Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.31
      1  1.31       wiz /* $NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $        */
      2   1.1     dante 
      3   1.1     dante /*
      4   1.1     dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5   1.1     dante  *
      6   1.7     dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7   1.1     dante  * All rights reserved.
      8   1.1     dante  *
      9   1.1     dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10   1.1     dante  *
     11   1.1     dante  * Redistribution and use in source and binary forms, with or without
     12   1.1     dante  * modification, are permitted provided that the following conditions
     13   1.1     dante  * are met:
     14   1.1     dante  * 1. Redistributions of source code must retain the above copyright
     15   1.1     dante  *    notice, this list of conditions and the following disclaimer.
     16   1.1     dante  * 2. Redistributions in binary form must reproduce the above copyright
     17   1.1     dante  *    notice, this list of conditions and the following disclaimer in the
     18   1.1     dante  *    documentation and/or other materials provided with the distribution.
     19   1.1     dante  * 3. All advertising materials mentioning features or use of this software
     20   1.1     dante  *    must display the following acknowledgement:
     21   1.1     dante  *        This product includes software developed by the NetBSD
     22   1.1     dante  *        Foundation, Inc. and its contributors.
     23   1.1     dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24   1.1     dante  *    contributors may be used to endorse or promote products derived
     25   1.1     dante  *    from this software without specific prior written permission.
     26   1.1     dante  *
     27   1.1     dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28   1.1     dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29   1.1     dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30   1.1     dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31   1.1     dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32   1.1     dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33   1.1     dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34   1.1     dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35   1.1     dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36   1.1     dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37   1.1     dante  * POSSIBILITY OF SUCH DAMAGE.
     38   1.1     dante  */
     39   1.1     dante /*
     40   1.1     dante  * Ported from:
     41   1.1     dante  */
     42   1.1     dante /*
     43   1.1     dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44   1.7     dante  *
     45  1.10     dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46   1.1     dante  * All Rights Reserved.
     47   1.1     dante  *
     48   1.1     dante  * Redistribution and use in source and binary forms, with or without
     49   1.1     dante  * modification, are permitted provided that redistributions of source
     50   1.1     dante  * code retain the above copyright notice and this comment without
     51   1.1     dante  * modification.
     52   1.1     dante  */
     53  1.23     lukem 
     54  1.23     lukem #include <sys/cdefs.h>
     55  1.31       wiz __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $");
     56   1.1     dante 
     57   1.1     dante #include <sys/param.h>
     58   1.1     dante #include <sys/systm.h>
     59   1.1     dante #include <sys/malloc.h>
     60   1.1     dante #include <sys/kernel.h>
     61   1.1     dante #include <sys/queue.h>
     62   1.1     dante #include <sys/device.h>
     63   1.1     dante 
     64   1.1     dante #include <machine/bus.h>
     65   1.1     dante #include <machine/intr.h>
     66   1.1     dante 
     67   1.1     dante #include <dev/scsipi/scsi_all.h>
     68   1.1     dante #include <dev/scsipi/scsipi_all.h>
     69   1.1     dante #include <dev/scsipi/scsiconf.h>
     70   1.1     dante 
     71   1.7     dante #include <dev/pci/pcidevs.h>
     72   1.7     dante 
     73  1.19       mrg #include <uvm/uvm_extern.h>
     74   1.1     dante 
     75   1.1     dante #include <dev/ic/adwlib.h>
     76  1.16     dante #include <dev/ic/adwmcode.h>
     77   1.1     dante #include <dev/ic/adw.h>
     78   1.1     dante 
     79   1.1     dante 
     80   1.1     dante /* Static Functions */
     81   1.1     dante 
     82  1.17     dante int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
     83  1.17     dante int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
     84  1.17     dante 								u_int8_t));
     85  1.17     dante int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
     86  1.17     dante int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
     87  1.17     dante 								ADW_DVC_CFG *));
     88  1.17     dante int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
     89  1.17     dante 								ADW_DVC_CFG *));
     90  1.17     dante 
     91  1.17     dante static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     92  1.17     dante      							ADW_EEPROM *));
     93  1.17     dante static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
     94  1.17     dante 					                 ADW_EEPROM *));
     95  1.16     dante static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     96  1.16     dante static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     97  1.17     dante 
     98  1.16     dante static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     99   1.1     dante 
    100  1.16     dante static void AdwSleepMilliSecond __P((u_int32_t));
    101  1.16     dante static void AdwDelayMicroSecond __P((u_int32_t));
    102   1.1     dante 
    103   1.1     dante 
    104   1.1     dante /*
    105   1.1     dante  * EEPROM Configuration.
    106   1.1     dante  *
    107   1.1     dante  * All drivers should use this structure to set the default EEPROM
    108   1.1     dante  * configuration. The BIOS now uses this structure when it is built.
    109  1.16     dante  * Additional structure information can be found in adwlib.h where
    110   1.1     dante  * the structure is defined.
    111   1.1     dante  */
    112  1.17     dante const static ADW_EEPROM adw_3550_Default_EEPROM = {
    113  1.17     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    114  1.17     dante 	0x0000,			/* 01 cfg_msw */
    115  1.17     dante 	0xFFFF,			/* 02 disc_enable */
    116  1.17     dante 	0xFFFF,			/* 03 wdtr_able */
    117  1.17     dante 	{ 0xFFFF },		/* 04 sdtr_able */
    118  1.17     dante 	0xFFFF,			/* 05 start_motor */
    119  1.17     dante 	0xFFFF,			/* 06 tagqng_able */
    120  1.17     dante 	0xFFFF,			/* 07 bios_scan */
    121  1.17     dante 	0,			/* 08 scam_tolerant */
    122  1.17     dante 	7,			/* 09 adapter_scsi_id */
    123  1.17     dante 	0,			/*    bios_boot_delay */
    124  1.17     dante 	3,			/* 10 scsi_reset_delay */
    125  1.17     dante 	0,			/*    bios_id_lun */
    126  1.17     dante 	0,			/* 11 termination */
    127  1.17     dante 	0,			/*    reserved1 */
    128  1.17     dante 	0xFFE7,			/* 12 bios_ctrl */
    129  1.17     dante 	{ 0xFFFF },		/* 13 ultra_able */
    130  1.17     dante 	{ 0 },			/* 14 reserved2 */
    131  1.17     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    132  1.17     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    133  1.17     dante 	0,			/* 16 dvc_cntl */
    134  1.17     dante 	{ 0 },			/* 17 bug_fix */
    135  1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    136  1.17     dante 	0,			/* 21 check_sum */
    137  1.17     dante 	{			/* 22-29 oem_name[16] */
    138  1.17     dante 	  0,0,0,0,0,0,0,0,
    139  1.17     dante 	  0,0,0,0,0,0,0,0
    140  1.17     dante 	},
    141  1.17     dante 	0,			/* 30 dvc_err_code */
    142  1.17     dante 	0,			/* 31 adv_err_code */
    143  1.17     dante 	0,			/* 32 adv_err_addr */
    144  1.17     dante 	0,			/* 33 saved_dvc_err_code */
    145  1.17     dante 	0,			/* 34 saved_adv_err_code */
    146  1.17     dante 	0			/* 35 saved_adv_err_addr */
    147   1.7     dante };
    148   1.7     dante 
    149  1.17     dante const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
    150   1.7     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151   1.7     dante 	0x0000,			/* 01 cfg_msw */
    152   1.7     dante 	0xFFFF,			/* 02 disc_enable */
    153   1.7     dante 	0xFFFF,			/* 03 wdtr_able */
    154  1.17     dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    155   1.7     dante 	0xFFFF,			/* 05 start_motor */
    156   1.7     dante 	0xFFFF,			/* 06 tagqng_able */
    157   1.7     dante 	0xFFFF,			/* 07 bios_scan */
    158   1.7     dante 	0,			/* 08 scam_tolerant */
    159   1.7     dante 	7,			/* 09 adapter_scsi_id */
    160   1.7     dante 	0,			/*    bios_boot_delay */
    161   1.7     dante 	3,			/* 10 scsi_reset_delay */
    162   1.7     dante 	0,			/*    bios_id_lun */
    163   1.7     dante 	0,			/* 11 termination_se */
    164   1.7     dante 	0,			/*    termination_lvd */
    165   1.7     dante 	0xFFE7,			/* 12 bios_ctrl */
    166  1.17     dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    167  1.17     dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    168  1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169  1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170   1.7     dante 	0,			/* 16 dvc_cntl */
    171  1.17     dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    172  1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    173   1.7     dante 	0,			/* 21 check_sum */
    174  1.17     dante 	{			/* 22-29 oem_name[16] */
    175  1.17     dante 	  0,0,0,0,0,0,0,0,
    176  1.17     dante 	  0,0,0,0,0,0,0,0
    177  1.17     dante 	},
    178   1.7     dante 	0,			/* 30 dvc_err_code */
    179   1.7     dante 	0,			/* 31 adv_err_code */
    180   1.7     dante 	0,			/* 32 adv_err_addr */
    181   1.7     dante 	0,			/* 33 saved_dvc_err_code */
    182   1.7     dante 	0,			/* 34 saved_adv_err_code */
    183   1.7     dante 	0,			/* 35 saved_adv_err_addr */
    184  1.17     dante 	{			/* 36-55 reserved1[16] */
    185  1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    186  1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    187  1.17     dante 	},
    188   1.7     dante 	0,			/* 56 cisptr_lsw */
    189   1.7     dante 	0,			/* 57 cisprt_msw */
    190   1.7     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    191   1.7     dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    192  1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    193   1.1     dante };
    194   1.1     dante 
    195  1.17     dante const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
    196  1.10     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    197  1.10     dante 	0x0000,			/* 01 cfg_msw */
    198  1.10     dante 	0xFFFF,			/* 02 disc_enable */
    199  1.10     dante 	0xFFFF,			/* 03 wdtr_able */
    200  1.17     dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    201  1.10     dante 	0xFFFF,			/* 05 start_motor */
    202  1.10     dante 	0xFFFF,			/* 06 tagqng_able */
    203  1.10     dante 	0xFFFF,			/* 07 bios_scan */
    204  1.10     dante 	0,			/* 08 scam_tolerant */
    205  1.10     dante 	7,			/* 09 adapter_scsi_id */
    206  1.10     dante 	0,			/*    bios_boot_delay */
    207  1.10     dante 	3,			/* 10 scsi_reset_delay */
    208  1.10     dante 	0,			/*    bios_id_lun */
    209  1.10     dante 	0,			/* 11 termination_se */
    210  1.10     dante 	0,			/*    termination_lvd */
    211  1.10     dante 	0xFFE7,			/* 12 bios_ctrl */
    212  1.17     dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    213  1.17     dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    214  1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    215  1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    216  1.10     dante 	0,			/* 16 dvc_cntl */
    217  1.17     dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    218  1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    219  1.10     dante 	0,			/* 21 check_sum */
    220  1.17     dante 	{			/* 22-29 oem_name[16] */
    221  1.17     dante 	  0,0,0,0,0,0,0,0,
    222  1.17     dante 	  0,0,0,0,0,0,0,0
    223  1.17     dante 	},
    224  1.10     dante 	0,			/* 30 dvc_err_code */
    225  1.10     dante 	0,			/* 31 adv_err_code */
    226  1.10     dante 	0,			/* 32 adv_err_addr */
    227  1.10     dante 	0,			/* 33 saved_dvc_err_code */
    228  1.10     dante 	0,			/* 34 saved_adv_err_code */
    229  1.10     dante 	0,			/* 35 saved_adv_err_addr */
    230  1.17     dante 	{			/* 36-55 reserved1[16] */
    231  1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    232  1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    233  1.17     dante 	},
    234  1.10     dante 	0,			/* 56 cisptr_lsw */
    235  1.10     dante 	0,			/* 57 cisprt_msw */
    236  1.10     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    237  1.10     dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    238  1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    239  1.10     dante };
    240  1.10     dante 
    241  1.17     dante 
    242   1.1     dante /*
    243  1.17     dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    244  1.17     dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    245  1.17     dante  * all of this is done.
    246   1.1     dante  *
    247   1.1     dante  * For a non-fatal error return a warning code. If there are no warnings
    248   1.1     dante  * then 0 is returned.
    249  1.17     dante  *
    250  1.17     dante  * Note: Chip is stopped on entry.
    251  1.17     dante  */
    252  1.17     dante int
    253  1.17     dante AdwInitFromEEPROM(sc)
    254  1.17     dante ADW_SOFTC      *sc;
    255  1.17     dante {
    256  1.17     dante 	bus_space_tag_t iot = sc->sc_iot;
    257  1.17     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    258  1.17     dante 	ADW_EEPROM		eep_config;
    259  1.17     dante 	u_int16_t		warn_code;
    260  1.17     dante 	u_int16_t		sdtr_speed = 0;
    261  1.17     dante 	u_int8_t		tid, termination;
    262  1.17     dante 	int			i, j;
    263  1.17     dante 
    264  1.17     dante 
    265  1.17     dante 	warn_code = 0;
    266  1.17     dante 
    267  1.17     dante 	/*
    268  1.17     dante 	 * Read the board's EEPROM configuration.
    269  1.17     dante 	 *
    270  1.17     dante 	 * Set default values if a bad checksum is found.
    271  1.17     dante 	 *
    272  1.17     dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    273  1.17     dante 	 */
    274  1.17     dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    275  1.17     dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    276  1.17     dante 
    277  1.17     dante 		/*
    278  1.17     dante 		 * Set EEPROM default values.
    279  1.17     dante 		 */
    280  1.17     dante 		switch(sc->chip_type) {
    281  1.17     dante 		case ADW_CHIP_ASC3550:
    282  1.17     dante 			eep_config = adw_3550_Default_EEPROM;
    283  1.17     dante 			break;
    284  1.17     dante 		case ADW_CHIP_ASC38C0800:
    285  1.17     dante 			eep_config = adw_38C0800_Default_EEPROM;
    286  1.17     dante 			break;
    287  1.17     dante 		case ADW_CHIP_ASC38C1600:
    288  1.17     dante 			eep_config = adw_38C1600_Default_EEPROM;
    289  1.17     dante 
    290  1.21     lukem #if 0
    291  1.21     lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    292  1.21     lukem #endif
    293  1.17     dante 			if (sc->cfg.pci_slot_info != 0) {
    294  1.17     dante 				u_int8_t lsw_msb;
    295  1.17     dante 
    296  1.17     dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    297  1.17     dante 				/*
    298  1.17     dante 				 * Set Function 1 EEPROM Word 0 MSB
    299  1.17     dante 				 *
    300  1.17     dante 				 * Clear the BIOS_ENABLE (bit 14) and
    301  1.17     dante 				 * INTAB (bit 11) EEPROM bits.
    302  1.17     dante 				 *
    303  1.17     dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    304  1.17     dante 				 * SPARC Ultra 60 and old Mac system booting
    305  1.17     dante 				 * problem. The Expansion ROM must
    306  1.17     dante 				 * be disabled in Function 1 for these systems.
    307  1.17     dante 				 */
    308  1.17     dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    309  1.17     dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    310  1.17     dante 				/*
    311  1.17     dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    312  1.17     dante 				 * indicates the Function 1 interrupt line is
    313  1.17     dante 				 * wired to INTA.
    314  1.17     dante 				 *
    315  1.17     dante 				 * Set/Clear Bit 11 (INTAB) from
    316  1.17     dante 				 * the GPIO bit 0 input:
    317  1.17     dante 				 *   1 - Function 1 intr line wired to INT A.
    318  1.17     dante 				 *   0 - Function 1 intr line wired to INT B.
    319  1.17     dante 				 *
    320  1.17     dante 				 * Note: Adapter boards always have Function 0
    321  1.17     dante 				 * wired to INTA.
    322  1.17     dante 				 * Put all 5 GPIO bits in input mode and then
    323  1.17     dante 				 * read their input values.
    324  1.17     dante 				 */
    325  1.17     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    326  1.17     dante 							IOPB_GPIO_CNTL, 0);
    327  1.17     dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    328  1.17     dante 						IOPB_GPIO_DATA) & 0x01) {
    329  1.17     dante 					/*
    330  1.17     dante 					 * Function 1 interrupt wired to INTA;
    331  1.17     dante 					 * Set EEPROM bit.
    332  1.17     dante 					 */
    333  1.17     dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    334  1.17     dante 							 & 0xFF;
    335  1.17     dante 				 }
    336  1.17     dante 				 eep_config.cfg_lsw &= 0x00FF;
    337  1.17     dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    338  1.17     dante 			}
    339  1.17     dante 			break;
    340  1.17     dante 		}
    341  1.17     dante 
    342  1.17     dante 		/*
    343  1.17     dante 		 * Assume the 6 byte board serial number that was read
    344  1.17     dante 		 * from EEPROM is correct even if the EEPROM checksum
    345  1.17     dante 		 * failed.
    346  1.17     dante 		 */
    347  1.17     dante 		for (i=2, j=1; i>=0; i--, j++) {
    348  1.17     dante 		eep_config.serial_number[i] =
    349  1.17     dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    350  1.17     dante 		}
    351  1.17     dante 
    352  1.17     dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    353  1.17     dante 	}
    354  1.17     dante 	/*
    355  1.17     dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    356  1.17     dante 	 * that was read.
    357  1.17     dante 	 *
    358  1.17     dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    359  1.17     dante 	 */
    360  1.17     dante 	sc->wdtr_able = eep_config.wdtr_able;
    361  1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    362  1.17     dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    363  1.17     dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    364  1.17     dante 	} else {
    365  1.17     dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    366  1.17     dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    367  1.17     dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    368  1.17     dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    369  1.17     dante 	}
    370  1.17     dante 	sc->ppr_able = 0;
    371  1.17     dante 	sc->tagqng_able = eep_config.tagqng_able;
    372  1.17     dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    373  1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    374  1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    375  1.17     dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    376  1.17     dante 	sc->start_motor = eep_config.start_motor;
    377  1.17     dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    378  1.17     dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    379  1.17     dante 	sc->no_scam = eep_config.scam_tolerant;
    380  1.17     dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    381  1.17     dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    382  1.17     dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    383  1.17     dante 
    384  1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    385  1.17     dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    386  1.17     dante 		sc->sdtr_able = 0;
    387  1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    388  1.17     dante 			if (tid == 0) {
    389  1.17     dante 				sdtr_speed = sc->sdtr_speed1;
    390  1.17     dante 			} else if (tid == 4) {
    391  1.17     dante 				sdtr_speed = sc->sdtr_speed2;
    392  1.17     dante 			} else if (tid == 8) {
    393  1.17     dante 				sdtr_speed = sc->sdtr_speed3;
    394  1.17     dante 			} else if (tid == 12) {
    395  1.17     dante 				sdtr_speed = sc->sdtr_speed4;
    396  1.17     dante 			}
    397  1.17     dante 			if (sdtr_speed & ADW_MAX_TID) {
    398  1.17     dante 				sc->sdtr_able |= (1 << tid);
    399  1.17     dante 			}
    400  1.17     dante 			sdtr_speed >>= 4;
    401  1.17     dante 		}
    402  1.17     dante 	}
    403  1.17     dante 
    404  1.17     dante 	/*
    405  1.17     dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    406  1.17     dante 	 * maximum queuing (max. 63, min. 4).
    407  1.17     dante 	 */
    408  1.17     dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    409  1.17     dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    410  1.17     dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    411  1.17     dante 	{
    412  1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    413  1.17     dante 		if (eep_config.max_host_qng == 0) {
    414  1.17     dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    415  1.17     dante 		} else {
    416  1.17     dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    417  1.17     dante 		}
    418  1.17     dante 	}
    419  1.17     dante 
    420  1.17     dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    421  1.17     dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    422  1.17     dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    423  1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    424  1.17     dante 		if (eep_config.max_dvc_qng == 0) {
    425  1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    426  1.17     dante 		} else {
    427  1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    428  1.17     dante 		}
    429  1.17     dante 	}
    430  1.17     dante 
    431  1.17     dante 	/*
    432  1.17     dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    433  1.17     dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    434  1.17     dante 	 */
    435  1.17     dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    436  1.17     dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    437  1.17     dante 	}
    438  1.17     dante 
    439  1.17     dante 	/*
    440  1.17     dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    441  1.17     dante 	 * values based on possibly adjusted EEPROM values.
    442  1.17     dante 	 */
    443  1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    444  1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    445  1.17     dante 
    446  1.17     dante 
    447  1.17     dante 	/*
    448  1.17     dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    449  1.17     dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    450  1.17     dante 	 *
    451  1.17     dante 	 * If the termination is specified with a non-zero 'termination'
    452  1.17     dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    453  1.17     dante 	 * 'termination' field appropriately.
    454  1.17     dante 	 */
    455  1.17     dante 
    456  1.17     dante 	switch(sc->chip_type) {
    457  1.17     dante 	case ADW_CHIP_ASC3550:
    458  1.17     dante 		sc->cfg.termination = 0;	/* auto termination */
    459  1.17     dante 		switch(eep_config.termination_se) {
    460  1.17     dante 		case 3:
    461  1.17     dante 			/* Enable manual control with low on / high on. */
    462  1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    463  1.17     dante 		case 2:
    464  1.17     dante 			/* Enable manual control with low off / high on. */
    465  1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    466  1.17     dante 		case 1:
    467  1.17     dante 			/* Enable manual control with low off / high off. */
    468  1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    469  1.17     dante 		case 0:
    470  1.17     dante 			break;
    471  1.17     dante 		default:
    472  1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    473  1.17     dante 		}
    474  1.17     dante 		break;
    475  1.17     dante 
    476  1.17     dante 	case ADW_CHIP_ASC38C0800:
    477  1.17     dante 	case ADW_CHIP_ASC38C1600:
    478  1.17     dante 		switch(eep_config.termination_se) {
    479  1.17     dante 		case 0:
    480  1.17     dante 			/* auto termination for SE */
    481  1.17     dante 			termination = 0;
    482  1.17     dante 			break;
    483  1.17     dante 		case 1:
    484  1.17     dante 			/* Enable manual control with low off / high off. */
    485  1.17     dante 			termination = 0;
    486  1.17     dante 			break;
    487  1.17     dante 		case 2:
    488  1.17     dante 			/* Enable manual control with low off / high on. */
    489  1.17     dante 			termination = ADW_TERM_SE_HI;
    490  1.17     dante 			break;
    491  1.17     dante 		case 3:
    492  1.17     dante 			/* Enable manual control with low on / high on. */
    493  1.17     dante 			termination = ADW_TERM_SE;
    494  1.17     dante 			break;
    495  1.17     dante 		default:
    496  1.17     dante 			/*
    497  1.17     dante 			 * The EEPROM 'termination_se' field contains a
    498  1.17     dante 			 * bad value. Use automatic termination instead.
    499  1.17     dante 			 */
    500  1.17     dante 			termination = 0;
    501  1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    502  1.17     dante 		}
    503  1.17     dante 
    504  1.17     dante 		switch(eep_config.termination_lvd) {
    505  1.17     dante 		case 0:
    506  1.17     dante 			/* auto termination for LVD */
    507  1.17     dante 			sc->cfg.termination = termination;
    508  1.17     dante 			break;
    509  1.17     dante 		case 1:
    510  1.17     dante 			/* Enable manual control with low off / high off. */
    511  1.17     dante 			sc->cfg.termination = termination;
    512  1.17     dante 			break;
    513  1.17     dante 		case 2:
    514  1.17     dante 			/* Enable manual control with low off / high on. */
    515  1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    516  1.17     dante 			break;
    517  1.17     dante 		case 3:
    518  1.17     dante 			/* Enable manual control with low on / high on. */
    519  1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    520  1.17     dante 			break;
    521  1.17     dante 		default:
    522  1.17     dante 			/*
    523  1.17     dante 			 * The EEPROM 'termination_lvd' field contains a
    524  1.17     dante 			 * bad value. Use automatic termination instead.
    525  1.17     dante 			 */
    526  1.17     dante 			sc->cfg.termination = termination;
    527  1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    528  1.17     dante 		}
    529  1.17     dante 		break;
    530  1.17     dante 	}
    531  1.17     dante 
    532  1.17     dante 	return warn_code;
    533  1.17     dante }
    534  1.17     dante 
    535  1.17     dante 
    536  1.17     dante /*
    537  1.17     dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    538  1.17     dante  *
    539  1.17     dante  * On failure return the error code.
    540   1.1     dante  */
    541   1.1     dante int
    542  1.17     dante AdwInitDriver(sc)
    543   1.2     dante ADW_SOFTC      *sc;
    544   1.1     dante {
    545   1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
    546   1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    547  1.17     dante 	u_int16_t	error_code;
    548   1.7     dante 	int		word;
    549  1.17     dante 	int		i;
    550  1.16     dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    551   1.7     dante 								0x40-0x8F. */
    552  1.17     dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    553   1.7     dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    554  1.17     dante 	u_int8_t	tid;
    555   1.1     dante 
    556   1.1     dante 
    557  1.17     dante 	error_code = 0;
    558   1.1     dante 
    559   1.1     dante 	/*
    560   1.1     dante 	 * Save the RISC memory BIOS region before writing the microcode.
    561   1.1     dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    562   1.1     dante 	 * so its region must be saved and restored.
    563   1.1     dante 	 *
    564   1.1     dante 	 * Note: This code makes the assumption, which is currently true,
    565   1.1     dante 	 * that a chip reset does not clear RISC LRAM.
    566   1.1     dante 	 */
    567  1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    568  1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    569   1.7     dante 	}
    570   1.7     dante 
    571   1.7     dante 	/*
    572   1.7     dante 	 * Save current per TID negotiated values.
    573   1.7     dante 	 */
    574  1.17     dante 	switch (sc->chip_type) {
    575  1.17     dante 	case ADW_CHIP_ASC3550:
    576  1.17     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    577  1.17     dante 
    578  1.17     dante 			u_int16_t  bios_version, major, minor;
    579  1.17     dante 
    580  1.17     dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    581  1.17     dante 					ADW_MC_BIOSMEM) / 2];
    582  1.17     dante 			major = (bios_version  >> 12) & 0xF;
    583  1.17     dante 			minor = (bios_version  >> 8) & 0xF;
    584  1.17     dante 			if (major < 3 || (major == 3 && minor == 1)) {
    585  1.17     dante 			    /*
    586  1.17     dante 			     * BIOS 3.1 and earlier location of
    587  1.17     dante 			     * 'wdtr_able' variable.
    588  1.17     dante 			     */
    589  1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    590  1.17     dante 			} else {
    591  1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    592  1.17     dante 					    wdtr_able);
    593  1.17     dante 			}
    594  1.17     dante 		}
    595  1.17     dante 		break;
    596   1.7     dante 
    597  1.17     dante 	case ADW_CHIP_ASC38C1600:
    598  1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    599  1.17     dante 		/* FALLTHROUGH */
    600  1.17     dante 	case ADW_CHIP_ASC38C0800:
    601  1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    602  1.17     dante 		break;
    603   1.7     dante 	}
    604  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    605  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    606   1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    607  1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    608   1.7     dante 			max_cmd[tid]);
    609   1.1     dante 	}
    610   1.1     dante 
    611   1.1     dante 	/*
    612  1.17     dante 	 * Perform a RAM Built-In Self Test
    613   1.1     dante 	 */
    614  1.17     dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    615  1.17     dante 		return error_code;
    616  1.17     dante 	}
    617   1.7     dante 
    618  1.17     dante 	/*
    619  1.17     dante 	 * Load the Microcode
    620   1.7     dante 	 */
    621  1.17     dante 	;
    622  1.17     dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    623  1.17     dante 		return error_code;
    624   1.1     dante 	}
    625   1.1     dante 
    626   1.1     dante 	/*
    627  1.17     dante 	 * Read microcode version and date.
    628   1.7     dante 	 */
    629  1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    630  1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    631   1.7     dante 
    632   1.7     dante 	/*
    633  1.17     dante 	 * If the PCI Configuration Command Register "Parity Error Response
    634  1.17     dante 	 * Control" Bit was clear (0), then set the microcode variable
    635  1.17     dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    636  1.17     dante 	 * to ignore DMA parity errors.
    637   1.1     dante 	 */
    638  1.17     dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    639  1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    640  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    641  1.17     dante 					word | CONTROL_FLAG_IGNORE_PERR);
    642   1.1     dante 	}
    643   1.1     dante 
    644  1.17     dante 	switch (sc->chip_type) {
    645  1.17     dante 	case ADW_CHIP_ASC3550:
    646  1.17     dante 		/*
    647  1.17     dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    648  1.17     dante 		 * FIFO threshold of 128 bytes.
    649  1.17     dante 		 * This register is only accessible to the host.
    650  1.17     dante 		 */
    651  1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    652  1.17     dante 				START_CTL_EMFU | READ_CMD_MRM);
    653  1.17     dante 		break;
    654   1.7     dante 
    655  1.17     dante 	case ADW_CHIP_ASC38C0800:
    656  1.17     dante 		/*
    657  1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    658  1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    659  1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    660  1.17     dante 		 *
    661  1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    662  1.17     dante 		 * Microcode Default Value' section below.
    663  1.17     dante 		 */
    664  1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    665  1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    666  1.17     dante 				| ADW_DIS_TERM_DRV);
    667   1.1     dante 
    668  1.17     dante 		/*
    669  1.17     dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    670  1.17     dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    671  1.17     dante 		 *
    672  1.17     dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    673  1.17     dante 		 * 256 bytes.
    674  1.17     dante 		 *
    675  1.17     dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    676  1.17     dante 		 */
    677  1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    678  1.17     dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    679  1.17     dante 						| START_CTL_TH | READ_CMD_MRM);
    680  1.17     dante 		break;
    681   1.1     dante 
    682  1.17     dante 	case ADW_CHIP_ASC38C1600:
    683  1.17     dante 		/*
    684  1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    685  1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    686  1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    687  1.17     dante 		 *
    688  1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    689  1.17     dante 		 * Microcode Default Value' section below.
    690  1.17     dante 		 */
    691  1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    692  1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    693  1.17     dante 				| ADW_DIS_TERM_DRV);
    694   1.1     dante 
    695  1.17     dante 		/*
    696  1.17     dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    697  1.17     dante 		 * Phase Protection) disable bit is not set, then set the
    698  1.17     dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    699  1.17     dante 		 * enable AIPP checking and encoding.
    700  1.17     dante 		 */
    701  1.17     dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    702  1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    703  1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    704  1.17     dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    705  1.17     dante 		}
    706   1.1     dante 
    707  1.17     dante 		/*
    708  1.17     dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    709  1.17     dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    710  1.17     dante 		 */
    711  1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    712  1.17     dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    713  1.17     dante 		break;
    714   1.1     dante 	}
    715   1.7     dante 
    716   1.1     dante 	/*
    717   1.7     dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    718  1.17     dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    719   1.7     dante 	 * device reports it is capable of in Inquiry byte 7.
    720   1.7     dante 	 *
    721  1.16     dante 	 * If SCSI Bus Resets have been disabled, then directly set
    722   1.7     dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    723   1.7     dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    724   1.7     dante 	 * the Inquiry caused by host and target mismatched DTR values.
    725   1.7     dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    726   1.7     dante 	 * be assumed to be in Asynchronous, Narrow mode.
    727   1.7     dante 	 */
    728   1.7     dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    729  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    730  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    731   1.7     dante 	}
    732   1.7     dante 
    733   1.7     dante 	/*
    734   1.7     dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    735   1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    736   1.7     dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    737   1.7     dante 	 * with a device.
    738   1.7     dante 	 *
    739   1.7     dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    740   1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    741   1.7     dante 	 * without determining here whether the device supports SDTR.
    742   1.7     dante 	 */
    743  1.17     dante 	switch (sc->chip_type) {
    744  1.17     dante 	case ADW_CHIP_ASC3550:
    745  1.17     dante 		word = 0;
    746  1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    747  1.17     dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    748  1.17     dante 				/* Set Ultra speed for TID 'tid'. */
    749  1.17     dante 				word |= (0x3 << (4 * (tid % 4)));
    750  1.17     dante 			} else {
    751  1.17     dante 				/* Set Fast speed for TID 'tid'. */
    752  1.17     dante 				word |= (0x2 << (4 * (tid % 4)));
    753  1.17     dante 			}
    754  1.17     dante 			/* Check if done with sdtr_speed1. */
    755  1.17     dante 			if (tid == 3) {
    756  1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    757  1.17     dante 						ADW_MC_SDTR_SPEED1, word);
    758  1.17     dante 				word = 0;
    759  1.17     dante 			/* Check if done with sdtr_speed2. */
    760  1.17     dante 			} else if (tid == 7) {
    761  1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    762  1.17     dante 						ADW_MC_SDTR_SPEED2, word);
    763  1.17     dante 				word = 0;
    764  1.17     dante 			/* Check if done with sdtr_speed3. */
    765  1.17     dante 			} else if (tid == 11) {
    766  1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    767  1.17     dante 						ADW_MC_SDTR_SPEED3, word);
    768  1.17     dante 				word = 0;
    769  1.17     dante 			/* Check if done with sdtr_speed4. */
    770  1.17     dante 			} else if (tid == 15) {
    771  1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    772  1.17     dante 						ADW_MC_SDTR_SPEED4, word);
    773  1.17     dante 				/* End of loop. */
    774  1.17     dante 			}
    775   1.7     dante 		}
    776  1.17     dante 
    777  1.17     dante 		/*
    778  1.17     dante 		 * Set microcode operating variable for the
    779  1.17     dante 		 * disconnect per TID bitmask.
    780  1.17     dante 		 */
    781  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    782  1.17     dante 							sc->cfg.disc_enable);
    783  1.17     dante 		break;
    784  1.17     dante 
    785  1.17     dante 	case ADW_CHIP_ASC38C0800:
    786  1.17     dante 		/* FALLTHROUGH */
    787  1.17     dante 	case ADW_CHIP_ASC38C1600:
    788  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    789  1.17     dante 							sc->cfg.disc_enable);
    790  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    791  1.17     dante 							sc->sdtr_speed1);
    792  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    793  1.17     dante 							sc->sdtr_speed2);
    794  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    795  1.17     dante 							sc->sdtr_speed3);
    796  1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    797  1.17     dante 							sc->sdtr_speed4);
    798  1.17     dante 		break;
    799   1.7     dante 	}
    800   1.1     dante 
    801   1.1     dante 
    802   1.1     dante 	/*
    803   1.1     dante 	 * Set SCSI_CFG0 Microcode Default Value.
    804   1.1     dante 	 *
    805   1.1     dante 	 * The microcode will set the SCSI_CFG0 register using this value
    806   1.1     dante 	 * after it is started below.
    807   1.1     dante 	 */
    808  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    809  1.10     dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    810  1.10     dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    811   1.2     dante 
    812   1.1     dante 
    813  1.17     dante 	switch(sc->chip_type) {
    814  1.17     dante 	case ADW_CHIP_ASC3550:
    815  1.17     dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    816  1.17     dante 		break;
    817   1.1     dante 
    818  1.17     dante 	case ADW_CHIP_ASC38C0800:
    819  1.17     dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    820  1.17     dante 		break;
    821   1.7     dante 
    822  1.17     dante 	case ADW_CHIP_ASC38C1600:
    823  1.17     dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    824  1.17     dante 		break;
    825   1.7     dante 	}
    826  1.17     dante 	if(error_code) {
    827  1.17     dante 		return error_code;
    828   1.1     dante 	}
    829   1.7     dante 
    830   1.1     dante 	/*
    831   1.1     dante 	 * Set SEL_MASK Microcode Default Value
    832   1.1     dante 	 *
    833   1.1     dante 	 * The microcode will set the SEL_MASK register using this value
    834   1.1     dante 	 * after it is started below.
    835   1.1     dante 	 */
    836  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    837   1.7     dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    838   1.7     dante 
    839  1.17     dante 	/*
    840  1.17     dante 	 * Create and Initialize Host->RISC Carrier lists
    841  1.17     dante 	 */
    842  1.17     dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    843  1.17     dante 						sc->sc_control->carriers);
    844  1.16     dante 
    845   1.7     dante 	/*
    846   1.7     dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    847   1.7     dante 	 */
    848   1.7     dante 
    849   1.7     dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    850  1.16     dante 		return ADW_IERR_NO_CARRIER;
    851   1.7     dante 	}
    852  1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    853  1.12     dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    854   1.7     dante 
    855   1.7     dante 	/*
    856   1.7     dante 	 * The first command issued will be placed in the stopper carrier.
    857   1.7     dante 	 */
    858  1.22    briggs 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    859   1.1     dante 
    860   1.1     dante 	/*
    861   1.7     dante 	 * Set RISC ICQ physical address start value.
    862   1.7     dante 	 */
    863  1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    864   1.7     dante 
    865   1.7     dante 	/*
    866  1.17     dante 	 * Initialize the COMMA register to the same value otherwise
    867  1.17     dante 	 * the RISC will prematurely detect a command is available.
    868  1.17     dante 	 */
    869  1.17     dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    870  1.17     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    871  1.22    briggs 						le32toh(sc->icq_sp->carr_ba));
    872  1.17     dante 	}
    873  1.17     dante 
    874  1.17     dante 	/*
    875   1.7     dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    876   1.1     dante 	 */
    877   1.7     dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    878  1.16     dante 		return ADW_IERR_NO_CARRIER;
    879   1.1     dante 	}
    880  1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    881  1.12     dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    882   1.1     dante 
    883   1.1     dante 	/*
    884   1.7     dante 	 * The first command completed by the RISC will be placed in
    885   1.7     dante 	 * the stopper.
    886   1.1     dante 	 *
    887  1.12     dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    888  1.16     dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    889   1.1     dante 	 */
    890  1.22    briggs 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    891   1.1     dante 
    892   1.1     dante 	/*
    893   1.7     dante 	 * Set RISC IRQ physical address start value.
    894   1.1     dante 	 */
    895  1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    896   1.7     dante 	sc->carr_pending_cnt = 0;
    897   1.1     dante 
    898   1.1     dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    899   1.7     dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    900  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    901   1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    902   1.1     dante 
    903   1.1     dante 	/* finally, finally, gentlemen, start your engine */
    904   1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    905   1.2     dante 
    906   1.7     dante 	/*
    907   1.7     dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    908   1.7     dante 	 * Resets should be performed. The RISC has to be running
    909   1.7     dante 	 * to issue a SCSI Bus Reset.
    910   1.7     dante 	 */
    911   1.7     dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    912   1.7     dante 	{
    913   1.7     dante 		/*
    914   1.7     dante 		 * If the BIOS Signature is present in memory, restore the
    915   1.7     dante 		 * BIOS Handshake Configuration Table and do not perform
    916   1.7     dante 		 * a SCSI Bus Reset.
    917   1.7     dante 		 */
    918  1.16     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    919   1.7     dante 				0x55AA) {
    920   1.7     dante 			/*
    921   1.7     dante 			 * Restore per TID negotiated values.
    922   1.7     dante 			 */
    923  1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    924   1.7     dante 					wdtr_able);
    925  1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    926   1.7     dante 					sdtr_able);
    927  1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    928   1.7     dante 					tagqng_able);
    929   1.7     dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    930   1.7     dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    931  1.17     dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    932  1.17     dante 						max_cmd[tid]);
    933   1.7     dante 			}
    934   1.7     dante 		} else {
    935  1.16     dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    936  1.17     dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    937   1.7     dante 			}
    938   1.7     dante 		}
    939   1.7     dante 	}
    940   1.7     dante 
    941  1.17     dante 	return error_code;
    942   1.1     dante }
    943   1.1     dante 
    944  1.17     dante 
    945   1.1     dante int
    946  1.17     dante AdwRamSelfTest(iot, ioh, chip_type)
    947  1.17     dante 	bus_space_tag_t iot;
    948  1.17     dante 	bus_space_handle_t ioh;
    949  1.17     dante 	u_int8_t chip_type;
    950   1.1     dante {
    951  1.17     dante 	int		i;
    952   1.7     dante 	u_int8_t	byte;
    953   1.1     dante 
    954   1.1     dante 
    955  1.17     dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    956  1.17     dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    957  1.17     dante 		/*
    958  1.17     dante 		 * RAM BIST (RAM Built-In Self Test)
    959  1.17     dante 		 *
    960  1.17     dante 		 * Address : I/O base + offset 0x38h register (byte).
    961  1.17     dante 		 * Function: Bit 7-6(RW) : RAM mode
    962  1.17     dante 		 *			    Normal Mode   : 0x00
    963  1.17     dante 		 *			    Pre-test Mode : 0x40
    964  1.17     dante 		 *			    RAM Test Mode : 0x80
    965  1.17     dante 		 *	     Bit 5	 : unused
    966  1.17     dante 		 *	     Bit 4(RO)   : Done bit
    967  1.17     dante 		 *	     Bit 3-0(RO) : Status
    968  1.17     dante 		 *			    Host Error    : 0x08
    969  1.17     dante 		 *			    Int_RAM Error : 0x04
    970  1.17     dante 		 *			    RISC Error    : 0x02
    971  1.17     dante 		 *			    SCSI Error    : 0x01
    972  1.17     dante 		 *			    No Error	  : 0x00
    973  1.17     dante 		 *
    974  1.17     dante 		 * Note: RAM BIST code should be put right here, before loading
    975  1.17     dante 		 * the microcode and after saving the RISC memory BIOS region.
    976  1.17     dante 		 */
    977   1.1     dante 
    978  1.17     dante 		/*
    979  1.17     dante 		 * LRAM Pre-test
    980  1.17     dante 		 *
    981  1.17     dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    982  1.17     dante 		 * 10 milliseconds.
    983  1.17     dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    984  1.17     dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    985  1.17     dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    986  1.17     dante 		 */
    987  1.17     dante 		for (i = 0; i < 2; i++) {
    988  1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    989  1.17     dante 					PRE_TEST_MODE);
    990  1.17     dante 			 /* Wait for 10ms before reading back. */
    991  1.17     dante 			AdwSleepMilliSecond(10);
    992  1.17     dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    993  1.17     dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    994  1.17     dante 					PRE_TEST_VALUE) {
    995  1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
    996  1.17     dante 			}
    997   1.7     dante 
    998  1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    999  1.17     dante 								NORMAL_MODE);
   1000  1.17     dante 			/* Wait for 10ms before reading back. */
   1001  1.17     dante 			AdwSleepMilliSecond(10);
   1002  1.17     dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1003  1.17     dante 			    != NORMAL_VALUE) {
   1004  1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
   1005  1.17     dante 			}
   1006  1.17     dante 		}
   1007   1.2     dante 
   1008  1.17     dante 		/*
   1009  1.17     dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1010  1.17     dante 		 *
   1011  1.17     dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1012  1.17     dante 		 * 10 milliseconds.
   1013  1.17     dante 		 * If Done bit not set or Status not 0, save register byte,
   1014  1.17     dante 		 * set the err_code, and return an error.
   1015  1.17     dante 		 */
   1016  1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1017  1.17     dante 		/* Wait for 10ms before checking status. */
   1018  1.17     dante 		AdwSleepMilliSecond(10);
   1019   1.1     dante 
   1020   1.7     dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1021  1.17     dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1022  1.17     dante 			/* Get here if Done bit not set or Status not 0. */
   1023  1.17     dante 			return ADW_IERR_BIST_RAM_TEST;
   1024   1.1     dante 		}
   1025   1.1     dante 
   1026  1.17     dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1027   1.7     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1028   1.1     dante 	}
   1029   1.7     dante 
   1030  1.17     dante 	return 0;
   1031  1.17     dante }
   1032  1.17     dante 
   1033   1.7     dante 
   1034  1.17     dante int
   1035  1.17     dante AdwLoadMCode(iot, ioh, bios_mem, chip_type)
   1036  1.17     dante 	bus_space_tag_t iot;
   1037  1.17     dante 	bus_space_handle_t ioh;
   1038  1.17     dante 	u_int16_t *bios_mem;
   1039  1.17     dante 	u_int8_t chip_type;
   1040  1.17     dante {
   1041  1.17     dante 	u_int8_t	*mcode_data;
   1042  1.17     dante 	u_int32_t	 mcode_chksum;
   1043  1.17     dante 	u_int16_t	 mcode_size;
   1044  1.17     dante 	u_int32_t	sum;
   1045  1.17     dante 	u_int16_t	code_sum;
   1046  1.17     dante 	int		begin_addr;
   1047  1.17     dante 	int		end_addr;
   1048  1.17     dante 	int		word;
   1049  1.17     dante 	int		adw_memsize;
   1050  1.17     dante 	int		adw_mcode_expanded_size;
   1051  1.17     dante 	int		i, j;
   1052   1.7     dante 
   1053  1.17     dante 
   1054  1.17     dante 	switch(chip_type) {
   1055  1.17     dante 	case ADW_CHIP_ASC3550:
   1056  1.17     dante 		mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1057  1.17     dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1058  1.17     dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1059  1.17     dante 		adw_memsize = ADW_3550_MEMSIZE;
   1060  1.17     dante 		break;
   1061  1.17     dante 
   1062  1.17     dante 	case ADW_CHIP_ASC38C0800:
   1063  1.17     dante 		mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1064  1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1065  1.17     dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1066  1.17     dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1067  1.17     dante 		break;
   1068  1.17     dante 
   1069  1.17     dante 	case ADW_CHIP_ASC38C1600:
   1070  1.17     dante 		mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1071  1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1072  1.17     dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1073  1.17     dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1074  1.17     dante 		break;
   1075  1.29   mycroft 
   1076  1.27  christos 	default:
   1077  1.29   mycroft 		return (EINVAL);
   1078  1.17     dante 	}
   1079   1.1     dante 
   1080   1.1     dante 	/*
   1081   1.7     dante 	 * Write the microcode image to RISC memory starting at address 0.
   1082   1.1     dante 	 */
   1083   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1084   1.7     dante 
   1085   1.7     dante 	/* Assume the following compressed format of the microcode buffer:
   1086   1.7     dante 	 *
   1087   1.7     dante 	 *  254 word (508 byte) table indexed by byte code followed
   1088   1.7     dante 	 *  by the following byte codes:
   1089   1.7     dante 	 *
   1090   1.7     dante 	 *    1-Byte Code:
   1091   1.7     dante 	 *	00: Emit word 0 in table.
   1092   1.7     dante 	 *	01: Emit word 1 in table.
   1093   1.7     dante 	 *	.
   1094   1.7     dante 	 *	FD: Emit word 253 in table.
   1095   1.7     dante 	 *
   1096   1.7     dante 	 *    Multi-Byte Code:
   1097   1.7     dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1098   1.7     dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1099   1.7     dante 	 */
   1100   1.7     dante 	word = 0;
   1101  1.17     dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1102  1.17     dante 		if (mcode_data[i] == 0xff) {
   1103  1.17     dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1104   1.7     dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1105  1.17     dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1106  1.17     dante 				  mcode_data[i + 2]));
   1107   1.7     dante 				word++;
   1108   1.7     dante 			}
   1109   1.7     dante 			i += 3;
   1110  1.17     dante 		} else if (mcode_data[i] == 0xfe) {
   1111  1.17     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1112  1.17     dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1113  1.17     dante 			    mcode_data[i + 1]));
   1114   1.7     dante 			i += 2;
   1115   1.7     dante 			word++;
   1116   1.1     dante 		} else {
   1117   1.7     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1118  1.17     dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1119  1.17     dante 			 mcode_data[mcode_data[i] * 2]));
   1120   1.7     dante 			word++;
   1121   1.1     dante 		}
   1122   1.1     dante 	}
   1123   1.7     dante 
   1124   1.7     dante 	/*
   1125   1.7     dante 	 * Set 'word' for later use to clear the rest of memory and save
   1126   1.7     dante 	 * the expanded mcode size.
   1127   1.7     dante 	 */
   1128   1.7     dante 	word *= 2;
   1129  1.17     dante 	adw_mcode_expanded_size = word;
   1130   1.7     dante 
   1131   1.1     dante 	/*
   1132  1.17     dante 	 * Clear the rest of the Internal RAM.
   1133   1.1     dante 	 */
   1134  1.17     dante 	for (; word < adw_memsize; word += 2) {
   1135   1.7     dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1136   1.1     dante 	}
   1137   1.7     dante 
   1138   1.1     dante 	/*
   1139   1.7     dante 	 * Verify the microcode checksum.
   1140   1.1     dante 	 */
   1141   1.7     dante 	sum = 0;
   1142   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1143   1.7     dante 
   1144  1.17     dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1145   1.7     dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1146   1.7     dante 	}
   1147   1.1     dante 
   1148  1.17     dante 	if (sum != mcode_chksum) {
   1149  1.17     dante 		return ADW_IERR_MCODE_CHKSUM;
   1150   1.7     dante 	}
   1151   1.1     dante 
   1152   1.1     dante 	/*
   1153   1.7     dante 	 * Restore the RISC memory BIOS region.
   1154   1.1     dante 	 */
   1155  1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1156  1.17     dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1157  1.17     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1158  1.17     dante 								bios_mem[i]);
   1159  1.17     dante 		} else {
   1160  1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1161  1.17     dante 								bios_mem[i]);
   1162  1.17     dante 		}
   1163   1.7     dante 	}
   1164   1.1     dante 
   1165   1.7     dante 	/*
   1166   1.7     dante 	 * Calculate and write the microcode code checksum to the microcode
   1167  1.16     dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1168   1.7     dante 	 */
   1169  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1170  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1171   1.7     dante 	code_sum = 0;
   1172   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1173   1.7     dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1174   1.7     dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1175   1.1     dante 	}
   1176  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1177   1.1     dante 
   1178   1.7     dante 	/*
   1179  1.17     dante 	 * Set the chip type.
   1180   1.7     dante 	 */
   1181  1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1182  1.17     dante 
   1183  1.17     dante 	return 0;
   1184  1.17     dante }
   1185  1.17     dante 
   1186  1.17     dante 
   1187  1.17     dante int
   1188  1.17     dante AdwASC3550Cabling(iot, ioh, cfg)
   1189  1.17     dante 	bus_space_tag_t iot;
   1190  1.17     dante 	bus_space_handle_t ioh;
   1191  1.17     dante 	ADW_DVC_CFG *cfg;
   1192  1.17     dante {
   1193  1.17     dante 	u_int16_t	scsi_cfg1;
   1194  1.17     dante 
   1195   1.1     dante 
   1196   1.7     dante 	/*
   1197  1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1198  1.17     dante 	 *
   1199  1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1200  1.17     dante 	 * after it is started below.
   1201   1.7     dante 	 */
   1202  1.17     dante 
   1203  1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1204  1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1205   1.1     dante 
   1206   1.7     dante 	/*
   1207  1.17     dante 	 * If all three connectors are in use in ASC3550, return an error.
   1208   1.7     dante 	 */
   1209  1.17     dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1210  1.17     dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1211  1.17     dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1212  1.17     dante 	}
   1213   1.7     dante 
   1214   1.7     dante 	/*
   1215  1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1216  1.17     dante 	 * will be set. Check for and return an error if this condition is
   1217  1.17     dante 	 * found.
   1218   1.7     dante 	 */
   1219  1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1220  1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1221   1.7     dante 	}
   1222   1.7     dante 
   1223   1.7     dante 	/*
   1224  1.17     dante 	 * If this is a differential board and a single-ended device
   1225  1.17     dante 	 * is attached to one of the connectors, return an error.
   1226   1.7     dante 	 */
   1227  1.17     dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1228  1.17     dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1229  1.17     dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1230  1.17     dante 	}
   1231   1.7     dante 
   1232   1.7     dante 	/*
   1233  1.17     dante 	 * If automatic termination control is enabled, then set the
   1234  1.17     dante 	 * termination value based on a table listed in a_condor.h.
   1235   1.7     dante 	 *
   1236  1.17     dante 	 * If manual termination was specified with an EEPROM setting
   1237  1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1238  1.17     dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1239   1.7     dante 	 */
   1240  1.17     dante 	if (cfg->termination == 0) {
   1241  1.17     dante 		/*
   1242  1.17     dante 		 * The software always controls termination by setting
   1243  1.17     dante 		 * TERM_CTL_SEL.
   1244  1.17     dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1245  1.17     dante 		 * termination.
   1246  1.17     dante 		 */
   1247  1.17     dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1248  1.17     dante 
   1249  1.17     dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1250  1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1251  1.17     dante 			case 0x3: case 0x7: case 0xB:
   1252  1.17     dante 			case 0xD: case 0xE: case 0xF:
   1253  1.17     dante 				cfg->termination |=
   1254  1.17     dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1255  1.17     dante 				break;
   1256  1.17     dante 
   1257  1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1258  1.17     dante 			case 0x1: case 0x5: case 0x9:
   1259  1.17     dante 			case 0xA: case 0xC:
   1260  1.17     dante 				cfg->termination |= ADW_TERM_CTL_H;
   1261  1.17     dante 				break;
   1262  1.17     dante 
   1263  1.17     dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1264  1.17     dante 			case 0x2: case 0x6:
   1265  1.17     dante 				break;
   1266  1.17     dante 		}
   1267   1.7     dante 	}
   1268   1.7     dante 
   1269   1.7     dante 	/*
   1270  1.17     dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1271  1.17     dante 	 */
   1272  1.17     dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1273  1.17     dante 
   1274  1.17     dante 	/*
   1275  1.17     dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1276  1.17     dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1277  1.17     dante 	 * referenced, because the hardware internally inverts
   1278  1.17     dante 	 * the Termination High and Low bits if TERM_POL is set.
   1279  1.17     dante 	 */
   1280  1.17     dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1281  1.17     dante 
   1282  1.17     dante 	/*
   1283  1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1284  1.17     dante 	 *
   1285  1.17     dante 	 * Set filter value and possibly modified termination control
   1286  1.17     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1287   1.7     dante 	 *
   1288  1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1289  1.17     dante 	 * after it is started below.
   1290   1.7     dante 	 */
   1291  1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1292  1.17     dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1293   1.7     dante 
   1294   1.7     dante 	/*
   1295  1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1296   1.7     dante 	 *
   1297  1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1298   1.7     dante 	 * after it is started below.
   1299  1.17     dante 	 *
   1300  1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1301  1.17     dante 	 * are defined.
   1302  1.17     dante 	 *
   1303  1.17     dante 	 * ASC-3550 has 8KB internal memory.
   1304   1.7     dante 	 */
   1305  1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1306  1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1307  1.17     dante 
   1308  1.17     dante 	return 0;
   1309  1.17     dante }
   1310  1.17     dante 
   1311  1.17     dante 
   1312  1.17     dante int
   1313  1.17     dante AdwASC38C0800Cabling(iot, ioh, cfg)
   1314  1.17     dante 	bus_space_tag_t iot;
   1315  1.17     dante 	bus_space_handle_t ioh;
   1316  1.17     dante 	ADW_DVC_CFG *cfg;
   1317  1.17     dante {
   1318  1.17     dante 	u_int16_t	scsi_cfg1;
   1319  1.17     dante 
   1320   1.7     dante 
   1321   1.7     dante 	/*
   1322   1.7     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1323   1.7     dante 	 *
   1324   1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1325   1.7     dante 	 * after it is started below.
   1326   1.7     dante 	 */
   1327   1.7     dante 
   1328   1.7     dante 	/* Read current SCSI_CFG1 Register value. */
   1329   1.7     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1330   1.7     dante 
   1331   1.7     dante 	/*
   1332  1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1333  1.17     dante 	 * will be set. Check for and return an error if this condition is
   1334  1.17     dante 	 * found.
   1335   1.7     dante 	 */
   1336  1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1337  1.16     dante 		return ADW_IERR_REVERSED_CABLE;
   1338   1.7     dante 	}
   1339   1.7     dante 
   1340   1.7     dante 	/*
   1341  1.17     dante 	 * All kind of combinations of devices attached to one of four
   1342  1.17     dante 	 * connectors are acceptable except HVD device attached.
   1343  1.17     dante 	 * For example, LVD device can be attached to SE connector while
   1344  1.17     dante 	 * SE device attached to LVD connector.
   1345  1.17     dante 	 * If LVD device attached to SE connector, it only runs up to
   1346  1.17     dante 	 * Ultra speed.
   1347  1.17     dante 	 *
   1348  1.17     dante 	 * If an HVD device is attached to one of LVD connectors, return
   1349  1.17     dante 	 * an error.
   1350  1.17     dante 	 * However, there is no way to detect HVD device attached to
   1351  1.17     dante 	 * SE connectors.
   1352   1.7     dante 	 */
   1353   1.7     dante 	if (scsi_cfg1 & ADW_HVD) {
   1354  1.16     dante 		return ADW_IERR_HVD_DEVICE;
   1355   1.7     dante 	}
   1356   1.7     dante 
   1357   1.7     dante 	/*
   1358   1.7     dante 	 * If either SE or LVD automatic termination control is enabled, then
   1359   1.7     dante 	 * set the termination value based on a table listed in a_condor.h.
   1360   1.7     dante 	 *
   1361   1.7     dante 	 * If manual termination was specified with an EEPROM setting then
   1362  1.17     dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1363  1.17     dante 	 * to be 'ored' into SCSI_CFG1.
   1364   1.7     dante 	 */
   1365  1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1366   1.7     dante 		/* SE automatic termination control is enabled. */
   1367   1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1368   1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1369   1.7     dante 			case 0x1: case 0x2: case 0x3:
   1370  1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1371   1.7     dante 				break;
   1372   1.7     dante 
   1373   1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1374   1.7     dante 			case 0x0:
   1375  1.17     dante 				cfg->termination |= ADW_TERM_SE_HI;
   1376   1.7     dante 				break;
   1377   1.7     dante 		}
   1378   1.7     dante 	}
   1379   1.7     dante 
   1380  1.17     dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1381   1.7     dante 		/* LVD automatic termination control is enabled. */
   1382   1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1383   1.7     dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1384   1.7     dante 			case 0x4: case 0x8: case 0xC:
   1385  1.17     dante 				cfg->termination |= ADW_TERM_LVD;
   1386   1.7     dante 				break;
   1387   1.7     dante 
   1388   1.7     dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1389   1.7     dante 			case 0x0:
   1390   1.7     dante 				break;
   1391   1.7     dante 		}
   1392   1.7     dante 	}
   1393   1.7     dante 
   1394   1.7     dante 	/*
   1395   1.7     dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1396   1.7     dante 	 */
   1397   1.7     dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1398   1.7     dante 
   1399   1.7     dante 	/*
   1400   1.7     dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1401   1.7     dante 	 */
   1402  1.17     dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1403   1.7     dante 
   1404   1.7     dante 	/*
   1405  1.17     dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1406  1.17     dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1407  1.17     dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1408   1.7     dante 	 */
   1409   1.7     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1410  1.17     dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1411   1.7     dante 
   1412   1.7     dante 	/*
   1413   1.7     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1414   1.7     dante 	 *
   1415   1.7     dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1416   1.7     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1417   1.7     dante 	 *
   1418   1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1419   1.7     dante 	 * after it is started below.
   1420   1.7     dante 	 */
   1421  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1422   1.7     dante 
   1423   1.7     dante 	/*
   1424   1.7     dante 	 * Set MEM_CFG Microcode Default Value
   1425   1.7     dante 	 *
   1426   1.7     dante 	 * The microcode will set the MEM_CFG register using this value
   1427   1.7     dante 	 * after it is started below.
   1428   1.7     dante 	 *
   1429   1.7     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1430   1.7     dante 	 * are defined.
   1431   1.7     dante 	 *
   1432   1.7     dante 	 * ASC-38C0800 has 16KB internal memory.
   1433   1.7     dante 	 */
   1434  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1435  1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1436   1.7     dante 
   1437  1.17     dante 	return 0;
   1438  1.17     dante }
   1439   1.7     dante 
   1440   1.7     dante 
   1441  1.17     dante int
   1442  1.17     dante AdwASC38C1600Cabling(iot, ioh, cfg)
   1443  1.17     dante 	bus_space_tag_t iot;
   1444  1.17     dante 	bus_space_handle_t ioh;
   1445  1.17     dante 	ADW_DVC_CFG *cfg;
   1446  1.17     dante {
   1447  1.17     dante 	u_int16_t	scsi_cfg1;
   1448   1.7     dante 
   1449   1.7     dante 
   1450   1.7     dante 	/*
   1451  1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1452  1.17     dante 	 *
   1453  1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1454  1.17     dante 	 * after it is started below.
   1455  1.17     dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1456  1.17     dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1457   1.7     dante 	 */
   1458   1.7     dante 
   1459  1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1460  1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1461   1.7     dante 
   1462   1.7     dante 	/*
   1463  1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1464  1.17     dante 	 * will be set. Check for and return an error if this condition is
   1465  1.17     dante 	 * found.
   1466   1.7     dante 	 */
   1467  1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1468  1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1469   1.7     dante 	}
   1470   1.7     dante 
   1471   1.7     dante 	/*
   1472  1.17     dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1473  1.31       wiz 	 * cannot be connected to either connector. An LVD device or SE device
   1474  1.31       wiz 	 * may be connected to either connector. If an SE device is connected,
   1475  1.25   tsutsui 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1476   1.7     dante 	 *
   1477  1.17     dante 	 * If an HVD device is attached, return an error.
   1478   1.7     dante 	 */
   1479  1.17     dante 	if (scsi_cfg1 & ADW_HVD) {
   1480  1.17     dante 		return ADW_IERR_HVD_DEVICE;
   1481  1.17     dante 	}
   1482   1.7     dante 
   1483   1.7     dante 	/*
   1484  1.17     dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1485  1.17     dante 	 * termination because there are two connectors for each function.
   1486  1.17     dante 	 * Each function may use either LVD or SE mode.
   1487  1.17     dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1488  1.17     dante 	 * used for each function.
   1489  1.17     dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1490  1.17     dante 	 * for the function, then set the termination value based on a table
   1491  1.17     dante 	 * listed in adwlib.h.
   1492  1.17     dante 	 *
   1493  1.17     dante 	 * If manual termination is specified in the EEPROM for the function,
   1494  1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1495  1.17     dante 	 * ready to be 'ored' into SCSI_CFG1.
   1496   1.7     dante 	 */
   1497  1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1498  1.17     dante 		/* SE automatic termination control is enabled. */
   1499  1.17     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1500  1.17     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1501  1.17     dante 			case 0x1: case 0x2: case 0x3:
   1502  1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1503  1.17     dante 				break;
   1504   1.7     dante 
   1505  1.17     dante 			case 0x0:
   1506  1.21     lukem #if 0
   1507  1.17     dante 	/* !!!!TODO!!!! */
   1508  1.21     lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1509  1.17     dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1510  1.21     lukem 				}
   1511  1.21     lukem 				else
   1512  1.21     lukem #endif
   1513  1.21     lukem 				{
   1514  1.17     dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1515  1.17     dante 					cfg->termination |= ADW_TERM_SE_HI;
   1516  1.21     lukem 				}
   1517  1.17     dante 				break;
   1518  1.10     dante 			}
   1519   1.7     dante 	}
   1520   1.7     dante 
   1521  1.17     dante 	/*
   1522  1.17     dante 	 * Clear any set TERM_SE bits.
   1523  1.17     dante 	 */
   1524  1.17     dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1525   1.7     dante 
   1526   1.7     dante 	/*
   1527  1.17     dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1528   1.7     dante 	 */
   1529  1.17     dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1530   1.7     dante 
   1531   1.7     dante 	/*
   1532  1.17     dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1533  1.17     dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1534  1.17     dante 	 * Register Value.
   1535   1.7     dante 	 */
   1536  1.17     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1537   1.7     dante 
   1538   1.7     dante 	/*
   1539  1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1540  1.17     dante 	 *
   1541  1.17     dante 	 * Set possibly modified termination control bits in the Microcode
   1542  1.17     dante 	 * SCSI_CFG1 Register Value.
   1543   1.7     dante 	 *
   1544  1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1545  1.17     dante 	 * after it is started below.
   1546   1.7     dante 	 */
   1547  1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1548   1.7     dante 
   1549  1.17     dante 	/*
   1550  1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1551  1.17     dante 	 *
   1552  1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1553  1.17     dante 	 * after it is started below.
   1554  1.17     dante 	 *
   1555  1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1556  1.17     dante 	 * are defined.
   1557  1.17     dante 	 *
   1558  1.17     dante 	 * ASC-38C1600 has 32KB internal memory.
   1559  1.17     dante 	 */
   1560  1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1561  1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1562   1.7     dante 
   1563  1.17     dante 	return 0;
   1564   1.7     dante }
   1565   1.7     dante 
   1566   1.7     dante 
   1567   1.7     dante /*
   1568   1.7     dante  * Read EEPROM configuration into the specified buffer.
   1569   1.7     dante  *
   1570   1.7     dante  * Return a checksum based on the EEPROM configuration read.
   1571   1.7     dante  */
   1572   1.7     dante static u_int16_t
   1573  1.17     dante AdwGetEEPROMConfig(iot, ioh, cfg_buf)
   1574   1.7     dante 	bus_space_tag_t		iot;
   1575   1.7     dante 	bus_space_handle_t	ioh;
   1576  1.17     dante 	ADW_EEPROM		*cfg_buf;
   1577   1.7     dante {
   1578   1.7     dante 	u_int16_t	       wval, chksum;
   1579   1.7     dante 	u_int16_t	       *wbuf;
   1580   1.7     dante 	int		    eep_addr;
   1581   1.7     dante 
   1582   1.7     dante 
   1583   1.7     dante 	wbuf = (u_int16_t *) cfg_buf;
   1584   1.7     dante 	chksum = 0;
   1585   1.7     dante 
   1586   1.7     dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1587  1.10     dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1588  1.10     dante 		eep_addr++, wbuf++) {
   1589  1.16     dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1590   1.7     dante 		chksum += wval;
   1591   1.7     dante 		*wbuf = wval;
   1592   1.7     dante 	}
   1593   1.7     dante 
   1594  1.16     dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1595   1.7     dante 	wbuf++;
   1596   1.7     dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1597   1.7     dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1598   1.7     dante 			eep_addr++, wbuf++) {
   1599  1.16     dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1600   1.7     dante 	}
   1601   1.7     dante 
   1602   1.7     dante 	return chksum;
   1603   1.7     dante }
   1604   1.7     dante 
   1605   1.7     dante 
   1606   1.7     dante /*
   1607   1.7     dante  * Read the EEPROM from specified location
   1608   1.7     dante  */
   1609   1.7     dante static u_int16_t
   1610  1.16     dante AdwReadEEPWord(iot, ioh, eep_word_addr)
   1611   1.7     dante 	bus_space_tag_t		iot;
   1612   1.7     dante 	bus_space_handle_t	ioh;
   1613   1.7     dante 	int			eep_word_addr;
   1614   1.7     dante {
   1615   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1616   1.7     dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1617  1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1618   1.7     dante 
   1619   1.7     dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1620   1.7     dante }
   1621   1.7     dante 
   1622   1.7     dante 
   1623   1.7     dante /*
   1624   1.7     dante  * Wait for EEPROM command to complete
   1625   1.7     dante  */
   1626   1.7     dante static void
   1627  1.16     dante AdwWaitEEPCmd(iot, ioh)
   1628   1.7     dante 	bus_space_tag_t		iot;
   1629   1.7     dante 	bus_space_handle_t	ioh;
   1630   1.7     dante {
   1631   1.7     dante 	int eep_delay_ms;
   1632   1.7     dante 
   1633   1.7     dante 
   1634   1.7     dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1635   1.7     dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1636   1.7     dante 				ASC_EEP_CMD_DONE) {
   1637   1.7     dante 			break;
   1638   1.7     dante 		}
   1639  1.16     dante 		AdwSleepMilliSecond(1);
   1640   1.7     dante 	}
   1641   1.7     dante 
   1642   1.7     dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1643   1.7     dante }
   1644   1.7     dante 
   1645   1.7     dante 
   1646   1.7     dante /*
   1647   1.7     dante  * Write the EEPROM from 'cfg_buf'.
   1648   1.7     dante  */
   1649   1.7     dante static void
   1650  1.17     dante AdwSetEEPROMConfig(iot, ioh, cfg_buf)
   1651  1.10     dante 	bus_space_tag_t		iot;
   1652  1.10     dante 	bus_space_handle_t	ioh;
   1653  1.17     dante 	ADW_EEPROM		*cfg_buf;
   1654  1.10     dante {
   1655  1.10     dante 	u_int16_t *wbuf;
   1656  1.10     dante 	u_int16_t addr, chksum;
   1657  1.10     dante 
   1658  1.10     dante 
   1659  1.10     dante 	wbuf = (u_int16_t *) cfg_buf;
   1660  1.10     dante 	chksum = 0;
   1661  1.10     dante 
   1662  1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1663  1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1664  1.10     dante 
   1665  1.10     dante 	/*
   1666  1.10     dante 	 * Write EEPROM from word 0 to word 20
   1667  1.10     dante 	 */
   1668  1.10     dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1669  1.10     dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1670  1.10     dante 		chksum += *wbuf;
   1671  1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1672  1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1673  1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1674  1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1675  1.16     dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1676  1.10     dante 	}
   1677  1.10     dante 
   1678  1.10     dante 	/*
   1679  1.10     dante 	 * Write EEPROM checksum at word 21
   1680  1.10     dante 	 */
   1681  1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1682  1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1683  1.10     dante 			ASC_EEP_CMD_WRITE | addr);
   1684  1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1685  1.10     dante 	wbuf++;        /* skip over check_sum */
   1686  1.10     dante 
   1687  1.10     dante 	/*
   1688  1.10     dante 	 * Write EEPROM OEM name at words 22 to 29
   1689  1.10     dante 	 */
   1690  1.10     dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1691  1.10     dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1692  1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1693  1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1694  1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1695  1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1696  1.10     dante 	}
   1697  1.10     dante 
   1698  1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1699  1.10     dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1700  1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1701  1.10     dante 
   1702  1.10     dante 	return;
   1703  1.10     dante }
   1704  1.10     dante 
   1705  1.10     dante 
   1706  1.10     dante /*
   1707  1.16     dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1708   1.7     dante  *
   1709   1.7     dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1710   1.7     dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1711   1.7     dante  *   RISC to notify it a new command is ready to be executed.
   1712   1.1     dante  *
   1713   1.7     dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1714   1.7     dante  * set to SCSI_MAX_RETRY.
   1715   1.1     dante  *
   1716   1.7     dante  * Return:
   1717   1.7     dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1718   1.7     dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1719   1.7     dante  *                       request completes.
   1720   1.7     dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1721   1.7     dante  *                       host IC error.
   1722   1.1     dante  */
   1723   1.7     dante int
   1724  1.16     dante AdwExeScsiQueue(sc, scsiq)
   1725   1.7     dante ADW_SOFTC	*sc;
   1726   1.7     dante ADW_SCSI_REQ_Q	*scsiq;
   1727   1.1     dante {
   1728   1.7     dante 	bus_space_tag_t iot = sc->sc_iot;
   1729   1.7     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1730   1.7     dante 	ADW_CCB		*ccb;
   1731   1.7     dante 	u_int32_t	req_paddr;
   1732  1.10     dante 	ADW_CARRIER	*new_carrp;
   1733   1.7     dante 
   1734   1.7     dante 	/*
   1735   1.7     dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1736   1.7     dante 	 */
   1737   1.7     dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1738   1.7     dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1739   1.7     dante 		scsiq->done_status = QD_WITH_ERROR;
   1740   1.7     dante 		return ADW_ERROR;
   1741   1.7     dante 	}
   1742   1.7     dante 
   1743  1.10     dante 	/*
   1744  1.10     dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1745  1.10     dante 	 */
   1746  1.10     dante 
   1747   1.7     dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1748   1.7     dante 
   1749   1.7     dante 	/*
   1750  1.16     dante 	 * Allocate a carrier and initialize fields.
   1751   1.7     dante 	 */
   1752   1.7     dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1753   1.7     dante 		return ADW_BUSY;
   1754   1.7     dante 	}
   1755  1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1756  1.12     dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1757   1.7     dante 	sc->carr_pending_cnt++;
   1758   1.7     dante 
   1759   1.7     dante 	/*
   1760  1.12     dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1761   1.7     dante 	 * to the stopper value. The current stopper will be changed
   1762   1.7     dante 	 * below to point to the new stopper.
   1763   1.7     dante 	 */
   1764  1.22    briggs 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1765   1.7     dante 
   1766   1.7     dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1767   1.7     dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1768   1.7     dante 
   1769   1.7     dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1770  1.22    briggs 	scsiq->scsiq_rptr = htole32(req_paddr);
   1771   1.7     dante 
   1772   1.7     dante 	/*
   1773  1.12     dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1774   1.7     dante 	 * order during initialization.
   1775   1.7     dante 	 */
   1776  1.12     dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1777  1.12     dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1778   1.1     dante 
   1779   1.7     dante 	/*
   1780   1.7     dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1781   1.7     dante 	 * the microcode. The newly allocated stopper will become the new
   1782   1.7     dante 	 * stopper.
   1783   1.7     dante 	 */
   1784  1.22    briggs 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1785   1.1     dante 
   1786   1.1     dante 	/*
   1787  1.12     dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1788   1.7     dante 	 * physical address of the new stopper. The RISC can only
   1789   1.7     dante 	 * follow physical addresses.
   1790   1.1     dante 	 */
   1791  1.12     dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1792   1.1     dante 
   1793  1.12     dante #if ADW_DEBUG
   1794  1.12     dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1795  1.12     dante 			sc->icq_sp->carr_id,
   1796  1.12     dante 			sc->icq_sp->carr_ba,
   1797  1.12     dante 			sc->icq_sp->areq_ba,
   1798  1.12     dante 			sc->icq_sp->next_ba);
   1799  1.12     dante #endif
   1800   1.1     dante 	/*
   1801   1.7     dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1802   1.1     dante 	 */
   1803   1.7     dante 	sc->icq_sp = new_carrp;
   1804  1.11     dante 
   1805  1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1806  1.16     dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1807   1.7     dante 		/*
   1808  1.10     dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1809  1.10     dante 		 * pointer.
   1810  1.10     dante 		 */
   1811  1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1812  1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1813  1.10     dante 			/*
   1814  1.10     dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1815  1.10     dante 			 * command 'clr_tickle_a' does not work unless the host
   1816  1.10     dante 			 * value is cleared.
   1817  1.10     dante 			 */
   1818  1.10     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1819  1.20    itojun 					ADW_TICKLE_NOP);
   1820  1.10     dante 		}
   1821  1.16     dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1822  1.10     dante 		/*
   1823  1.10     dante 		 * Notify the RISC a carrier is ready by writing the physical
   1824  1.10     dante 		 * address of the new carrier stopper to the COMMA register.
   1825   1.7     dante 		 */
   1826  1.10     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1827  1.22    briggs 				le32toh(new_carrp->carr_ba));
   1828   1.7     dante 	}
   1829   1.7     dante 
   1830  1.10     dante 	/*
   1831  1.10     dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1832  1.10     dante 	 */
   1833  1.10     dante 
   1834   1.7     dante 	return ADW_SUCCESS;
   1835   1.1     dante }
   1836   1.1     dante 
   1837   1.7     dante 
   1838   1.7     dante void
   1839  1.16     dante AdwResetChip(iot, ioh)
   1840   1.7     dante 	bus_space_tag_t iot;
   1841   1.7     dante 	bus_space_handle_t ioh;
   1842   1.1     dante {
   1843   1.7     dante 
   1844   1.7     dante 	/*
   1845   1.7     dante 	 * Reset Chip.
   1846   1.7     dante 	 */
   1847   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1848   1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1849  1.16     dante 	AdwSleepMilliSecond(100);
   1850   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1851   1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1852   1.1     dante }
   1853   1.1     dante 
   1854   1.7     dante 
   1855   1.1     dante /*
   1856   1.1     dante  * Reset SCSI Bus and purge all outstanding requests.
   1857   1.1     dante  *
   1858   1.1     dante  * Return Value:
   1859   1.7     dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1860   1.7     dante  *      ADW_FALSE(0) -  Microcode command failed.
   1861   1.7     dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1862   1.7     dante  *                      may be hung which requires driver recovery.
   1863   1.1     dante  */
   1864   1.1     dante int
   1865  1.16     dante AdwResetCCB(sc)
   1866   1.7     dante ADW_SOFTC	*sc;
   1867   1.1     dante {
   1868   1.7     dante 	int	    status;
   1869   1.7     dante 
   1870   1.7     dante 	/*
   1871   1.7     dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1872   1.7     dante 	 * the SCSI Bus Reset signal.
   1873   1.7     dante 	 */
   1874  1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1875  1.11     dante 	if (status != ADW_TRUE) {
   1876   1.7     dante 		return status;
   1877   1.7     dante 	}
   1878   1.7     dante 
   1879   1.7     dante 	/*
   1880   1.7     dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1881   1.7     dante 	 *
   1882   1.7     dante 	 * The hold time delay is done on the host because the RISC has no
   1883   1.7     dante 	 * microsecond accurate timer.
   1884   1.7     dante 	 */
   1885  1.16     dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1886   1.1     dante 
   1887   1.7     dante 	/*
   1888   1.7     dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1889   1.7     dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1890   1.7     dante 	 */
   1891  1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1892  1.11     dante 	if (status != ADW_TRUE) {
   1893   1.7     dante 		return status;
   1894   1.7     dante 	}
   1895   1.1     dante 
   1896  1.16     dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1897   1.1     dante 
   1898   1.1     dante 	return status;
   1899   1.1     dante }
   1900   1.1     dante 
   1901   1.7     dante 
   1902   1.1     dante /*
   1903   1.7     dante  * Reset chip and SCSI Bus.
   1904   1.7     dante  *
   1905   1.7     dante  * Return Value:
   1906   1.7     dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1907   1.7     dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1908   1.1     dante  */
   1909   1.7     dante int
   1910  1.16     dante AdwResetSCSIBus(sc)
   1911   1.7     dante ADW_SOFTC	*sc;
   1912   1.1     dante {
   1913   1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   1914   1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1915   1.7     dante 	int		status;
   1916  1.28  christos 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1917  1.28  christos 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1918   1.7     dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1919   1.7     dante 	u_int16_t	bios_sig;
   1920   1.7     dante 
   1921   1.7     dante 
   1922   1.7     dante 	/*
   1923   1.7     dante 	 * Save current per TID negotiated values.
   1924   1.7     dante 	 */
   1925  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1926  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1927  1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1928  1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1929  1.10     dante 	}
   1930  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1931  1.11     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1932  1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1933   1.7     dante 			max_cmd[tid]);
   1934   1.7     dante 	}
   1935   1.7     dante 
   1936   1.7     dante 	/*
   1937  1.17     dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1938  1.17     dante 	 * by clearing the BIOS signature word.
   1939   1.7     dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1940   1.7     dante 	 * needed if the BIOS signature word is present.
   1941   1.7     dante 	 */
   1942  1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1943  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1944   1.7     dante 
   1945   1.7     dante 	/*
   1946   1.7     dante 	 * Stop chip and reset it.
   1947   1.7     dante 	 */
   1948   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1949   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1950   1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1951  1.16     dante 	AdwSleepMilliSecond(100);
   1952   1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1953   1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1954   1.7     dante 
   1955   1.7     dante 	/*
   1956   1.7     dante 	 * Reset Adv Library error code, if any, and try
   1957   1.7     dante 	 * re-initializing the chip.
   1958  1.17     dante 	 * Then translate initialization return value to status value.
   1959   1.7     dante 	 */
   1960  1.17     dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1961   1.1     dante 
   1962   1.7     dante 	/*
   1963   1.7     dante 	 * Restore the BIOS signature word.
   1964   1.7     dante 	 */
   1965  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1966   1.1     dante 
   1967   1.1     dante 	/*
   1968   1.7     dante 	 * Restore per TID negotiated values.
   1969   1.1     dante 	 */
   1970  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1971  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1972  1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1973  1.16     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1974  1.10     dante 	}
   1975  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1976   1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1977  1.16     dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1978   1.7     dante 			max_cmd[tid]);
   1979   1.7     dante 	}
   1980   1.1     dante 
   1981   1.7     dante 	return status;
   1982   1.1     dante }
   1983   1.1     dante 
   1984   1.1     dante 
   1985   1.1     dante /*
   1986   1.1     dante  * Adv Library Interrupt Service Routine
   1987   1.1     dante  *
   1988   1.1     dante  *  This function is called by a driver's interrupt service routine.
   1989   1.1     dante  *  The function disables and re-enables interrupts.
   1990   1.1     dante  *
   1991   1.7     dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1992   1.1     dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1993   1.1     dante  *
   1994  1.16     dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1995   1.1     dante  *  when there is no hardware interrupt condition present. It will
   1996   1.1     dante  *  always check for completed idle commands and microcode requests.
   1997   1.1     dante  *  This is an important feature that shouldn't be changed because it
   1998   1.1     dante  *  allows commands to be completed from polling mode loops.
   1999   1.1     dante  *
   2000   1.1     dante  * Return:
   2001   1.1     dante  *   ADW_TRUE(1) - interrupt was pending
   2002   1.1     dante  *   ADW_FALSE(0) - no interrupt was pending
   2003   1.1     dante  */
   2004   1.1     dante int
   2005  1.16     dante AdwISR(sc)
   2006   1.7     dante ADW_SOFTC	*sc;
   2007   1.1     dante {
   2008   1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2009   1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2010   1.7     dante 	u_int8_t	int_stat;
   2011   1.7     dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2012   1.7     dante 	u_int32_t	irq_next_pa;
   2013   1.7     dante 	ADW_SCSI_REQ_Q	*scsiq;
   2014   1.7     dante 	ADW_CCB		*ccb;
   2015  1.11     dante 	int		s;
   2016  1.11     dante 
   2017   1.1     dante 
   2018  1.11     dante 	s = splbio();
   2019   1.1     dante 
   2020   1.1     dante 	/* Reading the register clears the interrupt. */
   2021   1.1     dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2022   1.1     dante 
   2023   1.7     dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2024   1.7     dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2025  1.11     dante 		splx(s);
   2026   1.7     dante 		return ADW_FALSE;
   2027   1.1     dante 	}
   2028   1.7     dante 
   2029   1.7     dante 	/*
   2030   1.7     dante 	 * Notify the driver of an asynchronous microcode condition by
   2031   1.7     dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2032  1.16     dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2033   1.1     dante 	 */
   2034   1.7     dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2035   1.7     dante 		u_int8_t intrb_code;
   2036   1.7     dante 
   2037  1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2038  1.10     dante 
   2039  1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2040  1.16     dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2041  1.10     dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2042  1.10     dante 				sc->carr_pending_cnt != 0) {
   2043  1.10     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2044  1.20    itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2045  1.16     dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2046  1.10     dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2047  1.20    itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2048  1.10     dante 				}
   2049  1.10     dante 			}
   2050   1.7     dante 		}
   2051   1.7     dante 
   2052   1.7     dante 		if (sc->async_callback != 0) {
   2053   1.7     dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2054   1.1     dante 		}
   2055   1.1     dante 	}
   2056   1.7     dante 
   2057   1.1     dante 	/*
   2058   1.7     dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2059   1.1     dante 	 */
   2060  1.22    briggs 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2061   1.7     dante 	{
   2062  1.12     dante #if ADW_DEBUG
   2063  1.12     dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2064  1.12     dante 				sc->irq_sp->carr_id,
   2065  1.12     dante 				sc->irq_sp->carr_ba,
   2066  1.12     dante 				sc->irq_sp->areq_ba,
   2067  1.12     dante 				sc->irq_sp->next_ba);
   2068  1.12     dante #endif
   2069   1.7     dante 		/*
   2070  1.10     dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2071  1.10     dante 		 * structure.
   2072  1.12     dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2073   1.7     dante 		 *
   2074   1.7     dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2075  1.12     dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2076  1.10     dante 		 * The conversion below complements the conversion of
   2077  1.16     dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2078   1.7     dante 		 */
   2079  1.12     dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2080   1.7     dante 		scsiq = &ccb->scsiq;
   2081  1.12     dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2082   1.7     dante 
   2083  1.10     dante 		/*
   2084  1.10     dante 		 * Request finished with good status and the queue was not
   2085  1.10     dante 		 * DMAed to host memory by the firmware. Set all status fields
   2086  1.10     dante 		 * to indicate good status.
   2087  1.10     dante 		 */
   2088  1.22    briggs 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2089  1.10     dante 			scsiq->done_status = QD_NO_ERROR;
   2090  1.10     dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2091  1.10     dante 			scsiq->data_cnt = 0L;
   2092   1.7     dante 		}
   2093   1.1     dante 
   2094   1.1     dante 		/*
   2095   1.7     dante 		 * Advance the stopper pointer to the next carrier
   2096   1.7     dante 		 * ignoring the lower four bits. Free the previous
   2097   1.7     dante 		 * stopper carrier.
   2098   1.1     dante 		 */
   2099   1.7     dante 		free_carrp = sc->irq_sp;
   2100  1.16     dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2101   1.7     dante 
   2102  1.26      fvdl 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2103  1.16     dante 					: sc->carr_freelist->carr_ba;
   2104   1.7     dante 		sc->carr_freelist = free_carrp;
   2105   1.7     dante 		sc->carr_pending_cnt--;
   2106   1.1     dante 
   2107   1.1     dante 		/*
   2108   1.1     dante 		 * Clear request microcode control flag.
   2109   1.1     dante 		 */
   2110   1.1     dante 		scsiq->cntl = 0;
   2111   1.1     dante 
   2112   1.1     dante 		/*
   2113   1.1     dante 		 * Check Condition handling
   2114   1.1     dante 		 */
   2115   1.1     dante 		/*
   2116   1.1     dante 		 * If the command that completed was a SCSI INQUIRY and
   2117   1.1     dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2118   1.1     dante 		 * command information for the device.
   2119   1.1     dante 		 */
   2120   1.7     dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2121  1.10     dante 		    scsiq->cdb[0] == INQUIRY &&
   2122  1.10     dante 		    scsiq->target_lun == 0) {
   2123  1.16     dante 			AdwInquiryHandling(sc, scsiq);
   2124   1.1     dante 		}
   2125   1.1     dante 
   2126   1.1     dante 		/*
   2127   1.1     dante 		 * Notify the driver of the completed request by passing
   2128   1.1     dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2129   1.1     dante 		 */
   2130   1.7     dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2131   1.1     dante 		/*
   2132   1.1     dante 		 * Note: After the driver callback function is called, 'scsiq'
   2133   1.1     dante 		 * can no longer be referenced.
   2134   1.1     dante 		 *
   2135   1.1     dante 		 * Fall through and continue processing other completed
   2136   1.1     dante 		 * requests...
   2137   1.1     dante 		 */
   2138   1.1     dante 	}
   2139  1.11     dante 
   2140  1.11     dante 	splx(s);
   2141   1.7     dante 
   2142   1.7     dante 	return ADW_TRUE;
   2143   1.1     dante }
   2144   1.1     dante 
   2145   1.7     dante 
   2146   1.1     dante /*
   2147   1.1     dante  * Send an idle command to the chip and wait for completion.
   2148   1.1     dante  *
   2149   1.7     dante  * Command completion is polled for once per microsecond.
   2150   1.7     dante  *
   2151   1.7     dante  * The function can be called from anywhere including an interrupt handler.
   2152  1.10     dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2153   1.7     dante  * functions to prevent reentrancy.
   2154   1.1     dante  *
   2155   1.1     dante  * Return Values:
   2156   1.1     dante  *   ADW_TRUE - command completed successfully
   2157   1.1     dante  *   ADW_FALSE - command failed
   2158   1.7     dante  *   ADW_ERROR - command timed out
   2159   1.1     dante  */
   2160   1.1     dante int
   2161  1.16     dante AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2162   1.7     dante ADW_SOFTC      *sc;
   2163   1.7     dante u_int16_t       idle_cmd;
   2164   1.7     dante u_int32_t       idle_cmd_parameter;
   2165   1.1     dante {
   2166   1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2167   1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2168  1.13     dante 	u_int16_t	result;
   2169  1.10     dante 	u_int32_t	i, j, s;
   2170   1.1     dante 
   2171  1.10     dante 	s = splbio();
   2172   1.7     dante 
   2173   1.7     dante 	/*
   2174   1.7     dante 	 * Clear the idle command status which is set by the microcode
   2175   1.7     dante 	 * to a non-zero value to indicate when the command is completed.
   2176   1.7     dante 	 */
   2177  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2178   1.1     dante 
   2179   1.1     dante 	/*
   2180   1.1     dante 	 * Write the idle command value after the idle command parameter
   2181   1.1     dante 	 * has been written to avoid a race condition. If the order is not
   2182   1.1     dante 	 * followed, the microcode may process the idle command before the
   2183   1.1     dante 	 * parameters have been written to LRAM.
   2184   1.1     dante 	 */
   2185  1.16     dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2186  1.13     dante 			idle_cmd_parameter);
   2187  1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2188   1.1     dante 
   2189   1.1     dante 	/*
   2190   1.7     dante 	 * Tickle the RISC to tell it to process the idle command.
   2191   1.1     dante 	 */
   2192  1.20    itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2193  1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2194   1.1     dante 		/*
   2195   1.7     dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2196   1.7     dante 		 * command 'clr_tickle_b' does not work unless the host
   2197   1.7     dante 		 * value is cleared.
   2198   1.1     dante 		 */
   2199  1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2200   1.7     dante 	}
   2201   1.1     dante 
   2202   1.7     dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2203   1.7     dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2204   1.7     dante 		/* Poll once each microsecond for command completion. */
   2205   1.7     dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2206  1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2207  1.17     dante 									result);
   2208   1.7     dante 			if (result != 0) {
   2209  1.10     dante 				splx(s);
   2210   1.7     dante 				return result;
   2211   1.7     dante 			}
   2212  1.16     dante 			AdwDelayMicroSecond(1);
   2213   1.7     dante 		}
   2214   1.1     dante 	}
   2215   1.1     dante 
   2216  1.10     dante 	splx(s);
   2217   1.7     dante 	return ADW_ERROR;
   2218   1.1     dante }
   2219   1.1     dante 
   2220   1.1     dante 
   2221   1.1     dante /*
   2222   1.1     dante  * Inquiry Information Byte 7 Handling
   2223   1.1     dante  *
   2224   1.1     dante  * Handle SCSI Inquiry Command information for a device by setting
   2225   1.2     dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2226   1.1     dante  * Queuing.
   2227   1.1     dante  */
   2228   1.1     dante static void
   2229  1.16     dante AdwInquiryHandling(sc, scsiq)
   2230   1.7     dante ADW_SOFTC	*sc;
   2231   1.7     dante ADW_SCSI_REQ_Q *scsiq;
   2232   1.1     dante {
   2233   1.9     dante #ifndef FAILSAFE
   2234   1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2235   1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2236   1.7     dante 	u_int8_t		tid;
   2237  1.13     dante 	struct scsipi_inquiry_data *inq;
   2238   1.7     dante 	u_int16_t		tidmask;
   2239   1.7     dante 	u_int16_t		cfg_word;
   2240   1.7     dante 
   2241   1.1     dante 
   2242   1.1     dante 	/*
   2243  1.16     dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2244   1.1     dante 	 * to be available.
   2245   1.1     dante 	 *
   2246   1.1     dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2247   1.1     dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2248   1.1     dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2249   1.1     dante 	 * microcode to the transfer residual count.
   2250   1.1     dante 	 */
   2251   1.7     dante 
   2252   1.2     dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2253   1.1     dante 		return;
   2254   1.1     dante 	}
   2255   1.7     dante 
   2256   1.1     dante 	tid = scsiq->target_id;
   2257   1.7     dante 
   2258  1.13     dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2259   1.1     dante 
   2260   1.1     dante 	/*
   2261   1.1     dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2262   1.1     dante 	 */
   2263  1.13     dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2264  1.13     dante 	    ((inq->version & SID_ANSII) < 2)) {
   2265   1.1     dante 		return;
   2266   1.2     dante 	} else {
   2267   1.1     dante 		/*
   2268   1.1     dante 		 * INQUIRY Byte 7 Handling
   2269   1.1     dante 		 *
   2270   1.1     dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2271   1.1     dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2272   1.1     dante 		 * is enabled in the EEPROM and the device supports the
   2273   1.1     dante 		 * feature, then enable it in the microcode.
   2274   1.1     dante 		 */
   2275   1.1     dante 
   2276   1.1     dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2277   1.7     dante 
   2278   1.1     dante 		/*
   2279   1.1     dante 		 * Wide Transfers
   2280   1.1     dante 		 *
   2281   1.1     dante 		 * If the EEPROM enabled WDTR for the device and the device
   2282   1.1     dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2283   1.1     dante 		 * device's 'wdtr_able' bit and write the new value to the
   2284   1.1     dante 		 * microcode.
   2285   1.1     dante 		 */
   2286   1.7     dante #ifdef SCSI_ADW_WDTR_DISABLE
   2287   1.8     dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2288   1.7     dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2289  1.13     dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2290  1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2291   1.7     dante 					cfg_word);
   2292   1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2293   1.1     dante 				cfg_word |= tidmask;
   2294  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2295   1.7     dante 						cfg_word);
   2296   1.1     dante 
   2297   1.1     dante 				/*
   2298  1.16     dante 				 * Clear the microcode "SDTR negotiation" and
   2299  1.16     dante 				 * "WDTR negotiation" done indicators for the
   2300  1.16     dante 				 * target to cause it to negotiate with the new
   2301  1.16     dante 				 * setting set above.
   2302   1.7     dante 				 * WDTR when accepted causes the target to enter
   2303  1.16     dante 				 * asynchronous mode, so SDTR must be negotiated
   2304   1.1     dante 				 */
   2305  1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306   1.7     dante 						cfg_word);
   2307   1.7     dante 				cfg_word &= ~tidmask;
   2308  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309   1.7     dante 						cfg_word);
   2310  1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2311   1.7     dante 						cfg_word);
   2312   1.1     dante 				cfg_word &= ~tidmask;
   2313  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2314   1.7     dante 						cfg_word);
   2315   1.1     dante 			}
   2316   1.1     dante 		}
   2317   1.7     dante 
   2318   1.1     dante 		/*
   2319   1.1     dante 		 * Synchronous Transfers
   2320   1.1     dante 		 *
   2321   1.1     dante 		 * If the EEPROM enabled SDTR for the device and the device
   2322   1.1     dante 		 * supports synchronous transfers, then turn on the device's
   2323   1.1     dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2324   1.1     dante 		 */
   2325   1.7     dante #ifdef SCSI_ADW_SDTR_DISABLE
   2326   1.8     dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2327   1.7     dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2328  1.13     dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2329  1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2330   1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2331   1.1     dante 				cfg_word |= tidmask;
   2332  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2333   1.7     dante 						cfg_word);
   2334   1.1     dante 
   2335   1.1     dante 				/*
   2336  1.16     dante 				 * Clear the microcode "SDTR negotiation"
   2337  1.16     dante 				 * done indicator for the target to cause it
   2338  1.16     dante 				 * to negotiate with the new setting set above.
   2339   1.1     dante 				 */
   2340  1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2341   1.7     dante 						cfg_word);
   2342   1.1     dante 				cfg_word &= ~tidmask;
   2343  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2344   1.7     dante 						cfg_word);
   2345  1.10     dante 			}
   2346  1.10     dante 		}
   2347  1.10     dante 		/*
   2348  1.10     dante 		 * If the Inquiry data included enough space for the SPI-3
   2349  1.10     dante 		 * Clocking field, then check if DT mode is supported.
   2350  1.10     dante 		 */
   2351  1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2352  1.17     dante 		   (scsiq->cdb[4] >= 57 ||
   2353  1.17     dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2354  1.10     dante 			/*
   2355  1.10     dante 			 * PPR (Parallel Protocol Request) Capable
   2356  1.10     dante 			 *
   2357  1.10     dante 			 * If the device supports DT mode, then it must be
   2358  1.10     dante 			 * PPR capable.
   2359  1.10     dante 			 * The PPR message will be used in place of the SDTR
   2360  1.10     dante 			 * and WDTR messages to negotiate synchronous speed
   2361  1.10     dante 			 * and offset, transfer width, and protocol options.
   2362  1.10     dante 			 */
   2363  1.15     dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2364  1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2365  1.10     dante 						sc->ppr_able);
   2366  1.10     dante 				sc->ppr_able |= tidmask;
   2367  1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2368  1.10     dante 						sc->ppr_able);
   2369   1.1     dante 			}
   2370   1.1     dante 		}
   2371   1.7     dante 
   2372   1.1     dante 		/*
   2373   1.7     dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2374   1.7     dante 		 * device supports Tag Queueing, then turn on the device's
   2375   1.1     dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2376   1.7     dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2377   1.1     dante 		 * value.
   2378   1.1     dante 		 *
   2379   1.1     dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2380   1.1     dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2381   1.1     dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2382   1.1     dante 		 * bugs will at least work with the BIOS.
   2383   1.1     dante 		 */
   2384   1.7     dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2385   1.8     dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2386   1.7     dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2387  1.13     dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2388  1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2389   1.7     dante 					cfg_word);
   2390   1.1     dante 			cfg_word |= tidmask;
   2391  1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2392   1.7     dante 					cfg_word);
   2393   1.7     dante 
   2394   1.1     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2395  1.16     dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2396   1.7     dante 					sc->max_dvc_qng);
   2397   1.1     dante 		}
   2398   1.9     dante 	}
   2399   1.7     dante #endif /* FAILSAFE */
   2400   1.1     dante }
   2401   1.1     dante 
   2402   1.7     dante 
   2403   1.1     dante static void
   2404  1.16     dante AdwSleepMilliSecond(n)
   2405   1.7     dante u_int32_t	n;
   2406   1.1     dante {
   2407   1.1     dante 
   2408   1.1     dante 	DELAY(n * 1000);
   2409   1.1     dante }
   2410   1.1     dante 
   2411   1.7     dante 
   2412   1.1     dante static void
   2413  1.16     dante AdwDelayMicroSecond(n)
   2414   1.7     dante u_int32_t	n;
   2415   1.1     dante {
   2416   1.1     dante 
   2417   1.1     dante 	DELAY(n);
   2418   1.1     dante }
   2419   1.7     dante 
   2420