Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.39.4.1
      1  1.39.4.1     rmind /* $NetBSD: adwlib.c,v 1.39.4.1 2011/03/05 20:53:11 rmind Exp $        */
      2       1.1     dante 
      3       1.1     dante /*
      4       1.1     dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5       1.1     dante  *
      6       1.7     dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7       1.1     dante  * All rights reserved.
      8       1.1     dante  *
      9       1.1     dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10       1.1     dante  *
     11       1.1     dante  * Redistribution and use in source and binary forms, with or without
     12       1.1     dante  * modification, are permitted provided that the following conditions
     13       1.1     dante  * are met:
     14       1.1     dante  * 1. Redistributions of source code must retain the above copyright
     15       1.1     dante  *    notice, this list of conditions and the following disclaimer.
     16       1.1     dante  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1     dante  *    notice, this list of conditions and the following disclaimer in the
     18       1.1     dante  *    documentation and/or other materials provided with the distribution.
     19       1.1     dante  * 3. All advertising materials mentioning features or use of this software
     20       1.1     dante  *    must display the following acknowledgement:
     21       1.1     dante  *        This product includes software developed by the NetBSD
     22       1.1     dante  *        Foundation, Inc. and its contributors.
     23       1.1     dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24       1.1     dante  *    contributors may be used to endorse or promote products derived
     25       1.1     dante  *    from this software without specific prior written permission.
     26       1.1     dante  *
     27       1.1     dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28       1.1     dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29       1.1     dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30       1.1     dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31       1.1     dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32       1.1     dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33       1.1     dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34       1.1     dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35       1.1     dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36       1.1     dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37       1.1     dante  * POSSIBILITY OF SUCH DAMAGE.
     38       1.1     dante  */
     39       1.1     dante /*
     40       1.1     dante  * Ported from:
     41       1.1     dante  */
     42       1.1     dante /*
     43       1.1     dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44      1.33     perry  *
     45      1.10     dante  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46       1.1     dante  * All Rights Reserved.
     47       1.1     dante  *
     48       1.1     dante  * Redistribution and use in source and binary forms, with or without
     49       1.1     dante  * modification, are permitted provided that redistributions of source
     50       1.1     dante  * code retain the above copyright notice and this comment without
     51       1.1     dante  * modification.
     52       1.1     dante  */
     53      1.23     lukem 
     54      1.23     lukem #include <sys/cdefs.h>
     55  1.39.4.1     rmind __KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.39.4.1 2011/03/05 20:53:11 rmind Exp $");
     56       1.1     dante 
     57       1.1     dante #include <sys/param.h>
     58       1.1     dante #include <sys/systm.h>
     59       1.1     dante #include <sys/malloc.h>
     60       1.1     dante #include <sys/kernel.h>
     61       1.1     dante #include <sys/queue.h>
     62       1.1     dante #include <sys/device.h>
     63       1.1     dante 
     64      1.38        ad #include <sys/bus.h>
     65      1.38        ad #include <sys/intr.h>
     66       1.1     dante 
     67       1.1     dante #include <dev/scsipi/scsi_all.h>
     68       1.1     dante #include <dev/scsipi/scsipi_all.h>
     69       1.1     dante #include <dev/scsipi/scsiconf.h>
     70       1.1     dante 
     71       1.7     dante #include <dev/pci/pcidevs.h>
     72       1.7     dante 
     73       1.1     dante #include <dev/ic/adwlib.h>
     74      1.16     dante #include <dev/ic/adwmcode.h>
     75       1.1     dante #include <dev/ic/adw.h>
     76       1.1     dante 
     77       1.1     dante 
     78       1.1     dante /* Static Functions */
     79       1.1     dante 
     80      1.32     perry int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
     81      1.32     perry int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
     82      1.32     perry int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     83      1.32     perry int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     84      1.32     perry int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
     85      1.32     perry 
     86      1.32     perry static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     87      1.32     perry      							ADW_EEPROM *);
     88      1.32     perry static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
     89      1.32     perry 					                 ADW_EEPROM *);
     90      1.32     perry static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
     91      1.32     perry static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
     92      1.17     dante 
     93      1.32     perry static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
     94       1.1     dante 
     95      1.32     perry static void AdwSleepMilliSecond(u_int32_t);
     96      1.32     perry static void AdwDelayMicroSecond(u_int32_t);
     97       1.1     dante 
     98       1.1     dante 
     99       1.1     dante /*
    100       1.1     dante  * EEPROM Configuration.
    101       1.1     dante  *
    102       1.1     dante  * All drivers should use this structure to set the default EEPROM
    103       1.1     dante  * configuration. The BIOS now uses this structure when it is built.
    104      1.16     dante  * Additional structure information can be found in adwlib.h where
    105       1.1     dante  * the structure is defined.
    106       1.1     dante  */
    107      1.37  christos static const ADW_EEPROM adw_3550_Default_EEPROM = {
    108      1.17     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    109      1.17     dante 	0x0000,			/* 01 cfg_msw */
    110      1.17     dante 	0xFFFF,			/* 02 disc_enable */
    111      1.17     dante 	0xFFFF,			/* 03 wdtr_able */
    112      1.17     dante 	{ 0xFFFF },		/* 04 sdtr_able */
    113      1.17     dante 	0xFFFF,			/* 05 start_motor */
    114      1.17     dante 	0xFFFF,			/* 06 tagqng_able */
    115      1.17     dante 	0xFFFF,			/* 07 bios_scan */
    116      1.17     dante 	0,			/* 08 scam_tolerant */
    117      1.17     dante 	7,			/* 09 adapter_scsi_id */
    118      1.17     dante 	0,			/*    bios_boot_delay */
    119      1.17     dante 	3,			/* 10 scsi_reset_delay */
    120      1.17     dante 	0,			/*    bios_id_lun */
    121      1.17     dante 	0,			/* 11 termination */
    122      1.17     dante 	0,			/*    reserved1 */
    123      1.17     dante 	0xFFE7,			/* 12 bios_ctrl */
    124      1.17     dante 	{ 0xFFFF },		/* 13 ultra_able */
    125      1.17     dante 	{ 0 },			/* 14 reserved2 */
    126      1.17     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    127      1.17     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    128      1.17     dante 	0,			/* 16 dvc_cntl */
    129      1.17     dante 	{ 0 },			/* 17 bug_fix */
    130      1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    131      1.17     dante 	0,			/* 21 check_sum */
    132      1.17     dante 	{			/* 22-29 oem_name[16] */
    133      1.17     dante 	  0,0,0,0,0,0,0,0,
    134      1.17     dante 	  0,0,0,0,0,0,0,0
    135      1.17     dante 	},
    136      1.17     dante 	0,			/* 30 dvc_err_code */
    137      1.17     dante 	0,			/* 31 adv_err_code */
    138      1.17     dante 	0,			/* 32 adv_err_addr */
    139      1.17     dante 	0,			/* 33 saved_dvc_err_code */
    140      1.17     dante 	0,			/* 34 saved_adv_err_code */
    141      1.37  christos 	0,			/* 35 saved_adv_err_addr */
    142      1.37  christos 	{			/* 36-55 reserved1[16] */
    143      1.37  christos 	  0,0,0,0,0,0,0,0,0,0,
    144      1.37  christos 	  0,0,0,0,0,0,0,0,0,0
    145      1.37  christos 	},
    146      1.37  christos 	0,			/* 56 cisptr_lsw */
    147      1.37  christos 	0,			/* 57 cisprt_msw */
    148      1.37  christos 	0,			/* 58 subsysvid */
    149      1.37  christos 	0,			/* 59 subsysid */
    150      1.37  christos 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    151       1.7     dante };
    152       1.7     dante 
    153      1.37  christos static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
    154       1.7     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    155       1.7     dante 	0x0000,			/* 01 cfg_msw */
    156       1.7     dante 	0xFFFF,			/* 02 disc_enable */
    157       1.7     dante 	0xFFFF,			/* 03 wdtr_able */
    158      1.17     dante 	{ 0x4444 },		/* 04 sdtr_speed1 */
    159       1.7     dante 	0xFFFF,			/* 05 start_motor */
    160       1.7     dante 	0xFFFF,			/* 06 tagqng_able */
    161       1.7     dante 	0xFFFF,			/* 07 bios_scan */
    162       1.7     dante 	0,			/* 08 scam_tolerant */
    163       1.7     dante 	7,			/* 09 adapter_scsi_id */
    164       1.7     dante 	0,			/*    bios_boot_delay */
    165       1.7     dante 	3,			/* 10 scsi_reset_delay */
    166       1.7     dante 	0,			/*    bios_id_lun */
    167       1.7     dante 	0,			/* 11 termination_se */
    168       1.7     dante 	0,			/*    termination_lvd */
    169       1.7     dante 	0xFFE7,			/* 12 bios_ctrl */
    170      1.17     dante 	{ 0x4444 },		/* 13 sdtr_speed2 */
    171      1.17     dante 	{ 0x4444 },		/* 14 sdtr_speed3 */
    172      1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    173      1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    174       1.7     dante 	0,			/* 16 dvc_cntl */
    175      1.17     dante 	{ 0x4444 },		/* 17 sdtr_speed4 */
    176      1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    177       1.7     dante 	0,			/* 21 check_sum */
    178      1.17     dante 	{			/* 22-29 oem_name[16] */
    179      1.17     dante 	  0,0,0,0,0,0,0,0,
    180      1.17     dante 	  0,0,0,0,0,0,0,0
    181      1.17     dante 	},
    182       1.7     dante 	0,			/* 30 dvc_err_code */
    183       1.7     dante 	0,			/* 31 adv_err_code */
    184       1.7     dante 	0,			/* 32 adv_err_addr */
    185       1.7     dante 	0,			/* 33 saved_dvc_err_code */
    186       1.7     dante 	0,			/* 34 saved_adv_err_code */
    187       1.7     dante 	0,			/* 35 saved_adv_err_addr */
    188      1.17     dante 	{			/* 36-55 reserved1[16] */
    189      1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    190      1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    191      1.17     dante 	},
    192       1.7     dante 	0,			/* 56 cisptr_lsw */
    193       1.7     dante 	0,			/* 57 cisprt_msw */
    194       1.7     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    195       1.7     dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    196      1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    197       1.1     dante };
    198       1.1     dante 
    199      1.37  christos static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
    200      1.10     dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    201      1.10     dante 	0x0000,			/* 01 cfg_msw */
    202      1.10     dante 	0xFFFF,			/* 02 disc_enable */
    203      1.10     dante 	0xFFFF,			/* 03 wdtr_able */
    204      1.17     dante 	{ 0x5555 },		/* 04 sdtr_speed1 */
    205      1.10     dante 	0xFFFF,			/* 05 start_motor */
    206      1.10     dante 	0xFFFF,			/* 06 tagqng_able */
    207      1.10     dante 	0xFFFF,			/* 07 bios_scan */
    208      1.10     dante 	0,			/* 08 scam_tolerant */
    209      1.10     dante 	7,			/* 09 adapter_scsi_id */
    210      1.10     dante 	0,			/*    bios_boot_delay */
    211      1.10     dante 	3,			/* 10 scsi_reset_delay */
    212      1.10     dante 	0,			/*    bios_id_lun */
    213      1.10     dante 	0,			/* 11 termination_se */
    214      1.10     dante 	0,			/*    termination_lvd */
    215      1.10     dante 	0xFFE7,			/* 12 bios_ctrl */
    216      1.17     dante 	{ 0x5555 },		/* 13 sdtr_speed2 */
    217      1.17     dante 	{ 0x5555 },		/* 14 sdtr_speed3 */
    218      1.16     dante 	ADW_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    219      1.16     dante 	ADW_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    220      1.10     dante 	0,			/* 16 dvc_cntl */
    221      1.17     dante 	{ 0x5555 },		/* 17 sdtr_speed4 */
    222      1.17     dante 	{ 0,0,0 },		/* 18-20 serial_number[3] */
    223      1.10     dante 	0,			/* 21 check_sum */
    224      1.17     dante 	{			/* 22-29 oem_name[16] */
    225      1.17     dante 	  0,0,0,0,0,0,0,0,
    226      1.17     dante 	  0,0,0,0,0,0,0,0
    227      1.17     dante 	},
    228      1.10     dante 	0,			/* 30 dvc_err_code */
    229      1.10     dante 	0,			/* 31 adv_err_code */
    230      1.10     dante 	0,			/* 32 adv_err_addr */
    231      1.10     dante 	0,			/* 33 saved_dvc_err_code */
    232      1.10     dante 	0,			/* 34 saved_adv_err_code */
    233      1.10     dante 	0,			/* 35 saved_adv_err_addr */
    234      1.17     dante 	{			/* 36-55 reserved1[16] */
    235      1.17     dante 	  0,0,0,0,0,0,0,0,0,0,
    236      1.17     dante 	  0,0,0,0,0,0,0,0,0,0
    237      1.17     dante 	},
    238      1.10     dante 	0,			/* 56 cisptr_lsw */
    239      1.10     dante 	0,			/* 57 cisprt_msw */
    240      1.10     dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    241      1.10     dante 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    242      1.17     dante 	{ 0,0,0,0 }		/* 60-63 reserved2[4] */
    243      1.10     dante };
    244      1.10     dante 
    245      1.17     dante 
    246       1.1     dante /*
    247      1.17     dante  * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
    248      1.17     dante  * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
    249      1.17     dante  * all of this is done.
    250       1.1     dante  *
    251       1.1     dante  * For a non-fatal error return a warning code. If there are no warnings
    252       1.1     dante  * then 0 is returned.
    253      1.17     dante  *
    254      1.17     dante  * Note: Chip is stopped on entry.
    255      1.17     dante  */
    256      1.17     dante int
    257      1.39       dsl AdwInitFromEEPROM(ADW_SOFTC *sc)
    258      1.17     dante {
    259      1.17     dante 	bus_space_tag_t iot = sc->sc_iot;
    260      1.17     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    261      1.17     dante 	ADW_EEPROM		eep_config;
    262      1.17     dante 	u_int16_t		warn_code;
    263      1.17     dante 	u_int16_t		sdtr_speed = 0;
    264      1.17     dante 	u_int8_t		tid, termination;
    265      1.17     dante 	int			i, j;
    266      1.17     dante 
    267      1.17     dante 
    268      1.17     dante 	warn_code = 0;
    269      1.17     dante 
    270      1.17     dante 	/*
    271      1.17     dante 	 * Read the board's EEPROM configuration.
    272      1.17     dante 	 *
    273      1.17     dante 	 * Set default values if a bad checksum is found.
    274      1.17     dante 	 *
    275      1.17     dante 	 * XXX - Don't handle big-endian access to EEPROM yet.
    276      1.17     dante 	 */
    277      1.17     dante 	if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
    278      1.17     dante 		warn_code |= ADW_WARN_EEPROM_CHKSUM;
    279      1.17     dante 
    280      1.17     dante 		/*
    281      1.17     dante 		 * Set EEPROM default values.
    282      1.17     dante 		 */
    283      1.17     dante 		switch(sc->chip_type) {
    284      1.17     dante 		case ADW_CHIP_ASC3550:
    285      1.17     dante 			eep_config = adw_3550_Default_EEPROM;
    286      1.17     dante 			break;
    287      1.17     dante 		case ADW_CHIP_ASC38C0800:
    288      1.17     dante 			eep_config = adw_38C0800_Default_EEPROM;
    289      1.17     dante 			break;
    290      1.17     dante 		case ADW_CHIP_ASC38C1600:
    291      1.17     dante 			eep_config = adw_38C1600_Default_EEPROM;
    292      1.17     dante 
    293      1.21     lukem #if 0
    294      1.21     lukem XXX	  TODO!!!	if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
    295      1.21     lukem #endif
    296      1.17     dante 			if (sc->cfg.pci_slot_info != 0) {
    297      1.17     dante 				u_int8_t lsw_msb;
    298      1.17     dante 
    299      1.17     dante 				lsw_msb = eep_config.cfg_lsw >> 8;
    300      1.17     dante 				/*
    301      1.17     dante 				 * Set Function 1 EEPROM Word 0 MSB
    302      1.17     dante 				 *
    303      1.17     dante 				 * Clear the BIOS_ENABLE (bit 14) and
    304      1.17     dante 				 * INTAB (bit 11) EEPROM bits.
    305      1.17     dante 				 *
    306      1.17     dante 				 * Disable Bit 14 (BIOS_ENABLE) to fix
    307      1.17     dante 				 * SPARC Ultra 60 and old Mac system booting
    308      1.17     dante 				 * problem. The Expansion ROM must
    309      1.17     dante 				 * be disabled in Function 1 for these systems.
    310      1.17     dante 				 */
    311      1.17     dante 				lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
    312      1.17     dante 						ADW_EEPROM_INTAB) >> 8) & 0xFF);
    313      1.17     dante 				/*
    314      1.17     dante 				 * Set the INTAB (bit 11) if the GPIO 0 input
    315      1.17     dante 				 * indicates the Function 1 interrupt line is
    316      1.17     dante 				 * wired to INTA.
    317      1.17     dante 				 *
    318      1.17     dante 				 * Set/Clear Bit 11 (INTAB) from
    319      1.17     dante 				 * the GPIO bit 0 input:
    320      1.17     dante 				 *   1 - Function 1 intr line wired to INT A.
    321      1.17     dante 				 *   0 - Function 1 intr line wired to INT B.
    322      1.17     dante 				 *
    323      1.17     dante 				 * Note: Adapter boards always have Function 0
    324      1.17     dante 				 * wired to INTA.
    325      1.17     dante 				 * Put all 5 GPIO bits in input mode and then
    326      1.17     dante 				 * read their input values.
    327      1.17     dante 				 */
    328      1.17     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
    329      1.17     dante 							IOPB_GPIO_CNTL, 0);
    330      1.17     dante 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
    331      1.17     dante 						IOPB_GPIO_DATA) & 0x01) {
    332      1.17     dante 					/*
    333      1.17     dante 					 * Function 1 interrupt wired to INTA;
    334      1.17     dante 					 * Set EEPROM bit.
    335      1.17     dante 					 */
    336      1.17     dante 					lsw_msb |= (ADW_EEPROM_INTAB >> 8)
    337      1.17     dante 							 & 0xFF;
    338      1.17     dante 				 }
    339      1.17     dante 				 eep_config.cfg_lsw &= 0x00FF;
    340      1.17     dante 				 eep_config.cfg_lsw |= lsw_msb << 8;
    341      1.17     dante 			}
    342      1.17     dante 			break;
    343      1.17     dante 		}
    344      1.17     dante 
    345      1.17     dante 		/*
    346      1.17     dante 		 * Assume the 6 byte board serial number that was read
    347      1.17     dante 		 * from EEPROM is correct even if the EEPROM checksum
    348      1.17     dante 		 * failed.
    349      1.17     dante 		 */
    350      1.17     dante 		for (i=2, j=1; i>=0; i--, j++) {
    351      1.17     dante 		eep_config.serial_number[i] =
    352      1.17     dante 			AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
    353      1.17     dante 		}
    354      1.17     dante 
    355      1.17     dante 		AdwSetEEPROMConfig(iot, ioh, &eep_config);
    356      1.17     dante 	}
    357      1.17     dante 	/*
    358      1.17     dante 	 * Set sc and sc->cfg variables from the EEPROM configuration
    359      1.17     dante 	 * that was read.
    360      1.17     dante 	 *
    361      1.17     dante 	 * This is the mapping of EEPROM fields to Adw Library fields.
    362      1.17     dante 	 */
    363      1.17     dante 	sc->wdtr_able = eep_config.wdtr_able;
    364      1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
    365      1.17     dante 		sc->sdtr_able = eep_config.sdtr1.sdtr_able;
    366      1.17     dante 		sc->ultra_able = eep_config.sdtr2.ultra_able;
    367      1.17     dante 	} else {
    368      1.17     dante 		sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
    369      1.17     dante 		sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
    370      1.17     dante 		sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
    371      1.17     dante 		sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
    372      1.17     dante 	}
    373      1.17     dante 	sc->ppr_able = 0;
    374      1.17     dante 	sc->tagqng_able = eep_config.tagqng_able;
    375      1.17     dante 	sc->cfg.disc_enable = eep_config.disc_enable;
    376      1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    377      1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    378      1.17     dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
    379      1.17     dante 	sc->start_motor = eep_config.start_motor;
    380      1.17     dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
    381      1.17     dante 	sc->bios_ctrl = eep_config.bios_ctrl;
    382      1.17     dante 	sc->no_scam = eep_config.scam_tolerant;
    383      1.17     dante 	sc->cfg.serial1 = eep_config.serial_number[0];
    384      1.17     dante 	sc->cfg.serial2 = eep_config.serial_number[1];
    385      1.17     dante 	sc->cfg.serial3 = eep_config.serial_number[2];
    386      1.17     dante 
    387      1.17     dante 	if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
    388      1.17     dante 	    sc->chip_type == ADW_CHIP_ASC38C1600) {
    389      1.17     dante 		sc->sdtr_able = 0;
    390      1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    391      1.17     dante 			if (tid == 0) {
    392      1.17     dante 				sdtr_speed = sc->sdtr_speed1;
    393      1.17     dante 			} else if (tid == 4) {
    394      1.17     dante 				sdtr_speed = sc->sdtr_speed2;
    395      1.17     dante 			} else if (tid == 8) {
    396      1.17     dante 				sdtr_speed = sc->sdtr_speed3;
    397      1.17     dante 			} else if (tid == 12) {
    398      1.17     dante 				sdtr_speed = sc->sdtr_speed4;
    399      1.17     dante 			}
    400      1.17     dante 			if (sdtr_speed & ADW_MAX_TID) {
    401      1.17     dante 				sc->sdtr_able |= (1 << tid);
    402      1.17     dante 			}
    403      1.17     dante 			sdtr_speed >>= 4;
    404      1.17     dante 		}
    405      1.17     dante 	}
    406      1.17     dante 
    407      1.17     dante 	/*
    408      1.17     dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
    409      1.17     dante 	 * maximum queuing (max. 63, min. 4).
    410      1.17     dante 	 */
    411      1.17     dante 	if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
    412      1.17     dante 		eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    413      1.17     dante 	} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
    414      1.17     dante 	{
    415      1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    416      1.17     dante 		if (eep_config.max_host_qng == 0) {
    417      1.17     dante 			eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
    418      1.17     dante 		} else {
    419      1.17     dante 			eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
    420      1.17     dante 		}
    421      1.17     dante 	}
    422      1.17     dante 
    423      1.17     dante 	if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
    424      1.17     dante 		eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    425      1.17     dante 	} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
    426      1.17     dante 		/* If the value is zero, assume it is uninitialized. */
    427      1.17     dante 		if (eep_config.max_dvc_qng == 0) {
    428      1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
    429      1.17     dante 		} else {
    430      1.17     dante 			eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
    431      1.17     dante 		}
    432      1.17     dante 	}
    433      1.17     dante 
    434      1.17     dante 	/*
    435      1.17     dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
    436      1.17     dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
    437      1.17     dante 	 */
    438      1.17     dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
    439      1.17     dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
    440      1.17     dante 	}
    441      1.17     dante 
    442      1.17     dante 	/*
    443      1.17     dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
    444      1.17     dante 	 * values based on possibly adjusted EEPROM values.
    445      1.17     dante 	 */
    446      1.17     dante 	sc->max_host_qng = eep_config.max_host_qng;
    447      1.17     dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
    448      1.17     dante 
    449      1.17     dante 
    450      1.17     dante 	/*
    451      1.17     dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
    452      1.17     dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
    453      1.17     dante 	 *
    454      1.17     dante 	 * If the termination is specified with a non-zero 'termination'
    455      1.17     dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
    456      1.17     dante 	 * 'termination' field appropriately.
    457      1.17     dante 	 */
    458      1.17     dante 
    459      1.17     dante 	switch(sc->chip_type) {
    460      1.17     dante 	case ADW_CHIP_ASC3550:
    461      1.17     dante 		sc->cfg.termination = 0;	/* auto termination */
    462      1.17     dante 		switch(eep_config.termination_se) {
    463      1.17     dante 		case 3:
    464      1.17     dante 			/* Enable manual control with low on / high on. */
    465      1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_L;
    466      1.17     dante 		case 2:
    467      1.17     dante 			/* Enable manual control with low off / high on. */
    468      1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_H;
    469      1.17     dante 		case 1:
    470      1.17     dante 			/* Enable manual control with low off / high off. */
    471      1.17     dante 			sc->cfg.termination |= ADW_TERM_CTL_SEL;
    472      1.17     dante 		case 0:
    473      1.17     dante 			break;
    474      1.17     dante 		default:
    475      1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    476      1.17     dante 		}
    477      1.17     dante 		break;
    478      1.17     dante 
    479      1.17     dante 	case ADW_CHIP_ASC38C0800:
    480      1.17     dante 	case ADW_CHIP_ASC38C1600:
    481      1.17     dante 		switch(eep_config.termination_se) {
    482      1.17     dante 		case 0:
    483      1.17     dante 			/* auto termination for SE */
    484      1.17     dante 			termination = 0;
    485      1.17     dante 			break;
    486      1.17     dante 		case 1:
    487      1.17     dante 			/* Enable manual control with low off / high off. */
    488      1.17     dante 			termination = 0;
    489      1.17     dante 			break;
    490      1.17     dante 		case 2:
    491      1.17     dante 			/* Enable manual control with low off / high on. */
    492      1.17     dante 			termination = ADW_TERM_SE_HI;
    493      1.17     dante 			break;
    494      1.17     dante 		case 3:
    495      1.17     dante 			/* Enable manual control with low on / high on. */
    496      1.17     dante 			termination = ADW_TERM_SE;
    497      1.17     dante 			break;
    498      1.17     dante 		default:
    499      1.17     dante 			/*
    500      1.17     dante 			 * The EEPROM 'termination_se' field contains a
    501      1.17     dante 			 * bad value. Use automatic termination instead.
    502      1.17     dante 			 */
    503      1.17     dante 			termination = 0;
    504      1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    505      1.17     dante 		}
    506      1.17     dante 
    507      1.17     dante 		switch(eep_config.termination_lvd) {
    508      1.17     dante 		case 0:
    509      1.17     dante 			/* auto termination for LVD */
    510      1.17     dante 			sc->cfg.termination = termination;
    511      1.17     dante 			break;
    512      1.17     dante 		case 1:
    513      1.17     dante 			/* Enable manual control with low off / high off. */
    514      1.17     dante 			sc->cfg.termination = termination;
    515      1.17     dante 			break;
    516      1.17     dante 		case 2:
    517      1.17     dante 			/* Enable manual control with low off / high on. */
    518      1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
    519      1.17     dante 			break;
    520      1.17     dante 		case 3:
    521      1.17     dante 			/* Enable manual control with low on / high on. */
    522      1.17     dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
    523      1.17     dante 			break;
    524      1.17     dante 		default:
    525      1.17     dante 			/*
    526      1.17     dante 			 * The EEPROM 'termination_lvd' field contains a
    527      1.17     dante 			 * bad value. Use automatic termination instead.
    528      1.17     dante 			 */
    529      1.17     dante 			sc->cfg.termination = termination;
    530      1.17     dante 			warn_code |= ADW_WARN_EEPROM_TERMINATION;
    531      1.17     dante 		}
    532      1.17     dante 		break;
    533      1.17     dante 	}
    534      1.17     dante 
    535      1.17     dante 	return warn_code;
    536      1.17     dante }
    537      1.17     dante 
    538      1.17     dante 
    539      1.17     dante /*
    540      1.17     dante  * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
    541      1.17     dante  *
    542      1.17     dante  * On failure return the error code.
    543       1.1     dante  */
    544       1.1     dante int
    545      1.39       dsl AdwInitDriver(ADW_SOFTC *sc)
    546       1.1     dante {
    547       1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
    548       1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
    549      1.17     dante 	u_int16_t	error_code;
    550       1.7     dante 	int		word;
    551      1.17     dante 	int		i;
    552      1.16     dante 	u_int16_t	bios_mem[ADW_MC_BIOSLEN/2];	/* BIOS RISC Memory
    553       1.7     dante 								0x40-0x8F. */
    554      1.17     dante 	u_int16_t	wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
    555       1.7     dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    556      1.17     dante 	u_int8_t	tid;
    557       1.1     dante 
    558       1.1     dante 
    559      1.17     dante 	error_code = 0;
    560       1.1     dante 
    561       1.1     dante 	/*
    562       1.1     dante 	 * Save the RISC memory BIOS region before writing the microcode.
    563       1.1     dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    564       1.1     dante 	 * so its region must be saved and restored.
    565       1.1     dante 	 *
    566       1.1     dante 	 * Note: This code makes the assumption, which is currently true,
    567       1.1     dante 	 * that a chip reset does not clear RISC LRAM.
    568       1.1     dante 	 */
    569      1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
    570      1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
    571       1.7     dante 	}
    572       1.7     dante 
    573       1.7     dante 	/*
    574       1.7     dante 	 * Save current per TID negotiated values.
    575       1.7     dante 	 */
    576      1.17     dante 	switch (sc->chip_type) {
    577      1.17     dante 	case ADW_CHIP_ASC3550:
    578      1.17     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
    579      1.17     dante 
    580      1.17     dante 			u_int16_t  bios_version, major, minor;
    581      1.17     dante 
    582      1.17     dante 			bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
    583      1.17     dante 					ADW_MC_BIOSMEM) / 2];
    584      1.17     dante 			major = (bios_version  >> 12) & 0xF;
    585      1.17     dante 			minor = (bios_version  >> 8) & 0xF;
    586      1.17     dante 			if (major < 3 || (major == 3 && minor == 1)) {
    587      1.17     dante 			    /*
    588      1.17     dante 			     * BIOS 3.1 and earlier location of
    589      1.17     dante 			     * 'wdtr_able' variable.
    590      1.17     dante 			     */
    591      1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    592      1.17     dante 			} else {
    593      1.17     dante 			    ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    594      1.17     dante 					    wdtr_able);
    595      1.17     dante 			}
    596      1.17     dante 		}
    597      1.17     dante 		break;
    598       1.7     dante 
    599      1.17     dante 	case ADW_CHIP_ASC38C1600:
    600      1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
    601      1.17     dante 		/* FALLTHROUGH */
    602      1.17     dante 	case ADW_CHIP_ASC38C0800:
    603      1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
    604      1.17     dante 		break;
    605       1.7     dante 	}
    606      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
    607      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
    608       1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    609      1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
    610       1.7     dante 			max_cmd[tid]);
    611       1.1     dante 	}
    612       1.1     dante 
    613       1.1     dante 	/*
    614      1.17     dante 	 * Perform a RAM Built-In Self Test
    615       1.1     dante 	 */
    616      1.17     dante 	if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
    617      1.17     dante 		return error_code;
    618      1.17     dante 	}
    619       1.7     dante 
    620      1.17     dante 	/*
    621      1.17     dante 	 * Load the Microcode
    622       1.7     dante 	 */
    623      1.17     dante 	;
    624      1.17     dante 	if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
    625      1.17     dante 		return error_code;
    626       1.1     dante 	}
    627       1.1     dante 
    628       1.1     dante 	/*
    629      1.17     dante 	 * Read microcode version and date.
    630       1.7     dante 	 */
    631      1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
    632      1.17     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
    633       1.7     dante 
    634       1.7     dante 	/*
    635      1.17     dante 	 * If the PCI Configuration Command Register "Parity Error Response
    636      1.17     dante 	 * Control" Bit was clear (0), then set the microcode variable
    637      1.17     dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    638      1.17     dante 	 * to ignore DMA parity errors.
    639       1.1     dante 	 */
    640      1.17     dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    641      1.17     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    642      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    643      1.17     dante 					word | CONTROL_FLAG_IGNORE_PERR);
    644       1.1     dante 	}
    645       1.1     dante 
    646      1.17     dante 	switch (sc->chip_type) {
    647      1.17     dante 	case ADW_CHIP_ASC3550:
    648      1.17     dante 		/*
    649      1.17     dante 		 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
    650      1.17     dante 		 * FIFO threshold of 128 bytes.
    651      1.17     dante 		 * This register is only accessible to the host.
    652      1.17     dante 		 */
    653      1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    654      1.17     dante 				START_CTL_EMFU | READ_CMD_MRM);
    655      1.17     dante 		break;
    656       1.7     dante 
    657      1.17     dante 	case ADW_CHIP_ASC38C0800:
    658      1.17     dante 		/*
    659      1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    660      1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    661      1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    662      1.17     dante 		 *
    663      1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    664      1.17     dante 		 * Microcode Default Value' section below.
    665      1.17     dante 		 */
    666      1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    667      1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    668      1.17     dante 				| ADW_DIS_TERM_DRV);
    669       1.1     dante 
    670      1.17     dante 		/*
    671      1.17     dante 		 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
    672      1.17     dante 		 * START_CTL_TH [3:2] bits for the default FIFO threshold.
    673      1.17     dante 		 *
    674      1.17     dante 		 * Note: ASC-38C0800 FIFO threshold has been changed to
    675      1.17     dante 		 * 256 bytes.
    676      1.17     dante 		 *
    677      1.17     dante 		 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    678      1.17     dante 		 */
    679      1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    680      1.17     dante 						BC_THRESH_ENB | FIFO_THRESH_80B
    681      1.17     dante 						| START_CTL_TH | READ_CMD_MRM);
    682      1.17     dante 		break;
    683       1.1     dante 
    684      1.17     dante 	case ADW_CHIP_ASC38C1600:
    685      1.17     dante 		/*
    686      1.17     dante 		 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    687      1.17     dante 		 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    688      1.17     dante 		 * cable detection and then we are able to read C_DET[3:0].
    689      1.17     dante 		 *
    690      1.17     dante 		 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    691      1.17     dante 		 * Microcode Default Value' section below.
    692      1.17     dante 		 */
    693      1.17     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    694      1.17     dante 				ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
    695      1.17     dante 				| ADW_DIS_TERM_DRV);
    696       1.1     dante 
    697      1.17     dante 		/*
    698      1.17     dante 		 * If the BIOS control flag AIPP (Asynchronous Information
    699      1.17     dante 		 * Phase Protection) disable bit is not set, then set the
    700      1.17     dante 		 * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
    701      1.17     dante 		 * enable AIPP checking and encoding.
    702      1.17     dante 		 */
    703      1.17     dante 		if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
    704      1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
    705      1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
    706      1.17     dante 					word | CONTROL_FLAG_ENABLE_AIPP);
    707      1.17     dante 		}
    708       1.1     dante 
    709      1.17     dante 		/*
    710      1.17     dante 		 * For ASC-38C1600 use DMA_CFG0 default values:
    711      1.17     dante 		 * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
    712      1.17     dante 		 */
    713      1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    714      1.17     dante 				FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    715      1.17     dante 		break;
    716       1.1     dante 	}
    717       1.7     dante 
    718       1.1     dante 	/*
    719       1.7     dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    720      1.17     dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    721       1.7     dante 	 * device reports it is capable of in Inquiry byte 7.
    722       1.7     dante 	 *
    723      1.16     dante 	 * If SCSI Bus Resets have been disabled, then directly set
    724       1.7     dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    725       1.7     dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    726       1.7     dante 	 * the Inquiry caused by host and target mismatched DTR values.
    727       1.7     dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    728       1.7     dante 	 * be assumed to be in Asynchronous, Narrow mode.
    729       1.7     dante 	 */
    730       1.7     dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    731      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
    732      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
    733       1.7     dante 	}
    734       1.7     dante 
    735       1.7     dante 	/*
    736       1.7     dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    737       1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    738       1.7     dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    739       1.7     dante 	 * with a device.
    740       1.7     dante 	 *
    741       1.7     dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    742       1.7     dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    743       1.7     dante 	 * without determining here whether the device supports SDTR.
    744       1.7     dante 	 */
    745      1.17     dante 	switch (sc->chip_type) {
    746      1.17     dante 	case ADW_CHIP_ASC3550:
    747      1.17     dante 		word = 0;
    748      1.17     dante 		for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    749      1.17     dante 			if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    750      1.17     dante 				/* Set Ultra speed for TID 'tid'. */
    751      1.17     dante 				word |= (0x3 << (4 * (tid % 4)));
    752      1.17     dante 			} else {
    753      1.17     dante 				/* Set Fast speed for TID 'tid'. */
    754      1.17     dante 				word |= (0x2 << (4 * (tid % 4)));
    755      1.17     dante 			}
    756      1.17     dante 			/* Check if done with sdtr_speed1. */
    757      1.17     dante 			if (tid == 3) {
    758      1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    759      1.17     dante 						ADW_MC_SDTR_SPEED1, word);
    760      1.17     dante 				word = 0;
    761      1.17     dante 			/* Check if done with sdtr_speed2. */
    762      1.17     dante 			} else if (tid == 7) {
    763      1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    764      1.17     dante 						ADW_MC_SDTR_SPEED2, word);
    765      1.17     dante 				word = 0;
    766      1.17     dante 			/* Check if done with sdtr_speed3. */
    767      1.17     dante 			} else if (tid == 11) {
    768      1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    769      1.17     dante 						ADW_MC_SDTR_SPEED3, word);
    770      1.17     dante 				word = 0;
    771      1.17     dante 			/* Check if done with sdtr_speed4. */
    772      1.17     dante 			} else if (tid == 15) {
    773      1.17     dante 				ADW_WRITE_WORD_LRAM(iot, ioh,
    774      1.17     dante 						ADW_MC_SDTR_SPEED4, word);
    775      1.17     dante 				/* End of loop. */
    776      1.17     dante 			}
    777       1.7     dante 		}
    778      1.17     dante 
    779      1.17     dante 		/*
    780      1.17     dante 		 * Set microcode operating variable for the
    781      1.17     dante 		 * disconnect per TID bitmask.
    782      1.17     dante 		 */
    783      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    784      1.17     dante 							sc->cfg.disc_enable);
    785      1.17     dante 		break;
    786      1.17     dante 
    787      1.17     dante 	case ADW_CHIP_ASC38C0800:
    788      1.17     dante 		/* FALLTHROUGH */
    789      1.17     dante 	case ADW_CHIP_ASC38C1600:
    790      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
    791      1.17     dante 							sc->cfg.disc_enable);
    792      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
    793      1.17     dante 							sc->sdtr_speed1);
    794      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
    795      1.17     dante 							sc->sdtr_speed2);
    796      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
    797      1.17     dante 							sc->sdtr_speed3);
    798      1.17     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
    799      1.17     dante 							sc->sdtr_speed4);
    800      1.17     dante 		break;
    801       1.7     dante 	}
    802       1.1     dante 
    803       1.1     dante 
    804       1.1     dante 	/*
    805       1.1     dante 	 * Set SCSI_CFG0 Microcode Default Value.
    806       1.1     dante 	 *
    807       1.1     dante 	 * The microcode will set the SCSI_CFG0 register using this value
    808       1.1     dante 	 * after it is started below.
    809       1.1     dante 	 */
    810      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
    811      1.10     dante 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    812      1.10     dante 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    813       1.2     dante 
    814       1.1     dante 
    815      1.17     dante 	switch(sc->chip_type) {
    816      1.17     dante 	case ADW_CHIP_ASC3550:
    817      1.17     dante 		error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
    818      1.17     dante 		break;
    819       1.1     dante 
    820      1.17     dante 	case ADW_CHIP_ASC38C0800:
    821      1.17     dante 		error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
    822      1.17     dante 		break;
    823       1.7     dante 
    824      1.17     dante 	case ADW_CHIP_ASC38C1600:
    825      1.17     dante 		error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
    826      1.17     dante 		break;
    827       1.7     dante 	}
    828      1.17     dante 	if(error_code) {
    829      1.17     dante 		return error_code;
    830       1.1     dante 	}
    831       1.7     dante 
    832       1.1     dante 	/*
    833       1.1     dante 	 * Set SEL_MASK Microcode Default Value
    834       1.1     dante 	 *
    835       1.1     dante 	 * The microcode will set the SEL_MASK register using this value
    836       1.1     dante 	 * after it is started below.
    837       1.1     dante 	 */
    838      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
    839       1.7     dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    840       1.7     dante 
    841      1.17     dante 	/*
    842      1.17     dante 	 * Create and Initialize Host->RISC Carrier lists
    843      1.17     dante 	 */
    844      1.17     dante 	sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
    845      1.17     dante 						sc->sc_control->carriers);
    846      1.16     dante 
    847       1.7     dante 	/*
    848       1.7     dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    849       1.7     dante 	 */
    850       1.7     dante 
    851       1.7     dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    852      1.16     dante 		return ADW_IERR_NO_CARRIER;
    853       1.7     dante 	}
    854      1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    855      1.12     dante 			ASC_GET_CARRP(sc->icq_sp->next_ba));
    856       1.7     dante 
    857       1.7     dante 	/*
    858       1.7     dante 	 * The first command issued will be placed in the stopper carrier.
    859       1.7     dante 	 */
    860      1.22    briggs 	sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    861       1.1     dante 
    862       1.1     dante 	/*
    863       1.7     dante 	 * Set RISC ICQ physical address start value.
    864       1.7     dante 	 */
    865      1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
    866       1.7     dante 
    867       1.7     dante 	/*
    868      1.17     dante 	 * Initialize the COMMA register to the same value otherwise
    869      1.17     dante 	 * the RISC will prematurely detect a command is available.
    870      1.17     dante 	 */
    871      1.17     dante 	if(sc->chip_type == ADW_CHIP_ASC38C1600) {
    872      1.17     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
    873      1.22    briggs 						le32toh(sc->icq_sp->carr_ba));
    874      1.17     dante 	}
    875      1.17     dante 
    876      1.17     dante 	/*
    877       1.7     dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    878       1.1     dante 	 */
    879       1.7     dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    880      1.16     dante 		return ADW_IERR_NO_CARRIER;
    881       1.1     dante 	}
    882      1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
    883      1.12     dante 			ASC_GET_CARRP(sc->irq_sp->next_ba));
    884       1.1     dante 
    885       1.1     dante 	/*
    886       1.7     dante 	 * The first command completed by the RISC will be placed in
    887       1.7     dante 	 * the stopper.
    888       1.1     dante 	 *
    889      1.12     dante 	 * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
    890      1.16     dante 	 * completed the RISC will set the ASC_RQ_DONE bit.
    891       1.1     dante 	 */
    892      1.22    briggs 	sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
    893       1.1     dante 
    894       1.1     dante 	/*
    895       1.7     dante 	 * Set RISC IRQ physical address start value.
    896       1.1     dante 	 */
    897      1.22    briggs 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
    898       1.7     dante 	sc->carr_pending_cnt = 0;
    899       1.1     dante 
    900       1.1     dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    901       1.7     dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    902      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
    903       1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    904       1.1     dante 
    905       1.1     dante 	/* finally, finally, gentlemen, start your engine */
    906       1.1     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    907       1.2     dante 
    908       1.7     dante 	/*
    909       1.7     dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    910       1.7     dante 	 * Resets should be performed. The RISC has to be running
    911       1.7     dante 	 * to issue a SCSI Bus Reset.
    912       1.7     dante 	 */
    913       1.7     dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    914       1.7     dante 	{
    915       1.7     dante 		/*
    916       1.7     dante 		 * If the BIOS Signature is present in memory, restore the
    917       1.7     dante 		 * BIOS Handshake Configuration Table and do not perform
    918       1.7     dante 		 * a SCSI Bus Reset.
    919       1.7     dante 		 */
    920      1.16     dante 		if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
    921       1.7     dante 				0x55AA) {
    922       1.7     dante 			/*
    923       1.7     dante 			 * Restore per TID negotiated values.
    924       1.7     dante 			 */
    925      1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
    926       1.7     dante 					wdtr_able);
    927      1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
    928       1.7     dante 					sdtr_able);
    929      1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
    930       1.7     dante 					tagqng_able);
    931       1.7     dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    932       1.7     dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    933      1.17     dante 						ADW_MC_NUMBER_OF_MAX_CMD + tid,
    934      1.17     dante 						max_cmd[tid]);
    935       1.7     dante 			}
    936       1.7     dante 		} else {
    937      1.16     dante 			if (AdwResetCCB(sc) != ADW_TRUE) {
    938      1.17     dante 				error_code = ADW_WARN_BUSRESET_ERROR;
    939       1.7     dante 			}
    940       1.7     dante 		}
    941       1.7     dante 	}
    942       1.7     dante 
    943      1.17     dante 	return error_code;
    944       1.1     dante }
    945       1.1     dante 
    946      1.17     dante 
    947       1.1     dante int
    948      1.39       dsl AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
    949       1.1     dante {
    950      1.17     dante 	int		i;
    951       1.7     dante 	u_int8_t	byte;
    952       1.1     dante 
    953       1.1     dante 
    954      1.17     dante 	if ((chip_type == ADW_CHIP_ASC38C0800) ||
    955      1.17     dante 	    (chip_type == ADW_CHIP_ASC38C1600)) {
    956      1.17     dante 		/*
    957      1.17     dante 		 * RAM BIST (RAM Built-In Self Test)
    958      1.17     dante 		 *
    959      1.17     dante 		 * Address : I/O base + offset 0x38h register (byte).
    960      1.17     dante 		 * Function: Bit 7-6(RW) : RAM mode
    961      1.17     dante 		 *			    Normal Mode   : 0x00
    962      1.17     dante 		 *			    Pre-test Mode : 0x40
    963      1.17     dante 		 *			    RAM Test Mode : 0x80
    964      1.17     dante 		 *	     Bit 5	 : unused
    965      1.17     dante 		 *	     Bit 4(RO)   : Done bit
    966      1.17     dante 		 *	     Bit 3-0(RO) : Status
    967      1.17     dante 		 *			    Host Error    : 0x08
    968      1.17     dante 		 *			    Int_RAM Error : 0x04
    969      1.17     dante 		 *			    RISC Error    : 0x02
    970      1.17     dante 		 *			    SCSI Error    : 0x01
    971      1.17     dante 		 *			    No Error	  : 0x00
    972      1.17     dante 		 *
    973      1.17     dante 		 * Note: RAM BIST code should be put right here, before loading
    974      1.17     dante 		 * the microcode and after saving the RISC memory BIOS region.
    975      1.17     dante 		 */
    976       1.1     dante 
    977      1.17     dante 		/*
    978      1.17     dante 		 * LRAM Pre-test
    979      1.17     dante 		 *
    980      1.17     dante 		 * Write PRE_TEST_MODE (0x40) to register and wait for
    981      1.17     dante 		 * 10 milliseconds.
    982      1.17     dante 		 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
    983      1.17     dante 		 * return an error. Reset to NORMAL_MODE (0x00) and do again.
    984      1.17     dante 		 * If cannot reset to NORMAL_MODE, return an error too.
    985      1.17     dante 		 */
    986      1.17     dante 		for (i = 0; i < 2; i++) {
    987      1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    988      1.17     dante 					PRE_TEST_MODE);
    989      1.17     dante 			 /* Wait for 10ms before reading back. */
    990      1.17     dante 			AdwSleepMilliSecond(10);
    991      1.17     dante 			byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    992      1.17     dante 			if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    993      1.17     dante 					PRE_TEST_VALUE) {
    994      1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
    995      1.17     dante 			}
    996       1.7     dante 
    997      1.17     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
    998      1.17     dante 								NORMAL_MODE);
    999      1.17     dante 			/* Wait for 10ms before reading back. */
   1000      1.17     dante 			AdwSleepMilliSecond(10);
   1001      1.17     dante 			if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1002      1.17     dante 			    != NORMAL_VALUE) {
   1003      1.17     dante 				return ADW_IERR_BIST_PRE_TEST;
   1004      1.17     dante 			}
   1005      1.17     dante 		}
   1006       1.2     dante 
   1007      1.17     dante 		/*
   1008      1.17     dante 		 * LRAM Test - It takes about 1.5 ms to run through the test.
   1009      1.17     dante 		 *
   1010      1.17     dante 		 * Write RAM_TEST_MODE (0x80) to register and wait for
   1011      1.17     dante 		 * 10 milliseconds.
   1012      1.17     dante 		 * If Done bit not set or Status not 0, save register byte,
   1013      1.17     dante 		 * set the err_code, and return an error.
   1014      1.17     dante 		 */
   1015      1.17     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1016      1.17     dante 		/* Wait for 10ms before checking status. */
   1017      1.17     dante 		AdwSleepMilliSecond(10);
   1018       1.1     dante 
   1019       1.7     dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1020      1.17     dante 		if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
   1021      1.17     dante 			/* Get here if Done bit not set or Status not 0. */
   1022      1.17     dante 			return ADW_IERR_BIST_RAM_TEST;
   1023       1.1     dante 		}
   1024       1.1     dante 
   1025      1.17     dante 		/* We need to reset back to normal mode after LRAM test passes*/
   1026       1.7     dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1027       1.1     dante 	}
   1028       1.7     dante 
   1029      1.17     dante 	return 0;
   1030      1.17     dante }
   1031      1.17     dante 
   1032       1.7     dante 
   1033      1.17     dante int
   1034      1.39       dsl AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
   1035      1.17     dante {
   1036      1.34  christos 	const u_int8_t	*mcode_data;
   1037      1.17     dante 	u_int32_t	 mcode_chksum;
   1038      1.17     dante 	u_int16_t	 mcode_size;
   1039      1.17     dante 	u_int32_t	sum;
   1040      1.17     dante 	u_int16_t	code_sum;
   1041      1.17     dante 	int		begin_addr;
   1042      1.17     dante 	int		end_addr;
   1043      1.17     dante 	int		word;
   1044      1.17     dante 	int		adw_memsize;
   1045      1.17     dante 	int		adw_mcode_expanded_size;
   1046      1.17     dante 	int		i, j;
   1047       1.7     dante 
   1048      1.17     dante 
   1049      1.17     dante 	switch(chip_type) {
   1050      1.17     dante 	case ADW_CHIP_ASC3550:
   1051      1.34  christos 		mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
   1052      1.17     dante 		mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
   1053      1.17     dante 		mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
   1054      1.17     dante 		adw_memsize = ADW_3550_MEMSIZE;
   1055      1.17     dante 		break;
   1056      1.17     dante 
   1057      1.17     dante 	case ADW_CHIP_ASC38C0800:
   1058      1.34  christos 		mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
   1059      1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
   1060      1.17     dante 		mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
   1061      1.17     dante 		adw_memsize = ADW_38C0800_MEMSIZE;
   1062      1.17     dante 		break;
   1063      1.17     dante 
   1064      1.17     dante 	case ADW_CHIP_ASC38C1600:
   1065      1.34  christos 		mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
   1066      1.17     dante 		mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
   1067      1.17     dante 		mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
   1068      1.17     dante 		adw_memsize = ADW_38C1600_MEMSIZE;
   1069      1.17     dante 		break;
   1070      1.29   mycroft 
   1071      1.27  christos 	default:
   1072      1.29   mycroft 		return (EINVAL);
   1073      1.17     dante 	}
   1074       1.1     dante 
   1075       1.1     dante 	/*
   1076       1.7     dante 	 * Write the microcode image to RISC memory starting at address 0.
   1077       1.1     dante 	 */
   1078       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1079       1.7     dante 
   1080       1.7     dante 	/* Assume the following compressed format of the microcode buffer:
   1081       1.7     dante 	 *
   1082       1.7     dante 	 *  254 word (508 byte) table indexed by byte code followed
   1083       1.7     dante 	 *  by the following byte codes:
   1084       1.7     dante 	 *
   1085       1.7     dante 	 *    1-Byte Code:
   1086       1.7     dante 	 *	00: Emit word 0 in table.
   1087       1.7     dante 	 *	01: Emit word 1 in table.
   1088       1.7     dante 	 *	.
   1089       1.7     dante 	 *	FD: Emit word 253 in table.
   1090       1.7     dante 	 *
   1091       1.7     dante 	 *    Multi-Byte Code:
   1092       1.7     dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1093       1.7     dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1094       1.7     dante 	 */
   1095       1.7     dante 	word = 0;
   1096      1.17     dante 	for (i = 253 * 2; i < mcode_size; i++) {
   1097      1.17     dante 		if (mcode_data[i] == 0xff) {
   1098      1.17     dante 			for (j = 0; j < mcode_data[i + 1]; j++) {
   1099       1.7     dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1100      1.17     dante 				  (((u_int16_t)mcode_data[i + 3] << 8) |
   1101      1.17     dante 				  mcode_data[i + 2]));
   1102       1.7     dante 				word++;
   1103       1.7     dante 			}
   1104       1.7     dante 			i += 3;
   1105      1.17     dante 		} else if (mcode_data[i] == 0xfe) {
   1106      1.17     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1107      1.17     dante 			    (((u_int16_t)mcode_data[i + 2] << 8) |
   1108      1.17     dante 			    mcode_data[i + 1]));
   1109       1.7     dante 			i += 2;
   1110       1.7     dante 			word++;
   1111       1.1     dante 		} else {
   1112       1.7     dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1113      1.17     dante 			 mcode_data[(mcode_data[i] * 2) + 1] <<8) |
   1114      1.17     dante 			 mcode_data[mcode_data[i] * 2]));
   1115       1.7     dante 			word++;
   1116       1.1     dante 		}
   1117       1.1     dante 	}
   1118       1.7     dante 
   1119       1.7     dante 	/*
   1120       1.7     dante 	 * Set 'word' for later use to clear the rest of memory and save
   1121       1.7     dante 	 * the expanded mcode size.
   1122       1.7     dante 	 */
   1123       1.7     dante 	word *= 2;
   1124      1.17     dante 	adw_mcode_expanded_size = word;
   1125       1.7     dante 
   1126       1.1     dante 	/*
   1127      1.17     dante 	 * Clear the rest of the Internal RAM.
   1128       1.1     dante 	 */
   1129      1.17     dante 	for (; word < adw_memsize; word += 2) {
   1130       1.7     dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1131       1.1     dante 	}
   1132       1.7     dante 
   1133       1.1     dante 	/*
   1134       1.7     dante 	 * Verify the microcode checksum.
   1135       1.1     dante 	 */
   1136       1.7     dante 	sum = 0;
   1137       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1138       1.7     dante 
   1139      1.17     dante 	for (word = 0; word < adw_mcode_expanded_size; word += 2) {
   1140       1.7     dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1141       1.7     dante 	}
   1142       1.1     dante 
   1143      1.17     dante 	if (sum != mcode_chksum) {
   1144      1.17     dante 		return ADW_IERR_MCODE_CHKSUM;
   1145       1.7     dante 	}
   1146       1.1     dante 
   1147       1.1     dante 	/*
   1148       1.7     dante 	 * Restore the RISC memory BIOS region.
   1149       1.1     dante 	 */
   1150      1.16     dante 	for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
   1151      1.17     dante 		if(chip_type == ADW_CHIP_ASC3550) {
   1152      1.17     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1153      1.17     dante 								bios_mem[i]);
   1154      1.17     dante 		} else {
   1155      1.17     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
   1156      1.17     dante 								bios_mem[i]);
   1157      1.17     dante 		}
   1158       1.7     dante 	}
   1159       1.1     dante 
   1160       1.7     dante 	/*
   1161       1.7     dante 	 * Calculate and write the microcode code checksum to the microcode
   1162      1.16     dante 	 * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
   1163       1.7     dante 	 */
   1164      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
   1165      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
   1166       1.7     dante 	code_sum = 0;
   1167       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1168       1.7     dante 	for (word = begin_addr; word < end_addr; word += 2) {
   1169       1.7     dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1170       1.1     dante 	}
   1171      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
   1172       1.1     dante 
   1173       1.7     dante 	/*
   1174      1.17     dante 	 * Set the chip type.
   1175       1.7     dante 	 */
   1176      1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
   1177      1.17     dante 
   1178      1.17     dante 	return 0;
   1179      1.17     dante }
   1180      1.17     dante 
   1181      1.17     dante 
   1182      1.17     dante int
   1183      1.39       dsl AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1184      1.17     dante {
   1185      1.17     dante 	u_int16_t	scsi_cfg1;
   1186      1.17     dante 
   1187       1.1     dante 
   1188       1.7     dante 	/*
   1189      1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1190      1.17     dante 	 *
   1191      1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1192      1.17     dante 	 * after it is started below.
   1193       1.7     dante 	 */
   1194      1.17     dante 
   1195      1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1196      1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1197       1.1     dante 
   1198       1.7     dante 	/*
   1199      1.17     dante 	 * If all three connectors are in use in ASC3550, return an error.
   1200       1.7     dante 	 */
   1201      1.17     dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
   1202      1.17     dante 	     (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
   1203      1.17     dante 		return ADW_IERR_ILLEGAL_CONNECTION;
   1204      1.17     dante 	}
   1205       1.7     dante 
   1206       1.7     dante 	/*
   1207      1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1208      1.17     dante 	 * will be set. Check for and return an error if this condition is
   1209      1.17     dante 	 * found.
   1210       1.7     dante 	 */
   1211      1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1212      1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1213       1.7     dante 	}
   1214       1.7     dante 
   1215       1.7     dante 	/*
   1216      1.17     dante 	 * If this is a differential board and a single-ended device
   1217      1.17     dante 	 * is attached to one of the connectors, return an error.
   1218       1.7     dante 	 */
   1219      1.17     dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) &&
   1220      1.17     dante 	    (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
   1221      1.17     dante 		return ADW_IERR_SINGLE_END_DEVICE;
   1222      1.17     dante 	}
   1223       1.7     dante 
   1224       1.7     dante 	/*
   1225      1.17     dante 	 * If automatic termination control is enabled, then set the
   1226      1.17     dante 	 * termination value based on a table listed in a_condor.h.
   1227       1.7     dante 	 *
   1228      1.17     dante 	 * If manual termination was specified with an EEPROM setting
   1229      1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and
   1230      1.17     dante 	 * is ready to be 'ored' into SCSI_CFG1.
   1231       1.7     dante 	 */
   1232      1.17     dante 	if (cfg->termination == 0) {
   1233      1.17     dante 		/*
   1234      1.17     dante 		 * The software always controls termination by setting
   1235      1.17     dante 		 * TERM_CTL_SEL.
   1236      1.17     dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set
   1237      1.17     dante 		 * termination.
   1238      1.17     dante 		 */
   1239      1.17     dante 		cfg->termination |= ADW_TERM_CTL_SEL;
   1240      1.17     dante 
   1241      1.17     dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
   1242      1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
   1243      1.17     dante 			case 0x3: case 0x7: case 0xB:
   1244      1.17     dante 			case 0xD: case 0xE: case 0xF:
   1245      1.17     dante 				cfg->termination |=
   1246      1.17     dante 				(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
   1247      1.17     dante 				break;
   1248      1.17     dante 
   1249      1.17     dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
   1250      1.17     dante 			case 0x1: case 0x5: case 0x9:
   1251      1.17     dante 			case 0xA: case 0xC:
   1252      1.17     dante 				cfg->termination |= ADW_TERM_CTL_H;
   1253      1.17     dante 				break;
   1254      1.17     dante 
   1255      1.17     dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
   1256      1.17     dante 			case 0x2: case 0x6:
   1257      1.17     dante 				break;
   1258      1.17     dante 		}
   1259       1.7     dante 	}
   1260       1.7     dante 
   1261       1.7     dante 	/*
   1262      1.17     dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
   1263      1.17     dante 	 */
   1264      1.17     dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
   1265      1.17     dante 
   1266      1.17     dante 	/*
   1267      1.17     dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
   1268      1.17     dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
   1269      1.17     dante 	 * referenced, because the hardware internally inverts
   1270      1.17     dante 	 * the Termination High and Low bits if TERM_POL is set.
   1271      1.17     dante 	 */
   1272      1.17     dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
   1273      1.17     dante 
   1274      1.17     dante 	/*
   1275      1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1276      1.17     dante 	 *
   1277      1.17     dante 	 * Set filter value and possibly modified termination control
   1278      1.17     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1279       1.7     dante 	 *
   1280      1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1281      1.17     dante 	 * after it is started below.
   1282       1.7     dante 	 */
   1283      1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
   1284      1.17     dante 						ADW_FLTR_DISABLE | scsi_cfg1);
   1285       1.7     dante 
   1286       1.7     dante 	/*
   1287      1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1288       1.7     dante 	 *
   1289      1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1290       1.7     dante 	 * after it is started below.
   1291      1.17     dante 	 *
   1292      1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1293      1.17     dante 	 * are defined.
   1294      1.17     dante 	 *
   1295      1.17     dante 	 * ASC-3550 has 8KB internal memory.
   1296       1.7     dante 	 */
   1297      1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1298      1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_8KB);
   1299      1.17     dante 
   1300      1.17     dante 	return 0;
   1301      1.17     dante }
   1302      1.17     dante 
   1303      1.17     dante 
   1304      1.17     dante int
   1305      1.39       dsl AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1306      1.17     dante {
   1307      1.17     dante 	u_int16_t	scsi_cfg1;
   1308      1.17     dante 
   1309       1.7     dante 
   1310       1.7     dante 	/*
   1311       1.7     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1312       1.7     dante 	 *
   1313       1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1314       1.7     dante 	 * after it is started below.
   1315       1.7     dante 	 */
   1316       1.7     dante 
   1317       1.7     dante 	/* Read current SCSI_CFG1 Register value. */
   1318       1.7     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1319       1.7     dante 
   1320       1.7     dante 	/*
   1321      1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1322      1.17     dante 	 * will be set. Check for and return an error if this condition is
   1323      1.17     dante 	 * found.
   1324       1.7     dante 	 */
   1325      1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1326      1.16     dante 		return ADW_IERR_REVERSED_CABLE;
   1327       1.7     dante 	}
   1328       1.7     dante 
   1329       1.7     dante 	/*
   1330      1.17     dante 	 * All kind of combinations of devices attached to one of four
   1331      1.17     dante 	 * connectors are acceptable except HVD device attached.
   1332      1.17     dante 	 * For example, LVD device can be attached to SE connector while
   1333      1.17     dante 	 * SE device attached to LVD connector.
   1334      1.17     dante 	 * If LVD device attached to SE connector, it only runs up to
   1335      1.17     dante 	 * Ultra speed.
   1336      1.17     dante 	 *
   1337      1.17     dante 	 * If an HVD device is attached to one of LVD connectors, return
   1338      1.17     dante 	 * an error.
   1339      1.17     dante 	 * However, there is no way to detect HVD device attached to
   1340      1.17     dante 	 * SE connectors.
   1341       1.7     dante 	 */
   1342       1.7     dante 	if (scsi_cfg1 & ADW_HVD) {
   1343      1.16     dante 		return ADW_IERR_HVD_DEVICE;
   1344       1.7     dante 	}
   1345       1.7     dante 
   1346       1.7     dante 	/*
   1347       1.7     dante 	 * If either SE or LVD automatic termination control is enabled, then
   1348       1.7     dante 	 * set the termination value based on a table listed in a_condor.h.
   1349       1.7     dante 	 *
   1350       1.7     dante 	 * If manual termination was specified with an EEPROM setting then
   1351      1.17     dante 	 * 'termination' was set-up in AdwInitFromEEPROM() and is ready
   1352      1.17     dante 	 * to be 'ored' into SCSI_CFG1.
   1353       1.7     dante 	 */
   1354      1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1355       1.7     dante 		/* SE automatic termination control is enabled. */
   1356       1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1357       1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1358       1.7     dante 			case 0x1: case 0x2: case 0x3:
   1359      1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1360       1.7     dante 				break;
   1361       1.7     dante 
   1362       1.7     dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1363       1.7     dante 			case 0x0:
   1364      1.17     dante 				cfg->termination |= ADW_TERM_SE_HI;
   1365       1.7     dante 				break;
   1366       1.7     dante 		}
   1367       1.7     dante 	}
   1368       1.7     dante 
   1369      1.17     dante 	if ((cfg->termination & ADW_TERM_LVD) == 0) {
   1370       1.7     dante 		/* LVD automatic termination control is enabled. */
   1371       1.7     dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1372       1.7     dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1373       1.7     dante 			case 0x4: case 0x8: case 0xC:
   1374      1.17     dante 				cfg->termination |= ADW_TERM_LVD;
   1375       1.7     dante 				break;
   1376       1.7     dante 
   1377       1.7     dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1378       1.7     dante 			case 0x0:
   1379       1.7     dante 				break;
   1380       1.7     dante 		}
   1381       1.7     dante 	}
   1382       1.7     dante 
   1383       1.7     dante 	/*
   1384       1.7     dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1385       1.7     dante 	 */
   1386       1.7     dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1387       1.7     dante 
   1388       1.7     dante 	/*
   1389       1.7     dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1390       1.7     dante 	 */
   1391      1.17     dante 	scsi_cfg1 |= (~cfg->termination & 0xF0);
   1392       1.7     dante 
   1393       1.7     dante 	/*
   1394      1.17     dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
   1395      1.17     dante 	 * HVD/LVD/SE bits and set possibly modified termination control bits
   1396      1.17     dante 	 * in the Microcode SCSI_CFG1 Register Value.
   1397       1.7     dante 	 */
   1398       1.7     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1399      1.17     dante 					~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1400       1.7     dante 
   1401       1.7     dante 	/*
   1402       1.7     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1403       1.7     dante 	 *
   1404       1.7     dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1405       1.7     dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1406       1.7     dante 	 *
   1407       1.7     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1408       1.7     dante 	 * after it is started below.
   1409       1.7     dante 	 */
   1410      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1411       1.7     dante 
   1412       1.7     dante 	/*
   1413       1.7     dante 	 * Set MEM_CFG Microcode Default Value
   1414       1.7     dante 	 *
   1415       1.7     dante 	 * The microcode will set the MEM_CFG register using this value
   1416       1.7     dante 	 * after it is started below.
   1417       1.7     dante 	 *
   1418       1.7     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1419       1.7     dante 	 * are defined.
   1420       1.7     dante 	 *
   1421       1.7     dante 	 * ASC-38C0800 has 16KB internal memory.
   1422       1.7     dante 	 */
   1423      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1424      1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1425       1.7     dante 
   1426      1.17     dante 	return 0;
   1427      1.17     dante }
   1428       1.7     dante 
   1429       1.7     dante 
   1430      1.17     dante int
   1431      1.39       dsl AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
   1432      1.17     dante {
   1433      1.17     dante 	u_int16_t	scsi_cfg1;
   1434       1.7     dante 
   1435       1.7     dante 
   1436       1.7     dante 	/*
   1437      1.17     dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1438      1.17     dante 	 *
   1439      1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1440      1.17     dante 	 * after it is started below.
   1441      1.17     dante 	 * Each ASC-38C1600 function has only two cable detect bits.
   1442      1.17     dante 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1443       1.7     dante 	 */
   1444       1.7     dante 
   1445      1.17     dante 	/* Read current SCSI_CFG1 Register value. */
   1446      1.17     dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1447       1.7     dante 
   1448       1.7     dante 	/*
   1449      1.17     dante 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1450      1.17     dante 	 * will be set. Check for and return an error if this condition is
   1451      1.17     dante 	 * found.
   1452       1.7     dante 	 */
   1453      1.17     dante 	if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
   1454      1.17     dante 		return ADW_IERR_REVERSED_CABLE;
   1455       1.7     dante 	}
   1456       1.7     dante 
   1457       1.7     dante 	/*
   1458      1.17     dante 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1459      1.31       wiz 	 * cannot be connected to either connector. An LVD device or SE device
   1460      1.31       wiz 	 * may be connected to either connector. If an SE device is connected,
   1461      1.25   tsutsui 	 * then at most Ultra speed (20 MHz) can be used on both connectors.
   1462       1.7     dante 	 *
   1463      1.17     dante 	 * If an HVD device is attached, return an error.
   1464       1.7     dante 	 */
   1465      1.17     dante 	if (scsi_cfg1 & ADW_HVD) {
   1466      1.17     dante 		return ADW_IERR_HVD_DEVICE;
   1467      1.17     dante 	}
   1468       1.7     dante 
   1469       1.7     dante 	/*
   1470      1.17     dante 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1471      1.17     dante 	 * termination because there are two connectors for each function.
   1472      1.17     dante 	 * Each function may use either LVD or SE mode.
   1473      1.17     dante 	 * Corresponding the SE automatic termination control EEPROM bits are
   1474      1.17     dante 	 * used for each function.
   1475      1.17     dante 	 * Each function has its own EEPROM. If SE automatic control is enabled
   1476      1.17     dante 	 * for the function, then set the termination value based on a table
   1477      1.17     dante 	 * listed in adwlib.h.
   1478      1.17     dante 	 *
   1479      1.17     dante 	 * If manual termination is specified in the EEPROM for the function,
   1480      1.17     dante 	 * then 'termination' was set-up in AdwInitFromEEPROM() and is
   1481      1.17     dante 	 * ready to be 'ored' into SCSI_CFG1.
   1482       1.7     dante 	 */
   1483      1.17     dante 	if ((cfg->termination & ADW_TERM_SE) == 0) {
   1484      1.17     dante 		/* SE automatic termination control is enabled. */
   1485      1.17     dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1486      1.17     dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1487      1.17     dante 			case 0x1: case 0x2: case 0x3:
   1488      1.17     dante 				cfg->termination |= ADW_TERM_SE;
   1489      1.17     dante 				break;
   1490       1.7     dante 
   1491      1.17     dante 			case 0x0:
   1492      1.21     lukem #if 0
   1493      1.17     dante 	/* !!!!TODO!!!! */
   1494      1.21     lukem 				if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
   1495      1.17     dante 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1496      1.21     lukem 				}
   1497      1.21     lukem 				else
   1498      1.21     lukem #endif
   1499      1.21     lukem 				{
   1500      1.17     dante 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1501      1.17     dante 					cfg->termination |= ADW_TERM_SE_HI;
   1502      1.21     lukem 				}
   1503      1.17     dante 				break;
   1504      1.10     dante 			}
   1505       1.7     dante 	}
   1506       1.7     dante 
   1507      1.17     dante 	/*
   1508      1.17     dante 	 * Clear any set TERM_SE bits.
   1509      1.17     dante 	 */
   1510      1.17     dante 	scsi_cfg1 &= ~ADW_TERM_SE;
   1511       1.7     dante 
   1512       1.7     dante 	/*
   1513      1.17     dante 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1514       1.7     dante 	 */
   1515      1.17     dante 	scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
   1516       1.7     dante 
   1517       1.7     dante 	/*
   1518      1.17     dante 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1519      1.17     dante 	 * modified termination control bits in the Microcode SCSI_CFG1
   1520      1.17     dante 	 * Register Value.
   1521       1.7     dante 	 */
   1522      1.17     dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1523       1.7     dante 
   1524       1.7     dante 	/*
   1525      1.17     dante 	 * Set SCSI_CFG1 Microcode Default Value
   1526      1.17     dante 	 *
   1527      1.17     dante 	 * Set possibly modified termination control bits in the Microcode
   1528      1.17     dante 	 * SCSI_CFG1 Register Value.
   1529       1.7     dante 	 *
   1530      1.17     dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1531      1.17     dante 	 * after it is started below.
   1532       1.7     dante 	 */
   1533      1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1534       1.7     dante 
   1535      1.17     dante 	/*
   1536      1.17     dante 	 * Set MEM_CFG Microcode Default Value
   1537      1.17     dante 	 *
   1538      1.17     dante 	 * The microcode will set the MEM_CFG register using this value
   1539      1.17     dante 	 * after it is started below.
   1540      1.17     dante 	 *
   1541      1.17     dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1542      1.17     dante 	 * are defined.
   1543      1.17     dante 	 *
   1544      1.17     dante 	 * ASC-38C1600 has 32KB internal memory.
   1545      1.17     dante 	 */
   1546      1.17     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
   1547      1.17     dante 						ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1548       1.7     dante 
   1549      1.17     dante 	return 0;
   1550       1.7     dante }
   1551       1.7     dante 
   1552       1.7     dante 
   1553       1.7     dante /*
   1554       1.7     dante  * Read EEPROM configuration into the specified buffer.
   1555       1.7     dante  *
   1556       1.7     dante  * Return a checksum based on the EEPROM configuration read.
   1557       1.7     dante  */
   1558       1.7     dante static u_int16_t
   1559      1.39       dsl AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1560       1.7     dante {
   1561       1.7     dante 	u_int16_t	       wval, chksum;
   1562       1.7     dante 	u_int16_t	       *wbuf;
   1563       1.7     dante 	int		    eep_addr;
   1564       1.7     dante 
   1565       1.7     dante 
   1566       1.7     dante 	wbuf = (u_int16_t *) cfg_buf;
   1567       1.7     dante 	chksum = 0;
   1568       1.7     dante 
   1569       1.7     dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1570      1.10     dante 		eep_addr < ASC_EEP_DVC_CFG_END;
   1571      1.10     dante 		eep_addr++, wbuf++) {
   1572      1.16     dante 		wval = AdwReadEEPWord(iot, ioh, eep_addr);
   1573       1.7     dante 		chksum += wval;
   1574       1.7     dante 		*wbuf = wval;
   1575       1.7     dante 	}
   1576       1.7     dante 
   1577      1.16     dante 	*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1578       1.7     dante 	wbuf++;
   1579       1.7     dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1580       1.7     dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1581       1.7     dante 			eep_addr++, wbuf++) {
   1582      1.16     dante 		*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
   1583       1.7     dante 	}
   1584       1.7     dante 
   1585       1.7     dante 	return chksum;
   1586       1.7     dante }
   1587       1.7     dante 
   1588       1.7     dante 
   1589       1.7     dante /*
   1590       1.7     dante  * Read the EEPROM from specified location
   1591       1.7     dante  */
   1592       1.7     dante static u_int16_t
   1593      1.39       dsl AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
   1594       1.7     dante {
   1595       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1596       1.7     dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1597      1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1598       1.7     dante 
   1599       1.7     dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1600       1.7     dante }
   1601       1.7     dante 
   1602       1.7     dante 
   1603       1.7     dante /*
   1604       1.7     dante  * Wait for EEPROM command to complete
   1605       1.7     dante  */
   1606       1.7     dante static void
   1607      1.39       dsl AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
   1608       1.7     dante {
   1609       1.7     dante 	int eep_delay_ms;
   1610       1.7     dante 
   1611       1.7     dante 
   1612       1.7     dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1613       1.7     dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1614       1.7     dante 				ASC_EEP_CMD_DONE) {
   1615       1.7     dante 			break;
   1616       1.7     dante 		}
   1617      1.16     dante 		AdwSleepMilliSecond(1);
   1618       1.7     dante 	}
   1619       1.7     dante 
   1620      1.36  christos 	(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1621       1.7     dante }
   1622       1.7     dante 
   1623       1.7     dante 
   1624       1.7     dante /*
   1625       1.7     dante  * Write the EEPROM from 'cfg_buf'.
   1626       1.7     dante  */
   1627       1.7     dante static void
   1628      1.39       dsl AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
   1629      1.10     dante {
   1630      1.10     dante 	u_int16_t *wbuf;
   1631      1.10     dante 	u_int16_t addr, chksum;
   1632      1.10     dante 
   1633      1.10     dante 
   1634      1.10     dante 	wbuf = (u_int16_t *) cfg_buf;
   1635      1.10     dante 	chksum = 0;
   1636      1.10     dante 
   1637      1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1638      1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1639      1.10     dante 
   1640      1.10     dante 	/*
   1641      1.10     dante 	 * Write EEPROM from word 0 to word 20
   1642      1.10     dante 	 */
   1643      1.10     dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1644      1.10     dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1645      1.10     dante 		chksum += *wbuf;
   1646      1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1647      1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1648      1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1649      1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1650      1.16     dante 		AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
   1651      1.10     dante 	}
   1652      1.10     dante 
   1653      1.10     dante 	/*
   1654      1.10     dante 	 * Write EEPROM checksum at word 21
   1655      1.10     dante 	 */
   1656      1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1657      1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1658      1.10     dante 			ASC_EEP_CMD_WRITE | addr);
   1659      1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1660      1.10     dante 	wbuf++;        /* skip over check_sum */
   1661      1.10     dante 
   1662      1.10     dante 	/*
   1663      1.10     dante 	 * Write EEPROM OEM name at words 22 to 29
   1664      1.10     dante 	 */
   1665      1.10     dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1666      1.10     dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1667      1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1668      1.10     dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1669      1.10     dante 				ASC_EEP_CMD_WRITE | addr);
   1670      1.16     dante 		AdwWaitEEPCmd(iot, ioh);
   1671      1.10     dante 	}
   1672      1.10     dante 
   1673      1.10     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1674      1.10     dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1675      1.16     dante 	AdwWaitEEPCmd(iot, ioh);
   1676      1.10     dante 
   1677      1.10     dante 	return;
   1678      1.10     dante }
   1679      1.10     dante 
   1680      1.10     dante 
   1681      1.10     dante /*
   1682      1.16     dante  * AdwExeScsiQueue() - Send a request to the RISC microcode program.
   1683       1.7     dante  *
   1684       1.7     dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1685       1.7     dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1686       1.7     dante  *   RISC to notify it a new command is ready to be executed.
   1687       1.1     dante  *
   1688       1.7     dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1689       1.7     dante  * set to SCSI_MAX_RETRY.
   1690       1.1     dante  *
   1691       1.7     dante  * Return:
   1692       1.7     dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1693       1.7     dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1694       1.7     dante  *                       request completes.
   1695       1.7     dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1696       1.7     dante  *                       host IC error.
   1697       1.1     dante  */
   1698       1.7     dante int
   1699      1.39       dsl AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   1700       1.1     dante {
   1701       1.7     dante 	bus_space_tag_t iot = sc->sc_iot;
   1702       1.7     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1703       1.7     dante 	ADW_CCB		*ccb;
   1704       1.7     dante 	u_int32_t	req_paddr;
   1705      1.10     dante 	ADW_CARRIER	*new_carrp;
   1706       1.7     dante 
   1707       1.7     dante 	/*
   1708       1.7     dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1709       1.7     dante 	 */
   1710       1.7     dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1711       1.7     dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1712       1.7     dante 		scsiq->done_status = QD_WITH_ERROR;
   1713       1.7     dante 		return ADW_ERROR;
   1714       1.7     dante 	}
   1715       1.7     dante 
   1716      1.10     dante 	/*
   1717      1.10     dante 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   1718      1.10     dante 	 */
   1719      1.33     perry 
   1720       1.7     dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1721       1.7     dante 
   1722       1.7     dante 	/*
   1723      1.16     dante 	 * Allocate a carrier and initialize fields.
   1724       1.7     dante 	 */
   1725       1.7     dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1726       1.7     dante 		return ADW_BUSY;
   1727       1.7     dante 	}
   1728      1.16     dante 	sc->carr_freelist = ADW_CARRIER_VADDR(sc,
   1729      1.12     dante 			ASC_GET_CARRP(new_carrp->next_ba));
   1730       1.7     dante 	sc->carr_pending_cnt++;
   1731       1.7     dante 
   1732       1.7     dante 	/*
   1733      1.12     dante 	 * Set the carrier to be a stopper by setting 'next_ba'
   1734       1.7     dante 	 * to the stopper value. The current stopper will be changed
   1735       1.7     dante 	 * below to point to the new stopper.
   1736       1.7     dante 	 */
   1737      1.22    briggs 	new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
   1738       1.7     dante 
   1739       1.7     dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1740       1.7     dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1741       1.7     dante 
   1742       1.7     dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1743      1.22    briggs 	scsiq->scsiq_rptr = htole32(req_paddr);
   1744       1.7     dante 
   1745       1.7     dante 	/*
   1746      1.12     dante 	 * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
   1747       1.7     dante 	 * order during initialization.
   1748       1.7     dante 	 */
   1749      1.12     dante 	scsiq->carr_ba = sc->icq_sp->carr_ba;
   1750      1.12     dante 	scsiq->carr_va = sc->icq_sp->carr_ba;
   1751       1.1     dante 
   1752       1.7     dante 	/*
   1753       1.7     dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1754       1.7     dante 	 * the microcode. The newly allocated stopper will become the new
   1755       1.7     dante 	 * stopper.
   1756       1.7     dante 	 */
   1757      1.22    briggs 	sc->icq_sp->areq_ba = htole32(req_paddr);
   1758       1.1     dante 
   1759       1.1     dante 	/*
   1760      1.12     dante 	 * Set the 'next_ba' pointer for the old stopper to be the
   1761       1.7     dante 	 * physical address of the new stopper. The RISC can only
   1762       1.7     dante 	 * follow physical addresses.
   1763       1.1     dante 	 */
   1764      1.12     dante 	sc->icq_sp->next_ba = new_carrp->carr_ba;
   1765       1.1     dante 
   1766      1.12     dante #if ADW_DEBUG
   1767      1.12     dante 	printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
   1768      1.12     dante 			sc->icq_sp->carr_id,
   1769      1.12     dante 			sc->icq_sp->carr_ba,
   1770      1.12     dante 			sc->icq_sp->areq_ba,
   1771      1.12     dante 			sc->icq_sp->next_ba);
   1772      1.12     dante #endif
   1773       1.1     dante 	/*
   1774       1.7     dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1775       1.1     dante 	 */
   1776       1.7     dante 	sc->icq_sp = new_carrp;
   1777      1.11     dante 
   1778      1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550 ||
   1779      1.16     dante 	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   1780       1.7     dante 		/*
   1781      1.10     dante 		 * Tickle the RISC to tell it to read its Command Queue Head
   1782      1.10     dante 		 * pointer.
   1783      1.10     dante 		 */
   1784      1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
   1785      1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550) {
   1786      1.10     dante 			/*
   1787      1.10     dante 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   1788      1.10     dante 			 * command 'clr_tickle_a' does not work unless the host
   1789      1.10     dante 			 * value is cleared.
   1790      1.10     dante 			 */
   1791      1.10     dante 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   1792      1.20    itojun 					ADW_TICKLE_NOP);
   1793      1.10     dante 		}
   1794      1.16     dante 	} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1795      1.10     dante 		/*
   1796      1.10     dante 		 * Notify the RISC a carrier is ready by writing the physical
   1797      1.10     dante 		 * address of the new carrier stopper to the COMMA register.
   1798       1.7     dante 		 */
   1799      1.10     dante 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   1800      1.22    briggs 				le32toh(new_carrp->carr_ba));
   1801       1.7     dante 	}
   1802       1.7     dante 
   1803      1.10     dante 	/*
   1804      1.10     dante 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   1805      1.10     dante 	 */
   1806      1.33     perry 
   1807       1.7     dante 	return ADW_SUCCESS;
   1808       1.1     dante }
   1809       1.1     dante 
   1810       1.7     dante 
   1811       1.7     dante void
   1812      1.39       dsl AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
   1813       1.1     dante {
   1814       1.7     dante 
   1815       1.7     dante 	/*
   1816       1.7     dante 	 * Reset Chip.
   1817       1.7     dante 	 */
   1818       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1819       1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1820      1.16     dante 	AdwSleepMilliSecond(100);
   1821       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1822       1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1823       1.1     dante }
   1824       1.1     dante 
   1825       1.7     dante 
   1826       1.1     dante /*
   1827       1.1     dante  * Reset SCSI Bus and purge all outstanding requests.
   1828       1.1     dante  *
   1829       1.1     dante  * Return Value:
   1830       1.7     dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   1831       1.7     dante  *      ADW_FALSE(0) -  Microcode command failed.
   1832       1.7     dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   1833       1.7     dante  *                      may be hung which requires driver recovery.
   1834       1.1     dante  */
   1835       1.1     dante int
   1836      1.39       dsl AdwResetCCB(ADW_SOFTC *sc)
   1837       1.1     dante {
   1838       1.7     dante 	int	    status;
   1839       1.7     dante 
   1840       1.7     dante 	/*
   1841       1.7     dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   1842       1.7     dante 	 * the SCSI Bus Reset signal.
   1843       1.7     dante 	 */
   1844      1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   1845      1.11     dante 	if (status != ADW_TRUE) {
   1846       1.7     dante 		return status;
   1847       1.7     dante 	}
   1848       1.7     dante 
   1849       1.7     dante 	/*
   1850       1.7     dante 	 * Delay for the specified SCSI Bus Reset hold time.
   1851       1.7     dante 	 *
   1852       1.7     dante 	 * The hold time delay is done on the host because the RISC has no
   1853       1.7     dante 	 * microsecond accurate timer.
   1854       1.7     dante 	 */
   1855      1.16     dante 	AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   1856       1.1     dante 
   1857       1.7     dante 	/*
   1858       1.7     dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   1859       1.7     dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   1860       1.7     dante 	 */
   1861      1.16     dante 	status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   1862      1.11     dante 	if (status != ADW_TRUE) {
   1863       1.7     dante 		return status;
   1864       1.7     dante 	}
   1865       1.1     dante 
   1866      1.16     dante 	AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   1867       1.1     dante 
   1868       1.1     dante 	return status;
   1869       1.1     dante }
   1870       1.1     dante 
   1871       1.7     dante 
   1872       1.1     dante /*
   1873       1.7     dante  * Reset chip and SCSI Bus.
   1874       1.7     dante  *
   1875       1.7     dante  * Return Value:
   1876       1.7     dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   1877       1.7     dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   1878       1.1     dante  */
   1879       1.7     dante int
   1880      1.39       dsl AdwResetSCSIBus(ADW_SOFTC *sc)
   1881       1.1     dante {
   1882       1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   1883       1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1884       1.7     dante 	int		status;
   1885      1.28  christos 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   1886      1.28  christos 	u_int16_t	ppr_able = 0; /* XXX: gcc */
   1887       1.7     dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   1888       1.7     dante 	u_int16_t	bios_sig;
   1889       1.7     dante 
   1890       1.7     dante 
   1891       1.7     dante 	/*
   1892       1.7     dante 	 * Save current per TID negotiated values.
   1893       1.7     dante 	 */
   1894      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1895      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1896      1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1897      1.16     dante 		ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1898      1.10     dante 	}
   1899      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1900      1.11     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1901      1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1902       1.7     dante 			max_cmd[tid]);
   1903       1.7     dante 	}
   1904       1.7     dante 
   1905       1.7     dante 	/*
   1906      1.17     dante 	 * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
   1907      1.17     dante 	 * by clearing the BIOS signature word.
   1908       1.7     dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   1909       1.7     dante 	 * needed if the BIOS signature word is present.
   1910       1.7     dante 	 */
   1911      1.16     dante 	ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1912      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
   1913       1.7     dante 
   1914       1.7     dante 	/*
   1915       1.7     dante 	 * Stop chip and reset it.
   1916       1.7     dante 	 */
   1917       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   1918       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1919       1.7     dante 			ADW_CTRL_REG_CMD_RESET);
   1920      1.16     dante 	AdwSleepMilliSecond(100);
   1921       1.7     dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1922       1.7     dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   1923       1.7     dante 
   1924       1.7     dante 	/*
   1925       1.7     dante 	 * Reset Adv Library error code, if any, and try
   1926       1.7     dante 	 * re-initializing the chip.
   1927      1.17     dante 	 * Then translate initialization return value to status value.
   1928       1.7     dante 	 */
   1929      1.17     dante 	status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
   1930       1.1     dante 
   1931       1.7     dante 	/*
   1932       1.7     dante 	 * Restore the BIOS signature word.
   1933       1.7     dante 	 */
   1934      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
   1935       1.1     dante 
   1936       1.1     dante 	/*
   1937       1.7     dante 	 * Restore per TID negotiated values.
   1938       1.1     dante 	 */
   1939      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
   1940      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
   1941      1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC38C1600) {
   1942      1.16     dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
   1943      1.10     dante 	}
   1944      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
   1945       1.7     dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1946      1.16     dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
   1947       1.7     dante 			max_cmd[tid]);
   1948       1.7     dante 	}
   1949       1.1     dante 
   1950       1.7     dante 	return status;
   1951       1.1     dante }
   1952       1.1     dante 
   1953       1.1     dante 
   1954       1.1     dante /*
   1955       1.1     dante  * Adv Library Interrupt Service Routine
   1956       1.1     dante  *
   1957       1.1     dante  *  This function is called by a driver's interrupt service routine.
   1958       1.1     dante  *  The function disables and re-enables interrupts.
   1959       1.1     dante  *
   1960       1.7     dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   1961       1.1     dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   1962       1.1     dante  *
   1963      1.16     dante  *  Note: AdwISR() can be called when interrupts are disabled or even
   1964       1.1     dante  *  when there is no hardware interrupt condition present. It will
   1965       1.1     dante  *  always check for completed idle commands and microcode requests.
   1966       1.1     dante  *  This is an important feature that shouldn't be changed because it
   1967       1.1     dante  *  allows commands to be completed from polling mode loops.
   1968       1.1     dante  *
   1969       1.1     dante  * Return:
   1970       1.1     dante  *   ADW_TRUE(1) - interrupt was pending
   1971       1.1     dante  *   ADW_FALSE(0) - no interrupt was pending
   1972       1.1     dante  */
   1973       1.1     dante int
   1974      1.39       dsl AdwISR(ADW_SOFTC *sc)
   1975       1.1     dante {
   1976       1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   1977       1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1978       1.7     dante 	u_int8_t	int_stat;
   1979       1.7     dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   1980       1.7     dante 	u_int32_t	irq_next_pa;
   1981       1.7     dante 	ADW_SCSI_REQ_Q	*scsiq;
   1982       1.7     dante 	ADW_CCB		*ccb;
   1983      1.11     dante 	int		s;
   1984      1.11     dante 
   1985       1.1     dante 
   1986      1.11     dante 	s = splbio();
   1987       1.1     dante 
   1988       1.1     dante 	/* Reading the register clears the interrupt. */
   1989       1.1     dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   1990       1.1     dante 
   1991       1.7     dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   1992       1.7     dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   1993      1.11     dante 		splx(s);
   1994       1.7     dante 		return ADW_FALSE;
   1995       1.1     dante 	}
   1996       1.7     dante 
   1997       1.7     dante 	/*
   1998       1.7     dante 	 * Notify the driver of an asynchronous microcode condition by
   1999       1.7     dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2000      1.16     dante 	 * is passed the microcode ADW_MC_INTRB_CODE byte value.
   2001       1.1     dante 	 */
   2002       1.7     dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2003       1.7     dante 		u_int8_t intrb_code;
   2004       1.7     dante 
   2005      1.16     dante 		ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
   2006      1.10     dante 
   2007      1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC3550 ||
   2008      1.16     dante 	    	    sc->chip_type == ADW_CHIP_ASC38C0800) {
   2009      1.10     dante 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2010      1.10     dante 				sc->carr_pending_cnt != 0) {
   2011      1.10     dante 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2012      1.20    itojun 					IOPB_TICKLE, ADW_TICKLE_A);
   2013      1.16     dante 				if (sc->chip_type == ADW_CHIP_ASC3550) {
   2014      1.10     dante 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2015      1.20    itojun 						IOPB_TICKLE, ADW_TICKLE_NOP);
   2016      1.10     dante 				}
   2017      1.10     dante 			}
   2018       1.7     dante 		}
   2019       1.7     dante 
   2020       1.7     dante 		if (sc->async_callback != 0) {
   2021       1.7     dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2022       1.1     dante 		}
   2023       1.1     dante 	}
   2024       1.7     dante 
   2025       1.1     dante 	/*
   2026       1.7     dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2027       1.1     dante 	 */
   2028      1.22    briggs 	while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
   2029       1.7     dante 	{
   2030      1.12     dante #if ADW_DEBUG
   2031      1.12     dante 		printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
   2032      1.12     dante 				sc->irq_sp->carr_id,
   2033      1.12     dante 				sc->irq_sp->carr_ba,
   2034      1.12     dante 				sc->irq_sp->areq_ba,
   2035      1.12     dante 				sc->irq_sp->next_ba);
   2036      1.12     dante #endif
   2037       1.7     dante 		/*
   2038      1.10     dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   2039      1.10     dante 		 * structure.
   2040      1.12     dante 		 * The RISC will have set 'areq_ba' to a virtual address.
   2041       1.7     dante 		 *
   2042       1.7     dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2043      1.12     dante 		 * field to the carrier ADV_CARR_T.areq_ba field.
   2044      1.10     dante 		 * The conversion below complements the conversion of
   2045      1.16     dante 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
   2046       1.7     dante 		 */
   2047      1.12     dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
   2048       1.7     dante 		scsiq = &ccb->scsiq;
   2049      1.12     dante 		scsiq->ccb_ptr = sc->irq_sp->areq_ba;
   2050       1.7     dante 
   2051      1.10     dante 		/*
   2052      1.10     dante 		 * Request finished with good status and the queue was not
   2053      1.10     dante 		 * DMAed to host memory by the firmware. Set all status fields
   2054      1.10     dante 		 * to indicate good status.
   2055      1.10     dante 		 */
   2056      1.22    briggs 		if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
   2057      1.10     dante 			scsiq->done_status = QD_NO_ERROR;
   2058      1.10     dante 			scsiq->host_status = scsiq->scsi_status = 0;
   2059      1.10     dante 			scsiq->data_cnt = 0L;
   2060       1.7     dante 		}
   2061       1.1     dante 
   2062       1.1     dante 		/*
   2063       1.7     dante 		 * Advance the stopper pointer to the next carrier
   2064       1.7     dante 		 * ignoring the lower four bits. Free the previous
   2065       1.7     dante 		 * stopper carrier.
   2066       1.1     dante 		 */
   2067       1.7     dante 		free_carrp = sc->irq_sp;
   2068      1.16     dante 		sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
   2069       1.7     dante 
   2070      1.26      fvdl 		free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
   2071      1.16     dante 					: sc->carr_freelist->carr_ba;
   2072       1.7     dante 		sc->carr_freelist = free_carrp;
   2073       1.7     dante 		sc->carr_pending_cnt--;
   2074       1.1     dante 
   2075       1.1     dante 		/*
   2076       1.1     dante 		 * Clear request microcode control flag.
   2077       1.1     dante 		 */
   2078       1.1     dante 		scsiq->cntl = 0;
   2079       1.1     dante 
   2080       1.1     dante 		/*
   2081       1.1     dante 		 * Check Condition handling
   2082       1.1     dante 		 */
   2083       1.1     dante 		/*
   2084       1.1     dante 		 * If the command that completed was a SCSI INQUIRY and
   2085       1.1     dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2086       1.1     dante 		 * command information for the device.
   2087       1.1     dante 		 */
   2088       1.7     dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2089      1.10     dante 		    scsiq->cdb[0] == INQUIRY &&
   2090      1.10     dante 		    scsiq->target_lun == 0) {
   2091      1.16     dante 			AdwInquiryHandling(sc, scsiq);
   2092       1.1     dante 		}
   2093       1.1     dante 
   2094       1.1     dante 		/*
   2095       1.1     dante 		 * Notify the driver of the completed request by passing
   2096       1.1     dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2097       1.1     dante 		 */
   2098       1.7     dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2099       1.1     dante 		/*
   2100       1.1     dante 		 * Note: After the driver callback function is called, 'scsiq'
   2101       1.1     dante 		 * can no longer be referenced.
   2102       1.1     dante 		 *
   2103       1.1     dante 		 * Fall through and continue processing other completed
   2104       1.1     dante 		 * requests...
   2105       1.1     dante 		 */
   2106       1.1     dante 	}
   2107      1.11     dante 
   2108      1.11     dante 	splx(s);
   2109       1.7     dante 
   2110       1.7     dante 	return ADW_TRUE;
   2111       1.1     dante }
   2112       1.1     dante 
   2113       1.7     dante 
   2114       1.1     dante /*
   2115       1.1     dante  * Send an idle command to the chip and wait for completion.
   2116       1.1     dante  *
   2117       1.7     dante  * Command completion is polled for once per microsecond.
   2118       1.7     dante  *
   2119       1.7     dante  * The function can be called from anywhere including an interrupt handler.
   2120      1.10     dante  * But the function is not re-entrant, so it uses the splbio/splx()
   2121       1.7     dante  * functions to prevent reentrancy.
   2122       1.1     dante  *
   2123       1.1     dante  * Return Values:
   2124       1.1     dante  *   ADW_TRUE - command completed successfully
   2125       1.1     dante  *   ADW_FALSE - command failed
   2126       1.7     dante  *   ADW_ERROR - command timed out
   2127       1.1     dante  */
   2128       1.1     dante int
   2129      1.39       dsl AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
   2130       1.1     dante {
   2131       1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2132       1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2133      1.13     dante 	u_int16_t	result;
   2134      1.10     dante 	u_int32_t	i, j, s;
   2135       1.1     dante 
   2136      1.10     dante 	s = splbio();
   2137       1.7     dante 
   2138       1.7     dante 	/*
   2139       1.7     dante 	 * Clear the idle command status which is set by the microcode
   2140       1.7     dante 	 * to a non-zero value to indicate when the command is completed.
   2141       1.7     dante 	 */
   2142      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2143       1.1     dante 
   2144       1.1     dante 	/*
   2145       1.1     dante 	 * Write the idle command value after the idle command parameter
   2146       1.1     dante 	 * has been written to avoid a race condition. If the order is not
   2147       1.1     dante 	 * followed, the microcode may process the idle command before the
   2148       1.1     dante 	 * parameters have been written to LRAM.
   2149       1.1     dante 	 */
   2150      1.16     dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
   2151      1.13     dante 			idle_cmd_parameter);
   2152      1.16     dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
   2153       1.1     dante 
   2154       1.1     dante 	/*
   2155       1.7     dante 	 * Tickle the RISC to tell it to process the idle command.
   2156       1.1     dante 	 */
   2157      1.20    itojun 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
   2158      1.16     dante 	if (sc->chip_type == ADW_CHIP_ASC3550) {
   2159       1.1     dante 		/*
   2160       1.7     dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2161       1.7     dante 		 * command 'clr_tickle_b' does not work unless the host
   2162       1.7     dante 		 * value is cleared.
   2163       1.1     dante 		 */
   2164      1.20    itojun 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
   2165       1.7     dante 	}
   2166       1.1     dante 
   2167       1.7     dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2168       1.7     dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2169       1.7     dante 		/* Poll once each microsecond for command completion. */
   2170       1.7     dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2171      1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
   2172      1.17     dante 									result);
   2173       1.7     dante 			if (result != 0) {
   2174      1.10     dante 				splx(s);
   2175       1.7     dante 				return result;
   2176       1.7     dante 			}
   2177      1.16     dante 			AdwDelayMicroSecond(1);
   2178       1.7     dante 		}
   2179       1.1     dante 	}
   2180       1.1     dante 
   2181      1.10     dante 	splx(s);
   2182       1.7     dante 	return ADW_ERROR;
   2183       1.1     dante }
   2184       1.1     dante 
   2185       1.1     dante 
   2186       1.1     dante /*
   2187       1.1     dante  * Inquiry Information Byte 7 Handling
   2188       1.1     dante  *
   2189       1.1     dante  * Handle SCSI Inquiry Command information for a device by setting
   2190       1.2     dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2191       1.1     dante  * Queuing.
   2192       1.1     dante  */
   2193       1.1     dante static void
   2194      1.39       dsl AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
   2195       1.1     dante {
   2196       1.9     dante #ifndef FAILSAFE
   2197       1.2     dante 	bus_space_tag_t iot = sc->sc_iot;
   2198       1.2     dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2199       1.7     dante 	u_int8_t		tid;
   2200      1.13     dante 	struct scsipi_inquiry_data *inq;
   2201       1.7     dante 	u_int16_t		tidmask;
   2202       1.7     dante 	u_int16_t		cfg_word;
   2203       1.7     dante 
   2204       1.1     dante 
   2205       1.1     dante 	/*
   2206      1.16     dante 	 * AdwInquiryHandling() requires up to INQUIRY information Byte 7
   2207       1.1     dante 	 * to be available.
   2208       1.1     dante 	 *
   2209       1.1     dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2210       1.1     dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2211       1.1     dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2212       1.1     dante 	 * microcode to the transfer residual count.
   2213       1.1     dante 	 */
   2214       1.7     dante 
   2215       1.2     dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2216       1.1     dante 		return;
   2217       1.1     dante 	}
   2218       1.7     dante 
   2219       1.1     dante 	tid = scsiq->target_id;
   2220       1.7     dante 
   2221      1.13     dante 	inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
   2222       1.1     dante 
   2223       1.1     dante 	/*
   2224       1.1     dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2225       1.1     dante 	 */
   2226      1.13     dante 	if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
   2227      1.13     dante 	    ((inq->version & SID_ANSII) < 2)) {
   2228       1.1     dante 		return;
   2229       1.2     dante 	} else {
   2230       1.1     dante 		/*
   2231       1.1     dante 		 * INQUIRY Byte 7 Handling
   2232       1.1     dante 		 *
   2233       1.1     dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2234       1.1     dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2235       1.1     dante 		 * is enabled in the EEPROM and the device supports the
   2236       1.1     dante 		 * feature, then enable it in the microcode.
   2237       1.1     dante 		 */
   2238       1.1     dante 
   2239       1.1     dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2240       1.7     dante 
   2241       1.1     dante 		/*
   2242       1.1     dante 		 * Wide Transfers
   2243       1.1     dante 		 *
   2244       1.1     dante 		 * If the EEPROM enabled WDTR for the device and the device
   2245       1.1     dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2246       1.1     dante 		 * device's 'wdtr_able' bit and write the new value to the
   2247       1.1     dante 		 * microcode.
   2248       1.1     dante 		 */
   2249       1.7     dante #ifdef SCSI_ADW_WDTR_DISABLE
   2250       1.8     dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2251       1.7     dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2252      1.13     dante 		if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
   2253      1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2254       1.7     dante 					cfg_word);
   2255       1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2256       1.1     dante 				cfg_word |= tidmask;
   2257      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
   2258       1.7     dante 						cfg_word);
   2259       1.1     dante 
   2260       1.1     dante 				/*
   2261      1.16     dante 				 * Clear the microcode "SDTR negotiation" and
   2262      1.16     dante 				 * "WDTR negotiation" done indicators for the
   2263      1.16     dante 				 * target to cause it to negotiate with the new
   2264      1.16     dante 				 * setting set above.
   2265       1.7     dante 				 * WDTR when accepted causes the target to enter
   2266      1.16     dante 				 * asynchronous mode, so SDTR must be negotiated
   2267       1.1     dante 				 */
   2268      1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2269       1.7     dante 						cfg_word);
   2270       1.7     dante 				cfg_word &= ~tidmask;
   2271      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2272       1.7     dante 						cfg_word);
   2273      1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2274       1.7     dante 						cfg_word);
   2275       1.1     dante 				cfg_word &= ~tidmask;
   2276      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
   2277       1.7     dante 						cfg_word);
   2278       1.1     dante 			}
   2279       1.1     dante 		}
   2280       1.7     dante 
   2281       1.1     dante 		/*
   2282       1.1     dante 		 * Synchronous Transfers
   2283       1.1     dante 		 *
   2284       1.1     dante 		 * If the EEPROM enabled SDTR for the device and the device
   2285       1.1     dante 		 * supports synchronous transfers, then turn on the device's
   2286       1.1     dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2287       1.1     dante 		 */
   2288       1.7     dante #ifdef SCSI_ADW_SDTR_DISABLE
   2289       1.8     dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2290       1.7     dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2291      1.13     dante 		if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
   2292      1.17     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
   2293       1.2     dante 			if ((cfg_word & tidmask) == 0) {
   2294       1.1     dante 				cfg_word |= tidmask;
   2295      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
   2296       1.7     dante 						cfg_word);
   2297       1.1     dante 
   2298       1.1     dante 				/*
   2299      1.16     dante 				 * Clear the microcode "SDTR negotiation"
   2300      1.16     dante 				 * done indicator for the target to cause it
   2301      1.16     dante 				 * to negotiate with the new setting set above.
   2302       1.1     dante 				 */
   2303      1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2304       1.7     dante 						cfg_word);
   2305       1.1     dante 				cfg_word &= ~tidmask;
   2306      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
   2307       1.7     dante 						cfg_word);
   2308      1.10     dante 			}
   2309      1.10     dante 		}
   2310      1.10     dante 		/*
   2311      1.10     dante 		 * If the Inquiry data included enough space for the SPI-3
   2312      1.10     dante 		 * Clocking field, then check if DT mode is supported.
   2313      1.10     dante 		 */
   2314      1.16     dante 		if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
   2315      1.17     dante 		   (scsiq->cdb[4] >= 57 ||
   2316      1.17     dante 		   (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   2317      1.10     dante 			/*
   2318      1.10     dante 			 * PPR (Parallel Protocol Request) Capable
   2319      1.10     dante 			 *
   2320      1.10     dante 			 * If the device supports DT mode, then it must be
   2321      1.10     dante 			 * PPR capable.
   2322      1.10     dante 			 * The PPR message will be used in place of the SDTR
   2323      1.10     dante 			 * and WDTR messages to negotiate synchronous speed
   2324      1.10     dante 			 * and offset, transfer width, and protocol options.
   2325      1.10     dante 			 */
   2326      1.15     dante 			if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
   2327      1.16     dante 				ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2328      1.10     dante 						sc->ppr_able);
   2329      1.10     dante 				sc->ppr_able |= tidmask;
   2330      1.16     dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
   2331      1.10     dante 						sc->ppr_able);
   2332       1.1     dante 			}
   2333       1.1     dante 		}
   2334       1.7     dante 
   2335       1.1     dante 		/*
   2336       1.7     dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2337       1.7     dante 		 * device supports Tag Queueing, then turn on the device's
   2338       1.1     dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2339       1.7     dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2340       1.1     dante 		 * value.
   2341       1.1     dante 		 *
   2342       1.1     dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2343       1.1     dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2344       1.1     dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2345       1.1     dante 		 * bugs will at least work with the BIOS.
   2346       1.1     dante 		 */
   2347       1.7     dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2348       1.8     dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2349       1.7     dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2350      1.13     dante 		if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
   2351      1.16     dante 			ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2352       1.7     dante 					cfg_word);
   2353       1.1     dante 			cfg_word |= tidmask;
   2354      1.16     dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
   2355       1.7     dante 					cfg_word);
   2356       1.7     dante 
   2357       1.1     dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2358      1.16     dante 					ADW_MC_NUMBER_OF_MAX_CMD + tid,
   2359       1.7     dante 					sc->max_dvc_qng);
   2360       1.1     dante 		}
   2361       1.9     dante 	}
   2362       1.7     dante #endif /* FAILSAFE */
   2363       1.1     dante }
   2364       1.1     dante 
   2365       1.7     dante 
   2366       1.1     dante static void
   2367      1.39       dsl AdwSleepMilliSecond(u_int32_t n)
   2368       1.1     dante {
   2369       1.1     dante 
   2370       1.1     dante 	DELAY(n * 1000);
   2371       1.1     dante }
   2372       1.1     dante 
   2373       1.7     dante 
   2374       1.1     dante static void
   2375      1.39       dsl AdwDelayMicroSecond(u_int32_t n)
   2376       1.1     dante {
   2377       1.1     dante 
   2378       1.1     dante 	DELAY(n);
   2379       1.1     dante }
   2380       1.7     dante 
   2381