 dante * command information for the device.
2127 1.1 dante */
2128 1.7 dante if (scsiq->done_status == QD_NO_ERROR &&
2129 1.10 dante scsiq->cdb[0] == INQUIRY &&
2130 1.10 dante scsiq->target_lun == 0) {
2131 1.16 dante AdwInquiryHandling(sc, scsiq);
2132 1.1 dante }
2133 1.1 dante
2134 1.1 dante /*
2135 1.1 dante * Notify the driver of the completed request by passing
2136 1.1 dante * the ADW_SCSI_REQ_Q pointer to its callback function.
2137 1.1 dante */
2138 1.7 dante (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2139 1.1 dante /*
2140 1.1 dante * Note: After the driver callback function is called, 'scsiq'
2141 1.1 dante * can no longer be referenced.
2142 1.1 dante *
2143 1.1 dante * Fall through and continue processing other completed
2144 1.1 dante * requests...
2145 1.1 dante */
2146 1.1 dante }
2147 1.11 dante
2148 1.11 dante splx(s);
2149 1.7 dante
2150 1.7 dante return ADW_TRUE;
2151 1.1 dante }
2152 1.1 dante
2153 1.7 dante
2154 1.1 dante /*
2155 1.1 dante * Send an idle command to the chip and wait for completion.
2156 1.1 dante *
2157 1.7 dante * Command completion is polled for once per microsecond.
2158 1.7 dante *
2159 1.7 dante * The function can be called from anywhere including an interrupt handler.
2160 1.10 dante * But the function is not re-entrant, so it uses the splbio/splx()
2161 1.7 dante * functions to prevent reentrancy.
2162 1.1 dante *
2163 1.1 dante * Return Values:
2164 1.1 dante * ADW_TRUE - command completed successfully
2165 1.1 dante * ADW_FALSE - command failed
2166 1.7 dante * ADW_ERROR - command timed out
2167 1.1 dante */
2168 1.1 dante int
2169 1.16 dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2170 1.7 dante ADW_SOFTC *sc;
2171 1.7 dante u_int16_t idle_cmd;
2172 1.7 dante u_int32_t idle_cmd_parameter;
2173 1.1 dante {
2174 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2175 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2176 1.13 dante u_int16_t result;
2177 1.10 dante u_int32_t i, j, s;
2178 1.1 dante
2179 1.10 dante s = splbio();
2180 1.7 dante
2181 1.7 dante /*
2182 1.7 dante * Clear the idle command status which is set by the microcode
2183 1.7 dante * to a non-zero value to indicate when the command is completed.
2184 1.7 dante */
2185 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2186 1.1 dante
2187 1.1 dante /*
2188 1.1 dante * Write the idle command value after the idle command parameter
2189 1.1 dante * has been written to avoid a race condition. If the order is not
2190 1.1 dante * followed, the microcode may process the idle command before the
2191 1.1 dante * parameters have been written to LRAM.
2192 1.1 dante */
2193 1.16 dante ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2194 1.13 dante idle_cmd_parameter);
2195 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2196 1.1 dante
2197 1.1 dante /*
2198 1.7 dante * Tickle the RISC to tell it to process the idle command.
2199 1.1 dante */
2200 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2201 1.16 dante if (sc->chip_type == ADW_CHIP_ASC3550) {
2202 1.1 dante /*
2203 1.7 dante * Clear the tickle value. In the ASC-3550 the RISC flag
2204 1.7 dante * command 'clr_tickle_b' does not work unless the host
2205 1.7 dante * value is cleared.
2206 1.1 dante */
2207 1.20 itojun ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2208 1.7 dante }
2209 1.1 dante
2210 1.7 dante /* Wait for up to 100 millisecond for the idle command to timeout. */
2211 1.7 dante for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2212 1.7 dante /* Poll once each microsecond for command completion. */
2213 1.7 dante for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2214 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2215 1.17 dante result);
2216 1.7 dante if (result != 0) {
2217 1.10 dante splx(s);
2218 1.7 dante return result;
2219 1.7 dante }
2220 1.16 dante AdwDelayMicroSecond(1);
2221 1.7 dante }
2222 1.1 dante }
2223 1.1 dante
2224 1.10 dante splx(s);
2225 1.7 dante return ADW_ERROR;
2226 1.1 dante }
2227 1.1 dante
2228 1.1 dante
2229 1.1 dante /*
2230 1.1 dante * Inquiry Information Byte 7 Handling
2231 1.1 dante *
2232 1.1 dante * Handle SCSI Inquiry Command information for a device by setting
2233 1.2 dante * microcode operating variables that affect WDTR, SDTR, and Tag
2234 1.1 dante * Queuing.
2235 1.1 dante */
2236 1.1 dante static void
2237 1.16 dante AdwInquiryHandling(sc, scsiq)
2238 1.7 dante ADW_SOFTC *sc;
2239 1.7 dante ADW_SCSI_REQ_Q *scsiq;
2240 1.1 dante {
2241 1.9 dante #ifndef FAILSAFE
2242 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2243 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2244 1.7 dante u_int8_t tid;
2245 1.13 dante struct scsipi_inquiry_data *inq;
2246 1.7 dante u_int16_t tidmask;
2247 1.7 dante u_int16_t cfg_word;
2248 1.7 dante
2249 1.1 dante
2250 1.1 dante /*
2251 1.16 dante * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2252 1.1 dante * to be available.
2253 1.1 dante *
2254 1.1 dante * If less than 8 bytes of INQUIRY information were requested or less
2255 1.1 dante * than 8 bytes were transferred, then return. cdb[4] is the request
2256 1.1 dante * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2257 1.1 dante * microcode to the transfer residual count.
2258 1.1 dante */
2259 1.7 dante
2260 1.2 dante if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2261 1.1 dante return;
2262 1.1 dante }
2263 1.7 dante
2264 1.1 dante tid = scsiq->target_id;
2265 1.7 dante
2266 1.13 dante inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2267 1.1 dante
2268 1.1 dante /*
2269 1.1 dante * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2270 1.1 dante */
2271 1.13 dante if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2272 1.13 dante ((inq->version & SID_ANSII) < 2)) {
2273 1.1 dante return;
2274 1.2 dante } else {
2275 1.1 dante /*
2276 1.1 dante * INQUIRY Byte 7 Handling
2277 1.1 dante *
2278 1.1 dante * Use a device's INQUIRY byte 7 to determine whether it
2279 1.1 dante * supports WDTR, SDTR, and Tag Queuing. If the feature
2280 1.1 dante * is enabled in the EEPROM and the device supports the
2281 1.1 dante * feature, then enable it in the microcode.
2282 1.1 dante */
2283 1.1 dante
2284 1.1 dante tidmask = ADW_TID_TO_TIDMASK(tid);
2285 1.7 dante
2286 1.1 dante /*
2287 1.1 dante * Wide Transfers
2288 1.1 dante *
2289 1.1 dante * If the EEPROM enabled WDTR for the device and the device
2290 1.1 dante * supports wide bus (16 bit) transfers, then turn on the
2291 1.1 dante * device's 'wdtr_able' bit and write the new value to the
2292 1.1 dante * microcode.
2293 1.1 dante */
2294 1.7 dante #ifdef SCSI_ADW_WDTR_DISABLE
2295 1.8 dante if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2296 1.7 dante #endif /* SCSI_ADW_WDTR_DISABLE */
2297 1.13 dante if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2298 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2299 1.7 dante cfg_word);
2300 1.2 dante if ((cfg_word & tidmask) == 0) {
2301 1.1 dante cfg_word |= tidmask;
2302 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2303 1.7 dante cfg_word);
2304 1.1 dante
2305 1.1 dante /*
2306 1.16 dante * Clear the microcode "SDTR negotiation" and
2307 1.16 dante * "WDTR negotiation" done indicators for the
2308 1.16 dante * target to cause it to negotiate with the new
2309 1.16 dante * setting set above.
2310 1.7 dante * WDTR when accepted causes the target to enter
2311 1.16 dante * asynchronous mode, so SDTR must be negotiated
2312 1.1 dante */
2313 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2314 1.7 dante cfg_word);
2315 1.7 dante cfg_word &= ~tidmask;
2316 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2317 1.7 dante cfg_word);
2318 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2319 1.7 dante cfg_word);
2320 1.1 dante cfg_word &= ~tidmask;
2321 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2322 1.7 dante cfg_word);
2323 1.1 dante }
2324 1.1 dante }
2325 1.7 dante
2326 1.1 dante /*
2327 1.1 dante * Synchronous Transfers
2328 1.1 dante *
2329 1.1 dante * If the EEPROM enabled SDTR for the device and the device
2330 1.1 dante * supports synchronous transfers, then turn on the device's
2331 1.1 dante * 'sdtr_able' bit. Write the new value to the microcode.
2332 1.1 dante */
2333 1.7 dante #ifdef SCSI_ADW_SDTR_DISABLE
2334 1.8 dante if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2335 1.7 dante #endif /* SCSI_ADW_SDTR_DISABLE */
2336 1.13 dante if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2337 1.17 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2338 1.2 dante if ((cfg_word & tidmask) == 0) {
2339 1.1 dante cfg_word |= tidmask;
2340 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2341 1.7 dante cfg_word);
2342 1.1 dante
2343 1.1 dante /*
2344 1.16 dante * Clear the microcode "SDTR negotiation"
2345 1.16 dante * done indicator for the target to cause it
2346 1.16 dante * to negotiate with the new setting set above.
2347 1.1 dante */
2348 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2349 1.7 dante cfg_word);
2350 1.1 dante cfg_word &= ~tidmask;
2351 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2352 1.7 dante cfg_word);
2353 1.10 dante }
2354 1.10 dante }
2355 1.10 dante /*
2356 1.10 dante * If the Inquiry data included enough space for the SPI-3
2357 1.10 dante * Clocking field, then check if DT mode is supported.
2358 1.10 dante */
2359 1.16 dante if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2360 1.17 dante (scsiq->cdb[4] >= 57 ||
2361 1.17 dante (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2362 1.10 dante /*
2363 1.10 dante * PPR (Parallel Protocol Request) Capable
2364 1.10 dante *
2365 1.10 dante * If the device supports DT mode, then it must be
2366 1.10 dante * PPR capable.
2367 1.10 dante * The PPR message will be used in place of the SDTR
2368 1.10 dante * and WDTR messages to negotiate synchronous speed
2369 1.10 dante * and offset, transfer width, and protocol options.
2370 1.10 dante */
2371 1.15 dante if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2372 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2373 1.10 dante sc->ppr_able);
2374 1.10 dante sc->ppr_able |= tidmask;
2375 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2376 1.10 dante sc->ppr_able);
2377 1.1 dante }
2378 1.1 dante }
2379 1.7 dante
2380 1.1 dante /*
2381 1.7 dante * If the EEPROM enabled Tag Queuing for the device and the
2382 1.7 dante * device supports Tag Queueing, then turn on the device's
2383 1.1 dante * 'tagqng_enable' bit in the microcode and set the microcode
2384 1.7 dante * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2385 1.1 dante * value.
2386 1.1 dante *
2387 1.1 dante * Tag Queuing is disabled for the BIOS which runs in polled
2388 1.1 dante * mode and would see no benefit from Tag Queuing. Also by
2389 1.1 dante * disabling Tag Queuing in the BIOS devices with Tag Queuing
2390 1.1 dante * bugs will at least work with the BIOS.
2391 1.1 dante */
2392 1.7 dante #ifdef SCSI_ADW_TAGQ_DISABLE
2393 1.8 dante if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2394 1.7 dante #endif /* SCSI_ADW_TAGQ_DISABLE */
2395 1.13 dante if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2396 1.16 dante ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2397 1.7 dante cfg_word);
2398 1.1 dante cfg_word |= tidmask;
2399 1.16 dante ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2400 1.7 dante cfg_word);
2401 1.7 dante
2402 1.1 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
2403 1.16 dante ADW_MC_NUMBER_OF_MAX_CMD + tid,
2404 1.7 dante sc->max_dvc_qng);
2405 1.1 dante }
2406 1.9 dante }
2407 1.7 dante #endif /* FAILSAFE */
2408 1.1 dante }
2409 1.1 dante
2410 1.7 dante
2411 1.1 dante static void
2412 1.16 dante AdwSleepMilliSecond(n)
2413 1.7 dante u_int32_t n;
2414 1.1 dante {
2415 1.1 dante
2416 1.1 dante DELAY(n * 1000);
2417 1.1 dante }
2418 1.1 dante
2419 1.7 dante
2420 1.1 dante static void
2421 1.16 dante AdwDelayMicroSecond(n)
2422 1.7 dante u_int32_t n;
2423 1.1 dante {
2424 1.1 dante
2425 1.1 dante DELAY(n);
2426 1.1 dante }
2427 1.7 dante
2428