Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.38.34.1
      1  1.38.34.1       jym /* $NetBSD: adwlib.c,v 1.38.34.1 2009/05/13 17:19:21 jym Exp $        */
      2        1.1     dante 
      3        1.1     dante /*
      4        1.1     dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5        1.1     dante  *
      6        1.7     dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7        1.1     dante  * All rights reserved.
      8        1.1     dante  *
      9        1.1     dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10        1.1     dante  *
     11        1.1     dante  * Redistribution and use in source and binary forms, with or without
     12        1.1     dante  * modification, are permitted provided that the following conditions
     13        1.1     dante  * are met:
     14        1.1     dante  * 1. Redistributions of source code must retain the above copyright
     15        1.1     dante  *    notice, this list of conditions and the following disclaimer.
     16        1.1     dante  * 2. Redistributions in binary form must reproduce the above copyright
     17        1.1     dante  *    notice, this list of conditions and the following disclaimer in the
     18        1.1     dante  *    documentation and/or other materials provided with the distribution.
     19        1.1     dante  * 3. All advertising materials mentioning features or use of this software
     20        1.1     dante  *    must display the following acknowledgement:
     21        1.1     dante  *        This product includes software developed by the NetBSD
     22        1.1     dante  *        Foundation, Inc. and its contributors.
     23        1.1     dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24        1.1     dante  *    contributors may be used to endorse or promote products derived
     25        1.1     dante  *    from this software without specific prior written permission.
     26        1.1     dante  *
     27        1.1     dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28        1.1     dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29        1.1     dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30        1.1     dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31        1.1     dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32        1.1     dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33        1.1     dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34        1.1     dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35        1.1     dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36        1.1     dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37        1.1     dante  * POSSIBILITY OF SUCH DAMAGE.
     38        1.1     dante  */
     39        1.1     dante /*
     40        1.1     dante  * Ported from:
     41        1.1     dante  */
     42        1.1     dante /*
     43        1.1     dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44       1.33     perry  *
     45       1.10     dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46        1.1     dante  * All Rights Reserved.
     47        1.1     dante  *
     48        1.1     dante  * Redistribution and use in source and binary forms, with or without
     49        1.1     dante  * modification, are permitted provided that redistributions of source
     50        1.1     dante  * code retain the above copyright notice and this comment without
     51        1.1     dante  * modification.
     52        1.1     dante  */
     53       1.23     lukem 
     54       1.23     lukem #include <sys/cdefs.h>
     55  1.38.34.1       jym __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.38.34.1 2009/05/13 17:19:21 jym Exp $");
     56        1.1     dante 
     57        1.1     dante #include <sys/param.h>
     58        1.1     dante #include <sys/systm.h>
     59        1.1     dante #include <sys/malloc.h>
     60        1.1     dante #include <sys/kernel.h>
     61        1.1     dante #include <sys/queue.h>
     62        1.1     dante #include <sys/device.h>
     63        1.1     dante 
     64       1.38        ad #include <sys/bus.h>
     65       1.38        ad #include <sys/intr.h>
     66        1.1     dante 
     67        1.1     dante #include <dev/scsipi/scsi_all.h>
     68        1.1     dante #include <dev/scsipi/scsipi_all.h>
     69        1.1     dante #include <dev/scsipi/scsiconf.h>
     70        1.1     dante 
     71        1.7     dante #include <dev/pci/pcidevs.h>
     72        1.7     dante 
     73       1.19       mrg #include <uvm/uvm_extern.h>
     74        1.1     dante 
     75        1.1     dante #include <dev/ic/adwlib.h>
     76       1.16     dante #include <dev/ic/adwmcode.h>
     77        1.1     dante #include <dev/ic/adw.h>
     78        1.1     dante 
     79        1.1     dante 
     80        1.1     dante /* Static Functions */
     81        1.1     dante 
     82       1.32     perry int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     83       1.32     perry int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     84       1.32     perry int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85       1.32     perry int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     86       1.32     perry int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     87       1.32     perry 
     88       1.32     perry static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89       1.32     perry      							ADW_EEPROM *);
     90       1.32     perry static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     91       1.32     perry 					                 ADW_EEPROM *);
     92       1.32     perry static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     93       1.32     perry static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     94       1.17     dante 
     95       1.32     perry static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     96        1.1     dante 
     97       1.32     perry static void AdwSleepMilliSecond(u_int32_t);
     98       1.32     perry static void AdwDelayMicroSecond(u_int32_t);
     99        1.1     dante 
    100        1.1     dante 
    101        1.1     dante /*
    102        1.1     dante  * EEPROM Configuration.
    103        1.1     dante  *
    104        1.1     dante  * All drivers should use this structure to set the default EEPROM
    105        1.1     dante  * configuration. The BIOS now uses this structure when it is built.
    106       1.16     dante  * Additional structure information can be found in adwlib.h where
    107        1.1     dante  * the structure is defined.
    108        1.1     dante  */
    109       1.37  christos static const ADW_EEPROM adw_3550_Default_EEPROM = {
    110       1.17     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    111       1.17     dante 	0x0000,			/* 01 cfg_msw */
    112       1.17     dante 	0xFFFF,			/* 02 disc_enable */
    113       1.17     dante 	0xFFFF,			/* 03 wdtr_able */
    114       1.17     dante 	{ 0xFFFF },		/* 04 sdtr_able */
    115       1.17     dante 	0xFFFF,			/* 05 start_motor */
    116       1.17     dante 	0xFFFF,			/* 06 tagqng_able */
    117       1.17     dante 	0xFFFF,			/* 07 bios_scan */
    118       1.17     dante 	0,			/* 08 scam_tolerant */
    119       1.17     dante 	7,			/* 09 adapter_scsi_id */
    120       1.17     dante 	0,			/*    bios_boot_delay */
    121       1.17     dante 	3,			/* 10 scsi_reset_delay */
    122       1.17     dante 	0,			/*    bios_id_lun */
    123       1.17     dante 	0,			/* 11 termination */
    124       1.17     dante 	0,			/*    reserved1 */
    125       1.17     dante 	0xFFE7,			/* 12 bios_ctrl */
    126       1.17     dante 	{ 0xFFFF },		/* 13 ultra_able */
    127       1.17     dante 	{ 0 },			/* 14 reserved2 */
    128       1.17     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    129       1.17     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    130       1.17     dante 	0,			/* 16 dvc_cntl */
    131       1.17     dante 	{ 0 },			/* 17 bug_fix */
    132       1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    133       1.17     dante 	0,			/* 21 check_sum */
    134       1.17     dante 	{			/* 22-29 oem_name[16] */
    135       1.17     dante 	  0,0,0,0,0,0,0,0,
    136       1.17     dante 	  0,0,0,0,0,0,0,0
    137       1.17     dante 	},
    138       1.17     dante 	0,			/* 30 dvc_err_code */
    139       1.17     dante 	0,			/* 31 adv_err_code */
    140       1.17     dante 	0,			/* 32 adv_err_addr */
    141       1.17     dante 	0,			/* 33 saved_dvc_err_code */
    142       1.17     dante 	0,			/* 34 saved_adv_err_code */
    143       1.37  christos 	0,			/* 35 saved_adv_err_addr */
    144       1.37  christos 	{			/* 36-55 reserved1[16] */
    145       1.37  christos 	  0,0,0,0,0,0,0,0,0,0,
    146       1.37  christos 	  0,0,0,0,0,0,0,0,0,0
    147       1.37  christos 	},
    148       1.37  christos 	0,			/* 56 cisptr_lsw */
    149       1.37  christos 	0,			/* 57 cisprt_msw */
    150       1.37  christos 	0,			/* 58 subsysvid */
    151       1.37  christos 	0,			/* 59 subsysid */
    152       1.37  christos 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    153        1.7     dante };
    154        1.7     dante 
    155       1.37  christos static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    156        1.7     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    157        1.7     dante 	0x0000,			/* 01 cfg_msw */
    158        1.7     dante 	0xFFFF,			/* 02 disc_enable */
    159        1.7     dante 	0xFFFF,			/* 03 wdtr_able */
    160       1.17     dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    161        1.7     dante 	0xFFFF,			/* 05 start_motor */
    162        1.7     dante 	0xFFFF,			/* 06 tagqng_able */
    163        1.7     dante 	0xFFFF,			/* 07 bios_scan */
    164        1.7     dante 	0,			/* 08 scam_tolerant */
    165        1.7     dante 	7,			/* 09 adapter_scsi_id */
    166        1.7     dante 	0,			/*    bios_boot_delay */
    167        1.7     dante 	3,			/* 10 scsi_reset_delay */
    168        1.7     dante 	0,			/*    bios_id_lun */
    169        1.7     dante 	0,			/* 11 termination_se */
    170        1.7     dante 	0,			/*    termination_lvd */
    171        1.7     dante 	0xFFE7,			/* 12 bios_ctrl */
    172       1.17     dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    173       1.17     dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    174       1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    175       1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    176        1.7     dante 	0,			/* 16 dvc_cntl */
    177       1.17     dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    178       1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    179        1.7     dante 	0,			/* 21 check_sum */
    180       1.17     dante 	{			/* 22-29 oem_name[16] */
    181       1.17     dante 	  0,0,0,0,0,0,0,0,
    182       1.17     dante 	  0,0,0,0,0,0,0,0
    183       1.17     dante 	},
    184        1.7     dante 	0,			/* 30 dvc_err_code */
    185        1.7     dante 	0,			/* 31 adv_err_code */
    186        1.7     dante 	0,			/* 32 adv_err_addr */
    187        1.7     dante 	0,			/* 33 saved_dvc_err_code */
    188        1.7     dante 	0,			/* 34 saved_adv_err_code */
    189        1.7     dante 	0,			/* 35 saved_adv_err_addr */
    190       1.17     dante 	{			/* 36-55 reserved1[16] */
    191       1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    192       1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    193       1.17     dante 	},
    194        1.7     dante 	0,			/* 56 cisptr_lsw */
    195        1.7     dante 	0,			/* 57 cisprt_msw */
    196        1.7     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    197        1.7     dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    198       1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    199        1.1     dante };
    200        1.1     dante 
    201       1.37  christos static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    202       1.10     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    203       1.10     dante 	0x0000,			/* 01 cfg_msw */
    204       1.10     dante 	0xFFFF,			/* 02 disc_enable */
    205       1.10     dante 	0xFFFF,			/* 03 wdtr_able */
    206       1.17     dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    207       1.10     dante 	0xFFFF,			/* 05 start_motor */
    208       1.10     dante 	0xFFFF,			/* 06 tagqng_able */
    209       1.10     dante 	0xFFFF,			/* 07 bios_scan */
    210       1.10     dante 	0,			/* 08 scam_tolerant */
    211       1.10     dante 	7,			/* 09 adapter_scsi_id */
    212       1.10     dante 	0,			/*    bios_boot_delay */
    213       1.10     dante 	3,			/* 10 scsi_reset_delay */
    214       1.10     dante 	0,			/*    bios_id_lun */
    215       1.10     dante 	0,			/* 11 termination_se */
    216       1.10     dante 	0,			/*    termination_lvd */
    217       1.10     dante 	0xFFE7,			/* 12 bios_ctrl */
    218       1.17     dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    219       1.17     dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    220       1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    221       1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    222       1.10     dante 	0,			/* 16 dvc_cntl */
    223       1.17     dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    224       1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    225       1.10     dante 	0,			/* 21 check_sum */
    226       1.17     dante 	{			/* 22-29 oem_name[16] */
    227       1.17     dante 	  0,0,0,0,0,0,0,0,
    228       1.17     dante 	  0,0,0,0,0,0,0,0
    229       1.17     dante 	},
    230       1.10     dante 	0,			/* 30 dvc_err_code */
    231       1.10     dante 	0,			/* 31 adv_err_code */
    232       1.10     dante 	0,			/* 32 adv_err_addr */
    233       1.10     dante 	0,			/* 33 saved_dvc_err_code */
    234       1.10     dante 	0,			/* 34 saved_adv_err_code */
    235       1.10     dante 	0,			/* 35 saved_adv_err_addr */
    236       1.17     dante 	{			/* 36-55 reserved1[16] */
    237       1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    238       1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    239       1.17     dante 	},
    240       1.10     dante 	0,			/* 56 cisptr_lsw */
    241       1.10     dante 	0,			/* 57 cisprt_msw */
    242       1.10     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    243       1.10     dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    244       1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    245       1.10     dante };
    246       1.10     dante 
    247       1.17     dante 
    248        1.1     dante /*
    249       1.17     dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    250       1.17     dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    251       1.17     dante  * all of this is done.
    252        1.1     dante  *
    253        1.1     dante  * For a non-fatal error return a warning code. If there are no warnings
    254        1.1     dante  * then 0 is returned.
    255       1.17     dante  *
    256       1.17     dante  * Note: Chip is stopped on entry.
    257       1.17     dante  */
    258       1.17     dante int
    259  1.38.34.1       jym AdwInitFromEEPROM(ADW_SOFTC *sc)
    260       1.17     dante {
    261       1.17     dante 	bus_space_tag_t iot = sc->sc_iot;
    262       1.17     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    263       1.17     dante 	ADW_EEPROM		eep_config;
    264       1.17     dante 	u_int16_t		warn_code;
    265       1.17     dante 	u_int16_t		sdtr_speed = 0;
    266       1.17     dante 	u_int8_t		tid, termination;
    267       1.17     dante 	int			i, j;
    268       1.17     dante 
    269       1.17     dante 
    270       1.17     dante 	warn_code = 0;
    271       1.17     dante 
    272       1.17     dante 	/*
    273       1.17     dante 	 * Read the board's EEPROM configuration.
    274       1.17     dante 	 *
    275       1.17     dante 	 * Set default values if a bad checksum is found.
    276       1.17     dante 	 *
    277       1.17     dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    278       1.17     dante 	 */
    279       1.17     dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    280       1.17     dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    281       1.17     dante 
    282       1.17     dante 		/*
    283       1.17     dante 		 * Set EEPROM default values.
    284       1.17     dante 		 */
    285       1.17     dante 		switch(sc->chip_type) {
    286       1.17     dante 		case ADW_CHIP_ASC3550:
    287       1.17     dante 			eep_config = adw_3550_Default_EEPROM;
    288       1.17     dante 			break;
    289       1.17     dante 		case ADW_CHIP_ASC38C0800:
    290       1.17     dante 			eep_config = adw_38C0800_Default_EEPROM;
    291       1.17     dante 			break;
    292       1.17     dante 		case ADW_CHIP_ASC38C1600:
    293       1.17     dante 			eep_config = adw_38C1600_Default_EEPROM;
    294       1.17     dante 
    295       1.21     lukem #if 0
    296       1.21     lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    297       1.21     lukem #endif
    298       1.17     dante 			if (sc->cfg.pci_slot_info != 0) {
    299       1.17     dante 				u_int8_t lsw_msb;
    300       1.17     dante 
    301       1.17     dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    302       1.17     dante 				/*
    303       1.17     dante 				 * Set Function 1 EEPROM Word 0 MSB
    304       1.17     dante 				 *
    305       1.17     dante 				 * Clear the BIOS_ENABLE (bit 14) and
    306       1.17     dante 				 * INTAB (bit 11) EEPROM bits.
    307       1.17     dante 				 *
    308       1.17     dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    309       1.17     dante 				 * SPARC Ultra 60 and old Mac system booting
    310       1.17     dante 				 * problem. The Expansion ROM must
    311       1.17     dante 				 * be disabled in Function 1 for these systems.
    312       1.17     dante 				 */
    313       1.17     dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    314       1.17     dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    315       1.17     dante 				/*
    316       1.17     dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    317       1.17     dante 				 * indicates the Function 1 interrupt line is
    318       1.17     dante 				 * wired to INTA.
    319       1.17     dante 				 *
    320       1.17     dante 				 * Set/Clear Bit 11 (INTAB) from
    321       1.17     dante 				 * the GPIO bit 0 input:
    322       1.17     dante 				 *   1 - Function 1 intr line wired to INT A.
    323       1.17     dante 				 *   0 - Function 1 intr line wired to INT B.
    324       1.17     dante 				 *
    325       1.17     dante 				 * Note: Adapter boards always have Function 0
    326       1.17     dante 				 * wired to INTA.
    327       1.17     dante 				 * Put all 5 GPIO bits in input mode and then
    328       1.17     dante 				 * read their input values.
    329       1.17     dante 				 */
    330       1.17     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    331       1.17     dante 							IOPB_GPIO_CNTL, 0);
    332       1.17     dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    333       1.17     dante 						IOPB_GPIO_DATA) & 0x01) {
    334       1.17     dante 					/*
    335       1.17     dante 					 * Function 1 interrupt wired to INTA;
    336       1.17     dante 					 * Set EEPROM bit.
    337       1.17     dante 					 */
    338       1.17     dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    339       1.17     dante 							 & 0xFF;
    340       1.17     dante 				 }
    341       1.17     dante 				 eep_config.cfg_lsw &= 0x00FF;
    342       1.17     dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    343       1.17     dante 			}
    344       1.17     dante 			break;
    345       1.17     dante 		}
    346       1.17     dante 
    347       1.17     dante 		/*
    348       1.17     dante 		 * Assume the 6 byte board serial number that was read
    349       1.17     dante 		 * from EEPROM is correct even if the EEPROM checksum
    350       1.17     dante 		 * failed.
    351       1.17     dante 		 */
    352       1.17     dante 		for (i=2, j=1; i>=0; i--, j++) {
    353       1.17     dante 		eep_config.serial_number[i] =
    354       1.17     dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    355       1.17     dante 		}
    356       1.17     dante 
    357       1.17     dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    358       1.17     dante 	}
    359       1.17     dante 	/*
    360       1.17     dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    361       1.17     dante 	 * that was read.
    362       1.17     dante 	 *
    363       1.17     dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    364       1.17     dante 	 */
    365       1.17     dante 	sc->wdtr_able = eep_config.wdtr_able;
    366       1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    367       1.17     dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    368       1.17     dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    369       1.17     dante 	} else {
    370       1.17     dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    371       1.17     dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    372       1.17     dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    373       1.17     dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    374       1.17     dante 	}
    375       1.17     dante 	sc->ppr_able = 0;
    376       1.17     dante 	sc->tagqng_able = eep_config.tagqng_able;
    377       1.17     dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    378       1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    379       1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    380       1.17     dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    381       1.17     dante 	sc->start_motor = eep_config.start_motor;
    382       1.17     dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    383       1.17     dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    384       1.17     dante 	sc->no_scam = eep_config.scam_tolerant;
    385       1.17     dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    386       1.17     dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    387       1.17     dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    388       1.17     dante 
    389       1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    390       1.17     dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    391       1.17     dante 		sc->sdtr_able = 0;
    392       1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    393       1.17     dante 			if (tid == 0) {
    394       1.17     dante 				sdtr_speed = sc->sdtr_speed1;
    395       1.17     dante 			} else if (tid == 4) {
    396       1.17     dante 				sdtr_speed = sc->sdtr_speed2;
    397       1.17     dante 			} else if (tid == 8) {
    398       1.17     dante 				sdtr_speed = sc->sdtr_speed3;
    399       1.17     dante 			} else if (tid == 12) {
    400       1.17     dante 				sdtr_speed = sc->sdtr_speed4;
    401       1.17     dante 			}
    402       1.17     dante 			if (sdtr_speed & ADW_MAX_TID) {
    403       1.17     dante 				sc->sdtr_able |= (1 << tid);
    404       1.17     dante 			}
    405       1.17     dante 			sdtr_speed >>= 4;
    406       1.17     dante 		}
    407       1.17     dante 	}
    408       1.17     dante 
    409       1.17     dante 	/*
    410       1.17     dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    411       1.17     dante 	 * maximum queuing (max. 63, min. 4).
    412       1.17     dante 	 */
    413       1.17     dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    414       1.17     dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    415       1.17     dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    416       1.17     dante 	{
    417       1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    418       1.17     dante 		if (eep_config.max_host_qng == 0) {
    419       1.17     dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    420       1.17     dante 		} else {
    421       1.17     dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    422       1.17     dante 		}
    423       1.17     dante 	}
    424       1.17     dante 
    425       1.17     dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    426       1.17     dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    427       1.17     dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    428       1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    429       1.17     dante 		if (eep_config.max_dvc_qng == 0) {
    430       1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    431       1.17     dante 		} else {
    432       1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    433       1.17     dante 		}
    434       1.17     dante 	}
    435       1.17     dante 
    436       1.17     dante 	/*
    437       1.17     dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    438       1.17     dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    439       1.17     dante 	 */
    440       1.17     dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    441       1.17     dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    442       1.17     dante 	}
    443       1.17     dante 
    444       1.17     dante 	/*
    445       1.17     dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    446       1.17     dante 	 * values based on possibly adjusted EEPROM values.
    447       1.17     dante 	 */
    448       1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    449       1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    450       1.17     dante 
    451       1.17     dante 
    452       1.17     dante 	/*
    453       1.17     dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    454       1.17     dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    455       1.17     dante 	 *
    456       1.17     dante 	 * If the termination is specified with a non-zero 'termination'
    457       1.17     dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    458       1.17     dante 	 * 'termination' field appropriately.
    459       1.17     dante 	 */
    460       1.17     dante 
    461       1.17     dante 	switch(sc->chip_type) {
    462       1.17     dante 	case ADW_CHIP_ASC3550:
    463       1.17     dante 		sc->cfg.termination = 0;	/* auto termination */
    464       1.17     dante 		switch(eep_config.termination_se) {
    465       1.17     dante 		case 3:
    466       1.17     dante 			/* Enable manual control with low on / high on. */
    467       1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    468       1.17     dante 		case 2:
    469       1.17     dante 			/* Enable manual control with low off / high on. */
    470       1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    471       1.17     dante 		case 1:
    472       1.17     dante 			/* Enable manual control with low off / high off. */
    473       1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    474       1.17     dante 		case 0:
    475       1.17     dante 			break;
    476       1.17     dante 		default:
    477       1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    478       1.17     dante 		}
    479       1.17     dante 		break;
    480       1.17     dante 
    481       1.17     dante 	case ADW_CHIP_ASC38C0800:
    482       1.17     dante 	case ADW_CHIP_ASC38C1600:
    483       1.17     dante 		switch(eep_config.termination_se) {
    484       1.17     dante 		case 0:
    485       1.17     dante 			/* auto termination for SE */
    486       1.17     dante 			termination = 0;
    487       1.17     dante 			break;
    488       1.17     dante 		case 1:
    489       1.17     dante 			/* Enable manual control with low off / high off. */
    490       1.17     dante 			termination = 0;
    491       1.17     dante 			break;
    492       1.17     dante 		case 2:
    493       1.17     dante 			/* Enable manual control with low off / high on. */
    494       1.17     dante 			termination = ADW_TERM_SE_HI;
    495       1.17     dante 			break;
    496       1.17     dante 		case 3:
    497       1.17     dante 			/* Enable manual control with low on / high on. */
    498       1.17     dante 			termination = ADW_TERM_SE;
    499       1.17     dante 			break;
    500       1.17     dante 		default:
    501       1.17     dante 			/*
    502       1.17     dante 			 * The EEPROM 'termination_se' field contains a
    503       1.17     dante 			 * bad value. Use automatic termination instead.
    504       1.17     dante 			 */
    505       1.17     dante 			termination = 0;
    506       1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    507       1.17     dante 		}
    508       1.17     dante 
    509       1.17     dante 		switch(eep_config.termination_lvd) {
    510       1.17     dante 		case 0:
    511       1.17     dante 			/* auto termination for LVD */
    512       1.17     dante 			sc->cfg.termination = termination;
    513       1.17     dante 			break;
    514       1.17     dante 		case 1:
    515       1.17     dante 			/* Enable manual control with low off / high off. */
    516       1.17     dante 			sc->cfg.termination = termination;
    517       1.17     dante 			break;
    518       1.17     dante 		case 2:
    519       1.17     dante 			/* Enable manual control with low off / high on. */
    520       1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    521       1.17     dante 			break;
    522       1.17     dante 		case 3:
    523       1.17     dante 			/* Enable manual control with low on / high on. */
    524       1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    525       1.17     dante 			break;
    526       1.17     dante 		default:
    527       1.17     dante 			/*
    528       1.17     dante 			 * The EEPROM 'termination_lvd' field contains a
    529       1.17     dante 			 * bad value. Use automatic termination instead.
    530       1.17     dante 			 */
    531       1.17     dante 			sc->cfg.termination = termination;
    532       1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    533       1.17     dante 		}
    534       1.17     dante 		break;
    535       1.17     dante 	}
    536       1.17     dante 
    537       1.17     dante 	return warn_code;
    538       1.17     dante }
    539       1.17     dante 
    540       1.17     dante 
    541       1.17     dante /*
    542       1.17     dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    543       1.17     dante  *
    544       1.17     dante  * On failure return the error code.
    545        1.1     dante  */
    546        1.1     dante int
    547  1.38.34.1       jym AdwInitDriver(ADW_SOFTC *sc)
    548        1.1     dante {
    549        1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
    550        1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    551       1.17     dante 	u_int16_t	error_code;
    552        1.7     dante 	int		word;
    553       1.17     dante 	int		i;
    554       1.16     dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    555        1.7     dante 								0x40-0x8F. */
    556       1.17     dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    557        1.7     dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    558       1.17     dante 	u_int8_t	tid;
    559        1.1     dante 
    560        1.1     dante 
    561       1.17     dante 	error_code = 0;
    562        1.1     dante 
    563        1.1     dante 	/*
    564        1.1     dante 	 * Save the RISC memory BIOS region before writing the microcode.
    565        1.1     dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    566        1.1     dante 	 * so its region must be saved and restored.
    567        1.1     dante 	 *
    568        1.1     dante 	 * Note: This code makes the assumption, which is currently true,
    569        1.1     dante 	 * that a chip reset does not clear RISC LRAM.
    570        1.1     dante 	 */
    571       1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    572       1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    573        1.7     dante 	}
    574        1.7     dante 
    575        1.7     dante 	/*
    576        1.7     dante 	 * Save current per TID negotiated values.
    577        1.7     dante 	 */
    578       1.17     dante 	switch (sc->chip_type) {
    579       1.17     dante 	case ADW_CHIP_ASC3550:
    580       1.17     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    581       1.17     dante 
    582       1.17     dante 			u_int16_t  bios_version, major, minor;
    583       1.17     dante 
    584       1.17     dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    585       1.17     dante 					ADW_MC_BIOSMEM) / 2];
    586       1.17     dante 			major = (bios_version  >> 12) & 0xF;
    587       1.17     dante 			minor = (bios_version  >> 8) & 0xF;
    588       1.17     dante 			if (major < 3 || (major == 3 && minor == 1)) {
    589       1.17     dante 			    /*
    590       1.17     dante 			     * BIOS 3.1 and earlier location of
    591       1.17     dante 			     * 'wdtr_able' variable.
    592       1.17     dante 			     */
    593       1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    594       1.17     dante 			} else {
    595       1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    596       1.17     dante 					    wdtr_able);
    597       1.17     dante 			}
    598       1.17     dante 		}
    599       1.17     dante 		break;
    600        1.7     dante 
    601       1.17     dante 	case ADW_CHIP_ASC38C1600:
    602       1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    603       1.17     dante 		/* FALLTHROUGH */
    604       1.17     dante 	case ADW_CHIP_ASC38C0800:
    605       1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    606       1.17     dante 		break;
    607        1.7     dante 	}
    608       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    609       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    610        1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    611       1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    612        1.7     dante 			max_cmd[tid]);
    613        1.1     dante 	}
    614        1.1     dante 
    615        1.1     dante 	/*
    616       1.17     dante 	 * Perform a RAM Built-In Self Test
    617        1.1     dante 	 */
    618       1.17     dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    619       1.17     dante 		return error_code;
    620       1.17     dante 	}
    621        1.7     dante 
    622       1.17     dante 	/*
    623       1.17     dante 	 * Load the Microcode
    624        1.7     dante 	 */
    625       1.17     dante 	;
    626       1.17     dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    627       1.17     dante 		return error_code;
    628        1.1     dante 	}
    629        1.1     dante 
    630        1.1     dante 	/*
    631       1.17     dante 	 * Read microcode version and date.
    632        1.7     dante 	 */
    633       1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    634       1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    635        1.7     dante 
    636        1.7     dante 	/*
    637       1.17     dante 	 * If the PCI Configuration Command Register "Parity Error Response
    638       1.17     dante 	 * Control" Bit was clear (0), then set the microcode variable
    639       1.17     dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    640       1.17     dante 	 * to ignore DMA parity errors.
    641        1.1     dante 	 */
    642       1.17     dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    643       1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    644       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    645       1.17     dante 					word | CONTROL_FLAG_IGNORE_PERR);
    646        1.1     dante 	}
    647        1.1     dante 
    648       1.17     dante 	switch (sc->chip_type) {
    649       1.17     dante 	case ADW_CHIP_ASC3550:
    650       1.17     dante 		/*
    651       1.17     dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    652       1.17     dante 		 * FIFO threshold of 128 bytes.
    653       1.17     dante 		 * This register is only accessible to the host.
    654       1.17     dante 		 */
    655       1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    656       1.17     dante 				START_CTL_EMFU | READ_CMD_MRM);
    657       1.17     dante 		break;
    658        1.7     dante 
    659       1.17     dante 	case ADW_CHIP_ASC38C0800:
    660       1.17     dante 		/*
    661       1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    662       1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    663       1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    664       1.17     dante 		 *
    665       1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    666       1.17     dante 		 * Microcode Default Value' section below.
    667       1.17     dante 		 */
    668       1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    669       1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    670       1.17     dante 				| ADW_DIS_TERM_DRV);
    671        1.1     dante 
    672       1.17     dante 		/*
    673       1.17     dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    674       1.17     dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    675       1.17     dante 		 *
    676       1.17     dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    677       1.17     dante 		 * 256 bytes.
    678       1.17     dante 		 *
    679       1.17     dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    680       1.17     dante 		 */
    681       1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    682       1.17     dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    683       1.17     dante 						| START_CTL_TH | READ_CMD_MRM);
    684       1.17     dante 		break;
    685        1.1     dante 
    686       1.17     dante 	case ADW_CHIP_ASC38C1600:
    687       1.17     dante 		/*
    688       1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    689       1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    690       1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    691       1.17     dante 		 *
    692       1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    693       1.17     dante 		 * Microcode Default Value' section below.
    694       1.17     dante 		 */
    695       1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    696       1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    697       1.17     dante 				| ADW_DIS_TERM_DRV);
    698        1.1     dante 
    699       1.17     dante 		/*
    700       1.17     dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    701       1.17     dante 		 * Phase Protection) disable bit is not set, then set the
    702       1.17     dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    703       1.17     dante 		 * enable AIPP checking and encoding.
    704       1.17     dante 		 */
    705       1.17     dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    706       1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    707       1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    708       1.17     dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    709       1.17     dante 		}
    710        1.1     dante 
    711       1.17     dante 		/*
    712       1.17     dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    713       1.17     dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    714       1.17     dante 		 */
    715       1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    716       1.17     dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    717       1.17     dante 		break;
    718        1.1     dante 	}
    719        1.7     dante 
    720        1.1     dante 	/*
    721        1.7     dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    722       1.17     dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    723        1.7     dante 	 * device reports it is capable of in Inquiry byte 7.
    724        1.7     dante 	 *
    725       1.16     dante 	 * If SCSI Bus Resets have been disabled, then directly set
    726        1.7     dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    727        1.7     dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    728        1.7     dante 	 * the Inquiry caused by host and target mismatched DTR values.
    729        1.7     dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    730        1.7     dante 	 * be assumed to be in Asynchronous, Narrow mode.
    731        1.7     dante 	 */
    732        1.7     dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    733       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    734       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    735        1.7     dante 	}
    736        1.7     dante 
    737        1.7     dante 	/*
    738        1.7     dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    739        1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    740        1.7     dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    741        1.7     dante 	 * with a device.
    742        1.7     dante 	 *
    743        1.7     dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    744        1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    745        1.7     dante 	 * without determining here whether the device supports SDTR.
    746        1.7     dante 	 */
    747       1.17     dante 	switch (sc->chip_type) {
    748       1.17     dante 	case ADW_CHIP_ASC3550:
    749       1.17     dante 		word = 0;
    750       1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    751       1.17     dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    752       1.17     dante 				/* Set Ultra speed for TID 'tid'. */
    753       1.17     dante 				word |= (0x3 << (4 * (tid % 4)));
    754       1.17     dante 			} else {
    755       1.17     dante 				/* Set Fast speed for TID 'tid'. */
    756       1.17     dante 				word |= (0x2 << (4 * (tid % 4)));
    757       1.17     dante 			}
    758       1.17     dante 			/* Check if done with sdtr_speed1. */
    759       1.17     dante 			if (tid == 3) {
    760       1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    761       1.17     dante 						ADW_MC_SDTR_SPEED1, word);
    762       1.17     dante 				word = 0;
    763       1.17     dante 			/* Check if done with sdtr_speed2. */
    764       1.17     dante 			} else if (tid == 7) {
    765       1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    766       1.17     dante 						ADW_MC_SDTR_SPEED2, word);
    767       1.17     dante 				word = 0;
    768       1.17     dante 			/* Check if done with sdtr_speed3. */
    769       1.17     dante 			} else if (tid == 11) {
    770       1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    771       1.17     dante 						ADW_MC_SDTR_SPEED3, word);
    772       1.17     dante 				word = 0;
    773       1.17     dante 			/* Check if done with sdtr_speed4. */
    774       1.17     dante 			} else if (tid == 15) {
    775       1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    776       1.17     dante 						ADW_MC_SDTR_SPEED4, word);
    777       1.17     dante 				/* End of loop. */
    778       1.17     dante 			}
    779        1.7     dante 		}
    780       1.17     dante 
    781       1.17     dante 		/*
    782       1.17     dante 		 * Set microcode operating variable for the
    783       1.17     dante 		 * disconnect per TID bitmask.
    784       1.17     dante 		 */
    785       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    786       1.17     dante 							sc->cfg.disc_enable);
    787       1.17     dante 		break;
    788       1.17     dante 
    789       1.17     dante 	case ADW_CHIP_ASC38C0800:
    790       1.17     dante 		/* FALLTHROUGH */
    791       1.17     dante 	case ADW_CHIP_ASC38C1600:
    792       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    793       1.17     dante 							sc->cfg.disc_enable);
    794       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    795       1.17     dante 							sc->sdtr_speed1);
    796       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    797       1.17     dante 							sc->sdtr_speed2);
    798       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    799       1.17     dante 							sc->sdtr_speed3);
    800       1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    801       1.17     dante 							sc->sdtr_speed4);
    802       1.17     dante 		break;
    803        1.7     dante 	}
    804        1.1     dante 
    805        1.1     dante 
    806        1.1     dante 	/*
    807        1.1     dante 	 * Set SCSI_CFG0 Microcode Default Value.
    808        1.1     dante 	 *
    809        1.1     dante 	 * The microcode will set the SCSI_CFG0 register using this value
    810        1.1     dante 	 * after it is started below.
    811        1.1     dante 	 */
    812       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    813       1.10     dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    814       1.10     dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    815        1.2     dante 
    816        1.1     dante 
    817       1.17     dante 	switch(sc->chip_type) {
    818       1.17     dante 	case ADW_CHIP_ASC3550:
    819       1.17     dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    820       1.17     dante 		break;
    821        1.1     dante 
    822       1.17     dante 	case ADW_CHIP_ASC38C0800:
    823       1.17     dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    824       1.17     dante 		break;
    825        1.7     dante 
    826       1.17     dante 	case ADW_CHIP_ASC38C1600:
    827       1.17     dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    828       1.17     dante 		break;
    829        1.7     dante 	}
    830       1.17     dante 	if(error_code) {
    831       1.17     dante 		return error_code;
    832        1.1     dante 	}
    833        1.7     dante 
    834        1.1     dante 	/*
    835        1.1     dante 	 * Set SEL_MASK Microcode Default Value
    836        1.1     dante 	 *
    837        1.1     dante 	 * The microcode will set the SEL_MASK register using this value
    838        1.1     dante 	 * after it is started below.
    839        1.1     dante 	 */
    840       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    841        1.7     dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    842        1.7     dante 
    843       1.17     dante 	/*
    844       1.17     dante 	 * Create and Initialize Host->RISC Carrier lists
    845       1.17     dante 	 */
    846       1.17     dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    847       1.17     dante 						sc->sc_control->carriers);
    848       1.16     dante 
    849        1.7     dante 	/*
    850        1.7     dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    851        1.7     dante 	 */
    852        1.7     dante 
    853        1.7     dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    854       1.16     dante 		return ADW_IERR_NO_CARRIER;
    855        1.7     dante 	}
    856       1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    857       1.12     dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    858        1.7     dante 
    859        1.7     dante 	/*
    860        1.7     dante 	 * The first command issued will be placed in the stopper carrier.
    861        1.7     dante 	 */
    862       1.22    briggs 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    863        1.1     dante 
    864        1.1     dante 	/*
    865        1.7     dante 	 * Set RISC ICQ physical address start value.
    866        1.7     dante 	 */
    867       1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    868        1.7     dante 
    869        1.7     dante 	/*
    870       1.17     dante 	 * Initialize the COMMA register to the same value otherwise
    871       1.17     dante 	 * the RISC will prematurely detect a command is available.
    872       1.17     dante 	 */
    873       1.17     dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    874       1.17     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    875       1.22    briggs 						le32toh(sc->icq_sp->carr_ba));
    876       1.17     dante 	}
    877       1.17     dante 
    878       1.17     dante 	/*
    879        1.7     dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    880        1.1     dante 	 */
    881        1.7     dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    882       1.16     dante 		return ADW_IERR_NO_CARRIER;
    883        1.1     dante 	}
    884       1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    885       1.12     dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    886        1.1     dante 
    887        1.1     dante 	/*
    888        1.7     dante 	 * The first command completed by the RISC will be placed in
    889        1.7     dante 	 * the stopper.
    890        1.1     dante 	 *
    891       1.12     dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    892       1.16     dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    893        1.1     dante 	 */
    894       1.22    briggs 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    895        1.1     dante 
    896        1.1     dante 	/*
    897        1.7     dante 	 * Set RISC IRQ physical address start value.
    898        1.1     dante 	 */
    899       1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    900        1.7     dante 	sc->carr_pending_cnt = 0;
    901        1.1     dante 
    902        1.1     dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    903        1.7     dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    904       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    905        1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    906        1.1     dante 
    907        1.1     dante 	/* finally, finally, gentlemen, start your engine */
    908        1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    909        1.2     dante 
    910        1.7     dante 	/*
    911        1.7     dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    912        1.7     dante 	 * Resets should be performed. The RISC has to be running
    913        1.7     dante 	 * to issue a SCSI Bus Reset.
    914        1.7     dante 	 */
    915        1.7     dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    916        1.7     dante 	{
    917        1.7     dante 		/*
    918        1.7     dante 		 * If the BIOS Signature is present in memory, restore the
    919        1.7     dante 		 * BIOS Handshake Configuration Table and do not perform
    920        1.7     dante 		 * a SCSI Bus Reset.
    921        1.7     dante 		 */
    922       1.16     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    923        1.7     dante 				0x55AA) {
    924        1.7     dante 			/*
    925        1.7     dante 			 * Restore per TID negotiated values.
    926        1.7     dante 			 */
    927       1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    928        1.7     dante 					wdtr_able);
    929       1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    930        1.7     dante 					sdtr_able);
    931       1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    932        1.7     dante 					tagqng_able);
    933        1.7     dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    934        1.7     dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    935       1.17     dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    936       1.17     dante 						max_cmd[tid]);
    937        1.7     dante 			}
    938        1.7     dante 		} else {
    939       1.16     dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    940       1.17     dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    941        1.7     dante 			}
    942        1.7     dante 		}
    943        1.7     dante 	}
    944        1.7     dante 
    945       1.17     dante 	return error_code;
    946        1.1     dante }
    947        1.1     dante 
    948       1.17     dante 
    949        1.1     dante int
    950  1.38.34.1       jym AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    951        1.1     dante {
    952       1.17     dante 	int		i;
    953        1.7     dante 	u_int8_t	byte;
    954        1.1     dante 
    955        1.1     dante 
    956       1.17     dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    957       1.17     dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    958       1.17     dante 		/*
    959       1.17     dante 		 * RAM BIST (RAM Built-In Self Test)
    960       1.17     dante 		 *
    961       1.17     dante 		 * Address : I/O base + offset 0x38h register (byte).
    962       1.17     dante 		 * Function: Bit 7-6(RW) : RAM mode
    963       1.17     dante 		 *			    Normal Mode   : 0x00
    964       1.17     dante 		 *			    Pre-test Mode : 0x40
    965       1.17     dante 		 *			    RAM Test Mode : 0x80
    966       1.17     dante 		 *	     Bit 5	 : unused
    967       1.17     dante 		 *	     Bit 4(RO)   : Done bit
    968       1.17     dante 		 *	     Bit 3-0(RO) : Status
    969       1.17     dante 		 *			    Host Error    : 0x08
    970       1.17     dante 		 *			    Int_RAM Error : 0x04
    971       1.17     dante 		 *			    RISC Error    : 0x02
    972       1.17     dante 		 *			    SCSI Error    : 0x01
    973       1.17     dante 		 *			    No Error	  : 0x00
    974       1.17     dante 		 *
    975       1.17     dante 		 * Note: RAM BIST code should be put right here, before loading
    976       1.17     dante 		 * the microcode and after saving the RISC memory BIOS region.
    977       1.17     dante 		 */
    978        1.1     dante 
    979       1.17     dante 		/*
    980       1.17     dante 		 * LRAM Pre-test
    981       1.17     dante 		 *
    982       1.17     dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    983       1.17     dante 		 * 10 milliseconds.
    984       1.17     dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    985       1.17     dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    986       1.17     dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    987       1.17     dante 		 */
    988       1.17     dante 		for (i = 0; i < 2; i++) {
    989       1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    990       1.17     dante 					PRE_TEST_MODE);
    991       1.17     dante 			 /* Wait for 10ms before reading back. */
    992       1.17     dante 			AdwSleepMilliSecond(10);
    993       1.17     dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    994       1.17     dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    995       1.17     dante 					PRE_TEST_VALUE) {
    996       1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
    997       1.17     dante 			}
    998        1.7     dante 
    999       1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
   1000       1.17     dante 								NORMAL_MODE);
   1001       1.17     dante 			/* Wait for 10ms before reading back. */
   1002       1.17     dante 			AdwSleepMilliSecond(10);
   1003       1.17     dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1004       1.17     dante 			    != NORMAL_VALUE) {
   1005       1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
   1006       1.17     dante 			}
   1007       1.17     dante 		}
   1008        1.2     dante 
   1009       1.17     dante 		/*
   1010       1.17     dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1011       1.17     dante 		 *
   1012       1.17     dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1013       1.17     dante 		 * 10 milliseconds.
   1014       1.17     dante 		 * If Done bit not set or Status not 0, save register byte,
   1015       1.17     dante 		 * set the err_code, and return an error.
   1016       1.17     dante 		 */
   1017       1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1018       1.17     dante 		/* Wait for 10ms before checking status. */
   1019       1.17     dante 		AdwSleepMilliSecond(10);
   1020        1.1     dante 
   1021        1.7     dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1022       1.17     dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1023       1.17     dante 			/* Get here if Done bit not set or Status not 0. */
   1024       1.17     dante 			return ADW_IERR_BIST_RAM_TEST;
   1025        1.1     dante 		}
   1026        1.1     dante 
   1027       1.17     dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1028        1.7     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1029        1.1     dante 	}
   1030        1.7     dante 
   1031       1.17     dante 	return 0;
   1032       1.17     dante }
   1033       1.17     dante 
   1034        1.7     dante 
   1035       1.17     dante int
   1036  1.38.34.1       jym AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1037       1.17     dante {
   1038       1.34  christos 	const u_int8_t	*mcode_data;
   1039       1.17     dante 	u_int32_t	 mcode_chksum;
   1040       1.17     dante 	u_int16_t	 mcode_size;
   1041       1.17     dante 	u_int32_t	sum;
   1042       1.17     dante 	u_int16_t	code_sum;
   1043       1.17     dante 	int		begin_addr;
   1044       1.17     dante 	int		end_addr;
   1045       1.17     dante 	int		word;
   1046       1.17     dante 	int		adw_memsize;
   1047       1.17     dante 	int		adw_mcode_expanded_size;
   1048       1.17     dante 	int		i, j;
   1049        1.7     dante 
   1050       1.17     dante 
   1051       1.17     dante 	switch(chip_type) {
   1052       1.17     dante 	case ADW_CHIP_ASC3550:
   1053       1.34  christos 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1054       1.17     dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1055       1.17     dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1056       1.17     dante 		adw_memsize = ADW_3550_MEMSIZE;
   1057       1.17     dante 		break;
   1058       1.17     dante 
   1059       1.17     dante 	case ADW_CHIP_ASC38C0800:
   1060       1.34  christos 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1061       1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1062       1.17     dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1063       1.17     dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1064       1.17     dante 		break;
   1065       1.17     dante 
   1066       1.17     dante 	case ADW_CHIP_ASC38C1600:
   1067       1.34  christos 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1068       1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1069       1.17     dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1070       1.17     dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1071       1.17     dante 		break;
   1072       1.29   mycroft 
   1073       1.27  christos 	default:
   1074       1.29   mycroft 		return (EINVAL);
   1075       1.17     dante 	}
   1076        1.1     dante 
   1077        1.1     dante 	/*
   1078        1.7     dante 	 * Write the microcode image to RISC memory starting at address 0.
   1079        1.1     dante 	 */
   1080        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1081        1.7     dante 
   1082        1.7     dante 	/* Assume the following compressed format of the microcode buffer:
   1083        1.7     dante 	 *
   1084        1.7     dante 	 *  254 word (508 byte) table indexed by byte code followed
   1085        1.7     dante 	 *  by the following byte codes:
   1086        1.7     dante 	 *
   1087        1.7     dante 	 *    1-Byte Code:
   1088        1.7     dante 	 *	00: Emit word 0 in table.
   1089        1.7     dante 	 *	01: Emit word 1 in table.
   1090        1.7     dante 	 *	.
   1091        1.7     dante 	 *	FD: Emit word 253 in table.
   1092        1.7     dante 	 *
   1093        1.7     dante 	 *    Multi-Byte Code:
   1094        1.7     dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1095        1.7     dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1096        1.7     dante 	 */
   1097        1.7     dante 	word = 0;
   1098       1.17     dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1099       1.17     dante 		if (mcode_data[i] == 0xff) {
   1100       1.17     dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1101        1.7     dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1102       1.17     dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1103       1.17     dante 				  mcode_data[i + 2]));
   1104        1.7     dante 				word++;
   1105        1.7     dante 			}
   1106        1.7     dante 			i += 3;
   1107       1.17     dante 		} else if (mcode_data[i] == 0xfe) {
   1108       1.17     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1109       1.17     dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1110       1.17     dante 			    mcode_data[i + 1]));
   1111        1.7     dante 			i += 2;
   1112        1.7     dante 			word++;
   1113        1.1     dante 		} else {
   1114        1.7     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1115       1.17     dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1116       1.17     dante 			 mcode_data[mcode_data[i] * 2]));
   1117        1.7     dante 			word++;
   1118        1.1     dante 		}
   1119        1.1     dante 	}
   1120        1.7     dante 
   1121        1.7     dante 	/*
   1122        1.7     dante 	 * Set 'word' for later use to clear the rest of memory and save
   1123        1.7     dante 	 * the expanded mcode size.
   1124        1.7     dante 	 */
   1125        1.7     dante 	word *= 2;
   1126       1.17     dante 	adw_mcode_expanded_size = word;
   1127        1.7     dante 
   1128        1.1     dante 	/*
   1129       1.17     dante 	 * Clear the rest of the Internal RAM.
   1130        1.1     dante 	 */
   1131       1.17     dante 	for (; word < adw_memsize; word += 2) {
   1132        1.7     dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1133        1.1     dante 	}
   1134        1.7     dante 
   1135        1.1     dante 	/*
   1136        1.7     dante 	 * Verify the microcode checksum.
   1137        1.1     dante 	 */
   1138        1.7     dante 	sum = 0;
   1139        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1140        1.7     dante 
   1141       1.17     dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1142        1.7     dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1143        1.7     dante 	}
   1144        1.1     dante 
   1145       1.17     dante 	if (sum != mcode_chksum) {
   1146       1.17     dante 		return ADW_IERR_MCODE_CHKSUM;
   1147        1.7     dante 	}
   1148        1.1     dante 
   1149        1.1     dante 	/*
   1150        1.7     dante 	 * Restore the RISC memory BIOS region.
   1151        1.1     dante 	 */
   1152       1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1153       1.17     dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1154       1.17     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1155       1.17     dante 								bios_mem[i]);
   1156       1.17     dante 		} else {
   1157       1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1158       1.17     dante 								bios_mem[i]);
   1159       1.17     dante 		}
   1160        1.7     dante 	}
   1161        1.1     dante 
   1162        1.7     dante 	/*
   1163        1.7     dante 	 * Calculate and write the microcode code checksum to the microcode
   1164       1.16     dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1165        1.7     dante 	 */
   1166       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1167       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1168        1.7     dante 	code_sum = 0;
   1169        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1170        1.7     dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1171        1.7     dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1172        1.1     dante 	}
   1173       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1174        1.1     dante 
   1175        1.7     dante 	/*
   1176       1.17     dante 	 * Set the chip type.
   1177        1.7     dante 	 */
   1178       1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1179       1.17     dante 
   1180       1.17     dante 	return 0;
   1181       1.17     dante }
   1182       1.17     dante 
   1183       1.17     dante 
   1184       1.17     dante int
   1185  1.38.34.1       jym AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1186       1.17     dante {
   1187       1.17     dante 	u_int16_t	scsi_cfg1;
   1188       1.17     dante 
   1189        1.1     dante 
   1190        1.7     dante 	/*
   1191       1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1192       1.17     dante 	 *
   1193       1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1194       1.17     dante 	 * after it is started below.
   1195        1.7     dante 	 */
   1196       1.17     dante 
   1197       1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1198       1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1199        1.1     dante 
   1200        1.7     dante 	/*
   1201       1.17     dante 	 * If all three connectors are in use in ASC3550, return an error.
   1202        1.7     dante 	 */
   1203       1.17     dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1204       1.17     dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1205       1.17     dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1206       1.17     dante 	}
   1207        1.7     dante 
   1208        1.7     dante 	/*
   1209       1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1210       1.17     dante 	 * will be set. Check for and return an error if this condition is
   1211       1.17     dante 	 * found.
   1212        1.7     dante 	 */
   1213       1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1214       1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1215        1.7     dante 	}
   1216        1.7     dante 
   1217        1.7     dante 	/*
   1218       1.17     dante 	 * If this is a differential board and a single-ended device
   1219       1.17     dante 	 * is attached to one of the connectors, return an error.
   1220        1.7     dante 	 */
   1221       1.17     dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1222       1.17     dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1223       1.17     dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1224       1.17     dante 	}
   1225        1.7     dante 
   1226        1.7     dante 	/*
   1227       1.17     dante 	 * If automatic termination control is enabled, then set the
   1228       1.17     dante 	 * termination value based on a table listed in a_condor.h.
   1229        1.7     dante 	 *
   1230       1.17     dante 	 * If manual termination was specified with an EEPROM setting
   1231       1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1232       1.17     dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1233        1.7     dante 	 */
   1234       1.17     dante 	if (cfg->termination == 0) {
   1235       1.17     dante 		/*
   1236       1.17     dante 		 * The software always controls termination by setting
   1237       1.17     dante 		 * TERM_CTL_SEL.
   1238       1.17     dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1239       1.17     dante 		 * termination.
   1240       1.17     dante 		 */
   1241       1.17     dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1242       1.17     dante 
   1243       1.17     dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1244       1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1245       1.17     dante 			case 0x3: case 0x7: case 0xB:
   1246       1.17     dante 			case 0xD: case 0xE: case 0xF:
   1247       1.17     dante 				cfg->termination |=
   1248       1.17     dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1249       1.17     dante 				break;
   1250       1.17     dante 
   1251       1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1252       1.17     dante 			case 0x1: case 0x5: case 0x9:
   1253       1.17     dante 			case 0xA: case 0xC:
   1254       1.17     dante 				cfg->termination |= ADW_TERM_CTL_H;
   1255       1.17     dante 				break;
   1256       1.17     dante 
   1257       1.17     dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1258       1.17     dante 			case 0x2: case 0x6:
   1259       1.17     dante 				break;
   1260       1.17     dante 		}
   1261        1.7     dante 	}
   1262        1.7     dante 
   1263        1.7     dante 	/*
   1264       1.17     dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1265       1.17     dante 	 */
   1266       1.17     dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1267       1.17     dante 
   1268       1.17     dante 	/*
   1269       1.17     dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1270       1.17     dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1271       1.17     dante 	 * referenced, because the hardware internally inverts
   1272       1.17     dante 	 * the Termination High and Low bits if TERM_POL is set.
   1273       1.17     dante 	 */
   1274       1.17     dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1275       1.17     dante 
   1276       1.17     dante 	/*
   1277       1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1278       1.17     dante 	 *
   1279       1.17     dante 	 * Set filter value and possibly modified termination control
   1280       1.17     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1281        1.7     dante 	 *
   1282       1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1283       1.17     dante 	 * after it is started below.
   1284        1.7     dante 	 */
   1285       1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1286       1.17     dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1287        1.7     dante 
   1288        1.7     dante 	/*
   1289       1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1290        1.7     dante 	 *
   1291       1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1292        1.7     dante 	 * after it is started below.
   1293       1.17     dante 	 *
   1294       1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1295       1.17     dante 	 * are defined.
   1296       1.17     dante 	 *
   1297       1.17     dante 	 * ASC-3550 has 8KB internal memory.
   1298        1.7     dante 	 */
   1299       1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1300       1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1301       1.17     dante 
   1302       1.17     dante 	return 0;
   1303       1.17     dante }
   1304       1.17     dante 
   1305       1.17     dante 
   1306       1.17     dante int
   1307  1.38.34.1       jym AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1308       1.17     dante {
   1309       1.17     dante 	u_int16_t	scsi_cfg1;
   1310       1.17     dante 
   1311        1.7     dante 
   1312        1.7     dante 	/*
   1313        1.7     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1314        1.7     dante 	 *
   1315        1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1316        1.7     dante 	 * after it is started below.
   1317        1.7     dante 	 */
   1318        1.7     dante 
   1319        1.7     dante 	/* Read current SCSI_CFG1 Register value. */
   1320        1.7     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1321        1.7     dante 
   1322        1.7     dante 	/*
   1323       1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1324       1.17     dante 	 * will be set. Check for and return an error if this condition is
   1325       1.17     dante 	 * found.
   1326        1.7     dante 	 */
   1327       1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1328       1.16     dante 		return ADW_IERR_REVERSED_CABLE;
   1329        1.7     dante 	}
   1330        1.7     dante 
   1331        1.7     dante 	/*
   1332       1.17     dante 	 * All kind of combinations of devices attached to one of four
   1333       1.17     dante 	 * connectors are acceptable except HVD device attached.
   1334       1.17     dante 	 * For example, LVD device can be attached to SE connector while
   1335       1.17     dante 	 * SE device attached to LVD connector.
   1336       1.17     dante 	 * If LVD device attached to SE connector, it only runs up to
   1337       1.17     dante 	 * Ultra speed.
   1338       1.17     dante 	 *
   1339       1.17     dante 	 * If an HVD device is attached to one of LVD connectors, return
   1340       1.17     dante 	 * an error.
   1341       1.17     dante 	 * However, there is no way to detect HVD device attached to
   1342       1.17     dante 	 * SE connectors.
   1343        1.7     dante 	 */
   1344        1.7     dante 	if (scsi_cfg1 & ADW_HVD) {
   1345       1.16     dante 		return ADW_IERR_HVD_DEVICE;
   1346        1.7     dante 	}
   1347        1.7     dante 
   1348        1.7     dante 	/*
   1349        1.7     dante 	 * If either SE or LVD automatic termination control is enabled, then
   1350        1.7     dante 	 * set the termination value based on a table listed in a_condor.h.
   1351        1.7     dante 	 *
   1352        1.7     dante 	 * If manual termination was specified with an EEPROM setting then
   1353       1.17     dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1354       1.17     dante 	 * to be 'ored' into SCSI_CFG1.
   1355        1.7     dante 	 */
   1356       1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1357        1.7     dante 		/* SE automatic termination control is enabled. */
   1358        1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1359        1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1360        1.7     dante 			case 0x1: case 0x2: case 0x3:
   1361       1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1362        1.7     dante 				break;
   1363        1.7     dante 
   1364        1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1365        1.7     dante 			case 0x0:
   1366       1.17     dante 				cfg->termination |= ADW_TERM_SE_HI;
   1367        1.7     dante 				break;
   1368        1.7     dante 		}
   1369        1.7     dante 	}
   1370        1.7     dante 
   1371       1.17     dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1372        1.7     dante 		/* LVD automatic termination control is enabled. */
   1373        1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1374        1.7     dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1375        1.7     dante 			case 0x4: case 0x8: case 0xC:
   1376       1.17     dante 				cfg->termination |= ADW_TERM_LVD;
   1377        1.7     dante 				break;
   1378        1.7     dante 
   1379        1.7     dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1380        1.7     dante 			case 0x0:
   1381        1.7     dante 				break;
   1382        1.7     dante 		}
   1383        1.7     dante 	}
   1384        1.7     dante 
   1385        1.7     dante 	/*
   1386        1.7     dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1387        1.7     dante 	 */
   1388        1.7     dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1389        1.7     dante 
   1390        1.7     dante 	/*
   1391        1.7     dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1392        1.7     dante 	 */
   1393       1.17     dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1394        1.7     dante 
   1395        1.7     dante 	/*
   1396       1.17     dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1397       1.17     dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1398       1.17     dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1399        1.7     dante 	 */
   1400        1.7     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1401       1.17     dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1402        1.7     dante 
   1403        1.7     dante 	/*
   1404        1.7     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1405        1.7     dante 	 *
   1406        1.7     dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1407        1.7     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1408        1.7     dante 	 *
   1409        1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1410        1.7     dante 	 * after it is started below.
   1411        1.7     dante 	 */
   1412       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1413        1.7     dante 
   1414        1.7     dante 	/*
   1415        1.7     dante 	 * Set MEM_CFG Microcode Default Value
   1416        1.7     dante 	 *
   1417        1.7     dante 	 * The microcode will set the MEM_CFG register using this value
   1418        1.7     dante 	 * after it is started below.
   1419        1.7     dante 	 *
   1420        1.7     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1421        1.7     dante 	 * are defined.
   1422        1.7     dante 	 *
   1423        1.7     dante 	 * ASC-38C0800 has 16KB internal memory.
   1424        1.7     dante 	 */
   1425       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1426       1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1427        1.7     dante 
   1428       1.17     dante 	return 0;
   1429       1.17     dante }
   1430        1.7     dante 
   1431        1.7     dante 
   1432       1.17     dante int
   1433  1.38.34.1       jym AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1434       1.17     dante {
   1435       1.17     dante 	u_int16_t	scsi_cfg1;
   1436        1.7     dante 
   1437        1.7     dante 
   1438        1.7     dante 	/*
   1439       1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1440       1.17     dante 	 *
   1441       1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1442       1.17     dante 	 * after it is started below.
   1443       1.17     dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1444       1.17     dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1445        1.7     dante 	 */
   1446        1.7     dante 
   1447       1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1448       1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1449        1.7     dante 
   1450        1.7     dante 	/*
   1451       1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1452       1.17     dante 	 * will be set. Check for and return an error if this condition is
   1453       1.17     dante 	 * found.
   1454        1.7     dante 	 */
   1455       1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1456       1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1457        1.7     dante 	}
   1458        1.7     dante 
   1459        1.7     dante 	/*
   1460       1.17     dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1461       1.31       wiz 	 * cannot be connected to either connector. An LVD device or SE device
   1462       1.31       wiz 	 * may be connected to either connector. If an SE device is connected,
   1463       1.25   tsutsui 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1464        1.7     dante 	 *
   1465       1.17     dante 	 * If an HVD device is attached, return an error.
   1466        1.7     dante 	 */
   1467       1.17     dante 	if (scsi_cfg1 & ADW_HVD) {
   1468       1.17     dante 		return ADW_IERR_HVD_DEVICE;
   1469       1.17     dante 	}
   1470        1.7     dante 
   1471        1.7     dante 	/*
   1472       1.17     dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1473       1.17     dante 	 * termination because there are two connectors for each function.
   1474       1.17     dante 	 * Each function may use either LVD or SE mode.
   1475       1.17     dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1476       1.17     dante 	 * used for each function.
   1477       1.17     dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1478       1.17     dante 	 * for the function, then set the termination value based on a table
   1479       1.17     dante 	 * listed in adwlib.h.
   1480       1.17     dante 	 *
   1481       1.17     dante 	 * If manual termination is specified in the EEPROM for the function,
   1482       1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1483       1.17     dante 	 * ready to be 'ored' into SCSI_CFG1.
   1484        1.7     dante 	 */
   1485       1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1486       1.17     dante 		/* SE automatic termination control is enabled. */
   1487       1.17     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1488       1.17     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1489       1.17     dante 			case 0x1: case 0x2: case 0x3:
   1490       1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1491       1.17     dante 				break;
   1492        1.7     dante 
   1493       1.17     dante 			case 0x0:
   1494       1.21     lukem #if 0
   1495       1.17     dante 	/* !!!!TODO!!!! */
   1496       1.21     lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1497       1.17     dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1498       1.21     lukem 				}
   1499       1.21     lukem 				else
   1500       1.21     lukem #endif
   1501       1.21     lukem 				{
   1502       1.17     dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1503       1.17     dante 					cfg->termination |= ADW_TERM_SE_HI;
   1504       1.21     lukem 				}
   1505       1.17     dante 				break;
   1506       1.10     dante 			}
   1507        1.7     dante 	}
   1508        1.7     dante 
   1509       1.17     dante 	/*
   1510       1.17     dante 	 * Clear any set TERM_SE bits.
   1511       1.17     dante 	 */
   1512       1.17     dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1513        1.7     dante 
   1514        1.7     dante 	/*
   1515       1.17     dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1516        1.7     dante 	 */
   1517       1.17     dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1518        1.7     dante 
   1519        1.7     dante 	/*
   1520       1.17     dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1521       1.17     dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1522       1.17     dante 	 * Register Value.
   1523        1.7     dante 	 */
   1524       1.17     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1525        1.7     dante 
   1526        1.7     dante 	/*
   1527       1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1528       1.17     dante 	 *
   1529       1.17     dante 	 * Set possibly modified termination control bits in the Microcode
   1530       1.17     dante 	 * SCSI_CFG1 Register Value.
   1531        1.7     dante 	 *
   1532       1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1533       1.17     dante 	 * after it is started below.
   1534        1.7     dante 	 */
   1535       1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1536        1.7     dante 
   1537       1.17     dante 	/*
   1538       1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1539       1.17     dante 	 *
   1540       1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1541       1.17     dante 	 * after it is started below.
   1542       1.17     dante 	 *
   1543       1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1544       1.17     dante 	 * are defined.
   1545       1.17     dante 	 *
   1546       1.17     dante 	 * ASC-38C1600 has 32KB internal memory.
   1547       1.17     dante 	 */
   1548       1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1549       1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1550        1.7     dante 
   1551       1.17     dante 	return 0;
   1552        1.7     dante }
   1553        1.7     dante 
   1554        1.7     dante 
   1555        1.7     dante /*
   1556        1.7     dante  * Read EEPROM configuration into the specified buffer.
   1557        1.7     dante  *
   1558        1.7     dante  * Return a checksum based on the EEPROM configuration read.
   1559        1.7     dante  */
   1560        1.7     dante static u_int16_t
   1561  1.38.34.1       jym AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1562        1.7     dante {
   1563        1.7     dante 	u_int16_t	       wval, chksum;
   1564        1.7     dante 	u_int16_t	       *wbuf;
   1565        1.7     dante 	int		    eep_addr;
   1566        1.7     dante 
   1567        1.7     dante 
   1568        1.7     dante 	wbuf = (u_int16_t *) cfg_buf;
   1569        1.7     dante 	chksum = 0;
   1570        1.7     dante 
   1571        1.7     dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1572       1.10     dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1573       1.10     dante 		eep_addr++, wbuf++) {
   1574       1.16     dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1575        1.7     dante 		chksum += wval;
   1576        1.7     dante 		*wbuf = wval;
   1577        1.7     dante 	}
   1578        1.7     dante 
   1579       1.16     dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1580        1.7     dante 	wbuf++;
   1581        1.7     dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1582        1.7     dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1583        1.7     dante 			eep_addr++, wbuf++) {
   1584       1.16     dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1585        1.7     dante 	}
   1586        1.7     dante 
   1587        1.7     dante 	return chksum;
   1588        1.7     dante }
   1589        1.7     dante 
   1590        1.7     dante 
   1591        1.7     dante /*
   1592        1.7     dante  * Read the EEPROM from specified location
   1593        1.7     dante  */
   1594        1.7     dante static u_int16_t
   1595  1.38.34.1       jym AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1596        1.7     dante {
   1597        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1598        1.7     dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1599       1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1600        1.7     dante 
   1601        1.7     dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1602        1.7     dante }
   1603        1.7     dante 
   1604        1.7     dante 
   1605        1.7     dante /*
   1606        1.7     dante  * Wait for EEPROM command to complete
   1607        1.7     dante  */
   1608        1.7     dante static void
   1609  1.38.34.1       jym AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1610        1.7     dante {
   1611        1.7     dante 	int eep_delay_ms;
   1612        1.7     dante 
   1613        1.7     dante 
   1614        1.7     dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1615        1.7     dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1616        1.7     dante 				ASC_EEP_CMD_DONE) {
   1617        1.7     dante 			break;
   1618        1.7     dante 		}
   1619       1.16     dante 		AdwSleepMilliSecond(1);
   1620        1.7     dante 	}
   1621        1.7     dante 
   1622       1.36  christos 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1623        1.7     dante }
   1624        1.7     dante 
   1625        1.7     dante 
   1626        1.7     dante /*
   1627        1.7     dante  * Write the EEPROM from 'cfg_buf'.
   1628        1.7     dante  */
   1629        1.7     dante static void
   1630  1.38.34.1       jym AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1631       1.10     dante {
   1632       1.10     dante 	u_int16_t *wbuf;
   1633       1.10     dante 	u_int16_t addr, chksum;
   1634       1.10     dante 
   1635       1.10     dante 
   1636       1.10     dante 	wbuf = (u_int16_t *) cfg_buf;
   1637       1.10     dante 	chksum = 0;
   1638       1.10     dante 
   1639       1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1640       1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1641       1.10     dante 
   1642       1.10     dante 	/*
   1643       1.10     dante 	 * Write EEPROM from word 0 to word 20
   1644       1.10     dante 	 */
   1645       1.10     dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1646       1.10     dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1647       1.10     dante 		chksum += *wbuf;
   1648       1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1649       1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1650       1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1651       1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1652       1.16     dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1653       1.10     dante 	}
   1654       1.10     dante 
   1655       1.10     dante 	/*
   1656       1.10     dante 	 * Write EEPROM checksum at word 21
   1657       1.10     dante 	 */
   1658       1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1659       1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1660       1.10     dante 			ASC_EEP_CMD_WRITE | addr);
   1661       1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1662       1.10     dante 	wbuf++;        /* skip over check_sum */
   1663       1.10     dante 
   1664       1.10     dante 	/*
   1665       1.10     dante 	 * Write EEPROM OEM name at words 22 to 29
   1666       1.10     dante 	 */
   1667       1.10     dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1668       1.10     dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1669       1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1670       1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1671       1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1672       1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1673       1.10     dante 	}
   1674       1.10     dante 
   1675       1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1676       1.10     dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1677       1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1678       1.10     dante 
   1679       1.10     dante 	return;
   1680       1.10     dante }
   1681       1.10     dante 
   1682       1.10     dante 
   1683       1.10     dante /*
   1684       1.16     dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1685        1.7     dante  *
   1686        1.7     dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1687        1.7     dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1688        1.7     dante  *   RISC to notify it a new command is ready to be executed.
   1689        1.1     dante  *
   1690        1.7     dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1691        1.7     dante  * set to SCSI_MAX_RETRY.
   1692        1.1     dante  *
   1693        1.7     dante  * Return:
   1694        1.7     dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1695        1.7     dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1696        1.7     dante  *                       request completes.
   1697        1.7     dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1698        1.7     dante  *                       host IC error.
   1699        1.1     dante  */
   1700        1.7     dante int
   1701  1.38.34.1       jym AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1702        1.1     dante {
   1703        1.7     dante 	bus_space_tag_t iot = sc->sc_iot;
   1704        1.7     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1705        1.7     dante 	ADW_CCB		*ccb;
   1706        1.7     dante 	u_int32_t	req_paddr;
   1707       1.10     dante 	ADW_CARRIER	*new_carrp;
   1708        1.7     dante 
   1709        1.7     dante 	/*
   1710        1.7     dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1711        1.7     dante 	 */
   1712        1.7     dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1713        1.7     dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1714        1.7     dante 		scsiq->done_status = QD_WITH_ERROR;
   1715        1.7     dante 		return ADW_ERROR;
   1716        1.7     dante 	}
   1717        1.7     dante 
   1718       1.10     dante 	/*
   1719       1.10     dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1720       1.10     dante 	 */
   1721       1.33     perry 
   1722        1.7     dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1723        1.7     dante 
   1724        1.7     dante 	/*
   1725       1.16     dante 	 * Allocate a carrier and initialize fields.
   1726        1.7     dante 	 */
   1727        1.7     dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1728        1.7     dante 		return ADW_BUSY;
   1729        1.7     dante 	}
   1730       1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1731       1.12     dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1732        1.7     dante 	sc->carr_pending_cnt++;
   1733        1.7     dante 
   1734        1.7     dante 	/*
   1735       1.12     dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1736        1.7     dante 	 * to the stopper value. The current stopper will be changed
   1737        1.7     dante 	 * below to point to the new stopper.
   1738        1.7     dante 	 */
   1739       1.22    briggs 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1740        1.7     dante 
   1741        1.7     dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1742        1.7     dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1743        1.7     dante 
   1744        1.7     dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1745       1.22    briggs 	scsiq->scsiq_rptr = htole32(req_paddr);
   1746        1.7     dante 
   1747        1.7     dante 	/*
   1748       1.12     dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1749        1.7     dante 	 * order during initialization.
   1750        1.7     dante 	 */
   1751       1.12     dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1752       1.12     dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1753        1.1     dante 
   1754        1.7     dante 	/*
   1755        1.7     dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1756        1.7     dante 	 * the microcode. The newly allocated stopper will become the new
   1757        1.7     dante 	 * stopper.
   1758        1.7     dante 	 */
   1759       1.22    briggs 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1760        1.1     dante 
   1761        1.1     dante 	/*
   1762       1.12     dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1763        1.7     dante 	 * physical address of the new stopper. The RISC can only
   1764        1.7     dante 	 * follow physical addresses.
   1765        1.1     dante 	 */
   1766       1.12     dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1767        1.1     dante 
   1768       1.12     dante #if ADW_DEBUG
   1769       1.12     dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1770       1.12     dante 			sc->icq_sp->carr_id,
   1771       1.12     dante 			sc->icq_sp->carr_ba,
   1772       1.12     dante 			sc->icq_sp->areq_ba,
   1773       1.12     dante 			sc->icq_sp->next_ba);
   1774       1.12     dante #endif
   1775        1.1     dante 	/*
   1776        1.7     dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1777        1.1     dante 	 */
   1778        1.7     dante 	sc->icq_sp = new_carrp;
   1779       1.11     dante 
   1780       1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1781       1.16     dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1782        1.7     dante 		/*
   1783       1.10     dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1784       1.10     dante 		 * pointer.
   1785       1.10     dante 		 */
   1786       1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1787       1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1788       1.10     dante 			/*
   1789       1.10     dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1790       1.10     dante 			 * command 'clr_tickle_a' does not work unless the host
   1791       1.10     dante 			 * value is cleared.
   1792       1.10     dante 			 */
   1793       1.10     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1794       1.20    itojun 					ADW_TICKLE_NOP);
   1795       1.10     dante 		}
   1796       1.16     dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1797       1.10     dante 		/*
   1798       1.10     dante 		 * Notify the RISC a carrier is ready by writing the physical
   1799       1.10     dante 		 * address of the new carrier stopper to the COMMA register.
   1800        1.7     dante 		 */
   1801       1.10     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1802       1.22    briggs 				le32toh(new_carrp->carr_ba));
   1803        1.7     dante 	}
   1804        1.7     dante 
   1805       1.10     dante 	/*
   1806       1.10     dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1807       1.10     dante 	 */
   1808       1.33     perry 
   1809        1.7     dante 	return ADW_SUCCESS;
   1810        1.1     dante }
   1811        1.1     dante 
   1812        1.7     dante 
   1813        1.7     dante void
   1814  1.38.34.1       jym AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1815        1.1     dante {
   1816        1.7     dante 
   1817        1.7     dante 	/*
   1818        1.7     dante 	 * Reset Chip.
   1819        1.7     dante 	 */
   1820        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1821        1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1822       1.16     dante 	AdwSleepMilliSecond(100);
   1823        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1824        1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1825        1.1     dante }
   1826        1.1     dante 
   1827        1.7     dante 
   1828        1.1     dante /*
   1829        1.1     dante  * Reset SCSI Bus and purge all outstanding requests.
   1830        1.1     dante  *
   1831        1.1     dante  * Return Value:
   1832        1.7     dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1833        1.7     dante  *      ADW_FALSE(0) -  Microcode command failed.
   1834        1.7     dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1835        1.7     dante  *                      may be hung which requires driver recovery.
   1836        1.1     dante  */
   1837        1.1     dante int
   1838  1.38.34.1       jym AdwResetCCB(ADW_SOFTC *sc)
   1839        1.1     dante {
   1840        1.7     dante 	int	    status;
   1841        1.7     dante 
   1842        1.7     dante 	/*
   1843        1.7     dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1844        1.7     dante 	 * the SCSI Bus Reset signal.
   1845        1.7     dante 	 */
   1846       1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1847       1.11     dante 	if (status != ADW_TRUE) {
   1848        1.7     dante 		return status;
   1849        1.7     dante 	}
   1850        1.7     dante 
   1851        1.7     dante 	/*
   1852        1.7     dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1853        1.7     dante 	 *
   1854        1.7     dante 	 * The hold time delay is done on the host because the RISC has no
   1855        1.7     dante 	 * microsecond accurate timer.
   1856        1.7     dante 	 */
   1857       1.16     dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1858        1.1     dante 
   1859        1.7     dante 	/*
   1860        1.7     dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1861        1.7     dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1862        1.7     dante 	 */
   1863       1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1864       1.11     dante 	if (status != ADW_TRUE) {
   1865        1.7     dante 		return status;
   1866        1.7     dante 	}
   1867        1.1     dante 
   1868       1.16     dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1869        1.1     dante 
   1870        1.1     dante 	return status;
   1871        1.1     dante }
   1872        1.1     dante 
   1873        1.7     dante 
   1874        1.1     dante /*
   1875        1.7     dante  * Reset chip and SCSI Bus.
   1876        1.7     dante  *
   1877        1.7     dante  * Return Value:
   1878        1.7     dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1879        1.7     dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1880        1.1     dante  */
   1881        1.7     dante int
   1882  1.38.34.1       jym AdwResetSCSIBus(ADW_SOFTC *sc)
   1883        1.1     dante {
   1884        1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   1885        1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1886        1.7     dante 	int		status;
   1887       1.28  christos 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1888       1.28  christos 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1889        1.7     dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1890        1.7     dante 	u_int16_t	bios_sig;
   1891        1.7     dante 
   1892        1.7     dante 
   1893        1.7     dante 	/*
   1894        1.7     dante 	 * Save current per TID negotiated values.
   1895        1.7     dante 	 */
   1896       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1897       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1898       1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1899       1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1900       1.10     dante 	}
   1901       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1902       1.11     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1903       1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1904        1.7     dante 			max_cmd[tid]);
   1905        1.7     dante 	}
   1906        1.7     dante 
   1907        1.7     dante 	/*
   1908       1.17     dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1909       1.17     dante 	 * by clearing the BIOS signature word.
   1910        1.7     dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1911        1.7     dante 	 * needed if the BIOS signature word is present.
   1912        1.7     dante 	 */
   1913       1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1914       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1915        1.7     dante 
   1916        1.7     dante 	/*
   1917        1.7     dante 	 * Stop chip and reset it.
   1918        1.7     dante 	 */
   1919        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1920        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1921        1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1922       1.16     dante 	AdwSleepMilliSecond(100);
   1923        1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1924        1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1925        1.7     dante 
   1926        1.7     dante 	/*
   1927        1.7     dante 	 * Reset Adv Library error code, if any, and try
   1928        1.7     dante 	 * re-initializing the chip.
   1929       1.17     dante 	 * Then translate initialization return value to status value.
   1930        1.7     dante 	 */
   1931       1.17     dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1932        1.1     dante 
   1933        1.7     dante 	/*
   1934        1.7     dante 	 * Restore the BIOS signature word.
   1935        1.7     dante 	 */
   1936       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1937        1.1     dante 
   1938        1.1     dante 	/*
   1939        1.7     dante 	 * Restore per TID negotiated values.
   1940        1.1     dante 	 */
   1941       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1942       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1943       1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1944       1.16     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1945       1.10     dante 	}
   1946       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1947        1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1948       1.16     dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1949        1.7     dante 			max_cmd[tid]);
   1950        1.7     dante 	}
   1951        1.1     dante 
   1952        1.7     dante 	return status;
   1953        1.1     dante }
   1954        1.1     dante 
   1955        1.1     dante 
   1956        1.1     dante /*
   1957        1.1     dante  * Adv Library Interrupt Service Routine
   1958        1.1     dante  *
   1959        1.1     dante  *  This function is called by a driver's interrupt service routine.
   1960        1.1     dante  *  The function disables and re-enables interrupts.
   1961        1.1     dante  *
   1962        1.7     dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1963        1.1     dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1964        1.1     dante  *
   1965       1.16     dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1966        1.1     dante  *  when there is no hardware interrupt condition present. It will
   1967        1.1     dante  *  always check for completed idle commands and microcode requests.
   1968        1.1     dante  *  This is an important feature that shouldn't be changed because it
   1969        1.1     dante  *  allows commands to be completed from polling mode loops.
   1970        1.1     dante  *
   1971        1.1     dante  * Return:
   1972        1.1     dante  *   ADW_TRUE(1) - interrupt was pending
   1973        1.1     dante  *   ADW_FALSE(0) - no interrupt was pending
   1974        1.1     dante  */
   1975        1.1     dante int
   1976  1.38.34.1       jym AdwISR(ADW_SOFTC *sc)
   1977        1.1     dante {
   1978        1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   1979        1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1980        1.7     dante 	u_int8_t	int_stat;
   1981        1.7     dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1982        1.7     dante 	u_int32_t	irq_next_pa;
   1983        1.7     dante 	ADW_SCSI_REQ_Q	*scsiq;
   1984        1.7     dante 	ADW_CCB		*ccb;
   1985       1.11     dante 	int		s;
   1986       1.11     dante 
   1987        1.1     dante 
   1988       1.11     dante 	s = splbio();
   1989        1.1     dante 
   1990        1.1     dante 	/* Reading the register clears the interrupt. */
   1991        1.1     dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1992        1.1     dante 
   1993        1.7     dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1994        1.7     dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1995       1.11     dante 		splx(s);
   1996        1.7     dante 		return ADW_FALSE;
   1997        1.1     dante 	}
   1998        1.7     dante 
   1999        1.7     dante 	/*
   2000        1.7     dante 	 * Notify the driver of an asynchronous microcode condition by
   2001        1.7     dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2002       1.16     dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2003        1.1     dante 	 */
   2004        1.7     dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2005        1.7     dante 		u_int8_t intrb_code;
   2006        1.7     dante 
   2007       1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2008       1.10     dante 
   2009       1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2010       1.16     dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2011       1.10     dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2012       1.10     dante 				sc->carr_pending_cnt != 0) {
   2013       1.10     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2014       1.20    itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2015       1.16     dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2016       1.10     dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2017       1.20    itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2018       1.10     dante 				}
   2019       1.10     dante 			}
   2020        1.7     dante 		}
   2021        1.7     dante 
   2022        1.7     dante 		if (sc->async_callback != 0) {
   2023        1.7     dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2024        1.1     dante 		}
   2025        1.1     dante 	}
   2026        1.7     dante 
   2027        1.1     dante 	/*
   2028        1.7     dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2029        1.1     dante 	 */
   2030       1.22    briggs 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2031        1.7     dante 	{
   2032       1.12     dante #if ADW_DEBUG
   2033       1.12     dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2034       1.12     dante 				sc->irq_sp->carr_id,
   2035       1.12     dante 				sc->irq_sp->carr_ba,
   2036       1.12     dante 				sc->irq_sp->areq_ba,
   2037       1.12     dante 				sc->irq_sp->next_ba);
   2038       1.12     dante #endif
   2039        1.7     dante 		/*
   2040       1.10     dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2041       1.10     dante 		 * structure.
   2042       1.12     dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2043        1.7     dante 		 *
   2044        1.7     dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2045       1.12     dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2046       1.10     dante 		 * The conversion below complements the conversion of
   2047       1.16     dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2048        1.7     dante 		 */
   2049       1.12     dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2050        1.7     dante 		scsiq = &ccb->scsiq;
   2051       1.12     dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2052        1.7     dante 
   2053       1.10     dante 		/*
   2054       1.10     dante 		 * Request finished with good status and the queue was not
   2055       1.10     dante 		 * DMAed to host memory by the firmware. Set all status fields
   2056       1.10     dante 		 * to indicate good status.
   2057       1.10     dante 		 */
   2058       1.22    briggs 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2059       1.10     dante 			scsiq->done_status = QD_NO_ERROR;
   2060       1.10     dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2061       1.10     dante 			scsiq->data_cnt = 0L;
   2062        1.7     dante 		}
   2063        1.1     dante 
   2064        1.1     dante 		/*
   2065        1.7     dante 		 * Advance the stopper pointer to the next carrier
   2066        1.7     dante 		 * ignoring the lower four bits. Free the previous
   2067        1.7     dante 		 * stopper carrier.
   2068        1.1     dante 		 */
   2069        1.7     dante 		free_carrp = sc->irq_sp;
   2070       1.16     dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2071        1.7     dante 
   2072       1.26      fvdl 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2073       1.16     dante 					: sc->carr_freelist->carr_ba;
   2074        1.7     dante 		sc->carr_freelist = free_carrp;
   2075        1.7     dante 		sc->carr_pending_cnt--;
   2076        1.1     dante 
   2077        1.1     dante 		/*
   2078        1.1     dante 		 * Clear request microcode control flag.
   2079        1.1     dante 		 */
   2080        1.1     dante 		scsiq->cntl = 0;
   2081        1.1     dante 
   2082        1.1     dante 		/*
   2083        1.1     dante 		 * Check Condition handling
   2084        1.1     dante 		 */
   2085        1.1     dante 		/*
   2086        1.1     dante 		 * If the command that completed was a SCSI INQUIRY and
   2087        1.1     dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2088        1.1     dante 		 * command information for the device.
   2089        1.1     dante 		 */
   2090        1.7     dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2091       1.10     dante 		    scsiq->cdb[0] == INQUIRY &&
   2092       1.10     dante 		    scsiq->target_lun == 0) {
   2093       1.16     dante 			AdwInquiryHandling(sc, scsiq);
   2094        1.1     dante 		}
   2095        1.1     dante 
   2096        1.1     dante 		/*
   2097        1.1     dante 		 * Notify the driver of the completed request by passing
   2098        1.1     dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2099        1.1     dante 		 */
   2100        1.7     dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2101        1.1     dante 		/*
   2102        1.1     dante 		 * Note: After the driver callback function is called, 'scsiq'
   2103        1.1     dante 		 * can no longer be referenced.
   2104        1.1     dante 		 *
   2105        1.1     dante 		 * Fall through and continue processing other completed
   2106        1.1     dante 		 * requests...
   2107        1.1     dante 		 */
   2108        1.1     dante 	}
   2109       1.11     dante 
   2110       1.11     dante 	splx(s);
   2111        1.7     dante 
   2112        1.7     dante 	return ADW_TRUE;
   2113        1.1     dante }
   2114        1.1     dante 
   2115        1.7     dante 
   2116        1.1     dante /*
   2117        1.1     dante  * Send an idle command to the chip and wait for completion.
   2118        1.1     dante  *
   2119        1.7     dante  * Command completion is polled for once per microsecond.
   2120        1.7     dante  *
   2121        1.7     dante  * The function can be called from anywhere including an interrupt handler.
   2122       1.10     dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2123        1.7     dante  * functions to prevent reentrancy.
   2124        1.1     dante  *
   2125        1.1     dante  * Return Values:
   2126        1.1     dante  *   ADW_TRUE - command completed successfully
   2127        1.1     dante  *   ADW_FALSE - command failed
   2128        1.7     dante  *   ADW_ERROR - command timed out
   2129        1.1     dante  */
   2130        1.1     dante int
   2131  1.38.34.1       jym AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2132        1.1     dante {
   2133        1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2134        1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2135       1.13     dante 	u_int16_t	result;
   2136       1.10     dante 	u_int32_t	i, j, s;
   2137        1.1     dante 
   2138       1.10     dante 	s = splbio();
   2139        1.7     dante 
   2140        1.7     dante 	/*
   2141        1.7     dante 	 * Clear the idle command status which is set by the microcode
   2142        1.7     dante 	 * to a non-zero value to indicate when the command is completed.
   2143        1.7     dante 	 */
   2144       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2145        1.1     dante 
   2146        1.1     dante 	/*
   2147        1.1     dante 	 * Write the idle command value after the idle command parameter
   2148        1.1     dante 	 * has been written to avoid a race condition. If the order is not
   2149        1.1     dante 	 * followed, the microcode may process the idle command before the
   2150        1.1     dante 	 * parameters have been written to LRAM.
   2151        1.1     dante 	 */
   2152       1.16     dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2153       1.13     dante 			idle_cmd_parameter);
   2154       1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2155        1.1     dante 
   2156        1.1     dante 	/*
   2157        1.7     dante 	 * Tickle the RISC to tell it to process the idle command.
   2158        1.1     dante 	 */
   2159       1.20    itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2160       1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2161        1.1     dante 		/*
   2162        1.7     dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2163        1.7     dante 		 * command 'clr_tickle_b' does not work unless the host
   2164        1.7     dante 		 * value is cleared.
   2165        1.1     dante 		 */
   2166       1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2167        1.7     dante 	}
   2168        1.1     dante 
   2169        1.7     dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2170        1.7     dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2171        1.7     dante 		/* Poll once each microsecond for command completion. */
   2172        1.7     dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2173       1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2174       1.17     dante 									result);
   2175        1.7     dante 			if (result != 0) {
   2176       1.10     dante 				splx(s);
   2177        1.7     dante 				return result;
   2178        1.7     dante 			}
   2179       1.16     dante 			AdwDelayMicroSecond(1);
   2180        1.7     dante 		}
   2181        1.1     dante 	}
   2182        1.1     dante 
   2183       1.10     dante 	splx(s);
   2184        1.7     dante 	return ADW_ERROR;
   2185        1.1     dante }
   2186        1.1     dante 
   2187        1.1     dante 
   2188        1.1     dante /*
   2189        1.1     dante  * Inquiry Information Byte 7 Handling
   2190        1.1     dante  *
   2191        1.1     dante  * Handle SCSI Inquiry Command information for a device by setting
   2192        1.2     dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2193        1.1     dante  * Queuing.
   2194        1.1     dante  */
   2195        1.1     dante static void
   2196  1.38.34.1       jym AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2197        1.1     dante {
   2198        1.9     dante #ifndef FAILSAFE
   2199        1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2200        1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2201        1.7     dante 	u_int8_t		tid;
   2202       1.13     dante 	struct scsipi_inquiry_data *inq;
   2203        1.7     dante 	u_int16_t		tidmask;
   2204        1.7     dante 	u_int16_t		cfg_word;
   2205        1.7     dante 
   2206        1.1     dante 
   2207        1.1     dante 	/*
   2208       1.16     dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2209        1.1     dante 	 * to be available.
   2210        1.1     dante 	 *
   2211        1.1     dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2212        1.1     dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2213        1.1     dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2214        1.1     dante 	 * microcode to the transfer residual count.
   2215        1.1     dante 	 */
   2216        1.7     dante 
   2217        1.2     dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2218        1.1     dante 		return;
   2219        1.1     dante 	}
   2220        1.7     dante 
   2221        1.1     dante 	tid = scsiq->target_id;
   2222        1.7     dante 
   2223       1.13     dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2224        1.1     dante 
   2225        1.1     dante 	/*
   2226        1.1     dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2227        1.1     dante 	 */
   2228       1.13     dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2229       1.13     dante 	    ((inq->version & SID_ANSII) < 2)) {
   2230        1.1     dante 		return;
   2231        1.2     dante 	} else {
   2232        1.1     dante 		/*
   2233        1.1     dante 		 * INQUIRY Byte 7 Handling
   2234        1.1     dante 		 *
   2235        1.1     dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2236        1.1     dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2237        1.1     dante 		 * is enabled in the EEPROM and the device supports the
   2238        1.1     dante 		 * feature, then enable it in the microcode.
   2239        1.1     dante 		 */
   2240        1.1     dante 
   2241        1.1     dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2242        1.7     dante 
   2243        1.1     dante 		/*
   2244        1.1     dante 		 * Wide Transfers
   2245        1.1     dante 		 *
   2246        1.1     dante 		 * If the EEPROM enabled WDTR for the device and the device
   2247        1.1     dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2248        1.1     dante 		 * device's 'wdtr_able' bit and write the new value to the
   2249        1.1     dante 		 * microcode.
   2250        1.1     dante 		 */
   2251        1.7     dante #ifdef SCSI_ADW_WDTR_DISABLE
   2252        1.8     dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2253        1.7     dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2254       1.13     dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2255       1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2256        1.7     dante 					cfg_word);
   2257        1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2258        1.1     dante 				cfg_word |= tidmask;
   2259       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2260        1.7     dante 						cfg_word);
   2261        1.1     dante 
   2262        1.1     dante 				/*
   2263       1.16     dante 				 * Clear the microcode "SDTR negotiation" and
   2264       1.16     dante 				 * "WDTR negotiation" done indicators for the
   2265       1.16     dante 				 * target to cause it to negotiate with the new
   2266       1.16     dante 				 * setting set above.
   2267        1.7     dante 				 * WDTR when accepted causes the target to enter
   2268       1.16     dante 				 * asynchronous mode, so SDTR must be negotiated
   2269        1.1     dante 				 */
   2270       1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2271        1.7     dante 						cfg_word);
   2272        1.7     dante 				cfg_word &= ~tidmask;
   2273       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2274        1.7     dante 						cfg_word);
   2275       1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2276        1.7     dante 						cfg_word);
   2277        1.1     dante 				cfg_word &= ~tidmask;
   2278       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2279        1.7     dante 						cfg_word);
   2280        1.1     dante 			}
   2281        1.1     dante 		}
   2282        1.7     dante 
   2283        1.1     dante 		/*
   2284        1.1     dante 		 * Synchronous Transfers
   2285        1.1     dante 		 *
   2286        1.1     dante 		 * If the EEPROM enabled SDTR for the device and the device
   2287        1.1     dante 		 * supports synchronous transfers, then turn on the device's
   2288        1.1     dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2289        1.1     dante 		 */
   2290        1.7     dante #ifdef SCSI_ADW_SDTR_DISABLE
   2291        1.8     dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2292        1.7     dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2293       1.13     dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2294       1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2295        1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2296        1.1     dante 				cfg_word |= tidmask;
   2297       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2298        1.7     dante 						cfg_word);
   2299        1.1     dante 
   2300        1.1     dante 				/*
   2301       1.16     dante 				 * Clear the microcode "SDTR negotiation"
   2302       1.16     dante 				 * done indicator for the target to cause it
   2303       1.16     dante 				 * to negotiate with the new setting set above.
   2304        1.1     dante 				 */
   2305       1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2306        1.7     dante 						cfg_word);
   2307        1.1     dante 				cfg_word &= ~tidmask;
   2308       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2309        1.7     dante 						cfg_word);
   2310       1.10     dante 			}
   2311       1.10     dante 		}
   2312       1.10     dante 		/*
   2313       1.10     dante 		 * If the Inquiry data included enough space for the SPI-3
   2314       1.10     dante 		 * Clocking field, then check if DT mode is supported.
   2315       1.10     dante 		 */
   2316       1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2317       1.17     dante 		   (scsiq->cdb[4] >= 57 ||
   2318       1.17     dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2319       1.10     dante 			/*
   2320       1.10     dante 			 * PPR (Parallel Protocol Request) Capable
   2321       1.10     dante 			 *
   2322       1.10     dante 			 * If the device supports DT mode, then it must be
   2323       1.10     dante 			 * PPR capable.
   2324       1.10     dante 			 * The PPR message will be used in place of the SDTR
   2325       1.10     dante 			 * and WDTR messages to negotiate synchronous speed
   2326       1.10     dante 			 * and offset, transfer width, and protocol options.
   2327       1.10     dante 			 */
   2328       1.15     dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2329       1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2330       1.10     dante 						sc->ppr_able);
   2331       1.10     dante 				sc->ppr_able |= tidmask;
   2332       1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2333       1.10     dante 						sc->ppr_able);
   2334        1.1     dante 			}
   2335        1.1     dante 		}
   2336        1.7     dante 
   2337        1.1     dante 		/*
   2338        1.7     dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2339        1.7     dante 		 * device supports Tag Queueing, then turn on the device's
   2340        1.1     dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2341        1.7     dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2342        1.1     dante 		 * value.
   2343        1.1     dante 		 *
   2344        1.1     dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2345        1.1     dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2346        1.1     dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2347        1.1     dante 		 * bugs will at least work with the BIOS.
   2348        1.1     dante 		 */
   2349        1.7     dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2350        1.8     dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2351        1.7     dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2352       1.13     dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2353       1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2354        1.7     dante 					cfg_word);
   2355        1.1     dante 			cfg_word |= tidmask;
   2356       1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2357        1.7     dante 					cfg_word);
   2358        1.7     dante 
   2359        1.1     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2360       1.16     dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2361        1.7     dante 					sc->max_dvc_qng);
   2362        1.1     dante 		}
   2363        1.9     dante 	}
   2364        1.7     dante #endif /* FAILSAFE */
   2365        1.1     dante }
   2366        1.1     dante 
   2367        1.7     dante 
   2368        1.1     dante static void
   2369  1.38.34.1       jym AdwSleepMilliSecond(u_int32_t n)
   2370        1.1     dante {
   2371        1.1     dante 
   2372        1.1     dante 	DELAY(n * 1000);
   2373        1.1     dante }
   2374        1.1     dante 
   2375        1.7     dante 
   2376        1.1     dante static void
   2377  1.38.34.1       jym AdwDelayMicroSecond(u_int32_t n)
   2378        1.1     dante {
   2379        1.1     dante 
   2380        1.1     dante 	DELAY(n);
   2381        1.1     dante }
   2382        1.7     dante 
   2383