adwlib.c revision 1.5.2.1 1 1.5.2.1 bouyer /* $NetBSD: adwlib.c,v 1.5.2.1 2000/11/20 11:40:08 bouyer Exp $ */
2 1.1 dante
3 1.1 dante /*
4 1.1 dante * Low level routines for the Advanced Systems Inc. SCSI controllers chips
5 1.1 dante *
6 1.5.2.1 bouyer * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
7 1.1 dante * All rights reserved.
8 1.1 dante *
9 1.1 dante * Author: Baldassare Dante Profeta <dante (at) mclink.it>
10 1.1 dante *
11 1.1 dante * Redistribution and use in source and binary forms, with or without
12 1.1 dante * modification, are permitted provided that the following conditions
13 1.1 dante * are met:
14 1.1 dante * 1. Redistributions of source code must retain the above copyright
15 1.1 dante * notice, this list of conditions and the following disclaimer.
16 1.1 dante * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 dante * notice, this list of conditions and the following disclaimer in the
18 1.1 dante * documentation and/or other materials provided with the distribution.
19 1.1 dante * 3. All advertising materials mentioning features or use of this software
20 1.1 dante * must display the following acknowledgement:
21 1.1 dante * This product includes software developed by the NetBSD
22 1.1 dante * Foundation, Inc. and its contributors.
23 1.1 dante * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 dante * contributors may be used to endorse or promote products derived
25 1.1 dante * from this software without specific prior written permission.
26 1.1 dante *
27 1.1 dante * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 dante * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 dante * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 dante * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 dante * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 dante * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 dante * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 dante * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 dante * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 dante * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 dante * POSSIBILITY OF SUCH DAMAGE.
38 1.1 dante */
39 1.1 dante /*
40 1.1 dante * Ported from:
41 1.1 dante */
42 1.1 dante /*
43 1.1 dante * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
44 1.5.2.1 bouyer *
45 1.5.2.1 bouyer * Copyright (c) 1995-2000 Advanced System Products, Inc.
46 1.1 dante * All Rights Reserved.
47 1.1 dante *
48 1.1 dante * Redistribution and use in source and binary forms, with or without
49 1.1 dante * modification, are permitted provided that redistributions of source
50 1.1 dante * code retain the above copyright notice and this comment without
51 1.1 dante * modification.
52 1.1 dante */
53 1.1 dante
54 1.1 dante #include <sys/types.h>
55 1.1 dante #include <sys/param.h>
56 1.1 dante #include <sys/systm.h>
57 1.1 dante #include <sys/malloc.h>
58 1.1 dante #include <sys/kernel.h>
59 1.1 dante #include <sys/queue.h>
60 1.1 dante #include <sys/device.h>
61 1.1 dante
62 1.1 dante #include <machine/bus.h>
63 1.1 dante #include <machine/intr.h>
64 1.1 dante
65 1.1 dante #include <dev/scsipi/scsi_all.h>
66 1.1 dante #include <dev/scsipi/scsipi_all.h>
67 1.1 dante #include <dev/scsipi/scsiconf.h>
68 1.1 dante
69 1.5.2.1 bouyer #include <dev/pci/pcidevs.h>
70 1.5.2.1 bouyer
71 1.5.2.1 bouyer #include <uvm/uvm_extern.h>
72 1.1 dante
73 1.1 dante #include <dev/ic/adwlib.h>
74 1.1 dante #include <dev/ic/adwmcode.h>
75 1.5.2.1 bouyer #include <dev/ic/adw.h>
76 1.1 dante
77 1.1 dante
78 1.1 dante /* Static Functions */
79 1.1 dante
80 1.5.2.1 bouyer int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
81 1.5.2.1 bouyer int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
82 1.5.2.1 bouyer u_int8_t));
83 1.5.2.1 bouyer int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
84 1.5.2.1 bouyer int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
85 1.5.2.1 bouyer ADW_DVC_CFG *));
86 1.5.2.1 bouyer int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
87 1.5.2.1 bouyer ADW_DVC_CFG *));
88 1.5.2.1 bouyer
89 1.5.2.1 bouyer static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
90 1.5.2.1 bouyer ADW_EEPROM *));
91 1.5.2.1 bouyer static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
92 1.5.2.1 bouyer ADW_EEPROM *));
93 1.5.2.1 bouyer static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
94 1.5.2.1 bouyer static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
95 1.1 dante
96 1.5.2.1 bouyer static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
97 1.5.2.1 bouyer
98 1.5.2.1 bouyer static void AdwSleepMilliSecond __P((u_int32_t));
99 1.5.2.1 bouyer static void AdwDelayMicroSecond __P((u_int32_t));
100 1.1 dante
101 1.1 dante
102 1.1 dante /*
103 1.1 dante * EEPROM Configuration.
104 1.1 dante *
105 1.1 dante * All drivers should use this structure to set the default EEPROM
106 1.1 dante * configuration. The BIOS now uses this structure when it is built.
107 1.5.2.1 bouyer * Additional structure information can be found in adwlib.h where
108 1.1 dante * the structure is defined.
109 1.1 dante */
110 1.5.2.1 bouyer const static ADW_EEPROM adw_3550_Default_EEPROM = {
111 1.5.2.1 bouyer ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
112 1.5.2.1 bouyer 0x0000, /* 01 cfg_msw */
113 1.5.2.1 bouyer 0xFFFF, /* 02 disc_enable */
114 1.5.2.1 bouyer 0xFFFF, /* 03 wdtr_able */
115 1.5.2.1 bouyer { 0xFFFF }, /* 04 sdtr_able */
116 1.5.2.1 bouyer 0xFFFF, /* 05 start_motor */
117 1.5.2.1 bouyer 0xFFFF, /* 06 tagqng_able */
118 1.5.2.1 bouyer 0xFFFF, /* 07 bios_scan */
119 1.5.2.1 bouyer 0, /* 08 scam_tolerant */
120 1.5.2.1 bouyer 7, /* 09 adapter_scsi_id */
121 1.5.2.1 bouyer 0, /* bios_boot_delay */
122 1.5.2.1 bouyer 3, /* 10 scsi_reset_delay */
123 1.5.2.1 bouyer 0, /* bios_id_lun */
124 1.5.2.1 bouyer 0, /* 11 termination */
125 1.5.2.1 bouyer 0, /* reserved1 */
126 1.5.2.1 bouyer 0xFFE7, /* 12 bios_ctrl */
127 1.5.2.1 bouyer { 0xFFFF }, /* 13 ultra_able */
128 1.5.2.1 bouyer { 0 }, /* 14 reserved2 */
129 1.5.2.1 bouyer ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
130 1.5.2.1 bouyer ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
131 1.5.2.1 bouyer 0, /* 16 dvc_cntl */
132 1.5.2.1 bouyer { 0 }, /* 17 bug_fix */
133 1.5.2.1 bouyer { 0,0,0 }, /* 18-20 serial_number[3] */
134 1.5.2.1 bouyer 0, /* 21 check_sum */
135 1.5.2.1 bouyer { /* 22-29 oem_name[16] */
136 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,
137 1.5.2.1 bouyer 0,0,0,0,0,0,0,0
138 1.5.2.1 bouyer },
139 1.5.2.1 bouyer 0, /* 30 dvc_err_code */
140 1.5.2.1 bouyer 0, /* 31 adv_err_code */
141 1.5.2.1 bouyer 0, /* 32 adv_err_addr */
142 1.5.2.1 bouyer 0, /* 33 saved_dvc_err_code */
143 1.5.2.1 bouyer 0, /* 34 saved_adv_err_code */
144 1.5.2.1 bouyer 0 /* 35 saved_adv_err_addr */
145 1.5.2.1 bouyer };
146 1.5.2.1 bouyer
147 1.5.2.1 bouyer const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
148 1.5.2.1 bouyer ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
149 1.5.2.1 bouyer 0x0000, /* 01 cfg_msw */
150 1.5.2.1 bouyer 0xFFFF, /* 02 disc_enable */
151 1.5.2.1 bouyer 0xFFFF, /* 03 wdtr_able */
152 1.5.2.1 bouyer { 0x4444 }, /* 04 sdtr_speed1 */
153 1.5.2.1 bouyer 0xFFFF, /* 05 start_motor */
154 1.5.2.1 bouyer 0xFFFF, /* 06 tagqng_able */
155 1.5.2.1 bouyer 0xFFFF, /* 07 bios_scan */
156 1.5.2.1 bouyer 0, /* 08 scam_tolerant */
157 1.5.2.1 bouyer 7, /* 09 adapter_scsi_id */
158 1.5.2.1 bouyer 0, /* bios_boot_delay */
159 1.5.2.1 bouyer 3, /* 10 scsi_reset_delay */
160 1.5.2.1 bouyer 0, /* bios_id_lun */
161 1.5.2.1 bouyer 0, /* 11 termination_se */
162 1.5.2.1 bouyer 0, /* termination_lvd */
163 1.5.2.1 bouyer 0xFFE7, /* 12 bios_ctrl */
164 1.5.2.1 bouyer { 0x4444 }, /* 13 sdtr_speed2 */
165 1.5.2.1 bouyer { 0x4444 }, /* 14 sdtr_speed3 */
166 1.5.2.1 bouyer ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
167 1.5.2.1 bouyer ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
168 1.5.2.1 bouyer 0, /* 16 dvc_cntl */
169 1.5.2.1 bouyer { 0x4444 }, /* 17 sdtr_speed4 */
170 1.5.2.1 bouyer { 0,0,0 }, /* 18-20 serial_number[3] */
171 1.5.2.1 bouyer 0, /* 21 check_sum */
172 1.5.2.1 bouyer { /* 22-29 oem_name[16] */
173 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,
174 1.5.2.1 bouyer 0,0,0,0,0,0,0,0
175 1.5.2.1 bouyer },
176 1.5.2.1 bouyer 0, /* 30 dvc_err_code */
177 1.5.2.1 bouyer 0, /* 31 adv_err_code */
178 1.5.2.1 bouyer 0, /* 32 adv_err_addr */
179 1.5.2.1 bouyer 0, /* 33 saved_dvc_err_code */
180 1.5.2.1 bouyer 0, /* 34 saved_adv_err_code */
181 1.5.2.1 bouyer 0, /* 35 saved_adv_err_addr */
182 1.5.2.1 bouyer { /* 36-55 reserved1[16] */
183 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,0,0,
184 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,0,0
185 1.5.2.1 bouyer },
186 1.5.2.1 bouyer 0, /* 56 cisptr_lsw */
187 1.5.2.1 bouyer 0, /* 57 cisprt_msw */
188 1.5.2.1 bouyer PCI_VENDOR_ADVSYS, /* 58 subsysvid */
189 1.5.2.1 bouyer PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
190 1.5.2.1 bouyer { 0,0,0,0 } /* 60-63 reserved2[4] */
191 1.5.2.1 bouyer };
192 1.5.2.1 bouyer
193 1.5.2.1 bouyer const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
194 1.5.2.1 bouyer ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
195 1.5.2.1 bouyer 0x0000, /* 01 cfg_msw */
196 1.5.2.1 bouyer 0xFFFF, /* 02 disc_enable */
197 1.5.2.1 bouyer 0xFFFF, /* 03 wdtr_able */
198 1.5.2.1 bouyer { 0x5555 }, /* 04 sdtr_speed1 */
199 1.5.2.1 bouyer 0xFFFF, /* 05 start_motor */
200 1.5.2.1 bouyer 0xFFFF, /* 06 tagqng_able */
201 1.5.2.1 bouyer 0xFFFF, /* 07 bios_scan */
202 1.5.2.1 bouyer 0, /* 08 scam_tolerant */
203 1.5.2.1 bouyer 7, /* 09 adapter_scsi_id */
204 1.5.2.1 bouyer 0, /* bios_boot_delay */
205 1.5.2.1 bouyer 3, /* 10 scsi_reset_delay */
206 1.5.2.1 bouyer 0, /* bios_id_lun */
207 1.5.2.1 bouyer 0, /* 11 termination_se */
208 1.5.2.1 bouyer 0, /* termination_lvd */
209 1.5.2.1 bouyer 0xFFE7, /* 12 bios_ctrl */
210 1.5.2.1 bouyer { 0x5555 }, /* 13 sdtr_speed2 */
211 1.5.2.1 bouyer { 0x5555 }, /* 14 sdtr_speed3 */
212 1.5.2.1 bouyer ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
213 1.5.2.1 bouyer ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
214 1.5.2.1 bouyer 0, /* 16 dvc_cntl */
215 1.5.2.1 bouyer { 0x5555 }, /* 17 sdtr_speed4 */
216 1.5.2.1 bouyer { 0,0,0 }, /* 18-20 serial_number[3] */
217 1.5.2.1 bouyer 0, /* 21 check_sum */
218 1.5.2.1 bouyer { /* 22-29 oem_name[16] */
219 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,
220 1.5.2.1 bouyer 0,0,0,0,0,0,0,0
221 1.5.2.1 bouyer },
222 1.5.2.1 bouyer 0, /* 30 dvc_err_code */
223 1.5.2.1 bouyer 0, /* 31 adv_err_code */
224 1.5.2.1 bouyer 0, /* 32 adv_err_addr */
225 1.5.2.1 bouyer 0, /* 33 saved_dvc_err_code */
226 1.5.2.1 bouyer 0, /* 34 saved_adv_err_code */
227 1.5.2.1 bouyer 0, /* 35 saved_adv_err_addr */
228 1.5.2.1 bouyer { /* 36-55 reserved1[16] */
229 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,0,0,
230 1.5.2.1 bouyer 0,0,0,0,0,0,0,0,0,0
231 1.5.2.1 bouyer },
232 1.5.2.1 bouyer 0, /* 56 cisptr_lsw */
233 1.5.2.1 bouyer 0, /* 57 cisprt_msw */
234 1.5.2.1 bouyer PCI_VENDOR_ADVSYS, /* 58 subsysvid */
235 1.5.2.1 bouyer PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
236 1.5.2.1 bouyer { 0,0,0,0 } /* 60-63 reserved2[4] */
237 1.1 dante };
238 1.1 dante
239 1.5.2.1 bouyer
240 1.1 dante /*
241 1.5.2.1 bouyer * Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
242 1.5.2.1 bouyer * ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
243 1.5.2.1 bouyer * all of this is done.
244 1.1 dante *
245 1.1 dante * For a non-fatal error return a warning code. If there are no warnings
246 1.1 dante * then 0 is returned.
247 1.5.2.1 bouyer *
248 1.5.2.1 bouyer * Note: Chip is stopped on entry.
249 1.1 dante */
250 1.1 dante int
251 1.5.2.1 bouyer AdwInitFromEEPROM(sc)
252 1.2 dante ADW_SOFTC *sc;
253 1.1 dante {
254 1.2 dante bus_space_tag_t iot = sc->sc_iot;
255 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
256 1.5.2.1 bouyer ADW_EEPROM eep_config;
257 1.5.2.1 bouyer u_int16_t warn_code;
258 1.5.2.1 bouyer u_int16_t sdtr_speed = 0;
259 1.5.2.1 bouyer u_int8_t tid, termination;
260 1.5.2.1 bouyer int i, j;
261 1.1 dante
262 1.1 dante
263 1.1 dante warn_code = 0;
264 1.1 dante
265 1.1 dante /*
266 1.5.2.1 bouyer * Read the board's EEPROM configuration.
267 1.1 dante *
268 1.5.2.1 bouyer * Set default values if a bad checksum is found.
269 1.5.2.1 bouyer *
270 1.5.2.1 bouyer * XXX - Don't handle big-endian access to EEPROM yet.
271 1.1 dante */
272 1.5.2.1 bouyer if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
273 1.5.2.1 bouyer warn_code |= ADW_WARN_EEPROM_CHKSUM;
274 1.5.2.1 bouyer
275 1.5.2.1 bouyer /*
276 1.5.2.1 bouyer * Set EEPROM default values.
277 1.5.2.1 bouyer */
278 1.5.2.1 bouyer switch(sc->chip_type) {
279 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
280 1.5.2.1 bouyer eep_config = adw_3550_Default_EEPROM;
281 1.5.2.1 bouyer break;
282 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
283 1.5.2.1 bouyer eep_config = adw_38C0800_Default_EEPROM;
284 1.5.2.1 bouyer break;
285 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
286 1.5.2.1 bouyer eep_config = adw_38C1600_Default_EEPROM;
287 1.5.2.1 bouyer
288 1.5.2.1 bouyer // XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
289 1.5.2.1 bouyer if (sc->cfg.pci_slot_info != 0) {
290 1.5.2.1 bouyer u_int8_t lsw_msb;
291 1.1 dante
292 1.5.2.1 bouyer lsw_msb = eep_config.cfg_lsw >> 8;
293 1.5.2.1 bouyer /*
294 1.5.2.1 bouyer * Set Function 1 EEPROM Word 0 MSB
295 1.5.2.1 bouyer *
296 1.5.2.1 bouyer * Clear the BIOS_ENABLE (bit 14) and
297 1.5.2.1 bouyer * INTAB (bit 11) EEPROM bits.
298 1.5.2.1 bouyer *
299 1.5.2.1 bouyer * Disable Bit 14 (BIOS_ENABLE) to fix
300 1.5.2.1 bouyer * SPARC Ultra 60 and old Mac system booting
301 1.5.2.1 bouyer * problem. The Expansion ROM must
302 1.5.2.1 bouyer * be disabled in Function 1 for these systems.
303 1.5.2.1 bouyer */
304 1.5.2.1 bouyer lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
305 1.5.2.1 bouyer ADW_EEPROM_INTAB) >> 8) & 0xFF);
306 1.5.2.1 bouyer /*
307 1.5.2.1 bouyer * Set the INTAB (bit 11) if the GPIO 0 input
308 1.5.2.1 bouyer * indicates the Function 1 interrupt line is
309 1.5.2.1 bouyer * wired to INTA.
310 1.5.2.1 bouyer *
311 1.5.2.1 bouyer * Set/Clear Bit 11 (INTAB) from
312 1.5.2.1 bouyer * the GPIO bit 0 input:
313 1.5.2.1 bouyer * 1 - Function 1 intr line wired to INT A.
314 1.5.2.1 bouyer * 0 - Function 1 intr line wired to INT B.
315 1.5.2.1 bouyer *
316 1.5.2.1 bouyer * Note: Adapter boards always have Function 0
317 1.5.2.1 bouyer * wired to INTA.
318 1.5.2.1 bouyer * Put all 5 GPIO bits in input mode and then
319 1.5.2.1 bouyer * read their input values.
320 1.5.2.1 bouyer */
321 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh,
322 1.5.2.1 bouyer IOPB_GPIO_CNTL, 0);
323 1.5.2.1 bouyer if (ADW_READ_BYTE_REGISTER(iot, ioh,
324 1.5.2.1 bouyer IOPB_GPIO_DATA) & 0x01) {
325 1.5.2.1 bouyer /*
326 1.5.2.1 bouyer * Function 1 interrupt wired to INTA;
327 1.5.2.1 bouyer * Set EEPROM bit.
328 1.5.2.1 bouyer */
329 1.5.2.1 bouyer lsw_msb |= (ADW_EEPROM_INTAB >> 8)
330 1.5.2.1 bouyer & 0xFF;
331 1.5.2.1 bouyer }
332 1.5.2.1 bouyer eep_config.cfg_lsw &= 0x00FF;
333 1.5.2.1 bouyer eep_config.cfg_lsw |= lsw_msb << 8;
334 1.5.2.1 bouyer }
335 1.5.2.1 bouyer break;
336 1.5.2.1 bouyer }
337 1.5.2.1 bouyer
338 1.5.2.1 bouyer /*
339 1.5.2.1 bouyer * Assume the 6 byte board serial number that was read
340 1.5.2.1 bouyer * from EEPROM is correct even if the EEPROM checksum
341 1.5.2.1 bouyer * failed.
342 1.5.2.1 bouyer */
343 1.5.2.1 bouyer for (i=2, j=1; i>=0; i--, j++) {
344 1.5.2.1 bouyer eep_config.serial_number[i] =
345 1.5.2.1 bouyer AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
346 1.5.2.1 bouyer }
347 1.5.2.1 bouyer
348 1.5.2.1 bouyer AdwSetEEPROMConfig(iot, ioh, &eep_config);
349 1.5.2.1 bouyer }
350 1.1 dante /*
351 1.5.2.1 bouyer * Set sc and sc->cfg variables from the EEPROM configuration
352 1.5.2.1 bouyer * that was read.
353 1.1 dante *
354 1.5.2.1 bouyer * This is the mapping of EEPROM fields to Adw Library fields.
355 1.1 dante */
356 1.5.2.1 bouyer sc->wdtr_able = eep_config.wdtr_able;
357 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550) {
358 1.5.2.1 bouyer sc->sdtr_able = eep_config.sdtr1.sdtr_able;
359 1.5.2.1 bouyer sc->ultra_able = eep_config.sdtr2.ultra_able;
360 1.5.2.1 bouyer } else {
361 1.5.2.1 bouyer sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
362 1.5.2.1 bouyer sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
363 1.5.2.1 bouyer sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
364 1.5.2.1 bouyer sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
365 1.5.2.1 bouyer }
366 1.5.2.1 bouyer sc->ppr_able = 0;
367 1.5.2.1 bouyer sc->tagqng_able = eep_config.tagqng_able;
368 1.5.2.1 bouyer sc->cfg.disc_enable = eep_config.disc_enable;
369 1.5.2.1 bouyer sc->max_host_qng = eep_config.max_host_qng;
370 1.5.2.1 bouyer sc->max_dvc_qng = eep_config.max_dvc_qng;
371 1.5.2.1 bouyer sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
372 1.5.2.1 bouyer sc->start_motor = eep_config.start_motor;
373 1.5.2.1 bouyer sc->scsi_reset_wait = eep_config.scsi_reset_delay;
374 1.5.2.1 bouyer sc->bios_ctrl = eep_config.bios_ctrl;
375 1.5.2.1 bouyer sc->no_scam = eep_config.scam_tolerant;
376 1.5.2.1 bouyer sc->cfg.serial1 = eep_config.serial_number[0];
377 1.5.2.1 bouyer sc->cfg.serial2 = eep_config.serial_number[1];
378 1.5.2.1 bouyer sc->cfg.serial3 = eep_config.serial_number[2];
379 1.5.2.1 bouyer
380 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
381 1.5.2.1 bouyer sc->chip_type == ADW_CHIP_ASC38C1600) {
382 1.5.2.1 bouyer sc->sdtr_able = 0;
383 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
384 1.5.2.1 bouyer if (tid == 0) {
385 1.5.2.1 bouyer sdtr_speed = sc->sdtr_speed1;
386 1.5.2.1 bouyer } else if (tid == 4) {
387 1.5.2.1 bouyer sdtr_speed = sc->sdtr_speed2;
388 1.5.2.1 bouyer } else if (tid == 8) {
389 1.5.2.1 bouyer sdtr_speed = sc->sdtr_speed3;
390 1.5.2.1 bouyer } else if (tid == 12) {
391 1.5.2.1 bouyer sdtr_speed = sc->sdtr_speed4;
392 1.5.2.1 bouyer }
393 1.5.2.1 bouyer if (sdtr_speed & ADW_MAX_TID) {
394 1.5.2.1 bouyer sc->sdtr_able |= (1 << tid);
395 1.5.2.1 bouyer }
396 1.5.2.1 bouyer sdtr_speed >>= 4;
397 1.5.2.1 bouyer }
398 1.1 dante }
399 1.1 dante
400 1.1 dante /*
401 1.5.2.1 bouyer * Set the host maximum queuing (max. 253, min. 16) and the per device
402 1.5.2.1 bouyer * maximum queuing (max. 63, min. 4).
403 1.1 dante */
404 1.5.2.1 bouyer if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
405 1.5.2.1 bouyer eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
406 1.5.2.1 bouyer } else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
407 1.5.2.1 bouyer {
408 1.5.2.1 bouyer /* If the value is zero, assume it is uninitialized. */
409 1.5.2.1 bouyer if (eep_config.max_host_qng == 0) {
410 1.5.2.1 bouyer eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
411 1.5.2.1 bouyer } else {
412 1.5.2.1 bouyer eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
413 1.5.2.1 bouyer }
414 1.5.2.1 bouyer }
415 1.5.2.1 bouyer
416 1.5.2.1 bouyer if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
417 1.5.2.1 bouyer eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
418 1.5.2.1 bouyer } else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
419 1.5.2.1 bouyer /* If the value is zero, assume it is uninitialized. */
420 1.5.2.1 bouyer if (eep_config.max_dvc_qng == 0) {
421 1.5.2.1 bouyer eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
422 1.5.2.1 bouyer } else {
423 1.5.2.1 bouyer eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
424 1.5.2.1 bouyer }
425 1.1 dante }
426 1.1 dante
427 1.1 dante /*
428 1.5.2.1 bouyer * If 'max_dvc_qng' is greater than 'max_host_qng', then
429 1.5.2.1 bouyer * set 'max_dvc_qng' to 'max_host_qng'.
430 1.1 dante */
431 1.5.2.1 bouyer if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
432 1.5.2.1 bouyer eep_config.max_dvc_qng = eep_config.max_host_qng;
433 1.1 dante }
434 1.1 dante
435 1.5.2.1 bouyer /*
436 1.5.2.1 bouyer * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
437 1.5.2.1 bouyer * values based on possibly adjusted EEPROM values.
438 1.5.2.1 bouyer */
439 1.5.2.1 bouyer sc->max_host_qng = eep_config.max_host_qng;
440 1.5.2.1 bouyer sc->max_dvc_qng = eep_config.max_dvc_qng;
441 1.5.2.1 bouyer
442 1.1 dante
443 1.1 dante /*
444 1.5.2.1 bouyer * If the EEPROM 'termination' field is set to automatic (0), then set
445 1.5.2.1 bouyer * the ADV_DVC_CFG 'termination' field to automatic also.
446 1.5.2.1 bouyer *
447 1.5.2.1 bouyer * If the termination is specified with a non-zero 'termination'
448 1.5.2.1 bouyer * value check that a legal value is set and set the ADV_DVC_CFG
449 1.5.2.1 bouyer * 'termination' field appropriately.
450 1.5.2.1 bouyer */
451 1.5.2.1 bouyer
452 1.5.2.1 bouyer switch(sc->chip_type) {
453 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
454 1.5.2.1 bouyer sc->cfg.termination = 0; /* auto termination */
455 1.5.2.1 bouyer switch(eep_config.termination_se) {
456 1.5.2.1 bouyer case 3:
457 1.5.2.1 bouyer /* Enable manual control with low on / high on. */
458 1.5.2.1 bouyer sc->cfg.termination |= ADW_TERM_CTL_L;
459 1.5.2.1 bouyer case 2:
460 1.5.2.1 bouyer /* Enable manual control with low off / high on. */
461 1.5.2.1 bouyer sc->cfg.termination |= ADW_TERM_CTL_H;
462 1.5.2.1 bouyer case 1:
463 1.5.2.1 bouyer /* Enable manual control with low off / high off. */
464 1.5.2.1 bouyer sc->cfg.termination |= ADW_TERM_CTL_SEL;
465 1.5.2.1 bouyer case 0:
466 1.5.2.1 bouyer break;
467 1.5.2.1 bouyer default:
468 1.5.2.1 bouyer warn_code |= ADW_WARN_EEPROM_TERMINATION;
469 1.5.2.1 bouyer }
470 1.5.2.1 bouyer break;
471 1.5.2.1 bouyer
472 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
473 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
474 1.5.2.1 bouyer switch(eep_config.termination_se) {
475 1.5.2.1 bouyer case 0:
476 1.5.2.1 bouyer /* auto termination for SE */
477 1.5.2.1 bouyer termination = 0;
478 1.5.2.1 bouyer break;
479 1.5.2.1 bouyer case 1:
480 1.5.2.1 bouyer /* Enable manual control with low off / high off. */
481 1.5.2.1 bouyer termination = 0;
482 1.5.2.1 bouyer break;
483 1.5.2.1 bouyer case 2:
484 1.5.2.1 bouyer /* Enable manual control with low off / high on. */
485 1.5.2.1 bouyer termination = ADW_TERM_SE_HI;
486 1.5.2.1 bouyer break;
487 1.5.2.1 bouyer case 3:
488 1.5.2.1 bouyer /* Enable manual control with low on / high on. */
489 1.5.2.1 bouyer termination = ADW_TERM_SE;
490 1.5.2.1 bouyer break;
491 1.5.2.1 bouyer default:
492 1.5.2.1 bouyer /*
493 1.5.2.1 bouyer * The EEPROM 'termination_se' field contains a
494 1.5.2.1 bouyer * bad value. Use automatic termination instead.
495 1.5.2.1 bouyer */
496 1.5.2.1 bouyer termination = 0;
497 1.5.2.1 bouyer warn_code |= ADW_WARN_EEPROM_TERMINATION;
498 1.5.2.1 bouyer }
499 1.5.2.1 bouyer
500 1.5.2.1 bouyer switch(eep_config.termination_lvd) {
501 1.5.2.1 bouyer case 0:
502 1.5.2.1 bouyer /* auto termination for LVD */
503 1.5.2.1 bouyer sc->cfg.termination = termination;
504 1.5.2.1 bouyer break;
505 1.5.2.1 bouyer case 1:
506 1.5.2.1 bouyer /* Enable manual control with low off / high off. */
507 1.5.2.1 bouyer sc->cfg.termination = termination;
508 1.5.2.1 bouyer break;
509 1.5.2.1 bouyer case 2:
510 1.5.2.1 bouyer /* Enable manual control with low off / high on. */
511 1.5.2.1 bouyer sc->cfg.termination = termination | ADW_TERM_LVD_HI;
512 1.5.2.1 bouyer break;
513 1.5.2.1 bouyer case 3:
514 1.5.2.1 bouyer /* Enable manual control with low on / high on. */
515 1.5.2.1 bouyer sc->cfg.termination = termination | ADW_TERM_LVD;
516 1.5.2.1 bouyer break;
517 1.5.2.1 bouyer default:
518 1.5.2.1 bouyer /*
519 1.5.2.1 bouyer * The EEPROM 'termination_lvd' field contains a
520 1.5.2.1 bouyer * bad value. Use automatic termination instead.
521 1.5.2.1 bouyer */
522 1.5.2.1 bouyer sc->cfg.termination = termination;
523 1.5.2.1 bouyer warn_code |= ADW_WARN_EEPROM_TERMINATION;
524 1.5.2.1 bouyer }
525 1.5.2.1 bouyer break;
526 1.5.2.1 bouyer }
527 1.5.2.1 bouyer
528 1.5.2.1 bouyer return warn_code;
529 1.5.2.1 bouyer }
530 1.5.2.1 bouyer
531 1.5.2.1 bouyer
532 1.5.2.1 bouyer /*
533 1.5.2.1 bouyer * Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
534 1.5.2.1 bouyer *
535 1.5.2.1 bouyer * On failure return the error code.
536 1.5.2.1 bouyer */
537 1.5.2.1 bouyer int
538 1.5.2.1 bouyer AdwInitDriver(sc)
539 1.5.2.1 bouyer ADW_SOFTC *sc;
540 1.5.2.1 bouyer {
541 1.5.2.1 bouyer bus_space_tag_t iot = sc->sc_iot;
542 1.5.2.1 bouyer bus_space_handle_t ioh = sc->sc_ioh;
543 1.5.2.1 bouyer u_int16_t error_code;
544 1.5.2.1 bouyer int word;
545 1.5.2.1 bouyer int i;
546 1.5.2.1 bouyer u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
547 1.5.2.1 bouyer 0x40-0x8F. */
548 1.5.2.1 bouyer u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
549 1.5.2.1 bouyer u_int8_t max_cmd[ADW_MAX_TID + 1];
550 1.5.2.1 bouyer u_int8_t tid;
551 1.5.2.1 bouyer
552 1.5.2.1 bouyer
553 1.5.2.1 bouyer error_code = 0;
554 1.5.2.1 bouyer
555 1.5.2.1 bouyer /*
556 1.5.2.1 bouyer * Save the RISC memory BIOS region before writing the microcode.
557 1.5.2.1 bouyer * The BIOS may already be loaded and using its RISC LRAM region
558 1.5.2.1 bouyer * so its region must be saved and restored.
559 1.5.2.1 bouyer *
560 1.5.2.1 bouyer * Note: This code makes the assumption, which is currently true,
561 1.5.2.1 bouyer * that a chip reset does not clear RISC LRAM.
562 1.1 dante */
563 1.5.2.1 bouyer for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
564 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
565 1.1 dante }
566 1.1 dante
567 1.1 dante /*
568 1.5.2.1 bouyer * Save current per TID negotiated values.
569 1.1 dante */
570 1.5.2.1 bouyer switch (sc->chip_type) {
571 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
572 1.5.2.1 bouyer if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
573 1.5.2.1 bouyer
574 1.5.2.1 bouyer u_int16_t bios_version, major, minor;
575 1.5.2.1 bouyer
576 1.5.2.1 bouyer bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
577 1.5.2.1 bouyer ADW_MC_BIOSMEM) / 2];
578 1.5.2.1 bouyer major = (bios_version >> 12) & 0xF;
579 1.5.2.1 bouyer minor = (bios_version >> 8) & 0xF;
580 1.5.2.1 bouyer if (major < 3 || (major == 3 && minor == 1)) {
581 1.5.2.1 bouyer /*
582 1.5.2.1 bouyer * BIOS 3.1 and earlier location of
583 1.5.2.1 bouyer * 'wdtr_able' variable.
584 1.5.2.1 bouyer */
585 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
586 1.5.2.1 bouyer } else {
587 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
588 1.5.2.1 bouyer wdtr_able);
589 1.5.2.1 bouyer }
590 1.5.2.1 bouyer }
591 1.5.2.1 bouyer break;
592 1.5.2.1 bouyer
593 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
594 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
595 1.5.2.1 bouyer /* FALLTHROUGH */
596 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
597 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
598 1.5.2.1 bouyer break;
599 1.5.2.1 bouyer }
600 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
601 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
602 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
603 1.5.2.1 bouyer ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
604 1.5.2.1 bouyer max_cmd[tid]);
605 1.1 dante }
606 1.1 dante
607 1.1 dante /*
608 1.5.2.1 bouyer * Perform a RAM Built-In Self Test
609 1.5.2.1 bouyer */
610 1.5.2.1 bouyer if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
611 1.5.2.1 bouyer return error_code;
612 1.5.2.1 bouyer }
613 1.5.2.1 bouyer
614 1.5.2.1 bouyer /*
615 1.5.2.1 bouyer * Load the Microcode
616 1.1 dante */
617 1.5.2.1 bouyer ;
618 1.5.2.1 bouyer if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
619 1.5.2.1 bouyer return error_code;
620 1.5.2.1 bouyer }
621 1.1 dante
622 1.1 dante /*
623 1.5.2.1 bouyer * Read microcode version and date.
624 1.1 dante */
625 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
626 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
627 1.1 dante
628 1.1 dante /*
629 1.1 dante * If the PCI Configuration Command Register "Parity Error Response
630 1.1 dante * Control" Bit was clear (0), then set the microcode variable
631 1.1 dante * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
632 1.1 dante * to ignore DMA parity errors.
633 1.1 dante */
634 1.1 dante if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
635 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
636 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
637 1.5.2.1 bouyer word | CONTROL_FLAG_IGNORE_PERR);
638 1.5.2.1 bouyer }
639 1.5.2.1 bouyer
640 1.5.2.1 bouyer switch (sc->chip_type) {
641 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
642 1.5.2.1 bouyer /*
643 1.5.2.1 bouyer * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
644 1.5.2.1 bouyer * FIFO threshold of 128 bytes.
645 1.5.2.1 bouyer * This register is only accessible to the host.
646 1.5.2.1 bouyer */
647 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
648 1.5.2.1 bouyer START_CTL_EMFU | READ_CMD_MRM);
649 1.5.2.1 bouyer break;
650 1.5.2.1 bouyer
651 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
652 1.5.2.1 bouyer /*
653 1.5.2.1 bouyer * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
654 1.5.2.1 bouyer * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
655 1.5.2.1 bouyer * cable detection and then we are able to read C_DET[3:0].
656 1.5.2.1 bouyer *
657 1.5.2.1 bouyer * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
658 1.5.2.1 bouyer * Microcode Default Value' section below.
659 1.5.2.1 bouyer */
660 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
661 1.5.2.1 bouyer ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
662 1.5.2.1 bouyer | ADW_DIS_TERM_DRV);
663 1.5.2.1 bouyer
664 1.5.2.1 bouyer /*
665 1.5.2.1 bouyer * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
666 1.5.2.1 bouyer * START_CTL_TH [3:2] bits for the default FIFO threshold.
667 1.5.2.1 bouyer *
668 1.5.2.1 bouyer * Note: ASC-38C0800 FIFO threshold has been changed to
669 1.5.2.1 bouyer * 256 bytes.
670 1.5.2.1 bouyer *
671 1.5.2.1 bouyer * For DMA Errata #4 set the BC_THRESH_ENB bit.
672 1.5.2.1 bouyer */
673 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
674 1.5.2.1 bouyer BC_THRESH_ENB | FIFO_THRESH_80B
675 1.5.2.1 bouyer | START_CTL_TH | READ_CMD_MRM);
676 1.5.2.1 bouyer break;
677 1.5.2.1 bouyer
678 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
679 1.5.2.1 bouyer /*
680 1.5.2.1 bouyer * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
681 1.5.2.1 bouyer * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
682 1.5.2.1 bouyer * cable detection and then we are able to read C_DET[3:0].
683 1.5.2.1 bouyer *
684 1.5.2.1 bouyer * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
685 1.5.2.1 bouyer * Microcode Default Value' section below.
686 1.5.2.1 bouyer */
687 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
688 1.5.2.1 bouyer ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
689 1.5.2.1 bouyer | ADW_DIS_TERM_DRV);
690 1.5.2.1 bouyer
691 1.5.2.1 bouyer /*
692 1.5.2.1 bouyer * If the BIOS control flag AIPP (Asynchronous Information
693 1.5.2.1 bouyer * Phase Protection) disable bit is not set, then set the
694 1.5.2.1 bouyer * firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
695 1.5.2.1 bouyer * enable AIPP checking and encoding.
696 1.5.2.1 bouyer */
697 1.5.2.1 bouyer if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
698 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
699 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
700 1.5.2.1 bouyer word | CONTROL_FLAG_ENABLE_AIPP);
701 1.5.2.1 bouyer }
702 1.5.2.1 bouyer
703 1.5.2.1 bouyer /*
704 1.5.2.1 bouyer * For ASC-38C1600 use DMA_CFG0 default values:
705 1.5.2.1 bouyer * FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
706 1.5.2.1 bouyer */
707 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
708 1.5.2.1 bouyer FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
709 1.5.2.1 bouyer break;
710 1.5.2.1 bouyer }
711 1.5.2.1 bouyer
712 1.5.2.1 bouyer /*
713 1.5.2.1 bouyer * Microcode operating variables for WDTR, SDTR, and command tag
714 1.5.2.1 bouyer * queuing will be set in AdvInquiryHandling() based on what a
715 1.5.2.1 bouyer * device reports it is capable of in Inquiry byte 7.
716 1.5.2.1 bouyer *
717 1.5.2.1 bouyer * If SCSI Bus Resets have been disabled, then directly set
718 1.5.2.1 bouyer * SDTR and WDTR from the EEPROM configuration. This will allow
719 1.5.2.1 bouyer * the BIOS and warm boot to work without a SCSI bus hang on
720 1.5.2.1 bouyer * the Inquiry caused by host and target mismatched DTR values.
721 1.5.2.1 bouyer * Without the SCSI Bus Reset, before an Inquiry a device can't
722 1.5.2.1 bouyer * be assumed to be in Asynchronous, Narrow mode.
723 1.5.2.1 bouyer */
724 1.5.2.1 bouyer if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
725 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
726 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
727 1.5.2.1 bouyer }
728 1.5.2.1 bouyer
729 1.5.2.1 bouyer /*
730 1.5.2.1 bouyer * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
731 1.5.2.1 bouyer * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
732 1.5.2.1 bouyer * bitmask. These values determine the maximum SDTR speed negotiated
733 1.5.2.1 bouyer * with a device.
734 1.5.2.1 bouyer *
735 1.5.2.1 bouyer * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
736 1.5.2.1 bouyer * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
737 1.5.2.1 bouyer * without determining here whether the device supports SDTR.
738 1.5.2.1 bouyer */
739 1.5.2.1 bouyer switch (sc->chip_type) {
740 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
741 1.5.2.1 bouyer word = 0;
742 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
743 1.5.2.1 bouyer if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
744 1.5.2.1 bouyer /* Set Ultra speed for TID 'tid'. */
745 1.5.2.1 bouyer word |= (0x3 << (4 * (tid % 4)));
746 1.5.2.1 bouyer } else {
747 1.5.2.1 bouyer /* Set Fast speed for TID 'tid'. */
748 1.5.2.1 bouyer word |= (0x2 << (4 * (tid % 4)));
749 1.5.2.1 bouyer }
750 1.5.2.1 bouyer /* Check if done with sdtr_speed1. */
751 1.5.2.1 bouyer if (tid == 3) {
752 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh,
753 1.5.2.1 bouyer ADW_MC_SDTR_SPEED1, word);
754 1.5.2.1 bouyer word = 0;
755 1.5.2.1 bouyer /* Check if done with sdtr_speed2. */
756 1.5.2.1 bouyer } else if (tid == 7) {
757 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh,
758 1.5.2.1 bouyer ADW_MC_SDTR_SPEED2, word);
759 1.5.2.1 bouyer word = 0;
760 1.5.2.1 bouyer /* Check if done with sdtr_speed3. */
761 1.5.2.1 bouyer } else if (tid == 11) {
762 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh,
763 1.5.2.1 bouyer ADW_MC_SDTR_SPEED3, word);
764 1.5.2.1 bouyer word = 0;
765 1.5.2.1 bouyer /* Check if done with sdtr_speed4. */
766 1.5.2.1 bouyer } else if (tid == 15) {
767 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh,
768 1.5.2.1 bouyer ADW_MC_SDTR_SPEED4, word);
769 1.5.2.1 bouyer /* End of loop. */
770 1.5.2.1 bouyer }
771 1.5.2.1 bouyer }
772 1.5.2.1 bouyer
773 1.5.2.1 bouyer /*
774 1.5.2.1 bouyer * Set microcode operating variable for the
775 1.5.2.1 bouyer * disconnect per TID bitmask.
776 1.5.2.1 bouyer */
777 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
778 1.5.2.1 bouyer sc->cfg.disc_enable);
779 1.5.2.1 bouyer break;
780 1.5.2.1 bouyer
781 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
782 1.5.2.1 bouyer /* FALLTHROUGH */
783 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
784 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
785 1.5.2.1 bouyer sc->cfg.disc_enable);
786 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
787 1.5.2.1 bouyer sc->sdtr_speed1);
788 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
789 1.5.2.1 bouyer sc->sdtr_speed2);
790 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
791 1.5.2.1 bouyer sc->sdtr_speed3);
792 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
793 1.5.2.1 bouyer sc->sdtr_speed4);
794 1.5.2.1 bouyer break;
795 1.1 dante }
796 1.5.2.1 bouyer
797 1.5.2.1 bouyer
798 1.1 dante /*
799 1.5.2.1 bouyer * Set SCSI_CFG0 Microcode Default Value.
800 1.1 dante *
801 1.5.2.1 bouyer * The microcode will set the SCSI_CFG0 register using this value
802 1.5.2.1 bouyer * after it is started below.
803 1.1 dante */
804 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
805 1.5.2.1 bouyer ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
806 1.5.2.1 bouyer ADW_OUR_ID_EN | sc->chip_scsi_id);
807 1.5.2.1 bouyer
808 1.5.2.1 bouyer
809 1.5.2.1 bouyer switch(sc->chip_type) {
810 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
811 1.5.2.1 bouyer error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
812 1.5.2.1 bouyer break;
813 1.5.2.1 bouyer
814 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
815 1.5.2.1 bouyer error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
816 1.5.2.1 bouyer break;
817 1.5.2.1 bouyer
818 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
819 1.5.2.1 bouyer error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
820 1.5.2.1 bouyer break;
821 1.5.2.1 bouyer }
822 1.5.2.1 bouyer if(error_code) {
823 1.5.2.1 bouyer return error_code;
824 1.5.2.1 bouyer }
825 1.1 dante
826 1.1 dante /*
827 1.5.2.1 bouyer * Set SEL_MASK Microcode Default Value
828 1.2 dante *
829 1.5.2.1 bouyer * The microcode will set the SEL_MASK register using this value
830 1.5.2.1 bouyer * after it is started below.
831 1.1 dante */
832 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
833 1.5.2.1 bouyer ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
834 1.1 dante
835 1.5.2.1 bouyer /*
836 1.5.2.1 bouyer * Create and Initialize Host->RISC Carrier lists
837 1.5.2.1 bouyer */
838 1.5.2.1 bouyer sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
839 1.5.2.1 bouyer sc->sc_control->carriers);
840 1.1 dante
841 1.1 dante /*
842 1.5.2.1 bouyer * Set-up the Host->RISC Initiator Command Queue (ICQ).
843 1.5.2.1 bouyer */
844 1.5.2.1 bouyer
845 1.5.2.1 bouyer if ((sc->icq_sp = sc->carr_freelist) == NULL) {
846 1.5.2.1 bouyer return ADW_IERR_NO_CARRIER;
847 1.5.2.1 bouyer }
848 1.5.2.1 bouyer sc->carr_freelist = ADW_CARRIER_VADDR(sc,
849 1.5.2.1 bouyer ASC_GET_CARRP(sc->icq_sp->next_ba));
850 1.5.2.1 bouyer
851 1.5.2.1 bouyer /*
852 1.5.2.1 bouyer * The first command issued will be placed in the stopper carrier.
853 1.5.2.1 bouyer */
854 1.5.2.1 bouyer sc->icq_sp->next_ba = ASC_CQ_STOPPER;
855 1.5.2.1 bouyer
856 1.5.2.1 bouyer /*
857 1.5.2.1 bouyer * Set RISC ICQ physical address start value.
858 1.5.2.1 bouyer */
859 1.5.2.1 bouyer ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, sc->icq_sp->carr_ba);
860 1.5.2.1 bouyer
861 1.5.2.1 bouyer /*
862 1.5.2.1 bouyer * Initialize the COMMA register to the same value otherwise
863 1.5.2.1 bouyer * the RISC will prematurely detect a command is available.
864 1.5.2.1 bouyer */
865 1.5.2.1 bouyer if(sc->chip_type == ADW_CHIP_ASC38C1600) {
866 1.5.2.1 bouyer ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
867 1.5.2.1 bouyer sc->icq_sp->carr_ba);
868 1.5.2.1 bouyer }
869 1.5.2.1 bouyer
870 1.5.2.1 bouyer /*
871 1.5.2.1 bouyer * Set-up the RISC->Host Initiator Response Queue (IRQ).
872 1.5.2.1 bouyer */
873 1.5.2.1 bouyer if ((sc->irq_sp = sc->carr_freelist) == NULL) {
874 1.5.2.1 bouyer return ADW_IERR_NO_CARRIER;
875 1.5.2.1 bouyer }
876 1.5.2.1 bouyer sc->carr_freelist = ADW_CARRIER_VADDR(sc,
877 1.5.2.1 bouyer ASC_GET_CARRP(sc->irq_sp->next_ba));
878 1.5.2.1 bouyer
879 1.5.2.1 bouyer /*
880 1.5.2.1 bouyer * The first command completed by the RISC will be placed in
881 1.5.2.1 bouyer * the stopper.
882 1.1 dante *
883 1.5.2.1 bouyer * Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
884 1.5.2.1 bouyer * completed the RISC will set the ASC_RQ_DONE bit.
885 1.5.2.1 bouyer */
886 1.5.2.1 bouyer sc->irq_sp->next_ba = ASC_CQ_STOPPER;
887 1.5.2.1 bouyer
888 1.5.2.1 bouyer /*
889 1.5.2.1 bouyer * Set RISC IRQ physical address start value.
890 1.5.2.1 bouyer */
891 1.5.2.1 bouyer ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, sc->irq_sp->carr_ba);
892 1.5.2.1 bouyer sc->carr_pending_cnt = 0;
893 1.5.2.1 bouyer
894 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
895 1.5.2.1 bouyer (ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
896 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
897 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
898 1.5.2.1 bouyer
899 1.5.2.1 bouyer /* finally, finally, gentlemen, start your engine */
900 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
901 1.5.2.1 bouyer
902 1.5.2.1 bouyer /*
903 1.5.2.1 bouyer * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
904 1.5.2.1 bouyer * Resets should be performed. The RISC has to be running
905 1.5.2.1 bouyer * to issue a SCSI Bus Reset.
906 1.5.2.1 bouyer */
907 1.5.2.1 bouyer if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
908 1.5.2.1 bouyer {
909 1.5.2.1 bouyer /*
910 1.5.2.1 bouyer * If the BIOS Signature is present in memory, restore the
911 1.5.2.1 bouyer * BIOS Handshake Configuration Table and do not perform
912 1.5.2.1 bouyer * a SCSI Bus Reset.
913 1.5.2.1 bouyer */
914 1.5.2.1 bouyer if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
915 1.5.2.1 bouyer 0x55AA) {
916 1.5.2.1 bouyer /*
917 1.5.2.1 bouyer * Restore per TID negotiated values.
918 1.5.2.1 bouyer */
919 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
920 1.5.2.1 bouyer wdtr_able);
921 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
922 1.5.2.1 bouyer sdtr_able);
923 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
924 1.5.2.1 bouyer tagqng_able);
925 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
926 1.5.2.1 bouyer ADW_WRITE_BYTE_LRAM(iot, ioh,
927 1.5.2.1 bouyer ADW_MC_NUMBER_OF_MAX_CMD + tid,
928 1.5.2.1 bouyer max_cmd[tid]);
929 1.5.2.1 bouyer }
930 1.5.2.1 bouyer } else {
931 1.5.2.1 bouyer if (AdwResetCCB(sc) != ADW_TRUE) {
932 1.5.2.1 bouyer error_code = ADW_WARN_BUSRESET_ERROR;
933 1.5.2.1 bouyer }
934 1.5.2.1 bouyer }
935 1.5.2.1 bouyer }
936 1.5.2.1 bouyer
937 1.5.2.1 bouyer return error_code;
938 1.5.2.1 bouyer }
939 1.5.2.1 bouyer
940 1.5.2.1 bouyer
941 1.5.2.1 bouyer int
942 1.5.2.1 bouyer AdwRamSelfTest(iot, ioh, chip_type)
943 1.5.2.1 bouyer bus_space_tag_t iot;
944 1.5.2.1 bouyer bus_space_handle_t ioh;
945 1.5.2.1 bouyer u_int8_t chip_type;
946 1.5.2.1 bouyer {
947 1.5.2.1 bouyer int i;
948 1.5.2.1 bouyer u_int8_t byte;
949 1.5.2.1 bouyer
950 1.5.2.1 bouyer
951 1.5.2.1 bouyer if ((chip_type == ADW_CHIP_ASC38C0800) ||
952 1.5.2.1 bouyer (chip_type == ADW_CHIP_ASC38C1600)) {
953 1.5.2.1 bouyer /*
954 1.5.2.1 bouyer * RAM BIST (RAM Built-In Self Test)
955 1.5.2.1 bouyer *
956 1.5.2.1 bouyer * Address : I/O base + offset 0x38h register (byte).
957 1.5.2.1 bouyer * Function: Bit 7-6(RW) : RAM mode
958 1.5.2.1 bouyer * Normal Mode : 0x00
959 1.5.2.1 bouyer * Pre-test Mode : 0x40
960 1.5.2.1 bouyer * RAM Test Mode : 0x80
961 1.5.2.1 bouyer * Bit 5 : unused
962 1.5.2.1 bouyer * Bit 4(RO) : Done bit
963 1.5.2.1 bouyer * Bit 3-0(RO) : Status
964 1.5.2.1 bouyer * Host Error : 0x08
965 1.5.2.1 bouyer * Int_RAM Error : 0x04
966 1.5.2.1 bouyer * RISC Error : 0x02
967 1.5.2.1 bouyer * SCSI Error : 0x01
968 1.5.2.1 bouyer * No Error : 0x00
969 1.5.2.1 bouyer *
970 1.5.2.1 bouyer * Note: RAM BIST code should be put right here, before loading
971 1.5.2.1 bouyer * the microcode and after saving the RISC memory BIOS region.
972 1.5.2.1 bouyer */
973 1.5.2.1 bouyer
974 1.5.2.1 bouyer /*
975 1.5.2.1 bouyer * LRAM Pre-test
976 1.5.2.1 bouyer *
977 1.5.2.1 bouyer * Write PRE_TEST_MODE (0x40) to register and wait for
978 1.5.2.1 bouyer * 10 milliseconds.
979 1.5.2.1 bouyer * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
980 1.5.2.1 bouyer * return an error. Reset to NORMAL_MODE (0x00) and do again.
981 1.5.2.1 bouyer * If cannot reset to NORMAL_MODE, return an error too.
982 1.5.2.1 bouyer */
983 1.5.2.1 bouyer for (i = 0; i < 2; i++) {
984 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
985 1.5.2.1 bouyer PRE_TEST_MODE);
986 1.5.2.1 bouyer /* Wait for 10ms before reading back. */
987 1.5.2.1 bouyer AdwSleepMilliSecond(10);
988 1.5.2.1 bouyer byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
989 1.5.2.1 bouyer if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
990 1.5.2.1 bouyer PRE_TEST_VALUE) {
991 1.5.2.1 bouyer return ADW_IERR_BIST_PRE_TEST;
992 1.5.2.1 bouyer }
993 1.5.2.1 bouyer
994 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
995 1.5.2.1 bouyer NORMAL_MODE);
996 1.5.2.1 bouyer /* Wait for 10ms before reading back. */
997 1.5.2.1 bouyer AdwSleepMilliSecond(10);
998 1.5.2.1 bouyer if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
999 1.5.2.1 bouyer != NORMAL_VALUE) {
1000 1.5.2.1 bouyer return ADW_IERR_BIST_PRE_TEST;
1001 1.5.2.1 bouyer }
1002 1.5.2.1 bouyer }
1003 1.5.2.1 bouyer
1004 1.5.2.1 bouyer /*
1005 1.5.2.1 bouyer * LRAM Test - It takes about 1.5 ms to run through the test.
1006 1.5.2.1 bouyer *
1007 1.5.2.1 bouyer * Write RAM_TEST_MODE (0x80) to register and wait for
1008 1.5.2.1 bouyer * 10 milliseconds.
1009 1.5.2.1 bouyer * If Done bit not set or Status not 0, save register byte,
1010 1.5.2.1 bouyer * set the err_code, and return an error.
1011 1.5.2.1 bouyer */
1012 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
1013 1.5.2.1 bouyer /* Wait for 10ms before checking status. */
1014 1.5.2.1 bouyer AdwSleepMilliSecond(10);
1015 1.5.2.1 bouyer
1016 1.5.2.1 bouyer byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
1017 1.5.2.1 bouyer if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
1018 1.5.2.1 bouyer /* Get here if Done bit not set or Status not 0. */
1019 1.5.2.1 bouyer return ADW_IERR_BIST_RAM_TEST;
1020 1.5.2.1 bouyer }
1021 1.5.2.1 bouyer
1022 1.5.2.1 bouyer /* We need to reset back to normal mode after LRAM test passes*/
1023 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
1024 1.5.2.1 bouyer }
1025 1.5.2.1 bouyer
1026 1.5.2.1 bouyer return 0;
1027 1.5.2.1 bouyer }
1028 1.5.2.1 bouyer
1029 1.5.2.1 bouyer
1030 1.5.2.1 bouyer int
1031 1.5.2.1 bouyer AdwLoadMCode(iot, ioh, bios_mem, chip_type)
1032 1.5.2.1 bouyer bus_space_tag_t iot;
1033 1.5.2.1 bouyer bus_space_handle_t ioh;
1034 1.5.2.1 bouyer u_int16_t *bios_mem;
1035 1.5.2.1 bouyer u_int8_t chip_type;
1036 1.5.2.1 bouyer {
1037 1.5.2.1 bouyer u_int8_t *mcode_data;
1038 1.5.2.1 bouyer u_int32_t mcode_chksum;
1039 1.5.2.1 bouyer u_int16_t mcode_size;
1040 1.5.2.1 bouyer u_int32_t sum;
1041 1.5.2.1 bouyer u_int16_t code_sum;
1042 1.5.2.1 bouyer int begin_addr;
1043 1.5.2.1 bouyer int end_addr;
1044 1.5.2.1 bouyer int word;
1045 1.5.2.1 bouyer int adw_memsize;
1046 1.5.2.1 bouyer int adw_mcode_expanded_size;
1047 1.5.2.1 bouyer int i, j;
1048 1.5.2.1 bouyer
1049 1.5.2.1 bouyer
1050 1.5.2.1 bouyer switch(chip_type) {
1051 1.5.2.1 bouyer case ADW_CHIP_ASC3550:
1052 1.5.2.1 bouyer mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
1053 1.5.2.1 bouyer mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
1054 1.5.2.1 bouyer mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
1055 1.5.2.1 bouyer adw_memsize = ADW_3550_MEMSIZE;
1056 1.5.2.1 bouyer break;
1057 1.5.2.1 bouyer
1058 1.5.2.1 bouyer case ADW_CHIP_ASC38C0800:
1059 1.5.2.1 bouyer mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
1060 1.5.2.1 bouyer mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
1061 1.5.2.1 bouyer mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
1062 1.5.2.1 bouyer adw_memsize = ADW_38C0800_MEMSIZE;
1063 1.5.2.1 bouyer break;
1064 1.5.2.1 bouyer
1065 1.5.2.1 bouyer case ADW_CHIP_ASC38C1600:
1066 1.5.2.1 bouyer mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
1067 1.5.2.1 bouyer mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
1068 1.5.2.1 bouyer mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
1069 1.5.2.1 bouyer adw_memsize = ADW_38C1600_MEMSIZE;
1070 1.5.2.1 bouyer break;
1071 1.5.2.1 bouyer }
1072 1.5.2.1 bouyer
1073 1.5.2.1 bouyer /*
1074 1.5.2.1 bouyer * Write the microcode image to RISC memory starting at address 0.
1075 1.5.2.1 bouyer */
1076 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1077 1.5.2.1 bouyer
1078 1.5.2.1 bouyer /* Assume the following compressed format of the microcode buffer:
1079 1.5.2.1 bouyer *
1080 1.5.2.1 bouyer * 254 word (508 byte) table indexed by byte code followed
1081 1.5.2.1 bouyer * by the following byte codes:
1082 1.5.2.1 bouyer *
1083 1.5.2.1 bouyer * 1-Byte Code:
1084 1.5.2.1 bouyer * 00: Emit word 0 in table.
1085 1.5.2.1 bouyer * 01: Emit word 1 in table.
1086 1.5.2.1 bouyer * .
1087 1.5.2.1 bouyer * FD: Emit word 253 in table.
1088 1.5.2.1 bouyer *
1089 1.5.2.1 bouyer * Multi-Byte Code:
1090 1.5.2.1 bouyer * FE WW WW: (3 byte code) Word to emit is the next word WW WW.
1091 1.5.2.1 bouyer * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
1092 1.5.2.1 bouyer */
1093 1.5.2.1 bouyer word = 0;
1094 1.5.2.1 bouyer for (i = 253 * 2; i < mcode_size; i++) {
1095 1.5.2.1 bouyer if (mcode_data[i] == 0xff) {
1096 1.5.2.1 bouyer for (j = 0; j < mcode_data[i + 1]; j++) {
1097 1.5.2.1 bouyer ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1098 1.5.2.1 bouyer (((u_int16_t)mcode_data[i + 3] << 8) |
1099 1.5.2.1 bouyer mcode_data[i + 2]));
1100 1.5.2.1 bouyer word++;
1101 1.5.2.1 bouyer }
1102 1.5.2.1 bouyer i += 3;
1103 1.5.2.1 bouyer } else if (mcode_data[i] == 0xfe) {
1104 1.5.2.1 bouyer ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
1105 1.5.2.1 bouyer (((u_int16_t)mcode_data[i + 2] << 8) |
1106 1.5.2.1 bouyer mcode_data[i + 1]));
1107 1.5.2.1 bouyer i += 2;
1108 1.5.2.1 bouyer word++;
1109 1.5.2.1 bouyer } else {
1110 1.5.2.1 bouyer ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
1111 1.5.2.1 bouyer mcode_data[(mcode_data[i] * 2) + 1] <<8) |
1112 1.5.2.1 bouyer mcode_data[mcode_data[i] * 2]));
1113 1.5.2.1 bouyer word++;
1114 1.5.2.1 bouyer }
1115 1.5.2.1 bouyer }
1116 1.5.2.1 bouyer
1117 1.5.2.1 bouyer /*
1118 1.5.2.1 bouyer * Set 'word' for later use to clear the rest of memory and save
1119 1.5.2.1 bouyer * the expanded mcode size.
1120 1.5.2.1 bouyer */
1121 1.5.2.1 bouyer word *= 2;
1122 1.5.2.1 bouyer adw_mcode_expanded_size = word;
1123 1.5.2.1 bouyer
1124 1.5.2.1 bouyer /*
1125 1.5.2.1 bouyer * Clear the rest of the Internal RAM.
1126 1.5.2.1 bouyer */
1127 1.5.2.1 bouyer for (; word < adw_memsize; word += 2) {
1128 1.5.2.1 bouyer ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
1129 1.5.2.1 bouyer }
1130 1.5.2.1 bouyer
1131 1.5.2.1 bouyer /*
1132 1.5.2.1 bouyer * Verify the microcode checksum.
1133 1.5.2.1 bouyer */
1134 1.5.2.1 bouyer sum = 0;
1135 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
1136 1.5.2.1 bouyer
1137 1.5.2.1 bouyer for (word = 0; word < adw_mcode_expanded_size; word += 2) {
1138 1.5.2.1 bouyer sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1139 1.5.2.1 bouyer }
1140 1.5.2.1 bouyer
1141 1.5.2.1 bouyer if (sum != mcode_chksum) {
1142 1.5.2.1 bouyer return ADW_IERR_MCODE_CHKSUM;
1143 1.5.2.1 bouyer }
1144 1.5.2.1 bouyer
1145 1.5.2.1 bouyer /*
1146 1.5.2.1 bouyer * Restore the RISC memory BIOS region.
1147 1.5.2.1 bouyer */
1148 1.5.2.1 bouyer for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
1149 1.5.2.1 bouyer if(chip_type == ADW_CHIP_ASC3550) {
1150 1.5.2.1 bouyer ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1151 1.5.2.1 bouyer bios_mem[i]);
1152 1.5.2.1 bouyer } else {
1153 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
1154 1.5.2.1 bouyer bios_mem[i]);
1155 1.5.2.1 bouyer }
1156 1.5.2.1 bouyer }
1157 1.5.2.1 bouyer
1158 1.5.2.1 bouyer /*
1159 1.5.2.1 bouyer * Calculate and write the microcode code checksum to the microcode
1160 1.5.2.1 bouyer * code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
1161 1.5.2.1 bouyer */
1162 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
1163 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
1164 1.5.2.1 bouyer code_sum = 0;
1165 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
1166 1.5.2.1 bouyer for (word = begin_addr; word < end_addr; word += 2) {
1167 1.5.2.1 bouyer code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
1168 1.5.2.1 bouyer }
1169 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
1170 1.5.2.1 bouyer
1171 1.5.2.1 bouyer /*
1172 1.5.2.1 bouyer * Set the chip type.
1173 1.1 dante */
1174 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
1175 1.5.2.1 bouyer
1176 1.5.2.1 bouyer return 0;
1177 1.5.2.1 bouyer }
1178 1.5.2.1 bouyer
1179 1.5.2.1 bouyer
1180 1.5.2.1 bouyer int
1181 1.5.2.1 bouyer AdwASC3550Cabling(iot, ioh, cfg)
1182 1.5.2.1 bouyer bus_space_tag_t iot;
1183 1.5.2.1 bouyer bus_space_handle_t ioh;
1184 1.5.2.1 bouyer ADW_DVC_CFG *cfg;
1185 1.5.2.1 bouyer {
1186 1.5.2.1 bouyer u_int16_t scsi_cfg1;
1187 1.5.2.1 bouyer
1188 1.2 dante
1189 1.1 dante /*
1190 1.1 dante * Determine SCSI_CFG1 Microcode Default Value.
1191 1.1 dante *
1192 1.1 dante * The microcode will set the SCSI_CFG1 register using this value
1193 1.1 dante * after it is started below.
1194 1.1 dante */
1195 1.1 dante
1196 1.1 dante /* Read current SCSI_CFG1 Register value. */
1197 1.1 dante scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1198 1.1 dante
1199 1.1 dante /*
1200 1.5.2.1 bouyer * If all three connectors are in use in ASC3550, return an error.
1201 1.1 dante */
1202 1.1 dante if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
1203 1.5.2.1 bouyer (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
1204 1.5.2.1 bouyer return ADW_IERR_ILLEGAL_CONNECTION;
1205 1.1 dante }
1206 1.5.2.1 bouyer
1207 1.1 dante /*
1208 1.5.2.1 bouyer * If the cable is reversed all of the SCSI_CTRL register signals
1209 1.5.2.1 bouyer * will be set. Check for and return an error if this condition is
1210 1.5.2.1 bouyer * found.
1211 1.1 dante */
1212 1.5.2.1 bouyer if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1213 1.5.2.1 bouyer return ADW_IERR_REVERSED_CABLE;
1214 1.2 dante }
1215 1.1 dante
1216 1.1 dante /*
1217 1.1 dante * If this is a differential board and a single-ended device
1218 1.1 dante * is attached to one of the connectors, return an error.
1219 1.1 dante */
1220 1.5.2.1 bouyer if ((scsi_cfg1 & ADW_DIFF_MODE) &&
1221 1.5.2.1 bouyer (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
1222 1.5.2.1 bouyer return ADW_IERR_SINGLE_END_DEVICE;
1223 1.5.2.1 bouyer }
1224 1.1 dante
1225 1.1 dante /*
1226 1.1 dante * If automatic termination control is enabled, then set the
1227 1.5.2.1 bouyer * termination value based on a table listed in a_condor.h.
1228 1.1 dante *
1229 1.1 dante * If manual termination was specified with an EEPROM setting
1230 1.5.2.1 bouyer * then 'termination' was set-up in AdwInitFromEEPROM() and
1231 1.1 dante * is ready to be 'ored' into SCSI_CFG1.
1232 1.1 dante */
1233 1.5.2.1 bouyer if (cfg->termination == 0) {
1234 1.1 dante /*
1235 1.2 dante * The software always controls termination by setting
1236 1.5.2.1 bouyer * TERM_CTL_SEL.
1237 1.5.2.1 bouyer * If TERM_CTL_SEL were set to 0, the hardware would set
1238 1.5.2.1 bouyer * termination.
1239 1.5.2.1 bouyer */
1240 1.5.2.1 bouyer cfg->termination |= ADW_TERM_CTL_SEL;
1241 1.1 dante
1242 1.5.2.1 bouyer switch(scsi_cfg1 & ADW_CABLE_DETECT) {
1243 1.5.2.1 bouyer /* TERM_CTL_H: on, TERM_CTL_L: on */
1244 1.5.2.1 bouyer case 0x3: case 0x7: case 0xB:
1245 1.5.2.1 bouyer case 0xD: case 0xE: case 0xF:
1246 1.5.2.1 bouyer cfg->termination |=
1247 1.5.2.1 bouyer (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
1248 1.5.2.1 bouyer break;
1249 1.5.2.1 bouyer
1250 1.5.2.1 bouyer /* TERM_CTL_H: on, TERM_CTL_L: off */
1251 1.5.2.1 bouyer case 0x1: case 0x5: case 0x9:
1252 1.5.2.1 bouyer case 0xA: case 0xC:
1253 1.5.2.1 bouyer cfg->termination |= ADW_TERM_CTL_H;
1254 1.5.2.1 bouyer break;
1255 1.5.2.1 bouyer
1256 1.5.2.1 bouyer /* TERM_CTL_H: off, TERM_CTL_L: off */
1257 1.5.2.1 bouyer case 0x2: case 0x6:
1258 1.5.2.1 bouyer break;
1259 1.1 dante }
1260 1.1 dante }
1261 1.5.2.1 bouyer
1262 1.1 dante /*
1263 1.5.2.1 bouyer * Clear any set TERM_CTL_H and TERM_CTL_L bits.
1264 1.1 dante */
1265 1.1 dante scsi_cfg1 &= ~ADW_TERM_CTL;
1266 1.1 dante
1267 1.1 dante /*
1268 1.5.2.1 bouyer * Invert the TERM_CTL_H and TERM_CTL_L bits and then
1269 1.5.2.1 bouyer * set 'scsi_cfg1'. The TERM_POL bit does not need to be
1270 1.1 dante * referenced, because the hardware internally inverts
1271 1.5.2.1 bouyer * the Termination High and Low bits if TERM_POL is set.
1272 1.1 dante */
1273 1.5.2.1 bouyer scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
1274 1.1 dante
1275 1.1 dante /*
1276 1.1 dante * Set SCSI_CFG1 Microcode Default Value
1277 1.1 dante *
1278 1.1 dante * Set filter value and possibly modified termination control
1279 1.1 dante * bits in the Microcode SCSI_CFG1 Register Value.
1280 1.1 dante *
1281 1.1 dante * The microcode will set the SCSI_CFG1 register using this value
1282 1.1 dante * after it is started below.
1283 1.1 dante */
1284 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
1285 1.5.2.1 bouyer ADW_FLTR_DISABLE | scsi_cfg1);
1286 1.1 dante
1287 1.1 dante /*
1288 1.5.2.1 bouyer * Set MEM_CFG Microcode Default Value
1289 1.1 dante *
1290 1.5.2.1 bouyer * The microcode will set the MEM_CFG register using this value
1291 1.1 dante * after it is started below.
1292 1.5.2.1 bouyer *
1293 1.5.2.1 bouyer * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1294 1.5.2.1 bouyer * are defined.
1295 1.5.2.1 bouyer *
1296 1.5.2.1 bouyer * ASC-3550 has 8KB internal memory.
1297 1.1 dante */
1298 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1299 1.5.2.1 bouyer ADW_BIOS_EN | ADW_RAM_SZ_8KB);
1300 1.5.2.1 bouyer
1301 1.5.2.1 bouyer return 0;
1302 1.5.2.1 bouyer }
1303 1.5.2.1 bouyer
1304 1.5.2.1 bouyer
1305 1.5.2.1 bouyer int
1306 1.5.2.1 bouyer AdwASC38C0800Cabling(iot, ioh, cfg)
1307 1.5.2.1 bouyer bus_space_tag_t iot;
1308 1.5.2.1 bouyer bus_space_handle_t ioh;
1309 1.5.2.1 bouyer ADW_DVC_CFG *cfg;
1310 1.5.2.1 bouyer {
1311 1.5.2.1 bouyer u_int16_t scsi_cfg1;
1312 1.5.2.1 bouyer
1313 1.1 dante
1314 1.1 dante /*
1315 1.5.2.1 bouyer * Determine SCSI_CFG1 Microcode Default Value.
1316 1.1 dante *
1317 1.5.2.1 bouyer * The microcode will set the SCSI_CFG1 register using this value
1318 1.5.2.1 bouyer * after it is started below.
1319 1.1 dante */
1320 1.5.2.1 bouyer
1321 1.5.2.1 bouyer /* Read current SCSI_CFG1 Register value. */
1322 1.5.2.1 bouyer scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1323 1.5.2.1 bouyer
1324 1.5.2.1 bouyer /*
1325 1.5.2.1 bouyer * If the cable is reversed all of the SCSI_CTRL register signals
1326 1.5.2.1 bouyer * will be set. Check for and return an error if this condition is
1327 1.5.2.1 bouyer * found.
1328 1.5.2.1 bouyer */
1329 1.5.2.1 bouyer if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1330 1.5.2.1 bouyer return ADW_IERR_REVERSED_CABLE;
1331 1.5.2.1 bouyer }
1332 1.5.2.1 bouyer
1333 1.5.2.1 bouyer /*
1334 1.5.2.1 bouyer * All kind of combinations of devices attached to one of four
1335 1.5.2.1 bouyer * connectors are acceptable except HVD device attached.
1336 1.5.2.1 bouyer * For example, LVD device can be attached to SE connector while
1337 1.5.2.1 bouyer * SE device attached to LVD connector.
1338 1.5.2.1 bouyer * If LVD device attached to SE connector, it only runs up to
1339 1.5.2.1 bouyer * Ultra speed.
1340 1.5.2.1 bouyer *
1341 1.5.2.1 bouyer * If an HVD device is attached to one of LVD connectors, return
1342 1.5.2.1 bouyer * an error.
1343 1.5.2.1 bouyer * However, there is no way to detect HVD device attached to
1344 1.5.2.1 bouyer * SE connectors.
1345 1.5.2.1 bouyer */
1346 1.5.2.1 bouyer if (scsi_cfg1 & ADW_HVD) {
1347 1.5.2.1 bouyer return ADW_IERR_HVD_DEVICE;
1348 1.1 dante }
1349 1.1 dante
1350 1.1 dante /*
1351 1.5.2.1 bouyer * If either SE or LVD automatic termination control is enabled, then
1352 1.5.2.1 bouyer * set the termination value based on a table listed in a_condor.h.
1353 1.1 dante *
1354 1.5.2.1 bouyer * If manual termination was specified with an EEPROM setting then
1355 1.5.2.1 bouyer * 'termination' was set-up in AdwInitFromEEPROM() and is ready
1356 1.5.2.1 bouyer * to be 'ored' into SCSI_CFG1.
1357 1.1 dante */
1358 1.5.2.1 bouyer if ((cfg->termination & ADW_TERM_SE) == 0) {
1359 1.5.2.1 bouyer /* SE automatic termination control is enabled. */
1360 1.5.2.1 bouyer switch(scsi_cfg1 & ADW_C_DET_SE) {
1361 1.5.2.1 bouyer /* TERM_SE_HI: on, TERM_SE_LO: on */
1362 1.5.2.1 bouyer case 0x1: case 0x2: case 0x3:
1363 1.5.2.1 bouyer cfg->termination |= ADW_TERM_SE;
1364 1.5.2.1 bouyer break;
1365 1.5.2.1 bouyer
1366 1.5.2.1 bouyer /* TERM_SE_HI: on, TERM_SE_LO: off */
1367 1.5.2.1 bouyer case 0x0:
1368 1.5.2.1 bouyer cfg->termination |= ADW_TERM_SE_HI;
1369 1.5.2.1 bouyer break;
1370 1.5.2.1 bouyer }
1371 1.5.2.1 bouyer }
1372 1.2 dante
1373 1.5.2.1 bouyer if ((cfg->termination & ADW_TERM_LVD) == 0) {
1374 1.5.2.1 bouyer /* LVD automatic termination control is enabled. */
1375 1.5.2.1 bouyer switch(scsi_cfg1 & ADW_C_DET_LVD) {
1376 1.5.2.1 bouyer /* TERM_LVD_HI: on, TERM_LVD_LO: on */
1377 1.5.2.1 bouyer case 0x4: case 0x8: case 0xC:
1378 1.5.2.1 bouyer cfg->termination |= ADW_TERM_LVD;
1379 1.5.2.1 bouyer break;
1380 1.5.2.1 bouyer
1381 1.5.2.1 bouyer /* TERM_LVD_HI: off, TERM_LVD_LO: off */
1382 1.5.2.1 bouyer case 0x0:
1383 1.5.2.1 bouyer break;
1384 1.5.2.1 bouyer }
1385 1.5.2.1 bouyer }
1386 1.1 dante
1387 1.1 dante /*
1388 1.5.2.1 bouyer * Clear any set TERM_SE and TERM_LVD bits.
1389 1.1 dante */
1390 1.5.2.1 bouyer scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
1391 1.1 dante
1392 1.5.2.1 bouyer /*
1393 1.5.2.1 bouyer * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
1394 1.5.2.1 bouyer */
1395 1.5.2.1 bouyer scsi_cfg1 |= (~cfg->termination & 0xF0);
1396 1.1 dante
1397 1.5.2.1 bouyer /*
1398 1.5.2.1 bouyer * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
1399 1.5.2.1 bouyer * HVD/LVD/SE bits and set possibly modified termination control bits
1400 1.5.2.1 bouyer * in the Microcode SCSI_CFG1 Register Value.
1401 1.5.2.1 bouyer */
1402 1.5.2.1 bouyer scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
1403 1.5.2.1 bouyer ~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
1404 1.1 dante
1405 1.5.2.1 bouyer /*
1406 1.5.2.1 bouyer * Set SCSI_CFG1 Microcode Default Value
1407 1.5.2.1 bouyer *
1408 1.5.2.1 bouyer * Set possibly modified termination control and reset DIS_TERM_DRV
1409 1.5.2.1 bouyer * bits in the Microcode SCSI_CFG1 Register Value.
1410 1.5.2.1 bouyer *
1411 1.5.2.1 bouyer * The microcode will set the SCSI_CFG1 register using this value
1412 1.5.2.1 bouyer * after it is started below.
1413 1.5.2.1 bouyer */
1414 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1415 1.2 dante
1416 1.5.2.1 bouyer /*
1417 1.5.2.1 bouyer * Set MEM_CFG Microcode Default Value
1418 1.5.2.1 bouyer *
1419 1.5.2.1 bouyer * The microcode will set the MEM_CFG register using this value
1420 1.5.2.1 bouyer * after it is started below.
1421 1.5.2.1 bouyer *
1422 1.5.2.1 bouyer * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1423 1.5.2.1 bouyer * are defined.
1424 1.5.2.1 bouyer *
1425 1.5.2.1 bouyer * ASC-38C0800 has 16KB internal memory.
1426 1.5.2.1 bouyer */
1427 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1428 1.5.2.1 bouyer ADW_BIOS_EN | ADW_RAM_SZ_16KB);
1429 1.5.2.1 bouyer
1430 1.5.2.1 bouyer return 0;
1431 1.1 dante }
1432 1.1 dante
1433 1.5.2.1 bouyer
1434 1.1 dante int
1435 1.5.2.1 bouyer AdwASC38C1600Cabling(iot, ioh, cfg)
1436 1.5.2.1 bouyer bus_space_tag_t iot;
1437 1.5.2.1 bouyer bus_space_handle_t ioh;
1438 1.5.2.1 bouyer ADW_DVC_CFG *cfg;
1439 1.1 dante {
1440 1.5.2.1 bouyer u_int16_t scsi_cfg1;
1441 1.1 dante
1442 1.1 dante
1443 1.1 dante /*
1444 1.5.2.1 bouyer * Determine SCSI_CFG1 Microcode Default Value.
1445 1.1 dante *
1446 1.5.2.1 bouyer * The microcode will set the SCSI_CFG1 register using this value
1447 1.5.2.1 bouyer * after it is started below.
1448 1.5.2.1 bouyer * Each ASC-38C1600 function has only two cable detect bits.
1449 1.5.2.1 bouyer * The bus mode override bits are in IOPB_SOFT_OVER_WR.
1450 1.1 dante */
1451 1.1 dante
1452 1.5.2.1 bouyer /* Read current SCSI_CFG1 Register value. */
1453 1.5.2.1 bouyer scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
1454 1.1 dante
1455 1.1 dante /*
1456 1.5.2.1 bouyer * If the cable is reversed all of the SCSI_CTRL register signals
1457 1.5.2.1 bouyer * will be set. Check for and return an error if this condition is
1458 1.5.2.1 bouyer * found.
1459 1.5.2.1 bouyer */
1460 1.5.2.1 bouyer if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
1461 1.5.2.1 bouyer return ADW_IERR_REVERSED_CABLE;
1462 1.5.2.1 bouyer }
1463 1.1 dante
1464 1.1 dante /*
1465 1.5.2.1 bouyer * Each ASC-38C1600 function has two connectors. Only an HVD device
1466 1.5.2.1 bouyer * can not be connected to either connector. An LVD device or SE device
1467 1.5.2.1 bouyer * may be connected to either connecor. If an SE device is connected,
1468 1.5.2.1 bouyer * then at most Ultra speed (20 Mhz) can be used on both connectors.
1469 1.5.2.1 bouyer *
1470 1.5.2.1 bouyer * If an HVD device is attached, return an error.
1471 1.5.2.1 bouyer */
1472 1.5.2.1 bouyer if (scsi_cfg1 & ADW_HVD) {
1473 1.5.2.1 bouyer return ADW_IERR_HVD_DEVICE;
1474 1.1 dante }
1475 1.5.2.1 bouyer
1476 1.5.2.1 bouyer /*
1477 1.5.2.1 bouyer * Each function in the ASC-38C1600 uses only the SE cable detect and
1478 1.5.2.1 bouyer * termination because there are two connectors for each function.
1479 1.5.2.1 bouyer * Each function may use either LVD or SE mode.
1480 1.5.2.1 bouyer * Corresponding the SE automatic termination control EEPROM bits are
1481 1.5.2.1 bouyer * used for each function.
1482 1.5.2.1 bouyer * Each function has its own EEPROM. If SE automatic control is enabled
1483 1.5.2.1 bouyer * for the function, then set the termination value based on a table
1484 1.5.2.1 bouyer * listed in adwlib.h.
1485 1.5.2.1 bouyer *
1486 1.5.2.1 bouyer * If manual termination is specified in the EEPROM for the function,
1487 1.5.2.1 bouyer * then 'termination' was set-up in AdwInitFromEEPROM() and is
1488 1.5.2.1 bouyer * ready to be 'ored' into SCSI_CFG1.
1489 1.5.2.1 bouyer */
1490 1.5.2.1 bouyer if ((cfg->termination & ADW_TERM_SE) == 0) {
1491 1.5.2.1 bouyer /* SE automatic termination control is enabled. */
1492 1.5.2.1 bouyer switch(scsi_cfg1 & ADW_C_DET_SE) {
1493 1.5.2.1 bouyer /* TERM_SE_HI: on, TERM_SE_LO: on */
1494 1.5.2.1 bouyer case 0x1: case 0x2: case 0x3:
1495 1.5.2.1 bouyer cfg->termination |= ADW_TERM_SE;
1496 1.5.2.1 bouyer break;
1497 1.5.2.1 bouyer
1498 1.5.2.1 bouyer case 0x0:
1499 1.5.2.1 bouyer /* !!!!TODO!!!! */
1500 1.5.2.1 bouyer // if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
1501 1.5.2.1 bouyer /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
1502 1.5.2.1 bouyer // }
1503 1.5.2.1 bouyer // else
1504 1.5.2.1 bouyer // {
1505 1.5.2.1 bouyer /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
1506 1.5.2.1 bouyer cfg->termination |= ADW_TERM_SE_HI;
1507 1.5.2.1 bouyer // }
1508 1.5.2.1 bouyer break;
1509 1.5.2.1 bouyer }
1510 1.1 dante }
1511 1.5.2.1 bouyer
1512 1.1 dante /*
1513 1.5.2.1 bouyer * Clear any set TERM_SE bits.
1514 1.1 dante */
1515 1.5.2.1 bouyer scsi_cfg1 &= ~ADW_TERM_SE;
1516 1.5.2.1 bouyer
1517 1.1 dante /*
1518 1.5.2.1 bouyer * Invert the TERM_SE bits and then set 'scsi_cfg1'.
1519 1.1 dante */
1520 1.5.2.1 bouyer scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
1521 1.1 dante
1522 1.5.2.1 bouyer /*
1523 1.5.2.1 bouyer * Clear Big Endian and Terminator Polarity bits and set possibly
1524 1.5.2.1 bouyer * modified termination control bits in the Microcode SCSI_CFG1
1525 1.5.2.1 bouyer * Register Value.
1526 1.5.2.1 bouyer */
1527 1.5.2.1 bouyer scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
1528 1.1 dante
1529 1.1 dante /*
1530 1.5.2.1 bouyer * Set SCSI_CFG1 Microcode Default Value
1531 1.1 dante *
1532 1.5.2.1 bouyer * Set possibly modified termination control bits in the Microcode
1533 1.5.2.1 bouyer * SCSI_CFG1 Register Value.
1534 1.5.2.1 bouyer *
1535 1.5.2.1 bouyer * The microcode will set the SCSI_CFG1 register using this value
1536 1.5.2.1 bouyer * after it is started below.
1537 1.1 dante */
1538 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
1539 1.1 dante
1540 1.5.2.1 bouyer /*
1541 1.5.2.1 bouyer * Set MEM_CFG Microcode Default Value
1542 1.5.2.1 bouyer *
1543 1.5.2.1 bouyer * The microcode will set the MEM_CFG register using this value
1544 1.5.2.1 bouyer * after it is started below.
1545 1.5.2.1 bouyer *
1546 1.5.2.1 bouyer * MEM_CFG may be accessed as a word or byte, but only bits 0-7
1547 1.5.2.1 bouyer * are defined.
1548 1.5.2.1 bouyer *
1549 1.5.2.1 bouyer * ASC-38C1600 has 32KB internal memory.
1550 1.5.2.1 bouyer */
1551 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
1552 1.5.2.1 bouyer ADW_BIOS_EN | ADW_RAM_SZ_32KB);
1553 1.1 dante
1554 1.5.2.1 bouyer return 0;
1555 1.1 dante }
1556 1.1 dante
1557 1.5.2.1 bouyer
1558 1.1 dante /*
1559 1.1 dante * Read EEPROM configuration into the specified buffer.
1560 1.1 dante *
1561 1.1 dante * Return a checksum based on the EEPROM configuration read.
1562 1.1 dante */
1563 1.5.2.1 bouyer static u_int16_t
1564 1.5.2.1 bouyer AdwGetEEPROMConfig(iot, ioh, cfg_buf)
1565 1.5.2.1 bouyer bus_space_tag_t iot;
1566 1.5.2.1 bouyer bus_space_handle_t ioh;
1567 1.5.2.1 bouyer ADW_EEPROM *cfg_buf;
1568 1.1 dante {
1569 1.5.2.1 bouyer u_int16_t wval, chksum;
1570 1.5.2.1 bouyer u_int16_t *wbuf;
1571 1.5.2.1 bouyer int eep_addr;
1572 1.5.2.1 bouyer
1573 1.1 dante
1574 1.1 dante wbuf = (u_int16_t *) cfg_buf;
1575 1.1 dante chksum = 0;
1576 1.1 dante
1577 1.1 dante for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
1578 1.5.2.1 bouyer eep_addr < ASC_EEP_DVC_CFG_END;
1579 1.5.2.1 bouyer eep_addr++, wbuf++) {
1580 1.5.2.1 bouyer wval = AdwReadEEPWord(iot, ioh, eep_addr);
1581 1.1 dante chksum += wval;
1582 1.1 dante *wbuf = wval;
1583 1.1 dante }
1584 1.5.2.1 bouyer
1585 1.5.2.1 bouyer *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1586 1.1 dante wbuf++;
1587 1.1 dante for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
1588 1.5.2.1 bouyer eep_addr < ASC_EEP_MAX_WORD_ADDR;
1589 1.5.2.1 bouyer eep_addr++, wbuf++) {
1590 1.5.2.1 bouyer *wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
1591 1.1 dante }
1592 1.5.2.1 bouyer
1593 1.1 dante return chksum;
1594 1.1 dante }
1595 1.1 dante
1596 1.5.2.1 bouyer
1597 1.1 dante /*
1598 1.1 dante * Read the EEPROM from specified location
1599 1.1 dante */
1600 1.5.2.1 bouyer static u_int16_t
1601 1.5.2.1 bouyer AdwReadEEPWord(iot, ioh, eep_word_addr)
1602 1.5.2.1 bouyer bus_space_tag_t iot;
1603 1.5.2.1 bouyer bus_space_handle_t ioh;
1604 1.5.2.1 bouyer int eep_word_addr;
1605 1.1 dante {
1606 1.2 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1607 1.5.2.1 bouyer ASC_EEP_CMD_READ | eep_word_addr);
1608 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1609 1.5.2.1 bouyer
1610 1.2 dante return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
1611 1.1 dante }
1612 1.1 dante
1613 1.5.2.1 bouyer
1614 1.1 dante /*
1615 1.1 dante * Wait for EEPROM command to complete
1616 1.1 dante */
1617 1.1 dante static void
1618 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh)
1619 1.5.2.1 bouyer bus_space_tag_t iot;
1620 1.5.2.1 bouyer bus_space_handle_t ioh;
1621 1.1 dante {
1622 1.5.2.1 bouyer int eep_delay_ms;
1623 1.1 dante
1624 1.5.2.1 bouyer
1625 1.5.2.1 bouyer for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
1626 1.1 dante if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
1627 1.5.2.1 bouyer ASC_EEP_CMD_DONE) {
1628 1.1 dante break;
1629 1.1 dante }
1630 1.5.2.1 bouyer AdwSleepMilliSecond(1);
1631 1.1 dante }
1632 1.1 dante
1633 1.5.2.1 bouyer ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
1634 1.1 dante }
1635 1.1 dante
1636 1.5.2.1 bouyer
1637 1.1 dante /*
1638 1.1 dante * Write the EEPROM from 'cfg_buf'.
1639 1.1 dante */
1640 1.1 dante static void
1641 1.5.2.1 bouyer AdwSetEEPROMConfig(iot, ioh, cfg_buf)
1642 1.5.2.1 bouyer bus_space_tag_t iot;
1643 1.5.2.1 bouyer bus_space_handle_t ioh;
1644 1.5.2.1 bouyer ADW_EEPROM *cfg_buf;
1645 1.1 dante {
1646 1.5.2.1 bouyer u_int16_t *wbuf;
1647 1.5.2.1 bouyer u_int16_t addr, chksum;
1648 1.5.2.1 bouyer
1649 1.1 dante
1650 1.1 dante wbuf = (u_int16_t *) cfg_buf;
1651 1.1 dante chksum = 0;
1652 1.1 dante
1653 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
1654 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1655 1.1 dante
1656 1.1 dante /*
1657 1.5.2.1 bouyer * Write EEPROM from word 0 to word 20
1658 1.1 dante */
1659 1.1 dante for (addr = ASC_EEP_DVC_CFG_BEGIN;
1660 1.2 dante addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
1661 1.1 dante chksum += *wbuf;
1662 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1663 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1664 1.5.2.1 bouyer ASC_EEP_CMD_WRITE | addr);
1665 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1666 1.5.2.1 bouyer AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
1667 1.1 dante }
1668 1.1 dante
1669 1.1 dante /*
1670 1.5.2.1 bouyer * Write EEPROM checksum at word 21
1671 1.1 dante */
1672 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
1673 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1674 1.5.2.1 bouyer ASC_EEP_CMD_WRITE | addr);
1675 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1676 1.5.2.1 bouyer wbuf++; /* skip over check_sum */
1677 1.1 dante
1678 1.1 dante /*
1679 1.5.2.1 bouyer * Write EEPROM OEM name at words 22 to 29
1680 1.1 dante */
1681 1.1 dante for (addr = ASC_EEP_DVC_CTL_BEGIN;
1682 1.2 dante addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
1683 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
1684 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1685 1.5.2.1 bouyer ASC_EEP_CMD_WRITE | addr);
1686 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1687 1.1 dante }
1688 1.5.2.1 bouyer
1689 1.1 dante ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
1690 1.5.2.1 bouyer ASC_EEP_CMD_WRITE_DISABLE);
1691 1.5.2.1 bouyer AdwWaitEEPCmd(iot, ioh);
1692 1.5.2.1 bouyer
1693 1.1 dante return;
1694 1.1 dante }
1695 1.1 dante
1696 1.5.2.1 bouyer
1697 1.1 dante /*
1698 1.5.2.1 bouyer * AdwExeScsiQueue() - Send a request to the RISC microcode program.
1699 1.1 dante *
1700 1.5.2.1 bouyer * Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
1701 1.5.2.1 bouyer * add the carrier to the ICQ (Initiator Command Queue), and tickle the
1702 1.5.2.1 bouyer * RISC to notify it a new command is ready to be executed.
1703 1.1 dante *
1704 1.5.2.1 bouyer * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
1705 1.5.2.1 bouyer * set to SCSI_MAX_RETRY.
1706 1.5.2.1 bouyer *
1707 1.5.2.1 bouyer * Return:
1708 1.5.2.1 bouyer * ADW_SUCCESS(1) - The request was successfully queued.
1709 1.5.2.1 bouyer * ADW_BUSY(0) - Resource unavailable; Retry again after pending
1710 1.5.2.1 bouyer * request completes.
1711 1.5.2.1 bouyer * ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
1712 1.5.2.1 bouyer * host IC error.
1713 1.1 dante */
1714 1.5.2.1 bouyer int
1715 1.5.2.1 bouyer AdwExeScsiQueue(sc, scsiq)
1716 1.5.2.1 bouyer ADW_SOFTC *sc;
1717 1.5.2.1 bouyer ADW_SCSI_REQ_Q *scsiq;
1718 1.1 dante {
1719 1.5.2.1 bouyer bus_space_tag_t iot = sc->sc_iot;
1720 1.5.2.1 bouyer bus_space_handle_t ioh = sc->sc_ioh;
1721 1.5.2.1 bouyer ADW_CCB *ccb;
1722 1.5.2.1 bouyer long req_size;
1723 1.5.2.1 bouyer u_int32_t req_paddr;
1724 1.5.2.1 bouyer ADW_CARRIER *new_carrp;
1725 1.1 dante
1726 1.5.2.1 bouyer /*
1727 1.5.2.1 bouyer * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
1728 1.5.2.1 bouyer */
1729 1.5.2.1 bouyer if (scsiq->target_id > ADW_MAX_TID) {
1730 1.5.2.1 bouyer scsiq->host_status = QHSTA_M_INVALID_DEVICE;
1731 1.5.2.1 bouyer scsiq->done_status = QD_WITH_ERROR;
1732 1.5.2.1 bouyer return ADW_ERROR;
1733 1.5.2.1 bouyer }
1734 1.1 dante
1735 1.1 dante /*
1736 1.5.2.1 bouyer * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
1737 1.1 dante */
1738 1.5.2.1 bouyer
1739 1.5.2.1 bouyer ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
1740 1.1 dante
1741 1.1 dante /*
1742 1.5.2.1 bouyer * Allocate a carrier and initialize fields.
1743 1.5.2.1 bouyer */
1744 1.5.2.1 bouyer if ((new_carrp = sc->carr_freelist) == NULL) {
1745 1.5.2.1 bouyer return ADW_BUSY;
1746 1.5.2.1 bouyer }
1747 1.5.2.1 bouyer sc->carr_freelist = ADW_CARRIER_VADDR(sc,
1748 1.5.2.1 bouyer ASC_GET_CARRP(new_carrp->next_ba));
1749 1.5.2.1 bouyer sc->carr_pending_cnt++;
1750 1.5.2.1 bouyer
1751 1.5.2.1 bouyer /*
1752 1.5.2.1 bouyer * Set the carrier to be a stopper by setting 'next_ba'
1753 1.5.2.1 bouyer * to the stopper value. The current stopper will be changed
1754 1.5.2.1 bouyer * below to point to the new stopper.
1755 1.1 dante */
1756 1.5.2.1 bouyer new_carrp->next_ba = ASC_CQ_STOPPER;
1757 1.1 dante
1758 1.5.2.1 bouyer req_size = sizeof(ADW_SCSI_REQ_Q);
1759 1.5.2.1 bouyer req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
1760 1.5.2.1 bouyer ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
1761 1.5.2.1 bouyer
1762 1.5.2.1 bouyer /* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
1763 1.5.2.1 bouyer scsiq->scsiq_rptr = req_paddr;
1764 1.1 dante
1765 1.1 dante /*
1766 1.5.2.1 bouyer * Every ADV_CARR_T.carr_ba is byte swapped to little-endian
1767 1.5.2.1 bouyer * order during initialization.
1768 1.1 dante */
1769 1.5.2.1 bouyer scsiq->carr_ba = sc->icq_sp->carr_ba;
1770 1.5.2.1 bouyer scsiq->carr_va = sc->icq_sp->carr_ba;
1771 1.5.2.1 bouyer
1772 1.5.2.1 bouyer /*
1773 1.5.2.1 bouyer * Use the current stopper to send the ADW_SCSI_REQ_Q command to
1774 1.5.2.1 bouyer * the microcode. The newly allocated stopper will become the new
1775 1.5.2.1 bouyer * stopper.
1776 1.5.2.1 bouyer */
1777 1.5.2.1 bouyer sc->icq_sp->areq_ba = req_paddr;
1778 1.5.2.1 bouyer
1779 1.5.2.1 bouyer /*
1780 1.5.2.1 bouyer * Set the 'next_ba' pointer for the old stopper to be the
1781 1.5.2.1 bouyer * physical address of the new stopper. The RISC can only
1782 1.5.2.1 bouyer * follow physical addresses.
1783 1.5.2.1 bouyer */
1784 1.5.2.1 bouyer sc->icq_sp->next_ba = new_carrp->carr_ba;
1785 1.5.2.1 bouyer
1786 1.5.2.1 bouyer #if ADW_DEBUG
1787 1.5.2.1 bouyer printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
1788 1.5.2.1 bouyer sc->icq_sp->carr_id,
1789 1.5.2.1 bouyer sc->icq_sp->carr_ba,
1790 1.5.2.1 bouyer sc->icq_sp->areq_ba,
1791 1.5.2.1 bouyer sc->icq_sp->next_ba);
1792 1.5.2.1 bouyer #endif
1793 1.5.2.1 bouyer /*
1794 1.5.2.1 bouyer * Set the host adapter stopper pointer to point to the new carrier.
1795 1.5.2.1 bouyer */
1796 1.5.2.1 bouyer sc->icq_sp = new_carrp;
1797 1.5.2.1 bouyer
1798 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550 ||
1799 1.5.2.1 bouyer sc->chip_type == ADW_CHIP_ASC38C0800) {
1800 1.5.2.1 bouyer /*
1801 1.5.2.1 bouyer * Tickle the RISC to tell it to read its Command Queue Head
1802 1.5.2.1 bouyer * pointer.
1803 1.5.2.1 bouyer */
1804 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
1805 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550) {
1806 1.5.2.1 bouyer /*
1807 1.5.2.1 bouyer * Clear the tickle value. In the ASC-3550 the RISC flag
1808 1.5.2.1 bouyer * command 'clr_tickle_a' does not work unless the host
1809 1.5.2.1 bouyer * value is cleared.
1810 1.5.2.1 bouyer */
1811 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
1812 1.5.2.1 bouyer ADW_TICKLE_NOP);
1813 1.5.2.1 bouyer }
1814 1.5.2.1 bouyer } else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1815 1.5.2.1 bouyer /*
1816 1.5.2.1 bouyer * Notify the RISC a carrier is ready by writing the physical
1817 1.5.2.1 bouyer * address of the new carrier stopper to the COMMA register.
1818 1.5.2.1 bouyer */
1819 1.5.2.1 bouyer ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
1820 1.5.2.1 bouyer new_carrp->carr_ba);
1821 1.5.2.1 bouyer }
1822 1.5.2.1 bouyer
1823 1.5.2.1 bouyer /*
1824 1.5.2.1 bouyer * End of CRITICAL SECTION: Must be protected within splbio/splx pair
1825 1.5.2.1 bouyer */
1826 1.5.2.1 bouyer
1827 1.5.2.1 bouyer return ADW_SUCCESS;
1828 1.1 dante }
1829 1.1 dante
1830 1.5.2.1 bouyer
1831 1.5.2.1 bouyer void
1832 1.5.2.1 bouyer AdwResetChip(iot, ioh)
1833 1.5.2.1 bouyer bus_space_tag_t iot;
1834 1.5.2.1 bouyer bus_space_handle_t ioh;
1835 1.1 dante {
1836 1.5.2.1 bouyer
1837 1.5.2.1 bouyer /*
1838 1.5.2.1 bouyer * Reset Chip.
1839 1.5.2.1 bouyer */
1840 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1841 1.5.2.1 bouyer ADW_CTRL_REG_CMD_RESET);
1842 1.5.2.1 bouyer AdwSleepMilliSecond(100);
1843 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1844 1.5.2.1 bouyer ADW_CTRL_REG_CMD_WR_IO_REG);
1845 1.1 dante }
1846 1.1 dante
1847 1.5.2.1 bouyer
1848 1.1 dante /*
1849 1.1 dante * Reset SCSI Bus and purge all outstanding requests.
1850 1.1 dante *
1851 1.1 dante * Return Value:
1852 1.5.2.1 bouyer * ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
1853 1.5.2.1 bouyer * ADW_FALSE(0) - Microcode command failed.
1854 1.5.2.1 bouyer * ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
1855 1.5.2.1 bouyer * may be hung which requires driver recovery.
1856 1.1 dante */
1857 1.1 dante int
1858 1.5.2.1 bouyer AdwResetCCB(sc)
1859 1.5.2.1 bouyer ADW_SOFTC *sc;
1860 1.1 dante {
1861 1.5.2.1 bouyer int status;
1862 1.5.2.1 bouyer
1863 1.5.2.1 bouyer /*
1864 1.5.2.1 bouyer * Send the SCSI Bus Reset idle start idle command which asserts
1865 1.5.2.1 bouyer * the SCSI Bus Reset signal.
1866 1.5.2.1 bouyer */
1867 1.5.2.1 bouyer status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
1868 1.5.2.1 bouyer if (status != ADW_TRUE) {
1869 1.5.2.1 bouyer return status;
1870 1.5.2.1 bouyer }
1871 1.5.2.1 bouyer
1872 1.5.2.1 bouyer /*
1873 1.5.2.1 bouyer * Delay for the specified SCSI Bus Reset hold time.
1874 1.5.2.1 bouyer *
1875 1.5.2.1 bouyer * The hold time delay is done on the host because the RISC has no
1876 1.5.2.1 bouyer * microsecond accurate timer.
1877 1.5.2.1 bouyer */
1878 1.5.2.1 bouyer AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
1879 1.1 dante
1880 1.5.2.1 bouyer /*
1881 1.5.2.1 bouyer * Send the SCSI Bus Reset end idle command which de-asserts
1882 1.5.2.1 bouyer * the SCSI Bus Reset signal and purges any pending requests.
1883 1.5.2.1 bouyer */
1884 1.5.2.1 bouyer status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
1885 1.5.2.1 bouyer if (status != ADW_TRUE) {
1886 1.5.2.1 bouyer return status;
1887 1.5.2.1 bouyer }
1888 1.1 dante
1889 1.5.2.1 bouyer AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
1890 1.1 dante
1891 1.1 dante return status;
1892 1.1 dante }
1893 1.1 dante
1894 1.5.2.1 bouyer
1895 1.1 dante /*
1896 1.5.2.1 bouyer * Reset chip and SCSI Bus.
1897 1.5.2.1 bouyer *
1898 1.5.2.1 bouyer * Return Value:
1899 1.5.2.1 bouyer * ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
1900 1.5.2.1 bouyer * ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
1901 1.1 dante */
1902 1.5.2.1 bouyer int
1903 1.5.2.1 bouyer AdwResetSCSIBus(sc)
1904 1.5.2.1 bouyer ADW_SOFTC *sc;
1905 1.1 dante {
1906 1.2 dante bus_space_tag_t iot = sc->sc_iot;
1907 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
1908 1.5.2.1 bouyer int status;
1909 1.5.2.1 bouyer u_int16_t wdtr_able, sdtr_able, ppr_able, tagqng_able;
1910 1.5.2.1 bouyer u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
1911 1.5.2.1 bouyer u_int16_t bios_sig;
1912 1.5.2.1 bouyer
1913 1.5.2.1 bouyer
1914 1.5.2.1 bouyer /*
1915 1.5.2.1 bouyer * Save current per TID negotiated values.
1916 1.5.2.1 bouyer */
1917 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1918 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1919 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1920 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1921 1.5.2.1 bouyer }
1922 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1923 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1924 1.5.2.1 bouyer ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1925 1.5.2.1 bouyer max_cmd[tid]);
1926 1.5.2.1 bouyer }
1927 1.5.2.1 bouyer
1928 1.5.2.1 bouyer /*
1929 1.5.2.1 bouyer * Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
1930 1.5.2.1 bouyer * by clearing the BIOS signature word.
1931 1.5.2.1 bouyer * The initialization functions assumes a SCSI Bus Reset is not
1932 1.5.2.1 bouyer * needed if the BIOS signature word is present.
1933 1.5.2.1 bouyer */
1934 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1935 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
1936 1.5.2.1 bouyer
1937 1.5.2.1 bouyer /*
1938 1.5.2.1 bouyer * Stop chip and reset it.
1939 1.5.2.1 bouyer */
1940 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
1941 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1942 1.5.2.1 bouyer ADW_CTRL_REG_CMD_RESET);
1943 1.5.2.1 bouyer AdwSleepMilliSecond(100);
1944 1.5.2.1 bouyer ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
1945 1.5.2.1 bouyer ADW_CTRL_REG_CMD_WR_IO_REG);
1946 1.1 dante
1947 1.5.2.1 bouyer /*
1948 1.5.2.1 bouyer * Reset Adv Library error code, if any, and try
1949 1.5.2.1 bouyer * re-initializing the chip.
1950 1.5.2.1 bouyer * Then translate initialization return value to status value.
1951 1.5.2.1 bouyer */
1952 1.5.2.1 bouyer status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
1953 1.1 dante
1954 1.5.2.1 bouyer /*
1955 1.5.2.1 bouyer * Restore the BIOS signature word.
1956 1.5.2.1 bouyer */
1957 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
1958 1.1 dante
1959 1.1 dante /*
1960 1.5.2.1 bouyer * Restore per TID negotiated values.
1961 1.1 dante */
1962 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
1963 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
1964 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC38C1600) {
1965 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
1966 1.5.2.1 bouyer }
1967 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
1968 1.5.2.1 bouyer for (tid = 0; tid <= ADW_MAX_TID; tid++) {
1969 1.5.2.1 bouyer ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
1970 1.5.2.1 bouyer max_cmd[tid]);
1971 1.5.2.1 bouyer }
1972 1.1 dante
1973 1.5.2.1 bouyer return status;
1974 1.1 dante }
1975 1.1 dante
1976 1.1 dante
1977 1.1 dante /*
1978 1.1 dante * Adv Library Interrupt Service Routine
1979 1.1 dante *
1980 1.1 dante * This function is called by a driver's interrupt service routine.
1981 1.1 dante * The function disables and re-enables interrupts.
1982 1.1 dante *
1983 1.5.2.1 bouyer * When a microcode idle command is completed, the ADV_DVC_VAR
1984 1.1 dante * 'idle_cmd_done' field is set to ADW_TRUE.
1985 1.1 dante *
1986 1.5.2.1 bouyer * Note: AdwISR() can be called when interrupts are disabled or even
1987 1.1 dante * when there is no hardware interrupt condition present. It will
1988 1.1 dante * always check for completed idle commands and microcode requests.
1989 1.1 dante * This is an important feature that shouldn't be changed because it
1990 1.1 dante * allows commands to be completed from polling mode loops.
1991 1.1 dante *
1992 1.1 dante * Return:
1993 1.1 dante * ADW_TRUE(1) - interrupt was pending
1994 1.1 dante * ADW_FALSE(0) - no interrupt was pending
1995 1.1 dante */
1996 1.1 dante int
1997 1.5.2.1 bouyer AdwISR(sc)
1998 1.5.2.1 bouyer ADW_SOFTC *sc;
1999 1.1 dante {
2000 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2001 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2002 1.5.2.1 bouyer u_int8_t int_stat;
2003 1.5.2.1 bouyer u_int16_t target_bit;
2004 1.5.2.1 bouyer ADW_CARRIER *free_carrp/*, *ccb_carr*/;
2005 1.5.2.1 bouyer u_int32_t irq_next_pa;
2006 1.5.2.1 bouyer ADW_SCSI_REQ_Q *scsiq;
2007 1.5.2.1 bouyer ADW_CCB *ccb;
2008 1.5.2.1 bouyer int s;
2009 1.1 dante
2010 1.1 dante
2011 1.5.2.1 bouyer s = splbio();
2012 1.1 dante
2013 1.1 dante /* Reading the register clears the interrupt. */
2014 1.1 dante int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
2015 1.1 dante
2016 1.5.2.1 bouyer if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
2017 1.5.2.1 bouyer ADW_INTR_STATUS_INTRC)) == 0) {
2018 1.5.2.1 bouyer splx(s);
2019 1.5.2.1 bouyer return ADW_FALSE;
2020 1.1 dante }
2021 1.5.2.1 bouyer
2022 1.1 dante /*
2023 1.5.2.1 bouyer * Notify the driver of an asynchronous microcode condition by
2024 1.5.2.1 bouyer * calling the ADV_DVC_VAR.async_callback function. The function
2025 1.5.2.1 bouyer * is passed the microcode ADW_MC_INTRB_CODE byte value.
2026 1.1 dante */
2027 1.5.2.1 bouyer if (int_stat & ADW_INTR_STATUS_INTRB) {
2028 1.5.2.1 bouyer u_int8_t intrb_code;
2029 1.1 dante
2030 1.5.2.1 bouyer ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
2031 1.1 dante
2032 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550 ||
2033 1.5.2.1 bouyer sc->chip_type == ADW_CHIP_ASC38C0800) {
2034 1.5.2.1 bouyer if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
2035 1.5.2.1 bouyer sc->carr_pending_cnt != 0) {
2036 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh,
2037 1.5.2.1 bouyer IOPB_TICKLE, ADW_TICKLE_A);
2038 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550) {
2039 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh,
2040 1.5.2.1 bouyer IOPB_TICKLE, ADW_TICKLE_NOP);
2041 1.5.2.1 bouyer }
2042 1.5.2.1 bouyer }
2043 1.5.2.1 bouyer }
2044 1.1 dante
2045 1.5.2.1 bouyer if (sc->async_callback != 0) {
2046 1.5.2.1 bouyer (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
2047 1.5.2.1 bouyer }
2048 1.5.2.1 bouyer }
2049 1.1 dante
2050 1.5.2.1 bouyer /*
2051 1.5.2.1 bouyer * Check if the IRQ stopper carrier contains a completed request.
2052 1.5.2.1 bouyer */
2053 1.5.2.1 bouyer while (((irq_next_pa = sc->irq_sp->next_ba) & ASC_RQ_DONE) != 0)
2054 1.5.2.1 bouyer {
2055 1.5.2.1 bouyer #if ADW_DEBUG
2056 1.5.2.1 bouyer printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
2057 1.5.2.1 bouyer sc->irq_sp->carr_id,
2058 1.5.2.1 bouyer sc->irq_sp->carr_ba,
2059 1.5.2.1 bouyer sc->irq_sp->areq_ba,
2060 1.5.2.1 bouyer sc->irq_sp->next_ba);
2061 1.5.2.1 bouyer #endif
2062 1.1 dante /*
2063 1.5.2.1 bouyer * Get a pointer to the newly completed ADW_SCSI_REQ_Q
2064 1.5.2.1 bouyer * structure.
2065 1.5.2.1 bouyer * The RISC will have set 'areq_ba' to a virtual address.
2066 1.1 dante *
2067 1.5.2.1 bouyer * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
2068 1.5.2.1 bouyer * field to the carrier ADV_CARR_T.areq_ba field.
2069 1.5.2.1 bouyer * The conversion below complements the conversion of
2070 1.5.2.1 bouyer * ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
2071 1.1 dante */
2072 1.5.2.1 bouyer ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
2073 1.5.2.1 bouyer scsiq = &ccb->scsiq;
2074 1.5.2.1 bouyer scsiq->ccb_ptr = sc->irq_sp->areq_ba;
2075 1.1 dante
2076 1.5.2.1 bouyer /*
2077 1.5.2.1 bouyer * Request finished with good status and the queue was not
2078 1.5.2.1 bouyer * DMAed to host memory by the firmware. Set all status fields
2079 1.5.2.1 bouyer * to indicate good status.
2080 1.5.2.1 bouyer */
2081 1.5.2.1 bouyer if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
2082 1.5.2.1 bouyer scsiq->done_status = QD_NO_ERROR;
2083 1.5.2.1 bouyer scsiq->host_status = scsiq->scsi_status = 0;
2084 1.5.2.1 bouyer scsiq->data_cnt = 0L;
2085 1.1 dante }
2086 1.1 dante
2087 1.5.2.1 bouyer /*
2088 1.5.2.1 bouyer * Advance the stopper pointer to the next carrier
2089 1.5.2.1 bouyer * ignoring the lower four bits. Free the previous
2090 1.5.2.1 bouyer * stopper carrier.
2091 1.5.2.1 bouyer */
2092 1.5.2.1 bouyer free_carrp = sc->irq_sp;
2093 1.5.2.1 bouyer sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
2094 1.5.2.1 bouyer
2095 1.5.2.1 bouyer free_carrp->next_ba = (sc->carr_freelist == NULL)? NULL
2096 1.5.2.1 bouyer : sc->carr_freelist->carr_ba;
2097 1.5.2.1 bouyer sc->carr_freelist = free_carrp;
2098 1.5.2.1 bouyer sc->carr_pending_cnt--;
2099 1.5.2.1 bouyer
2100 1.5.2.1 bouyer
2101 1.1 dante target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
2102 1.1 dante
2103 1.1 dante /*
2104 1.1 dante * Clear request microcode control flag.
2105 1.1 dante */
2106 1.1 dante scsiq->cntl = 0;
2107 1.1 dante
2108 1.1 dante /*
2109 1.1 dante * Check Condition handling
2110 1.1 dante */
2111 1.1 dante /*
2112 1.1 dante * If the command that completed was a SCSI INQUIRY and
2113 1.1 dante * LUN 0 was sent the command, then process the INQUIRY
2114 1.1 dante * command information for the device.
2115 1.1 dante */
2116 1.5.2.1 bouyer if (scsiq->done_status == QD_NO_ERROR &&
2117 1.5.2.1 bouyer scsiq->cdb[0] == INQUIRY &&
2118 1.5.2.1 bouyer scsiq->target_lun == 0) {
2119 1.5.2.1 bouyer AdwInquiryHandling(sc, scsiq);
2120 1.5.2.1 bouyer }
2121 1.1 dante
2122 1.1 dante /*
2123 1.1 dante * Notify the driver of the completed request by passing
2124 1.1 dante * the ADW_SCSI_REQ_Q pointer to its callback function.
2125 1.1 dante */
2126 1.5.2.1 bouyer (*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
2127 1.1 dante /*
2128 1.1 dante * Note: After the driver callback function is called, 'scsiq'
2129 1.1 dante * can no longer be referenced.
2130 1.1 dante *
2131 1.1 dante * Fall through and continue processing other completed
2132 1.1 dante * requests...
2133 1.1 dante */
2134 1.1 dante }
2135 1.5.2.1 bouyer
2136 1.5.2.1 bouyer splx(s);
2137 1.5.2.1 bouyer
2138 1.5.2.1 bouyer return ADW_TRUE;
2139 1.1 dante }
2140 1.1 dante
2141 1.5.2.1 bouyer
2142 1.1 dante /*
2143 1.1 dante * Send an idle command to the chip and wait for completion.
2144 1.1 dante *
2145 1.5.2.1 bouyer * Command completion is polled for once per microsecond.
2146 1.5.2.1 bouyer *
2147 1.5.2.1 bouyer * The function can be called from anywhere including an interrupt handler.
2148 1.5.2.1 bouyer * But the function is not re-entrant, so it uses the splbio/splx()
2149 1.5.2.1 bouyer * functions to prevent reentrancy.
2150 1.1 dante *
2151 1.1 dante * Return Values:
2152 1.1 dante * ADW_TRUE - command completed successfully
2153 1.1 dante * ADW_FALSE - command failed
2154 1.5.2.1 bouyer * ADW_ERROR - command timed out
2155 1.1 dante */
2156 1.1 dante int
2157 1.5.2.1 bouyer AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
2158 1.5.2.1 bouyer ADW_SOFTC *sc;
2159 1.5.2.1 bouyer u_int16_t idle_cmd;
2160 1.5.2.1 bouyer u_int32_t idle_cmd_parameter;
2161 1.1 dante {
2162 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2163 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2164 1.5.2.1 bouyer u_int16_t result;
2165 1.5.2.1 bouyer u_int32_t i, j, s;
2166 1.5.2.1 bouyer
2167 1.5.2.1 bouyer s = splbio();
2168 1.1 dante
2169 1.5.2.1 bouyer /*
2170 1.5.2.1 bouyer * Clear the idle command status which is set by the microcode
2171 1.5.2.1 bouyer * to a non-zero value to indicate when the command is completed.
2172 1.5.2.1 bouyer */
2173 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
2174 1.1 dante
2175 1.1 dante /*
2176 1.1 dante * Write the idle command value after the idle command parameter
2177 1.1 dante * has been written to avoid a race condition. If the order is not
2178 1.1 dante * followed, the microcode may process the idle command before the
2179 1.1 dante * parameters have been written to LRAM.
2180 1.1 dante */
2181 1.5.2.1 bouyer ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
2182 1.5.2.1 bouyer idle_cmd_parameter);
2183 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
2184 1.1 dante
2185 1.1 dante /*
2186 1.5.2.1 bouyer * Tickle the RISC to tell it to process the idle command.
2187 1.1 dante */
2188 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
2189 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC3550) {
2190 1.1 dante /*
2191 1.5.2.1 bouyer * Clear the tickle value. In the ASC-3550 the RISC flag
2192 1.5.2.1 bouyer * command 'clr_tickle_b' does not work unless the host
2193 1.5.2.1 bouyer * value is cleared.
2194 1.1 dante */
2195 1.5.2.1 bouyer ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
2196 1.1 dante }
2197 1.1 dante
2198 1.5.2.1 bouyer /* Wait for up to 100 millisecond for the idle command to timeout. */
2199 1.5.2.1 bouyer for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
2200 1.5.2.1 bouyer /* Poll once each microsecond for command completion. */
2201 1.5.2.1 bouyer for (j = 0; j < SCSI_US_PER_MSEC; j++) {
2202 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
2203 1.5.2.1 bouyer result);
2204 1.5.2.1 bouyer if (result != 0) {
2205 1.5.2.1 bouyer splx(s);
2206 1.5.2.1 bouyer return result;
2207 1.5.2.1 bouyer }
2208 1.5.2.1 bouyer AdwDelayMicroSecond(1);
2209 1.5.2.1 bouyer }
2210 1.1 dante }
2211 1.1 dante
2212 1.5.2.1 bouyer splx(s);
2213 1.5.2.1 bouyer return ADW_ERROR;
2214 1.1 dante }
2215 1.1 dante
2216 1.5.2.1 bouyer
2217 1.1 dante /*
2218 1.1 dante * Inquiry Information Byte 7 Handling
2219 1.1 dante *
2220 1.1 dante * Handle SCSI Inquiry Command information for a device by setting
2221 1.2 dante * microcode operating variables that affect WDTR, SDTR, and Tag
2222 1.1 dante * Queuing.
2223 1.1 dante */
2224 1.1 dante static void
2225 1.5.2.1 bouyer AdwInquiryHandling(sc, scsiq)
2226 1.5.2.1 bouyer ADW_SOFTC *sc;
2227 1.5.2.1 bouyer ADW_SCSI_REQ_Q *scsiq;
2228 1.1 dante {
2229 1.5.2.1 bouyer #ifndef FAILSAFE
2230 1.2 dante bus_space_tag_t iot = sc->sc_iot;
2231 1.2 dante bus_space_handle_t ioh = sc->sc_ioh;
2232 1.5.2.1 bouyer u_int8_t tid;
2233 1.5.2.1 bouyer struct scsipi_inquiry_data *inq;
2234 1.5.2.1 bouyer u_int16_t tidmask;
2235 1.5.2.1 bouyer u_int16_t cfg_word;
2236 1.5.2.1 bouyer
2237 1.1 dante
2238 1.1 dante /*
2239 1.5.2.1 bouyer * AdwInquiryHandling() requires up to INQUIRY information Byte 7
2240 1.1 dante * to be available.
2241 1.1 dante *
2242 1.1 dante * If less than 8 bytes of INQUIRY information were requested or less
2243 1.1 dante * than 8 bytes were transferred, then return. cdb[4] is the request
2244 1.1 dante * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
2245 1.1 dante * microcode to the transfer residual count.
2246 1.1 dante */
2247 1.5.2.1 bouyer
2248 1.2 dante if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
2249 1.1 dante return;
2250 1.1 dante }
2251 1.5.2.1 bouyer
2252 1.1 dante tid = scsiq->target_id;
2253 1.5.2.1 bouyer
2254 1.5.2.1 bouyer inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
2255 1.1 dante
2256 1.1 dante /*
2257 1.1 dante * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
2258 1.1 dante */
2259 1.5.2.1 bouyer if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
2260 1.5.2.1 bouyer ((inq->version & SID_ANSII) < 2)) {
2261 1.1 dante return;
2262 1.2 dante } else {
2263 1.1 dante /*
2264 1.1 dante * INQUIRY Byte 7 Handling
2265 1.1 dante *
2266 1.1 dante * Use a device's INQUIRY byte 7 to determine whether it
2267 1.1 dante * supports WDTR, SDTR, and Tag Queuing. If the feature
2268 1.1 dante * is enabled in the EEPROM and the device supports the
2269 1.1 dante * feature, then enable it in the microcode.
2270 1.1 dante */
2271 1.1 dante
2272 1.1 dante tidmask = ADW_TID_TO_TIDMASK(tid);
2273 1.5.2.1 bouyer
2274 1.1 dante /*
2275 1.1 dante * Wide Transfers
2276 1.1 dante *
2277 1.1 dante * If the EEPROM enabled WDTR for the device and the device
2278 1.1 dante * supports wide bus (16 bit) transfers, then turn on the
2279 1.1 dante * device's 'wdtr_able' bit and write the new value to the
2280 1.1 dante * microcode.
2281 1.1 dante */
2282 1.5.2.1 bouyer #ifdef SCSI_ADW_WDTR_DISABLE
2283 1.5.2.1 bouyer if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
2284 1.5.2.1 bouyer #endif /* SCSI_ADW_WDTR_DISABLE */
2285 1.5.2.1 bouyer if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
2286 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2287 1.5.2.1 bouyer cfg_word);
2288 1.2 dante if ((cfg_word & tidmask) == 0) {
2289 1.1 dante cfg_word |= tidmask;
2290 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
2291 1.5.2.1 bouyer cfg_word);
2292 1.1 dante
2293 1.1 dante /*
2294 1.5.2.1 bouyer * Clear the microcode "SDTR negotiation" and
2295 1.5.2.1 bouyer * "WDTR negotiation" done indicators for the
2296 1.5.2.1 bouyer * target to cause it to negotiate with the new
2297 1.5.2.1 bouyer * setting set above.
2298 1.5.2.1 bouyer * WDTR when accepted causes the target to enter
2299 1.5.2.1 bouyer * asynchronous mode, so SDTR must be negotiated
2300 1.1 dante */
2301 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2302 1.5.2.1 bouyer cfg_word);
2303 1.5.2.1 bouyer cfg_word &= ~tidmask;
2304 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2305 1.5.2.1 bouyer cfg_word);
2306 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2307 1.5.2.1 bouyer cfg_word);
2308 1.1 dante cfg_word &= ~tidmask;
2309 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
2310 1.5.2.1 bouyer cfg_word);
2311 1.1 dante }
2312 1.1 dante }
2313 1.5.2.1 bouyer
2314 1.1 dante /*
2315 1.1 dante * Synchronous Transfers
2316 1.1 dante *
2317 1.1 dante * If the EEPROM enabled SDTR for the device and the device
2318 1.1 dante * supports synchronous transfers, then turn on the device's
2319 1.1 dante * 'sdtr_able' bit. Write the new value to the microcode.
2320 1.1 dante */
2321 1.5.2.1 bouyer #ifdef SCSI_ADW_SDTR_DISABLE
2322 1.5.2.1 bouyer if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
2323 1.5.2.1 bouyer #endif /* SCSI_ADW_SDTR_DISABLE */
2324 1.5.2.1 bouyer if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
2325 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
2326 1.2 dante if ((cfg_word & tidmask) == 0) {
2327 1.1 dante cfg_word |= tidmask;
2328 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
2329 1.5.2.1 bouyer cfg_word);
2330 1.1 dante
2331 1.1 dante /*
2332 1.5.2.1 bouyer * Clear the microcode "SDTR negotiation"
2333 1.5.2.1 bouyer * done indicator for the target to cause it
2334 1.2 dante * to negotiate with the new setting set above.
2335 1.1 dante */
2336 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2337 1.5.2.1 bouyer cfg_word);
2338 1.1 dante cfg_word &= ~tidmask;
2339 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
2340 1.5.2.1 bouyer cfg_word);
2341 1.5.2.1 bouyer }
2342 1.5.2.1 bouyer }
2343 1.5.2.1 bouyer /*
2344 1.5.2.1 bouyer * If the Inquiry data included enough space for the SPI-3
2345 1.5.2.1 bouyer * Clocking field, then check if DT mode is supported.
2346 1.5.2.1 bouyer */
2347 1.5.2.1 bouyer if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
2348 1.5.2.1 bouyer (scsiq->cdb[4] >= 57 ||
2349 1.5.2.1 bouyer (scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
2350 1.5.2.1 bouyer /*
2351 1.5.2.1 bouyer * PPR (Parallel Protocol Request) Capable
2352 1.5.2.1 bouyer *
2353 1.5.2.1 bouyer * If the device supports DT mode, then it must be
2354 1.5.2.1 bouyer * PPR capable.
2355 1.5.2.1 bouyer * The PPR message will be used in place of the SDTR
2356 1.5.2.1 bouyer * and WDTR messages to negotiate synchronous speed
2357 1.5.2.1 bouyer * and offset, transfer width, and protocol options.
2358 1.5.2.1 bouyer */
2359 1.5.2.1 bouyer if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
2360 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2361 1.5.2.1 bouyer sc->ppr_able);
2362 1.5.2.1 bouyer sc->ppr_able |= tidmask;
2363 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
2364 1.5.2.1 bouyer sc->ppr_able);
2365 1.1 dante }
2366 1.1 dante }
2367 1.5.2.1 bouyer
2368 1.1 dante /*
2369 1.5.2.1 bouyer * If the EEPROM enabled Tag Queuing for the device and the
2370 1.5.2.1 bouyer * device supports Tag Queueing, then turn on the device's
2371 1.1 dante * 'tagqng_enable' bit in the microcode and set the microcode
2372 1.5.2.1 bouyer * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
2373 1.1 dante * value.
2374 1.1 dante *
2375 1.1 dante * Tag Queuing is disabled for the BIOS which runs in polled
2376 1.1 dante * mode and would see no benefit from Tag Queuing. Also by
2377 1.1 dante * disabling Tag Queuing in the BIOS devices with Tag Queuing
2378 1.1 dante * bugs will at least work with the BIOS.
2379 1.1 dante */
2380 1.5.2.1 bouyer #ifdef SCSI_ADW_TAGQ_DISABLE
2381 1.5.2.1 bouyer if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
2382 1.5.2.1 bouyer #endif /* SCSI_ADW_TAGQ_DISABLE */
2383 1.5.2.1 bouyer if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
2384 1.5.2.1 bouyer ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2385 1.5.2.1 bouyer cfg_word);
2386 1.1 dante cfg_word |= tidmask;
2387 1.5.2.1 bouyer ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
2388 1.5.2.1 bouyer cfg_word);
2389 1.5.2.1 bouyer
2390 1.1 dante ADW_WRITE_BYTE_LRAM(iot, ioh,
2391 1.5.2.1 bouyer ADW_MC_NUMBER_OF_MAX_CMD + tid,
2392 1.5.2.1 bouyer sc->max_dvc_qng);
2393 1.1 dante }
2394 1.1 dante }
2395 1.5.2.1 bouyer #endif /* FAILSAFE */
2396 1.1 dante }
2397 1.1 dante
2398 1.5.2.1 bouyer
2399 1.1 dante static void
2400 1.5.2.1 bouyer AdwSleepMilliSecond(n)
2401 1.5.2.1 bouyer u_int32_t n;
2402 1.1 dante {
2403 1.1 dante
2404 1.1 dante DELAY(n * 1000);
2405 1.1 dante }
2406 1.1 dante
2407 1.5.2.1 bouyer
2408 1.1 dante static void
2409 1.5.2.1 bouyer AdwDelayMicroSecond(n)
2410 1.5.2.1 bouyer u_int32_t n;
2411 1.1 dante {
2412 1.1 dante
2413 1.1 dante DELAY(n);
2414 1.1 dante }
2415 1.5.2.1 bouyer
2416