Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.9
      1  1.9    dante /* $NetBSD: adwlib.c,v 1.9 2000/02/04 16:23:14 dante Exp $        */
      2  1.1    dante 
      3  1.1    dante /*
      4  1.1    dante  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  1.1    dante  *
      6  1.7    dante  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  1.1    dante  * All rights reserved.
      8  1.1    dante  *
      9  1.1    dante  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  1.1    dante  *
     11  1.1    dante  * Redistribution and use in source and binary forms, with or without
     12  1.1    dante  * modification, are permitted provided that the following conditions
     13  1.1    dante  * are met:
     14  1.1    dante  * 1. Redistributions of source code must retain the above copyright
     15  1.1    dante  *    notice, this list of conditions and the following disclaimer.
     16  1.1    dante  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1    dante  *    notice, this list of conditions and the following disclaimer in the
     18  1.1    dante  *    documentation and/or other materials provided with the distribution.
     19  1.1    dante  * 3. All advertising materials mentioning features or use of this software
     20  1.1    dante  *    must display the following acknowledgement:
     21  1.1    dante  *        This product includes software developed by the NetBSD
     22  1.1    dante  *        Foundation, Inc. and its contributors.
     23  1.1    dante  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.1    dante  *    contributors may be used to endorse or promote products derived
     25  1.1    dante  *    from this software without specific prior written permission.
     26  1.1    dante  *
     27  1.1    dante  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.1    dante  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.1    dante  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.1    dante  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.1    dante  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.1    dante  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.1    dante  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.1    dante  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.1    dante  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.1    dante  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.1    dante  * POSSIBILITY OF SUCH DAMAGE.
     38  1.1    dante  */
     39  1.1    dante /*
     40  1.1    dante  * Ported from:
     41  1.1    dante  */
     42  1.1    dante /*
     43  1.1    dante  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  1.7    dante  *
     45  1.7    dante  * Copyright (c) 1995-1999 Advanced System Products, Inc.
     46  1.1    dante  * All Rights Reserved.
     47  1.1    dante  *
     48  1.1    dante  * Redistribution and use in source and binary forms, with or without
     49  1.1    dante  * modification, are permitted provided that redistributions of source
     50  1.1    dante  * code retain the above copyright notice and this comment without
     51  1.1    dante  * modification.
     52  1.1    dante  */
     53  1.1    dante 
     54  1.1    dante #include <sys/types.h>
     55  1.1    dante #include <sys/param.h>
     56  1.1    dante #include <sys/systm.h>
     57  1.1    dante #include <sys/malloc.h>
     58  1.1    dante #include <sys/kernel.h>
     59  1.1    dante #include <sys/queue.h>
     60  1.1    dante #include <sys/device.h>
     61  1.1    dante 
     62  1.1    dante #include <machine/bus.h>
     63  1.1    dante #include <machine/intr.h>
     64  1.1    dante 
     65  1.1    dante #include <dev/scsipi/scsi_all.h>
     66  1.1    dante #include <dev/scsipi/scsipi_all.h>
     67  1.1    dante #include <dev/scsipi/scsiconf.h>
     68  1.1    dante 
     69  1.7    dante #include <dev/pci/pcidevs.h>
     70  1.7    dante 
     71  1.1    dante #include <vm/vm.h>
     72  1.1    dante #include <vm/vm_param.h>
     73  1.1    dante #include <vm/pmap.h>
     74  1.1    dante 
     75  1.1    dante #include <dev/ic/adwlib.h>
     76  1.1    dante #include <dev/ic/adw.h>
     77  1.1    dante #include <dev/ic/adwmcode.h>
     78  1.1    dante 
     79  1.1    dante 
     80  1.1    dante /* Static Functions */
     81  1.1    dante 
     82  1.7    dante static u_int16_t AdvGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83  1.7    dante      							ADW_EEP_3550_CONFIG *));
     84  1.7    dante static u_int16_t AdvGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85  1.7    dante      							ADW_EEP_38C0800_CONFIG *));
     86  1.7    dante static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     87  1.1    dante static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     88  1.7    dante static void AdvSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     89  1.7    dante 					                 ADW_EEP_3550_CONFIG *));
     90  1.7    dante static void AdvSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91  1.7    dante 					                 ADW_EEP_38C0800_CONFIG *));
     92  1.1    dante static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     93  1.1    dante 
     94  1.7    dante static void AdvSleepMilliSecond __P((u_int32_t));
     95  1.7    dante static void AdvDelayMicroSecond __P((u_int32_t));
     96  1.1    dante 
     97  1.1    dante 
     98  1.1    dante /*
     99  1.1    dante  * EEPROM Configuration.
    100  1.1    dante  *
    101  1.1    dante  * All drivers should use this structure to set the default EEPROM
    102  1.1    dante  * configuration. The BIOS now uses this structure when it is built.
    103  1.1    dante  * Additional structure information can be found in advlib.h where
    104  1.1    dante  * the structure is defined.
    105  1.1    dante  */
    106  1.7    dante static ADW_EEP_3550_CONFIG
    107  1.7    dante Default_3550_EEPROM_Config = {
    108  1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    109  1.7    dante 	0x0000,			/* cfg_msw */
    110  1.7    dante 	0xFFFF,			/* disc_enable */
    111  1.7    dante 	0xFFFF,			/* wdtr_able */
    112  1.7    dante 	0xFFFF,			/* sdtr_able */
    113  1.7    dante 	0xFFFF,			/* start_motor */
    114  1.7    dante 	0xFFFF,			/* tagqng_able */
    115  1.7    dante 	0xFFFF,			/* bios_scan */
    116  1.7    dante 	0,			/* scam_tolerant */
    117  1.7    dante 	7,			/* adapter_scsi_id */
    118  1.7    dante 	0,			/* bios_boot_delay */
    119  1.7    dante 	3,			/* scsi_reset_delay */
    120  1.7    dante 	0,			/* bios_id_lun */
    121  1.7    dante 	0,			/* termination */
    122  1.7    dante 	0,			/* reserved1 */
    123  1.7    dante 	0xFFE7,			/* bios_ctrl */
    124  1.7    dante 	0xFFFF,			/* ultra_able */
    125  1.7    dante 	0,			/* reserved2 */
    126  1.2    dante 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
    127  1.2    dante 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    128  1.7    dante 	0,			/* dvc_cntl */
    129  1.7    dante 	0,			/* bug_fix */
    130  1.7    dante 	0,			/* serial_number_word1 */
    131  1.7    dante 	0,			/* serial_number_word2 */
    132  1.7    dante 	0,			/* serial_number_word3 */
    133  1.7    dante 	0,			/* check_sum */
    134  1.2    dante 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* oem_name[16] */
    135  1.7    dante 	0,			/* dvc_err_code */
    136  1.7    dante 	0,			/* adv_err_code */
    137  1.7    dante 	0,			/* adv_err_addr */
    138  1.7    dante 	0,			/* saved_dvc_err_code */
    139  1.7    dante 	0,			/* saved_adv_err_code */
    140  1.7    dante 	0,			/* saved_adv_err_addr */
    141  1.7    dante 	0			/* num_of_err */
    142  1.7    dante };
    143  1.7    dante 
    144  1.7    dante static ADW_EEP_38C0800_CONFIG
    145  1.7    dante Default_38C0800_EEPROM_Config = {
    146  1.7    dante 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    147  1.7    dante 	0x0000,			/* 01 cfg_msw */
    148  1.7    dante 	0xFFFF,			/* 02 disc_enable */
    149  1.7    dante 	0xFFFF,			/* 03 wdtr_able */
    150  1.7    dante 	0x4444,			/* 04 sdtr_speed1 */
    151  1.7    dante 	0xFFFF,			/* 05 start_motor */
    152  1.7    dante 	0xFFFF,			/* 06 tagqng_able */
    153  1.7    dante 	0xFFFF,			/* 07 bios_scan */
    154  1.7    dante 	0,			/* 08 scam_tolerant */
    155  1.7    dante 	7,			/* 09 adapter_scsi_id */
    156  1.7    dante 	0,			/*    bios_boot_delay */
    157  1.7    dante 	3,			/* 10 scsi_reset_delay */
    158  1.7    dante 	0,			/*    bios_id_lun */
    159  1.7    dante 	0,			/* 11 termination_se */
    160  1.7    dante 	0,			/*    termination_lvd */
    161  1.7    dante 	0xFFE7,			/* 12 bios_ctrl */
    162  1.7    dante 	0x4444,			/* 13 sdtr_speed2 */
    163  1.7    dante 	0x4444,			/* 14 sdtr_speed3 */
    164  1.7    dante 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    165  1.7    dante 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    166  1.7    dante 	0,			/* 16 dvc_cntl */
    167  1.7    dante 	0x4444,			/* 17 sdtr_speed4 */
    168  1.7    dante 	0,			/* 18 serial_number_word1 */
    169  1.7    dante 	0,			/* 19 serial_number_word2 */
    170  1.7    dante 	0,			/* 20 serial_number_word3 */
    171  1.7    dante 	0,			/* 21 check_sum */
    172  1.7    dante 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    173  1.7    dante 	0,			/* 30 dvc_err_code */
    174  1.7    dante 	0,			/* 31 adv_err_code */
    175  1.7    dante 	0,			/* 32 adv_err_addr */
    176  1.7    dante 	0,			/* 33 saved_dvc_err_code */
    177  1.7    dante 	0,			/* 34 saved_adv_err_code */
    178  1.7    dante 	0,			/* 35 saved_adv_err_addr */
    179  1.7    dante 	0,			/* 36 reserved */
    180  1.7    dante 	0,			/* 37 reserved */
    181  1.7    dante 	0,			/* 38 reserved */
    182  1.7    dante 	0,			/* 39 reserved */
    183  1.7    dante 	0,			/* 40 reserved */
    184  1.7    dante 	0,			/* 41 reserved */
    185  1.7    dante 	0,			/* 42 reserved */
    186  1.7    dante 	0,			/* 43 reserved */
    187  1.7    dante 	0,			/* 44 reserved */
    188  1.7    dante 	0,			/* 45 reserved */
    189  1.7    dante 	0,			/* 46 reserved */
    190  1.7    dante 	0,			/* 47 reserved */
    191  1.7    dante 	0,			/* 48 reserved */
    192  1.7    dante 	0,			/* 49 reserved */
    193  1.7    dante 	0,			/* 50 reserved */
    194  1.7    dante 	0,			/* 51 reserved */
    195  1.7    dante 	0,			/* 52 reserved */
    196  1.7    dante 	0,			/* 53 reserved */
    197  1.7    dante 	0,			/* 54 reserved */
    198  1.7    dante 	0,			/* 55 reserved */
    199  1.7    dante 	0,			/* 56 cisptr_lsw */
    200  1.7    dante 	0,			/* 57 cisprt_msw */
    201  1.7    dante 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    202  1.7    dante 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    203  1.7    dante 	0,			/* 60 reserved */
    204  1.7    dante 	0,			/* 61 reserved */
    205  1.7    dante 	0,			/* 62 reserved */
    206  1.7    dante 	0			/* 63 reserved */
    207  1.1    dante };
    208  1.1    dante 
    209  1.1    dante /*
    210  1.1    dante  * Initialize the ASC3550.
    211  1.1    dante  *
    212  1.1    dante  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    213  1.1    dante  *
    214  1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    215  1.1    dante  * then 0 is returned.
    216  1.1    dante  */
    217  1.1    dante int
    218  1.1    dante AdvInitAsc3550Driver(sc)
    219  1.2    dante ADW_SOFTC      *sc;
    220  1.1    dante {
    221  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    222  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    223  1.7    dante 	u_int16_t	warn_code;
    224  1.7    dante 	u_int32_t	sum;
    225  1.7    dante 	int		begin_addr;
    226  1.7    dante 	int		end_addr;
    227  1.7    dante 	u_int16_t	code_sum;
    228  1.7    dante 	int		word;
    229  1.7    dante 	int		i, j;
    230  1.7    dante 	int		adv_asc3550_expanded_size;
    231  1.7    dante 	u_int16_t	scsi_cfg1;
    232  1.7    dante 	u_int8_t	tid;
    233  1.7    dante 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    234  1.7    dante 								0x40-0x8F. */
    235  1.7    dante 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    236  1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    237  1.1    dante 
    238  1.1    dante 
    239  1.1    dante 	warn_code = 0;
    240  1.1    dante 
    241  1.1    dante 	/*
    242  1.1    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    243  1.1    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    244  1.1    dante 	 * so its region must be saved and restored.
    245  1.1    dante 	 *
    246  1.1    dante 	 * Note: This code makes the assumption, which is currently true,
    247  1.1    dante 	 * that a chip reset does not clear RISC LRAM.
    248  1.1    dante 	 */
    249  1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    250  1.7    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2*i), bios_mem[i]);
    251  1.7    dante 	}
    252  1.7    dante 
    253  1.7    dante 	/*
    254  1.7    dante 	 * Save current per TID negotiated values.
    255  1.7    dante 	 */
    256  1.7    dante 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] == 0x55AA) {
    257  1.7    dante 
    258  1.7    dante 		u_int16_t  bios_version, major, minor;
    259  1.7    dante 
    260  1.7    dante 		bios_version = bios_mem[(ASC_MC_BIOS_VERSION-ASC_MC_BIOSMEM)/2];
    261  1.7    dante 		major = (bios_version  >> 12) & 0xF;
    262  1.7    dante 		minor = (bios_version  >> 8) & 0xF;
    263  1.7    dante 		if (major < 3 || (major == 3 && minor == 1)) {
    264  1.7    dante 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    265  1.7    dante 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    266  1.7    dante 		} else {
    267  1.7    dante 		    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    268  1.7    dante 		}
    269  1.7    dante 	}
    270  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    271  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    272  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    273  1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    274  1.7    dante 			max_cmd[tid]);
    275  1.1    dante 	}
    276  1.1    dante 
    277  1.1    dante 	/*
    278  1.1    dante 	 * Load the Microcode
    279  1.1    dante 	 *
    280  1.1    dante 	 * Write the microcode image to RISC memory starting at address 0.
    281  1.1    dante 	 */
    282  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    283  1.7    dante 
    284  1.7    dante 	/* Assume the following compressed format of the microcode buffer:
    285  1.7    dante 	 *
    286  1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
    287  1.7    dante 	 *  by the following byte codes:
    288  1.7    dante 	 *
    289  1.7    dante 	 *    1-Byte Code:
    290  1.7    dante 	 *	00: Emit word 0 in table.
    291  1.7    dante 	 *	01: Emit word 1 in table.
    292  1.7    dante 	 *	.
    293  1.7    dante 	 *	FD: Emit word 253 in table.
    294  1.7    dante 	 *
    295  1.7    dante 	 *    Multi-Byte Code:
    296  1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    297  1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    298  1.7    dante 	 */
    299  1.7    dante 	word = 0;
    300  1.7    dante 	for (i = 253 * 2; i < adv_asc3550_mcode_size; i++) {
    301  1.7    dante 		if (adv_asc3550_mcode[i] == 0xff) {
    302  1.7    dante 			for (j = 0; j < adv_asc3550_mcode[i + 1]; j++) {
    303  1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    304  1.7    dante 				  (((u_int16_t)adv_asc3550_mcode[i + 3] << 8) |
    305  1.7    dante 				  adv_asc3550_mcode[i + 2]));
    306  1.7    dante 				word++;
    307  1.7    dante 			}
    308  1.7    dante 			i += 3;
    309  1.7    dante 		} else if (adv_asc3550_mcode[i] == 0xfe) {
    310  1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    311  1.7    dante 			    (((u_int16_t)adv_asc3550_mcode[i + 2] << 8) |
    312  1.7    dante 			    adv_asc3550_mcode[i + 1]));
    313  1.7    dante 			i += 2;
    314  1.7    dante 			word++;
    315  1.7    dante 		} else {
    316  1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    317  1.7    dante 			 adv_asc3550_mcode[(adv_asc3550_mcode[i] * 2) + 1] <<8) |
    318  1.7    dante 			 adv_asc3550_mcode[adv_asc3550_mcode[i] * 2]));
    319  1.7    dante 			word++;
    320  1.7    dante 		}
    321  1.1    dante 	}
    322  1.1    dante 
    323  1.1    dante 	/*
    324  1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
    325  1.7    dante 	 * the expanded mcode size.
    326  1.7    dante 	 */
    327  1.7    dante 	word *= 2;
    328  1.7    dante 	adv_asc3550_expanded_size = word;
    329  1.7    dante 
    330  1.7    dante 	/*
    331  1.7    dante 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    332  1.1    dante 	 */
    333  1.7    dante 	for (; word < ADV_3550_MEMSIZE; word += 2) {
    334  1.1    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    335  1.1    dante 	}
    336  1.1    dante 
    337  1.1    dante 	/*
    338  1.1    dante 	 * Verify the microcode checksum.
    339  1.1    dante 	 */
    340  1.1    dante 	sum = 0;
    341  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    342  1.7    dante 
    343  1.7    dante 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    344  1.1    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    345  1.1    dante 	}
    346  1.1    dante 
    347  1.7    dante 	if (sum != adv_asc3550_mcode_chksum) {
    348  1.1    dante 		return ASC_IERR_MCODE_CHKSUM;
    349  1.7    dante 	}
    350  1.1    dante 
    351  1.1    dante 	/*
    352  1.1    dante 	 * Restore the RISC memory BIOS region.
    353  1.1    dante 	 */
    354  1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    355  1.7    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    356  1.7    dante 				bios_mem[i]);
    357  1.1    dante 	}
    358  1.1    dante 
    359  1.1    dante 	/*
    360  1.1    dante 	 * Calculate and write the microcode code checksum to the microcode
    361  1.2    dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    362  1.1    dante 	 */
    363  1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    364  1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    365  1.1    dante 	code_sum = 0;
    366  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    367  1.1    dante 	for (word = begin_addr; word < end_addr; word += 2) {
    368  1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    369  1.1    dante 	}
    370  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    371  1.1    dante 
    372  1.1    dante 	/*
    373  1.7    dante 	 * Read and save microcode version and date.
    374  1.1    dante 	 */
    375  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    376  1.7    dante 			sc->cfg.mcode_date);
    377  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    378  1.7    dante 			sc->cfg.mcode_version);
    379  1.1    dante 
    380  1.1    dante 	/*
    381  1.7    dante 	 * Set the chip type to indicate the ASC3550.
    382  1.1    dante 	 */
    383  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
    384  1.1    dante 
    385  1.1    dante 	/*
    386  1.1    dante 	 * If the PCI Configuration Command Register "Parity Error Response
    387  1.1    dante 	 * Control" Bit was clear (0), then set the microcode variable
    388  1.1    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    389  1.1    dante 	 * to ignore DMA parity errors.
    390  1.1    dante 	 */
    391  1.1    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    392  1.7    dante 		/*
    393  1.7    dante 		 * Note: Don't remove the use of a temporary variable in
    394  1.7    dante 		 * the following code, otherwise some  C compiler
    395  1.7    dante 		 * might turn the following lines into a no-op.
    396  1.7    dante 		 */
    397  1.1    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    398  1.1    dante 		word |= CONTROL_FLAG_IGNORE_PERR;
    399  1.1    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    400  1.1    dante 	}
    401  1.7    dante 
    402  1.1    dante 	/*
    403  1.7    dante 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    404  1.7    dante 	 * threshold of 128 bytes. This register is only accessible to the host.
    405  1.1    dante 	 */
    406  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    407  1.7    dante 			START_CTL_EMFU | READ_CMD_MRM);
    408  1.7    dante 
    409  1.7    dante 	/*
    410  1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    411  1.7    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    412  1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
    413  1.7    dante 	 *
    414  1.7    dante 	 * If SCSI Bus Resets haev been disabled, then directly set
    415  1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    416  1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    417  1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
    418  1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    419  1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
    420  1.7    dante 	 */
    421  1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    422  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    423  1.7    dante 				sc->wdtr_able);
    424  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    425  1.7    dante 				sc->sdtr_able);
    426  1.7    dante 	}
    427  1.7    dante 
    428  1.7    dante 	/*
    429  1.7    dante 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    430  1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    431  1.7    dante 	 * bitmask. These values determine the maximum SDTR speed negotiated
    432  1.7    dante 	 * with a device.
    433  1.7    dante 	 *
    434  1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    435  1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    436  1.7    dante 	 * without determining here whether the device supports SDTR.
    437  1.7    dante 	 *
    438  1.7    dante 	 * 4-bit speed  SDTR speed name
    439  1.7    dante 	 * ===========  ===============
    440  1.7    dante 	 * 0000b (0x0)  SDTR disabled
    441  1.7    dante 	 * 0001b (0x1)  5 Mhz
    442  1.7    dante 	 * 0010b (0x2)  10 Mhz
    443  1.7    dante 	 * 0011b (0x3)  20 Mhz (Ultra)
    444  1.7    dante 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    445  1.7    dante 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    446  1.7    dante 	 * 0110b (0x6)  Undefined
    447  1.7    dante 	 * .
    448  1.7    dante 	 * 1111b (0xF)  Undefined
    449  1.7    dante 	 */
    450  1.7    dante 	word = 0;
    451  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    452  1.7    dante 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    453  1.7    dante 			/* Set Ultra speed for TID 'tid'. */
    454  1.7    dante 			word |= (0x3 << (4 * (tid % 4)));
    455  1.7    dante 		} else {
    456  1.7    dante 			/* Set Fast speed for TID 'tid'. */
    457  1.7    dante 			word |= (0x2 << (4 * (tid % 4)));
    458  1.7    dante 		}
    459  1.7    dante 		/* Check if done with sdtr_speed1. */
    460  1.7    dante 		if (tid == 3) {
    461  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, word);
    462  1.7    dante 			word = 0;
    463  1.7    dante 		/* Check if done with sdtr_speed2. */
    464  1.7    dante 		} else if (tid == 7) {
    465  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, word);
    466  1.7    dante 			word = 0;
    467  1.7    dante 		/* Check if done with sdtr_speed3. */
    468  1.7    dante 		} else if (tid == 11) {
    469  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, word);
    470  1.7    dante 			word = 0;
    471  1.7    dante 		/* Check if done with sdtr_speed4. */
    472  1.7    dante 		} else if (tid == 15) {
    473  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, word);
    474  1.7    dante 			/* End of loop. */
    475  1.7    dante 		}
    476  1.7    dante 	}
    477  1.1    dante 
    478  1.1    dante 	/*
    479  1.7    dante 	 * Set microcode operating variable for the disconnect per TID bitmask.
    480  1.1    dante 	 */
    481  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
    482  1.1    dante 
    483  1.1    dante 
    484  1.1    dante 	/*
    485  1.1    dante 	 * Set SCSI_CFG0 Microcode Default Value.
    486  1.1    dante 	 *
    487  1.1    dante 	 * The microcode will set the SCSI_CFG0 register using this value
    488  1.1    dante 	 * after it is started below.
    489  1.1    dante 	 */
    490  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
    491  1.7    dante 		ADW_PARITY_EN | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN |
    492  1.7    dante 			sc->chip_scsi_id);
    493  1.2    dante 
    494  1.1    dante 	/*
    495  1.1    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
    496  1.1    dante 	 *
    497  1.1    dante 	 * The microcode will set the SCSI_CFG1 register using this value
    498  1.1    dante 	 * after it is started below.
    499  1.1    dante 	 */
    500  1.1    dante 
    501  1.1    dante 	/* Read current SCSI_CFG1 Register value. */
    502  1.1    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    503  1.1    dante 
    504  1.1    dante 	/*
    505  1.1    dante 	 * If all three connectors are in use, return an error.
    506  1.1    dante 	 */
    507  1.1    dante 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    508  1.7    dante 		(scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    509  1.1    dante 		return ASC_IERR_ILLEGAL_CONNECTION;
    510  1.1    dante 	}
    511  1.7    dante 
    512  1.1    dante 	/*
    513  1.1    dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    514  1.1    dante 	 * register signals will be set. Check for and return an error if
    515  1.1    dante 	 * this condition is found.
    516  1.1    dante 	 */
    517  1.2    dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    518  1.2    dante 			0x3F07) {
    519  1.1    dante 		return ASC_IERR_REVERSED_CABLE;
    520  1.2    dante 	}
    521  1.1    dante 
    522  1.1    dante 	/*
    523  1.1    dante 	 * If this is a differential board and a single-ended device
    524  1.1    dante 	 * is attached to one of the connectors, return an error.
    525  1.1    dante 	 */
    526  1.7    dante 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    527  1.1    dante 		return ASC_IERR_SINGLE_END_DEVICE;
    528  1.7    dante 	}
    529  1.1    dante 
    530  1.1    dante 	/*
    531  1.1    dante 	 * If automatic termination control is enabled, then set the
    532  1.7    dante 	 * termination value based on a table listed in a_condor.h.
    533  1.1    dante 	 *
    534  1.1    dante 	 * If manual termination was specified with an EEPROM setting
    535  1.7    dante 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
    536  1.1    dante 	 * is ready to be 'ored' into SCSI_CFG1.
    537  1.1    dante 	 */
    538  1.1    dante 	if (sc->cfg.termination == 0) {
    539  1.1    dante 		/*
    540  1.7    dante 		 * The software always controls termination by setting TERM_CTL_SEL.
    541  1.7    dante 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
    542  1.1    dante 		 */
    543  1.1    dante 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    544  1.1    dante 
    545  1.7    dante 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    546  1.7    dante 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    547  1.7    dante 			case 0x3: case 0x7: case 0xB: case 0xD: case 0xE: case 0xF:
    548  1.7    dante 				sc->cfg.termination |= (ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    549  1.7    dante 				break;
    550  1.7    dante 
    551  1.7    dante 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    552  1.7    dante 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    553  1.7    dante 				sc->cfg.termination |= ADW_TERM_CTL_H;
    554  1.7    dante 				break;
    555  1.7    dante 
    556  1.7    dante 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    557  1.7    dante 			case 0x2: case 0x6:
    558  1.7    dante 				break;
    559  1.1    dante 		}
    560  1.1    dante 	}
    561  1.7    dante 
    562  1.1    dante 	/*
    563  1.7    dante 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    564  1.1    dante 	 */
    565  1.1    dante 	scsi_cfg1 &= ~ADW_TERM_CTL;
    566  1.1    dante 
    567  1.1    dante 	/*
    568  1.7    dante 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    569  1.7    dante 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    570  1.1    dante 	 * referenced, because the hardware internally inverts
    571  1.7    dante 	 * the Termination High and Low bits if TERM_POL is set.
    572  1.1    dante 	 */
    573  1.1    dante 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    574  1.1    dante 
    575  1.1    dante 	/*
    576  1.1    dante 	 * Set SCSI_CFG1 Microcode Default Value
    577  1.1    dante 	 *
    578  1.1    dante 	 * Set filter value and possibly modified termination control
    579  1.1    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
    580  1.1    dante 	 *
    581  1.1    dante 	 * The microcode will set the SCSI_CFG1 register using this value
    582  1.1    dante 	 * after it is started below.
    583  1.1    dante 	 */
    584  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
    585  1.7    dante 		ADW_FLTR_DISABLE | scsi_cfg1);
    586  1.7    dante 
    587  1.7    dante 	/*
    588  1.7    dante 	 * Set MEM_CFG Microcode Default Value
    589  1.7    dante 	 *
    590  1.7    dante 	 * The microcode will set the MEM_CFG register using this value
    591  1.7    dante 	 * after it is started below.
    592  1.7    dante 	 *
    593  1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    594  1.7    dante 	 * are defined.
    595  1.7    dante 	 *
    596  1.7    dante 	 * ASC-3550 has 8KB internal memory.
    597  1.7    dante 	 */
    598  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
    599  1.7    dante 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    600  1.1    dante 
    601  1.1    dante 	/*
    602  1.1    dante 	 * Set SEL_MASK Microcode Default Value
    603  1.1    dante 	 *
    604  1.1    dante 	 * The microcode will set the SEL_MASK register using this value
    605  1.1    dante 	 * after it is started below.
    606  1.1    dante 	 */
    607  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
    608  1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    609  1.7    dante 
    610  1.7    dante 
    611  1.7    dante 	/*
    612  1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    613  1.7    dante 	 */
    614  1.7    dante 
    615  1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    616  1.7    dante 		return ASC_IERR_NO_CARRIER;
    617  1.7    dante 	}
    618  1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    619  1.7    dante 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
    620  1.7    dante 
    621  1.7    dante 	/*
    622  1.7    dante 	 * The first command issued will be placed in the stopper carrier.
    623  1.7    dante 	 */
    624  1.7    dante 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
    625  1.1    dante 
    626  1.1    dante 	/*
    627  1.7    dante 	 * Set RISC ICQ physical address start value.
    628  1.7    dante 	 */
    629  1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
    630  1.7    dante 
    631  1.7    dante 	/*
    632  1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    633  1.1    dante 	 */
    634  1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    635  1.7    dante 		return ASC_IERR_NO_CARRIER;
    636  1.1    dante 	}
    637  1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    638  1.7    dante 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
    639  1.1    dante 
    640  1.1    dante 	/*
    641  1.7    dante 	 * The first command completed by the RISC will be placed in
    642  1.7    dante 	 * the stopper.
    643  1.1    dante 	 *
    644  1.7    dante 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
    645  1.7    dante 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
    646  1.1    dante 	 */
    647  1.7    dante 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
    648  1.1    dante 
    649  1.1    dante 	/*
    650  1.7    dante 	 * Set RISC IRQ physical address start value.
    651  1.1    dante 	 */
    652  1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
    653  1.7    dante 	sc->carr_pending_cnt = 0;
    654  1.1    dante 
    655  1.1    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    656  1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    657  1.1    dante 
    658  1.7    dante 	/*
    659  1.7    dante 	 * Note: Don't remove the use of a temporary variable in
    660  1.7    dante 	 * the following code, otherwise some C compiler
    661  1.7    dante 	 * might turn the following lines into a no-op.
    662  1.7    dante 	 */
    663  1.1    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
    664  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    665  1.1    dante 
    666  1.1    dante 	/* finally, finally, gentlemen, start your engine */
    667  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    668  1.2    dante 
    669  1.7    dante 	/*
    670  1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    671  1.7    dante 	 * Resets should be performed. The RISC has to be running
    672  1.7    dante 	 * to issue a SCSI Bus Reset.
    673  1.7    dante 	 */
    674  1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    675  1.7    dante 	{
    676  1.7    dante 		/*
    677  1.7    dante 		 * If the BIOS Signature is present in memory, restore the
    678  1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
    679  1.7    dante 		 * a SCSI Bus Reset.
    680  1.7    dante 		 */
    681  1.7    dante 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
    682  1.7    dante 				0x55AA) {
    683  1.7    dante 			/*
    684  1.7    dante 			 * Restore per TID negotiated values.
    685  1.7    dante 			 */
    686  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    687  1.7    dante 					wdtr_able);
    688  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    689  1.7    dante 					sdtr_able);
    690  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
    691  1.7    dante 					tagqng_able);
    692  1.7    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    693  1.7    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    694  1.7    dante 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
    695  1.7    dante 					max_cmd[tid]);
    696  1.7    dante 			}
    697  1.7    dante 		} else {
    698  1.7    dante 			if (AdvResetCCB(sc) != ADW_TRUE) {
    699  1.7    dante 				warn_code = ASC_WARN_BUSRESET_ERROR;
    700  1.7    dante 			}
    701  1.7    dante 		}
    702  1.7    dante 	}
    703  1.7    dante 
    704  1.7    dante     return warn_code;
    705  1.1    dante }
    706  1.1    dante 
    707  1.1    dante /*
    708  1.7    dante  * Initialize the ASC-38C0800.
    709  1.1    dante  *
    710  1.7    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    711  1.1    dante  *
    712  1.1    dante  * For a non-fatal error return a warning code. If there are no warnings
    713  1.1    dante  * then 0 is returned.
    714  1.1    dante  */
    715  1.1    dante int
    716  1.7    dante AdvInitAsc38C0800Driver(sc)
    717  1.7    dante ADW_SOFTC      *sc;
    718  1.1    dante {
    719  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
    720  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
    721  1.7    dante 	u_int16_t	warn_code;
    722  1.7    dante 	u_int32_t	sum;
    723  1.7    dante 	int	  	begin_addr;
    724  1.7    dante 	int	   	end_addr;
    725  1.7    dante 	u_int16_t	code_sum;
    726  1.7    dante 	int	   	word;
    727  1.7    dante 	int	   	i, j;
    728  1.7    dante 	int	   	adv_asc38C0800_expanded_size;
    729  1.7    dante 	u_int16_t	scsi_cfg1;
    730  1.7    dante 	u_int8_t	byte;
    731  1.7    dante 	u_int8_t	tid;
    732  1.7    dante 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    733  1.7    dante 								0x40-0x8F. */
    734  1.7    dante 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    735  1.7    dante 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    736  1.1    dante 
    737  1.1    dante 
    738  1.1    dante 	warn_code = 0;
    739  1.1    dante 
    740  1.1    dante 	/*
    741  1.7    dante 	 * Save the RISC memory BIOS region before writing the microcode.
    742  1.7    dante 	 * The BIOS may already be loaded and using its RISC LRAM region
    743  1.7    dante 	 * so its region must be saved and restored.
    744  1.1    dante 	 *
    745  1.7    dante 	 * Note: This code makes the assumption, which is currently true,
    746  1.7    dante 	 * that a chip reset does not clear RISC LRAM.
    747  1.7    dante 	 */
    748  1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    749  1.7    dante 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
    750  1.7    dante 	}
    751  1.7    dante 
    752  1.7    dante 	/*
    753  1.7    dante 	 * Save current per TID negotiated values.
    754  1.1    dante 	 */
    755  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    756  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    757  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    758  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    759  1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    760  1.7    dante 			max_cmd[tid]);
    761  1.7    dante 	}
    762  1.2    dante 
    763  1.7    dante 	/*
    764  1.7    dante 	 * RAM BIST (RAM Built-In Self Test)
    765  1.7    dante 	 *
    766  1.7    dante 	 * Address : I/O base + offset 0x38h register (byte).
    767  1.7    dante 	 * Function: Bit 7-6(RW) : RAM mode
    768  1.7    dante 	 *			    Normal Mode   : 0x00
    769  1.7    dante 	 *			    Pre-test Mode : 0x40
    770  1.7    dante 	 *			    RAM Test Mode : 0x80
    771  1.7    dante 	 *	     Bit 5	 : unused
    772  1.7    dante 	 *	     Bit 4(RO)   : Done bit
    773  1.7    dante 	 *	     Bit 3-0(RO) : Status
    774  1.7    dante 	 *			    Host Error    : 0x08
    775  1.7    dante 	 *			    Int_RAM Error : 0x04
    776  1.7    dante 	 *			    RISC Error    : 0x02
    777  1.7    dante 	 *			    SCSI Error    : 0x01
    778  1.7    dante 	 *			    No Error	  : 0x00
    779  1.7    dante 	 *
    780  1.7    dante 	 * Note: RAM BIST code should be put right here, before loading the
    781  1.7    dante 	 * microcode and after saving the RISC memory BIOS region.
    782  1.7    dante 	 */
    783  1.1    dante 
    784  1.7    dante 	/*
    785  1.7    dante 	 * LRAM Pre-test
    786  1.7    dante 	 *
    787  1.7    dante 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    788  1.7    dante 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    789  1.7    dante 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    790  1.7    dante 	 * to NORMAL_MODE, return an error too.
    791  1.7    dante 	 */
    792  1.7    dante 	for (i = 0; i < 2; i++) {
    793  1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    794  1.7    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    795  1.7    dante 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    796  1.7    dante 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    797  1.7    dante 				PRE_TEST_VALUE) {
    798  1.7    dante 			return ASC_IERR_BIST_PRE_TEST;
    799  1.1    dante 		}
    800  1.1    dante 
    801  1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    802  1.7    dante 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    803  1.7    dante 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    804  1.7    dante 		    != NORMAL_VALUE) {
    805  1.7    dante 			return ASC_IERR_BIST_PRE_TEST;
    806  1.7    dante 		}
    807  1.1    dante 	}
    808  1.7    dante 
    809  1.1    dante 	/*
    810  1.7    dante 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    811  1.1    dante 	 *
    812  1.7    dante 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    813  1.7    dante 	 * If Done bit not set or Status not 0, save register byte, set the
    814  1.7    dante 	 * err_code, and return an error.
    815  1.1    dante 	 */
    816  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    817  1.7    dante 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    818  1.7    dante 
    819  1.7    dante 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    820  1.7    dante 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    821  1.7    dante 		/* Get here if Done bit not set or Status not 0. */
    822  1.7    dante 		return ASC_IERR_BIST_RAM_TEST;
    823  1.7    dante 	}
    824  1.7    dante 
    825  1.7    dante 	/* We need to reset back to normal mode after LRAM test passes. */
    826  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    827  1.1    dante 
    828  1.1    dante 	/*
    829  1.7    dante 	 * Load the Microcode
    830  1.7    dante 	 *
    831  1.7    dante 	 * Write the microcode image to RISC memory starting at address 0.
    832  1.7    dante 	 *
    833  1.1    dante 	 */
    834  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    835  1.7    dante 
    836  1.7    dante 	/* Assume the following compressed format of the microcode buffer:
    837  1.7    dante 	 *
    838  1.7    dante 	 *  254 word (508 byte) table indexed by byte code followed
    839  1.7    dante 	 *  by the following byte codes:
    840  1.7    dante 	 *
    841  1.7    dante 	 *    1-Byte Code:
    842  1.7    dante 	 *	00: Emit word 0 in table.
    843  1.7    dante 	 *	01: Emit word 1 in table.
    844  1.7    dante 	 *	.
    845  1.7    dante 	 *	FD: Emit word 253 in table.
    846  1.7    dante 	 *
    847  1.7    dante 	 *    Multi-Byte Code:
    848  1.7    dante 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    849  1.7    dante 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    850  1.7    dante 	 */
    851  1.7    dante 	word = 0;
    852  1.7    dante 	for (i = 253 * 2; i < adv_asc38C0800_mcode_size; i++) {
    853  1.7    dante 		if (adv_asc38C0800_mcode[i] == 0xff) {
    854  1.7    dante 			for (j = 0; j < adv_asc38C0800_mcode[i + 1]; j++) {
    855  1.7    dante 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    856  1.7    dante 				    (((u_int16_t)
    857  1.7    dante 				    adv_asc38C0800_mcode[i + 3] << 8) |
    858  1.7    dante 				    adv_asc38C0800_mcode[i + 2]));
    859  1.7    dante 				word++;
    860  1.7    dante 			}
    861  1.7    dante 			i += 3;
    862  1.7    dante 		} else if (adv_asc38C0800_mcode[i] == 0xfe) {
    863  1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    864  1.7    dante 			    adv_asc38C0800_mcode[i + 2] << 8) |
    865  1.7    dante 			    adv_asc38C0800_mcode[i + 1]));
    866  1.7    dante 			i += 2;
    867  1.7    dante 			word++;
    868  1.1    dante 		} else {
    869  1.7    dante 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    870  1.7    dante 			  adv_asc38C0800_mcode[(adv_asc38C0800_mcode[i] * 2) + 1] << 8) |
    871  1.7    dante 			  adv_asc38C0800_mcode[adv_asc38C0800_mcode[i] * 2]));
    872  1.7    dante 			word++;
    873  1.1    dante 		}
    874  1.1    dante 	}
    875  1.7    dante 
    876  1.7    dante 	/*
    877  1.7    dante 	 * Set 'word' for later use to clear the rest of memory and save
    878  1.7    dante 	 * the expanded mcode size.
    879  1.7    dante 	 */
    880  1.7    dante 	word *= 2;
    881  1.7    dante 	adv_asc38C0800_expanded_size = word;
    882  1.7    dante 
    883  1.1    dante 	/*
    884  1.7    dante 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    885  1.1    dante 	 */
    886  1.7    dante 	for (; word < ADV_38C0800_MEMSIZE; word += 2) {
    887  1.7    dante 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    888  1.1    dante 	}
    889  1.7    dante 
    890  1.1    dante 	/*
    891  1.7    dante 	 * Verify the microcode checksum.
    892  1.1    dante 	 */
    893  1.7    dante 	sum = 0;
    894  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    895  1.7    dante 
    896  1.7    dante 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    897  1.7    dante 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    898  1.7    dante 	}
    899  1.1    dante 
    900  1.7    dante 	if (sum != adv_asc38C0800_mcode_chksum) {
    901  1.7    dante 	    return ASC_IERR_MCODE_CHKSUM;
    902  1.7    dante 	}
    903  1.1    dante 
    904  1.1    dante 	/*
    905  1.7    dante 	 * Restore the RISC memory BIOS region.
    906  1.1    dante 	 */
    907  1.7    dante 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    908  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    909  1.7    dante 				bios_mem[i]);
    910  1.7    dante 	}
    911  1.1    dante 
    912  1.7    dante 	/*
    913  1.7    dante 	 * Calculate and write the microcode code checksum to the microcode
    914  1.7    dante 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    915  1.7    dante 	 */
    916  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    917  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    918  1.7    dante 	code_sum = 0;
    919  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    920  1.7    dante 	for (word = begin_addr; word < end_addr; word += 2) {
    921  1.7    dante 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    922  1.1    dante 	}
    923  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    924  1.1    dante 
    925  1.7    dante 	/*
    926  1.7    dante 	 * Read microcode version and date.
    927  1.7    dante 	 */
    928  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    929  1.7    dante 			sc->cfg.mcode_date);
    930  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    931  1.7    dante 			sc->cfg.mcode_version);
    932  1.1    dante 
    933  1.7    dante 	/*
    934  1.7    dante 	 * Set the chip type to indicate the ASC38C0800.
    935  1.7    dante 	 */
    936  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
    937  1.1    dante 
    938  1.7    dante 	/*
    939  1.7    dante 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
    940  1.7    dante 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
    941  1.7    dante 	 * cable detection and then we are able to read C_DET[3:0].
    942  1.7    dante 	 *
    943  1.7    dante 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
    944  1.7    dante 	 * Microcode Default Value' section below.
    945  1.7    dante 	 */
    946  1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    947  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
    948  1.7    dante 			scsi_cfg1 | ADW_DIS_TERM_DRV);
    949  1.7    dante 
    950  1.7    dante 	/*
    951  1.7    dante 	 * If the PCI Configuration Command Register "Parity Error Response
    952  1.7    dante 	 * Control" Bit was clear (0), then set the microcode variable
    953  1.7    dante 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    954  1.7    dante 	 * to ignore DMA parity errors.
    955  1.7    dante 	 */
    956  1.7    dante 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    957  1.7    dante 		/*
    958  1.7    dante 		 * Note: Don't remove the use of a temporary variable in
    959  1.7    dante 		 * the following code, otherwise some C compiler
    960  1.7    dante 		 * might turn the following lines into a no-op.
    961  1.7    dante 		 */
    962  1.7    dante 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    963  1.7    dante 		word |= CONTROL_FLAG_IGNORE_PERR;
    964  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    965  1.7    dante 	}
    966  1.7    dante 
    967  1.7    dante 	/*
    968  1.7    dante 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
    969  1.7    dante 	 * bits for the default FIFO threshold.
    970  1.7    dante 	 *
    971  1.7    dante 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
    972  1.7    dante 	 *
    973  1.7    dante 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
    974  1.7    dante 	 */
    975  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    976  1.7    dante 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
    977  1.7    dante 
    978  1.7    dante 	/*
    979  1.7    dante 	 * Microcode operating variables for WDTR, SDTR, and command tag
    980  1.7    dante 	 * queuing will be set in AdvInquiryHandling() based on what a
    981  1.7    dante 	 * device reports it is capable of in Inquiry byte 7.
    982  1.7    dante 	 *
    983  1.7    dante 	 * If SCSI Bus Resets have been disabled, then directly set
    984  1.7    dante 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    985  1.7    dante 	 * the BIOS and warm boot to work without a SCSI bus hang on
    986  1.7    dante 	 * the Inquiry caused by host and target mismatched DTR values.
    987  1.7    dante 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    988  1.7    dante 	 * be assumed to be in Asynchronous, Narrow mode.
    989  1.7    dante 	 */
    990  1.7    dante 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    991  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
    992  1.7    dante 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
    993  1.7    dante 	}
    994  1.7    dante 
    995  1.7    dante 	/*
    996  1.7    dante 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
    997  1.7    dante 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
    998  1.7    dante 	 * configuration values.
    999  1.7    dante 	 *
   1000  1.7    dante 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1001  1.7    dante 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1002  1.7    dante 	 * without determining here whether the device supports SDTR.
   1003  1.7    dante 	 */
   1004  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1005  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1006  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1007  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1008  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1009  1.7    dante 
   1010  1.7    dante 	/*
   1011  1.7    dante 	 * Set SCSI_CFG0 Microcode Default Value.
   1012  1.7    dante 	 *
   1013  1.7    dante 	 * The microcode will set the SCSI_CFG0 register using this value
   1014  1.7    dante 	 * after it is started below.
   1015  1.7    dante 	 */
   1016  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1017  1.7    dante 		ADW_PARITY_EN | ADW_SEL_TMO_LONG | ADW_OUR_ID_EN |
   1018  1.7    dante 			sc->chip_scsi_id);
   1019  1.7    dante 
   1020  1.7    dante 	/*
   1021  1.7    dante 	 * Determine SCSI_CFG1 Microcode Default Value.
   1022  1.7    dante 	 *
   1023  1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1024  1.7    dante 	 * after it is started below.
   1025  1.7    dante 	 */
   1026  1.7    dante 
   1027  1.7    dante 	/* Read current SCSI_CFG1 Register value. */
   1028  1.7    dante 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1029  1.7    dante 
   1030  1.7    dante 	/*
   1031  1.7    dante 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1032  1.7    dante 	 * register signals will be set. Check for and return an error if
   1033  1.7    dante 	 * this condition is found.
   1034  1.7    dante 	 */
   1035  1.7    dante 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1036  1.7    dante 			0x3F07) {
   1037  1.7    dante 		return ASC_IERR_REVERSED_CABLE;
   1038  1.7    dante 	}
   1039  1.7    dante 
   1040  1.7    dante 	/*
   1041  1.7    dante 	 * All kind of combinations of devices attached to one of four connectors
   1042  1.7    dante 	 * are acceptable except HVD device attached. For example, LVD device can
   1043  1.7    dante 	 * be attached to SE connector while SE device attached to LVD connector.
   1044  1.7    dante 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1045  1.7    dante 	 *
   1046  1.7    dante 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1047  1.7    dante 	 * However, there is no way to detect HVD device attached to SE connectors.
   1048  1.7    dante 	 */
   1049  1.7    dante 	if (scsi_cfg1 & ADW_HVD) {
   1050  1.7    dante 		return ASC_IERR_HVD_DEVICE;
   1051  1.7    dante 	}
   1052  1.7    dante 
   1053  1.7    dante 	/*
   1054  1.7    dante 	 * If either SE or LVD automatic termination control is enabled, then
   1055  1.7    dante 	 * set the termination value based on a table listed in a_condor.h.
   1056  1.7    dante 	 *
   1057  1.7    dante 	 * If manual termination was specified with an EEPROM setting then
   1058  1.7    dante 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready to
   1059  1.7    dante 	 * be 'ored' into SCSI_CFG1.
   1060  1.7    dante 	 */
   1061  1.7    dante 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1062  1.7    dante 		/* SE automatic termination control is enabled. */
   1063  1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1064  1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1065  1.7    dante 			case 0x1: case 0x2: case 0x3:
   1066  1.7    dante 				sc->cfg.termination |= ADW_TERM_SE;
   1067  1.7    dante 				break;
   1068  1.7    dante 
   1069  1.7    dante 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1070  1.7    dante 			case 0x0:
   1071  1.7    dante 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1072  1.7    dante 				break;
   1073  1.7    dante 		}
   1074  1.7    dante 	}
   1075  1.7    dante 
   1076  1.7    dante 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1077  1.7    dante 		/* LVD automatic termination control is enabled. */
   1078  1.7    dante 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1079  1.7    dante 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1080  1.7    dante 			case 0x4: case 0x8: case 0xC:
   1081  1.7    dante 				sc->cfg.termination |= ADW_TERM_LVD;
   1082  1.7    dante 				break;
   1083  1.7    dante 
   1084  1.7    dante 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1085  1.7    dante 			case 0x0:
   1086  1.7    dante 				break;
   1087  1.7    dante 		}
   1088  1.7    dante 	}
   1089  1.7    dante 
   1090  1.7    dante 	/*
   1091  1.7    dante 	 * Clear any set TERM_SE and TERM_LVD bits.
   1092  1.7    dante 	 */
   1093  1.7    dante 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1094  1.7    dante 
   1095  1.7    dante 	/*
   1096  1.7    dante 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1097  1.7    dante 	 */
   1098  1.7    dante 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1099  1.7    dante 
   1100  1.7    dante 	/*
   1101  1.7    dante 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1102  1.7    dante 	 * and set possibly modified termination control bits in the Microcode
   1103  1.7    dante 	 * SCSI_CFG1 Register Value.
   1104  1.7    dante 	 */
   1105  1.7    dante 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1106  1.7    dante 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1107  1.7    dante 
   1108  1.7    dante 	/*
   1109  1.7    dante 	 * Set SCSI_CFG1 Microcode Default Value
   1110  1.7    dante 	 *
   1111  1.7    dante 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1112  1.7    dante 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1113  1.7    dante 	 *
   1114  1.7    dante 	 * The microcode will set the SCSI_CFG1 register using this value
   1115  1.7    dante 	 * after it is started below.
   1116  1.7    dante 	 */
   1117  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1118  1.7    dante 
   1119  1.7    dante 	/*
   1120  1.7    dante 	 * Set MEM_CFG Microcode Default Value
   1121  1.7    dante 	 *
   1122  1.7    dante 	 * The microcode will set the MEM_CFG register using this value
   1123  1.7    dante 	 * after it is started below.
   1124  1.7    dante 	 *
   1125  1.7    dante 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1126  1.7    dante 	 * are defined.
   1127  1.7    dante 	 *
   1128  1.7    dante 	 * ASC-38C0800 has 16KB internal memory.
   1129  1.7    dante 	 */
   1130  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1131  1.7    dante 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1132  1.7    dante 
   1133  1.7    dante 	/*
   1134  1.7    dante 	 * Set SEL_MASK Microcode Default Value
   1135  1.7    dante 	 *
   1136  1.7    dante 	 * The microcode will set the SEL_MASK register using this value
   1137  1.7    dante 	 * after it is started below.
   1138  1.7    dante 	 */
   1139  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1140  1.7    dante 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1141  1.7    dante 
   1142  1.7    dante 
   1143  1.7    dante 	/*
   1144  1.7    dante 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1145  1.7    dante 	 */
   1146  1.7    dante 
   1147  1.7    dante 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1148  1.7    dante 		return ASC_IERR_NO_CARRIER;
   1149  1.7    dante 	}
   1150  1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1151  1.7    dante 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
   1152  1.7    dante 
   1153  1.7    dante 
   1154  1.7    dante 	/*
   1155  1.7    dante 	 * The first command issued will be placed in the stopper carrier.
   1156  1.7    dante 	 */
   1157  1.7    dante 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
   1158  1.7    dante 
   1159  1.7    dante 	/*
   1160  1.7    dante 	 * Set RISC ICQ physical address start value.
   1161  1.7    dante 	 */
   1162  1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
   1163  1.7    dante 
   1164  1.7    dante 	/*
   1165  1.7    dante 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1166  1.7    dante 	 */
   1167  1.7    dante 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1168  1.7    dante 		return ASC_IERR_NO_CARRIER;
   1169  1.7    dante 	}
   1170  1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1171  1.7    dante 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
   1172  1.7    dante 
   1173  1.7    dante 	/*
   1174  1.7    dante 	 * The first command completed by the RISC will be placed in
   1175  1.7    dante 	 * the stopper.
   1176  1.7    dante 	 *
   1177  1.7    dante 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
   1178  1.7    dante 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1179  1.7    dante 	 */
   1180  1.7    dante 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
   1181  1.7    dante 
   1182  1.7    dante 	/*
   1183  1.7    dante 	 * Set RISC IRQ physical address start value.
   1184  1.7    dante 	 */
   1185  1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
   1186  1.7    dante 	sc->carr_pending_cnt = 0;
   1187  1.7    dante 
   1188  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1189  1.7    dante 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1190  1.7    dante 	/*
   1191  1.7    dante 	 * Note: Don't remove the use of a temporary variable in
   1192  1.7    dante 	 * the following code, otherwise some C compiler
   1193  1.7    dante 	 * might turn the following lines into a no-op.
   1194  1.7    dante 	 */
   1195  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1196  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1197  1.7    dante 
   1198  1.7    dante 	/* finally, finally, gentlemen, start your engine */
   1199  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1200  1.7    dante 
   1201  1.7    dante 	/*
   1202  1.7    dante 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1203  1.7    dante 	 * Resets should be performed. The RISC has to be running
   1204  1.7    dante 	 * to issue a SCSI Bus Reset.
   1205  1.7    dante 	 */
   1206  1.7    dante 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1207  1.7    dante 		/*
   1208  1.7    dante 		 * If the BIOS Signature is present in memory, restore the
   1209  1.7    dante 		 * BIOS Handshake Configuration Table and do not perform
   1210  1.7    dante 		 * a SCSI Bus Reset.
   1211  1.7    dante 		 */
   1212  1.7    dante 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1213  1.7    dante 				0x55AA) {
   1214  1.7    dante 			/*
   1215  1.7    dante 			 * Restore per TID negotiated values.
   1216  1.7    dante 			 */
   1217  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   1218  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   1219  1.7    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1220  1.7    dante 					tagqng_able);
   1221  1.7    dante 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1222  1.7    dante 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1223  1.7    dante 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1224  1.7    dante 						max_cmd[tid]);
   1225  1.7    dante 			}
   1226  1.7    dante 		} else {
   1227  1.7    dante 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1228  1.7    dante 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1229  1.7    dante 			}
   1230  1.7    dante 		}
   1231  1.7    dante 	}
   1232  1.7    dante 
   1233  1.7    dante 	return warn_code;
   1234  1.7    dante }
   1235  1.7    dante 
   1236  1.7    dante 
   1237  1.7    dante /*
   1238  1.7    dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1239  1.7    dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1240  1.7    dante  * all of this is done.
   1241  1.7    dante  *
   1242  1.7    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1243  1.7    dante  *
   1244  1.7    dante  * For a non-fatal error return a warning code. If there are no warnings
   1245  1.7    dante  * then 0 is returned.
   1246  1.7    dante  *
   1247  1.7    dante  * Note: Chip is stopped on entry.
   1248  1.7    dante  */
   1249  1.7    dante int
   1250  1.7    dante AdvInitFrom3550EEP(sc)
   1251  1.7    dante ADW_SOFTC      *sc;
   1252  1.7    dante {
   1253  1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   1254  1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1255  1.7    dante 	u_int16_t		warn_code;
   1256  1.7    dante 	ADW_EEP_3550_CONFIG	eep_config;
   1257  1.7    dante 	int			i;
   1258  1.7    dante 
   1259  1.7    dante 
   1260  1.7    dante 	warn_code = 0;
   1261  1.7    dante 
   1262  1.7    dante 	/*
   1263  1.7    dante 	 * Read the board's EEPROM configuration.
   1264  1.7    dante 	 *
   1265  1.7    dante 	 * Set default values if a bad checksum is found.
   1266  1.7    dante 	 */
   1267  1.7    dante 	if (AdvGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1268  1.7    dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   1269  1.7    dante 
   1270  1.7    dante 		/*
   1271  1.7    dante 		 * Set EEPROM default values.
   1272  1.7    dante 		 */
   1273  1.7    dante 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1274  1.7    dante 			*((u_int8_t *) &eep_config + i) =
   1275  1.7    dante 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1276  1.7    dante 		}
   1277  1.7    dante 
   1278  1.7    dante 		/*
   1279  1.7    dante 		 * Assume the 6 byte board serial number that was read
   1280  1.7    dante 		 * from EEPROM is correct even if the EEPROM checksum
   1281  1.7    dante 		 * failed.
   1282  1.7    dante 		 */
   1283  1.7    dante 		eep_config.serial_number_word3 =
   1284  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1285  1.7    dante 
   1286  1.7    dante 		eep_config.serial_number_word2 =
   1287  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1288  1.7    dante 
   1289  1.7    dante 		eep_config.serial_number_word1 =
   1290  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1291  1.7    dante 
   1292  1.7    dante 		AdvSet3550EEPConfig(iot, ioh, &eep_config);
   1293  1.7    dante 	}
   1294  1.7    dante 	/*
   1295  1.7    dante 	 * Set sc_VAR and sc_CFG variables from the
   1296  1.7    dante 	 * EEPROM configuration that was read.
   1297  1.7    dante 	 *
   1298  1.7    dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
   1299  1.7    dante 	 */
   1300  1.7    dante 	sc->wdtr_able = eep_config.wdtr_able;
   1301  1.7    dante 	sc->sdtr_able = eep_config.sdtr_able;
   1302  1.7    dante 	sc->ultra_able = eep_config.ultra_able;
   1303  1.7    dante 	sc->tagqng_able = eep_config.tagqng_able;
   1304  1.7    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   1305  1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1306  1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1307  1.7    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1308  1.7    dante 	sc->start_motor = eep_config.start_motor;
   1309  1.7    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1310  1.7    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   1311  1.7    dante 	sc->no_scam = eep_config.scam_tolerant;
   1312  1.7    dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1313  1.7    dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1314  1.7    dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1315  1.7    dante 
   1316  1.7    dante 	/*
   1317  1.7    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1318  1.7    dante 	 * maximum queuing (max. 63, min. 4).
   1319  1.7    dante 	 */
   1320  1.7    dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   1321  1.7    dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1322  1.7    dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG)
   1323  1.7    dante 	{
   1324  1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   1325  1.7    dante 		if (eep_config.max_host_qng == 0) {
   1326  1.7    dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1327  1.7    dante 		} else {
   1328  1.7    dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   1329  1.7    dante 		}
   1330  1.7    dante 	}
   1331  1.7    dante 
   1332  1.7    dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   1333  1.7    dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1334  1.7    dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   1335  1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   1336  1.7    dante 		if (eep_config.max_dvc_qng == 0) {
   1337  1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1338  1.7    dante 		} else {
   1339  1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   1340  1.7    dante 		}
   1341  1.7    dante 	}
   1342  1.7    dante 
   1343  1.7    dante 	/*
   1344  1.7    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1345  1.7    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1346  1.7    dante 	 */
   1347  1.7    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1348  1.7    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1349  1.7    dante 	}
   1350  1.7    dante 
   1351  1.7    dante 	/*
   1352  1.7    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1353  1.7    dante 	 * values based on possibly adjusted EEPROM values.
   1354  1.7    dante 	 */
   1355  1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1356  1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1357  1.7    dante 
   1358  1.7    dante 
   1359  1.7    dante 	/*
   1360  1.7    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1361  1.7    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1362  1.7    dante 	 *
   1363  1.7    dante 	 * If the termination is specified with a non-zero 'termination'
   1364  1.7    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1365  1.7    dante 	 * 'termination' field appropriately.
   1366  1.7    dante 	 */
   1367  1.7    dante 	if (eep_config.termination == 0) {
   1368  1.7    dante 		sc->cfg.termination = 0;    /* auto termination */
   1369  1.7    dante 	} else {
   1370  1.7    dante 		/* Enable manual control with low off / high off. */
   1371  1.7    dante 		if (eep_config.termination == 1) {
   1372  1.7    dante 			sc->cfg.termination = ADW_TERM_CTL_SEL;
   1373  1.7    dante 
   1374  1.7    dante 		/* Enable manual control with low off / high on. */
   1375  1.7    dante 		} else if (eep_config.termination == 2) {
   1376  1.7    dante 			sc->cfg.termination = ADW_TERM_CTL_SEL | ADW_TERM_CTL_H;
   1377  1.7    dante 
   1378  1.7    dante 		/* Enable manual control with low on / high on. */
   1379  1.7    dante 		} else if (eep_config.termination == 3) {
   1380  1.7    dante 			sc->cfg.termination = ADW_TERM_CTL_SEL |
   1381  1.7    dante 					ADW_TERM_CTL_H | ADW_TERM_CTL_L;
   1382  1.7    dante 		} else {
   1383  1.7    dante 			/*
   1384  1.7    dante 			 * The EEPROM 'termination' field contains a bad value. Use
   1385  1.7    dante 			 * automatic termination instead.
   1386  1.7    dante 			 */
   1387  1.7    dante 			sc->cfg.termination = 0;
   1388  1.7    dante 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1389  1.7    dante 		}
   1390  1.7    dante 	}
   1391  1.7    dante 
   1392  1.7    dante 	return warn_code;
   1393  1.7    dante }
   1394  1.7    dante 
   1395  1.7    dante 
   1396  1.7    dante /*
   1397  1.7    dante  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1398  1.7    dante  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1399  1.7    dante  * all of this is done.
   1400  1.7    dante  *
   1401  1.7    dante  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1402  1.7    dante  *
   1403  1.7    dante  * For a non-fatal error return a warning code. If there are no warnings
   1404  1.7    dante  * then 0 is returned.
   1405  1.7    dante  *
   1406  1.7    dante  * Note: Chip is stopped on entry.
   1407  1.7    dante  */
   1408  1.7    dante int
   1409  1.7    dante AdvInitFrom38C0800EEP(sc)
   1410  1.7    dante ADW_SOFTC      *sc;
   1411  1.7    dante {
   1412  1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   1413  1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1414  1.7    dante 	u_int16_t		warn_code;
   1415  1.7    dante 	ADW_EEP_38C0800_CONFIG	eep_config;
   1416  1.7    dante 	int			i;
   1417  1.7    dante 	u_int8_t		tid, termination;
   1418  1.7    dante 	u_int16_t		sdtr_speed = 0;
   1419  1.7    dante 
   1420  1.7    dante 
   1421  1.7    dante 	warn_code = 0;
   1422  1.7    dante 
   1423  1.7    dante 	/*
   1424  1.7    dante 	 * Read the board's EEPROM configuration.
   1425  1.7    dante 	 *
   1426  1.7    dante 	 * Set default values if a bad checksum is found.
   1427  1.7    dante 	 */
   1428  1.7    dante 	if (AdvGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   1429  1.7    dante 			eep_config.check_sum) {
   1430  1.7    dante 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   1431  1.7    dante 
   1432  1.7    dante 		/*
   1433  1.7    dante 		 * Set EEPROM default values.
   1434  1.7    dante 		 */
   1435  1.7    dante 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   1436  1.7    dante 			*((u_int8_t *) &eep_config + i) =
   1437  1.7    dante 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   1438  1.7    dante 		}
   1439  1.7    dante 
   1440  1.7    dante 		/*
   1441  1.7    dante 		 * Assume the 6 byte board serial number that was read
   1442  1.7    dante 		 * from EEPROM is correct even if the EEPROM checksum
   1443  1.7    dante 		 * failed.
   1444  1.7    dante 		 */
   1445  1.7    dante 		eep_config.serial_number_word3 =
   1446  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1447  1.7    dante 
   1448  1.7    dante 		eep_config.serial_number_word2 =
   1449  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1450  1.7    dante 
   1451  1.7    dante 		eep_config.serial_number_word1 =
   1452  1.7    dante 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1453  1.7    dante 
   1454  1.7    dante 		AdvSet38C0800EEPConfig(iot, ioh, &eep_config);
   1455  1.7    dante 	}
   1456  1.7    dante 	/*
   1457  1.7    dante 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   1458  1.7    dante 	 * EEPROM configuration that was read.
   1459  1.7    dante 	 *
   1460  1.7    dante 	 * This is the mapping of EEPROM fields to Adv Library fields.
   1461  1.7    dante 	 */
   1462  1.7    dante 	sc->wdtr_able = eep_config.wdtr_able;
   1463  1.7    dante 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   1464  1.7    dante 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   1465  1.7    dante 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   1466  1.7    dante 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   1467  1.7    dante 	sc->tagqng_able = eep_config.tagqng_able;
   1468  1.7    dante 	sc->cfg.disc_enable = eep_config.disc_enable;
   1469  1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1470  1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1471  1.7    dante 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1472  1.7    dante 	sc->start_motor = eep_config.start_motor;
   1473  1.7    dante 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1474  1.7    dante 	sc->bios_ctrl = eep_config.bios_ctrl;
   1475  1.7    dante 	sc->no_scam = eep_config.scam_tolerant;
   1476  1.7    dante 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1477  1.7    dante 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1478  1.7    dante 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1479  1.7    dante 
   1480  1.7    dante 	/*
   1481  1.7    dante 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   1482  1.7    dante 	 * are set, then set an 'sdtr_able' bit for it.
   1483  1.7    dante 	 */
   1484  1.7    dante 	sc->sdtr_able = 0;
   1485  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1486  1.7    dante 		if (tid == 0) {
   1487  1.7    dante 			sdtr_speed = sc->sdtr_speed1;
   1488  1.7    dante 		} else if (tid == 4) {
   1489  1.7    dante 			sdtr_speed = sc->sdtr_speed2;
   1490  1.7    dante 		} else if (tid == 8) {
   1491  1.7    dante 			sdtr_speed = sc->sdtr_speed3;
   1492  1.7    dante 		} else if (tid == 12) {
   1493  1.7    dante 			sdtr_speed = sc->sdtr_speed4;
   1494  1.7    dante 		}
   1495  1.7    dante 		if (sdtr_speed & ADW_MAX_TID) {
   1496  1.7    dante 			sc->sdtr_able |= (1 << tid);
   1497  1.7    dante 		}
   1498  1.7    dante 		sdtr_speed >>= 4;
   1499  1.7    dante 	}
   1500  1.7    dante 
   1501  1.7    dante 	/*
   1502  1.7    dante 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1503  1.7    dante 	 * maximum queuing (max. 63, min. 4).
   1504  1.7    dante 	 */
   1505  1.7    dante 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   1506  1.7    dante 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1507  1.7    dante 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   1508  1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   1509  1.7    dante 		if (eep_config.max_host_qng == 0) {
   1510  1.7    dante 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1511  1.7    dante 		} else {
   1512  1.7    dante 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   1513  1.7    dante 		}
   1514  1.7    dante 	}
   1515  1.7    dante 
   1516  1.7    dante 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   1517  1.7    dante 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1518  1.7    dante 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   1519  1.7    dante 		/* If the value is zero, assume it is uninitialized. */
   1520  1.7    dante 		if (eep_config.max_dvc_qng == 0) {
   1521  1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1522  1.7    dante 		} else {
   1523  1.7    dante 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   1524  1.7    dante 		}
   1525  1.7    dante 	}
   1526  1.7    dante 
   1527  1.7    dante 	/*
   1528  1.7    dante 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1529  1.7    dante 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1530  1.7    dante 	 */
   1531  1.7    dante 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1532  1.7    dante 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1533  1.7    dante 	}
   1534  1.7    dante 
   1535  1.7    dante 	/*
   1536  1.7    dante 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1537  1.7    dante 	 * values based on possibly adjusted EEPROM values.
   1538  1.7    dante 	 */
   1539  1.7    dante 	sc->max_host_qng = eep_config.max_host_qng;
   1540  1.7    dante 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1541  1.7    dante 
   1542  1.7    dante 	/*
   1543  1.7    dante 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1544  1.7    dante 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1545  1.7    dante 	 *
   1546  1.7    dante 	 * If the termination is specified with a non-zero 'termination'
   1547  1.7    dante 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1548  1.7    dante 	 * 'termination' field appropriately.
   1549  1.7    dante 	 */
   1550  1.7    dante 	if (eep_config.termination_se == 0) {
   1551  1.7    dante 		termination = 0;	/* auto termination for SE */
   1552  1.7    dante 	} else {
   1553  1.7    dante 		/* Enable manual control with low off / high off. */
   1554  1.7    dante 		if (eep_config.termination_se == 1) {
   1555  1.7    dante 			termination = 0;
   1556  1.7    dante 
   1557  1.7    dante 		/* Enable manual control with low off / high on. */
   1558  1.7    dante 		} else if (eep_config.termination_se == 2) {
   1559  1.7    dante 			termination = ADW_TERM_SE_HI;
   1560  1.7    dante 
   1561  1.7    dante 		/* Enable manual control with low on / high on. */
   1562  1.7    dante 		} else if (eep_config.termination_se == 3) {
   1563  1.7    dante 			termination = ADW_TERM_SE;
   1564  1.7    dante 		} else {
   1565  1.7    dante 			/*
   1566  1.7    dante 			 * The EEPROM 'termination_se' field contains
   1567  1.7    dante 			 * a bad value.
   1568  1.7    dante 			 * Use automatic termination instead.
   1569  1.7    dante 			 */
   1570  1.7    dante 			termination = 0;
   1571  1.7    dante 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1572  1.7    dante 		}
   1573  1.7    dante 	}
   1574  1.7    dante 
   1575  1.7    dante 	if (eep_config.termination_lvd == 0) {
   1576  1.7    dante 		/* auto termination for LVD */
   1577  1.7    dante 		sc->cfg.termination = termination;
   1578  1.7    dante 	} else
   1579  1.7    dante 	{
   1580  1.7    dante 		/* Enable manual control with low off / high off. */
   1581  1.7    dante 		if (eep_config.termination_lvd == 1) {
   1582  1.7    dante 			sc->cfg.termination = termination;
   1583  1.7    dante 
   1584  1.7    dante 		/* Enable manual control with low off / high on. */
   1585  1.7    dante 		} else if (eep_config.termination_lvd == 2) {
   1586  1.7    dante 			sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   1587  1.7    dante 
   1588  1.7    dante 		/* Enable manual control with low on / high on. */
   1589  1.7    dante 		} else if (eep_config.termination_lvd == 3) {
   1590  1.7    dante 			sc->cfg.termination = termination | ADW_TERM_LVD;
   1591  1.7    dante 		} else {
   1592  1.7    dante 			/*
   1593  1.7    dante 			 * The EEPROM 'termination_lvd' field contains a bad value.
   1594  1.7    dante 			 * Use automatic termination instead.
   1595  1.7    dante 			 */
   1596  1.7    dante 			sc->cfg.termination = termination;
   1597  1.7    dante 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1598  1.7    dante 		}
   1599  1.7    dante 	}
   1600  1.7    dante 
   1601  1.7    dante 	return warn_code;
   1602  1.7    dante }
   1603  1.7    dante 
   1604  1.7    dante 
   1605  1.7    dante /*
   1606  1.7    dante  * Read EEPROM configuration into the specified buffer.
   1607  1.7    dante  *
   1608  1.7    dante  * Return a checksum based on the EEPROM configuration read.
   1609  1.7    dante  */
   1610  1.7    dante static u_int16_t
   1611  1.7    dante AdvGet3550EEPConfig(iot, ioh, cfg_buf)
   1612  1.7    dante 	bus_space_tag_t		iot;
   1613  1.7    dante 	bus_space_handle_t	ioh;
   1614  1.7    dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   1615  1.7    dante {
   1616  1.7    dante 	u_int16_t	       wval, chksum;
   1617  1.7    dante 	u_int16_t	       *wbuf;
   1618  1.7    dante 	int		    eep_addr;
   1619  1.7    dante 
   1620  1.7    dante 
   1621  1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   1622  1.7    dante 	chksum = 0;
   1623  1.7    dante 
   1624  1.7    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1625  1.7    dante 			eep_addr < ASC_EEP_DVC_CFG_END;
   1626  1.7    dante 			eep_addr++, wbuf++) {
   1627  1.7    dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   1628  1.7    dante 		chksum += wval;
   1629  1.7    dante 		*wbuf = wval;
   1630  1.7    dante 	}
   1631  1.7    dante 
   1632  1.7    dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   1633  1.7    dante 	wbuf++;
   1634  1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1635  1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1636  1.7    dante 			eep_addr++, wbuf++) {
   1637  1.7    dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   1638  1.7    dante 	}
   1639  1.7    dante 
   1640  1.7    dante 	return chksum;
   1641  1.7    dante }
   1642  1.7    dante 
   1643  1.7    dante 
   1644  1.7    dante /*
   1645  1.7    dante  * Read EEPROM configuration into the specified buffer.
   1646  1.7    dante  *
   1647  1.7    dante  * Return a checksum based on the EEPROM configuration read.
   1648  1.7    dante  */
   1649  1.7    dante static u_int16_t
   1650  1.7    dante AdvGet38C0800EEPConfig(iot, ioh, cfg_buf)
   1651  1.7    dante 	bus_space_tag_t		iot;
   1652  1.7    dante 	bus_space_handle_t	ioh;
   1653  1.7    dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   1654  1.7    dante {
   1655  1.7    dante 	u_int16_t	wval, chksum;
   1656  1.7    dante 	u_int16_t	*wbuf;
   1657  1.7    dante 	int		eep_addr;
   1658  1.7    dante 
   1659  1.7    dante 
   1660  1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   1661  1.7    dante 	chksum = 0;
   1662  1.1    dante 
   1663  1.1    dante 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   1664  1.7    dante 			eep_addr < ASC_EEP_DVC_CFG_END;
   1665  1.7    dante 			eep_addr++, wbuf++) {
   1666  1.1    dante 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   1667  1.1    dante 		chksum += wval;
   1668  1.1    dante 		*wbuf = wval;
   1669  1.1    dante 	}
   1670  1.7    dante 
   1671  1.1    dante 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   1672  1.1    dante 	wbuf++;
   1673  1.7    dante 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   1674  1.7    dante 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   1675  1.7    dante 			eep_addr++, wbuf++) {
   1676  1.7    dante 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   1677  1.7    dante 	}
   1678  1.7    dante 
   1679  1.7    dante 	return chksum;
   1680  1.7    dante }
   1681  1.7    dante 
   1682  1.7    dante 
   1683  1.7    dante /*
   1684  1.7    dante  * Read the EEPROM from specified location
   1685  1.7    dante  */
   1686  1.7    dante static u_int16_t
   1687  1.7    dante AdvReadEEPWord(iot, ioh, eep_word_addr)
   1688  1.7    dante 	bus_space_tag_t		iot;
   1689  1.7    dante 	bus_space_handle_t	ioh;
   1690  1.7    dante 	int			eep_word_addr;
   1691  1.7    dante {
   1692  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1693  1.7    dante 		ASC_EEP_CMD_READ | eep_word_addr);
   1694  1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   1695  1.7    dante 
   1696  1.7    dante 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   1697  1.7    dante }
   1698  1.7    dante 
   1699  1.7    dante 
   1700  1.7    dante /*
   1701  1.7    dante  * Wait for EEPROM command to complete
   1702  1.7    dante  */
   1703  1.7    dante static void
   1704  1.7    dante AdvWaitEEPCmd(iot, ioh)
   1705  1.7    dante 	bus_space_tag_t		iot;
   1706  1.7    dante 	bus_space_handle_t	ioh;
   1707  1.7    dante {
   1708  1.7    dante 	int eep_delay_ms;
   1709  1.7    dante 
   1710  1.7    dante 
   1711  1.7    dante 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   1712  1.7    dante 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   1713  1.7    dante 				ASC_EEP_CMD_DONE) {
   1714  1.7    dante 			break;
   1715  1.7    dante 		}
   1716  1.7    dante 		AdvSleepMilliSecond(1);
   1717  1.7    dante 	}
   1718  1.7    dante 
   1719  1.7    dante 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   1720  1.7    dante }
   1721  1.7    dante 
   1722  1.7    dante 
   1723  1.7    dante /*
   1724  1.7    dante  * Write the EEPROM from 'cfg_buf'.
   1725  1.7    dante  */
   1726  1.7    dante static void
   1727  1.7    dante AdvSet3550EEPConfig(iot, ioh, cfg_buf)
   1728  1.7    dante 	bus_space_tag_t		iot;
   1729  1.7    dante 	bus_space_handle_t	ioh;
   1730  1.7    dante 	ADW_EEP_3550_CONFIG	*cfg_buf;
   1731  1.7    dante {
   1732  1.7    dante 	u_int16_t *wbuf;
   1733  1.7    dante 	u_int16_t addr, chksum;
   1734  1.7    dante 
   1735  1.7    dante 
   1736  1.7    dante 	wbuf = (u_int16_t *) cfg_buf;
   1737  1.7    dante 	chksum = 0;
   1738  1.7    dante 
   1739  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1740  1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   1741  1.7    dante 
   1742  1.7    dante 	/*
   1743  1.7    dante 	 * Write EEPROM from word 0 to word 20
   1744  1.7    dante 	 */
   1745  1.7    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1746  1.7    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1747  1.7    dante 		chksum += *wbuf;
   1748  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1749  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1750  1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   1751  1.7    dante 		AdvWaitEEPCmd(iot, ioh);
   1752  1.7    dante 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   1753  1.7    dante 	}
   1754  1.7    dante 
   1755  1.7    dante 	/*
   1756  1.7    dante 	 * Write EEPROM checksum at word 21
   1757  1.7    dante 	 */
   1758  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1759  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1760  1.7    dante 			ASC_EEP_CMD_WRITE | addr);
   1761  1.7    dante 	AdvWaitEEPCmd(iot, ioh);
   1762  1.7    dante 	wbuf++;        /* skip over check_sum */
   1763  1.7    dante 
   1764  1.7    dante 	/*
   1765  1.7    dante 	 * Write EEPROM OEM name at words 22 to 29
   1766  1.7    dante 	 */
   1767  1.7    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1768  1.7    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1769  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1770  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1771  1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   1772  1.7    dante 		AdvWaitEEPCmd(iot, ioh);
   1773  1.1    dante 	}
   1774  1.1    dante 
   1775  1.2    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1776  1.7    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1777  1.4  thorpej 	AdvWaitEEPCmd(iot, ioh);
   1778  1.1    dante 
   1779  1.1    dante 	return;
   1780  1.1    dante }
   1781  1.1    dante 
   1782  1.7    dante 
   1783  1.1    dante /*
   1784  1.1    dante  * Write the EEPROM from 'cfg_buf'.
   1785  1.1    dante  */
   1786  1.1    dante static void
   1787  1.7    dante AdvSet38C0800EEPConfig(iot, ioh, cfg_buf)
   1788  1.7    dante 	bus_space_tag_t		iot;
   1789  1.7    dante 	bus_space_handle_t	ioh;
   1790  1.7    dante 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   1791  1.1    dante {
   1792  1.7    dante 	u_int16_t *wbuf;
   1793  1.7    dante 	u_int16_t addr, chksum;
   1794  1.7    dante 
   1795  1.1    dante 
   1796  1.1    dante 	wbuf = (u_int16_t *) cfg_buf;
   1797  1.1    dante 	chksum = 0;
   1798  1.1    dante 
   1799  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   1800  1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   1801  1.1    dante 
   1802  1.1    dante 	/*
   1803  1.7    dante 	 * Write EEPROM from word 0 to word 20
   1804  1.1    dante 	 */
   1805  1.1    dante 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   1806  1.2    dante 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   1807  1.1    dante 		chksum += *wbuf;
   1808  1.1    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1809  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1810  1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   1811  1.1    dante 		AdvWaitEEPCmd(iot, ioh);
   1812  1.7    dante 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   1813  1.1    dante 	}
   1814  1.1    dante 
   1815  1.1    dante 	/*
   1816  1.7    dante 	 * Write EEPROM checksum at word 21
   1817  1.1    dante 	 */
   1818  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   1819  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1820  1.7    dante 			ASC_EEP_CMD_WRITE | addr);
   1821  1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   1822  1.7    dante 	wbuf++;        /* skip over check_sum */
   1823  1.1    dante 
   1824  1.1    dante 	/*
   1825  1.7    dante 	 * Write EEPROM OEM name at words 22 to 29
   1826  1.1    dante 	 */
   1827  1.1    dante 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   1828  1.2    dante 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   1829  1.1    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   1830  1.7    dante 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1831  1.7    dante 				ASC_EEP_CMD_WRITE | addr);
   1832  1.1    dante 		AdvWaitEEPCmd(iot, ioh);
   1833  1.1    dante 	}
   1834  1.7    dante 
   1835  1.1    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   1836  1.7    dante 			ASC_EEP_CMD_WRITE_DISABLE);
   1837  1.1    dante 	AdvWaitEEPCmd(iot, ioh);
   1838  1.7    dante 
   1839  1.1    dante 	return;
   1840  1.1    dante }
   1841  1.1    dante 
   1842  1.7    dante 
   1843  1.1    dante /*
   1844  1.7    dante  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
   1845  1.7    dante  *
   1846  1.7    dante  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   1847  1.7    dante  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   1848  1.7    dante  *   RISC to notify it a new command is ready to be executed.
   1849  1.1    dante  *
   1850  1.7    dante  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   1851  1.7    dante  * set to SCSI_MAX_RETRY.
   1852  1.1    dante  *
   1853  1.7    dante  * Return:
   1854  1.7    dante  *      ADW_SUCCESS(1) - The request was successfully queued.
   1855  1.7    dante  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   1856  1.7    dante  *                       request completes.
   1857  1.7    dante  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   1858  1.7    dante  *                       host IC error.
   1859  1.1    dante  */
   1860  1.7    dante int
   1861  1.7    dante AdvExeScsiQueue(sc, scsiq)
   1862  1.7    dante ADW_SOFTC	*sc;
   1863  1.7    dante ADW_SCSI_REQ_Q	*scsiq;
   1864  1.1    dante {
   1865  1.7    dante 	bus_space_tag_t iot = sc->sc_iot;
   1866  1.7    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   1867  1.7    dante 	ADW_CCB		*ccb;
   1868  1.7    dante 	long		req_size;
   1869  1.7    dante 	u_int32_t	req_paddr;
   1870  1.7    dante 	ADW_CARRIER	*new_carrp/*, *ccb_carr;
   1871  1.7    dante 	int		i*/;
   1872  1.7    dante 
   1873  1.7    dante 
   1874  1.7    dante 	/*
   1875  1.7    dante 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   1876  1.7    dante 	 */
   1877  1.7    dante 	if (scsiq->target_id > ADW_MAX_TID) {
   1878  1.7    dante 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   1879  1.7    dante 		scsiq->done_status = QD_WITH_ERROR;
   1880  1.7    dante 		return ADW_ERROR;
   1881  1.7    dante 	}
   1882  1.7    dante 
   1883  1.7    dante 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   1884  1.7    dante 	ccb->carr_list = sc->icq_sp;
   1885  1.7    dante 
   1886  1.7    dante 	/*
   1887  1.7    dante 	 * Allocate a carrier ensuring at least one carrier always
   1888  1.7    dante 	 * remains on the freelist and initialize fields.
   1889  1.7    dante 	 */
   1890  1.7    dante 	if ((new_carrp = sc->carr_freelist) == NULL) {
   1891  1.7    dante 		return ADW_BUSY;
   1892  1.7    dante 	}
   1893  1.7    dante 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1894  1.7    dante 			ASC_GET_CARRP(new_carrp->next_vpa));
   1895  1.7    dante 	sc->carr_pending_cnt++;
   1896  1.7    dante 
   1897  1.7    dante 	/*
   1898  1.7    dante 	 * Set the carrier to be a stopper by setting 'next_vpa'
   1899  1.7    dante 	 * to the stopper value. The current stopper will be changed
   1900  1.7    dante 	 * below to point to the new stopper.
   1901  1.7    dante 	 */
   1902  1.7    dante 	new_carrp->next_vpa = ASC_CQ_STOPPER;
   1903  1.7    dante 
   1904  1.7    dante 	req_size = sizeof(ADW_SCSI_REQ_Q);
   1905  1.7    dante 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   1906  1.7    dante 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   1907  1.7    dante 
   1908  1.7    dante 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   1909  1.7    dante 	scsiq->scsiq_rptr = req_paddr;
   1910  1.7    dante 
   1911  1.7    dante 	/*
   1912  1.7    dante 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
   1913  1.7    dante 	 * order during initialization.
   1914  1.7    dante 	 */
   1915  1.7    dante 	scsiq->carr_pa = sc->icq_sp->carr_pa;
   1916  1.7    dante 	scsiq->carr_va = sc->icq_sp->carr_pa;
   1917  1.1    dante 
   1918  1.7    dante 	/*
   1919  1.7    dante 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   1920  1.7    dante 	 * the microcode. The newly allocated stopper will become the new
   1921  1.7    dante 	 * stopper.
   1922  1.7    dante 	 */
   1923  1.7    dante 	sc->icq_sp->areq_vpa = req_paddr;
   1924  1.1    dante 
   1925  1.1    dante 	/*
   1926  1.7    dante 	 * Set the 'next_vpa' pointer for the old stopper to be the
   1927  1.7    dante 	 * physical address of the new stopper. The RISC can only
   1928  1.7    dante 	 * follow physical addresses.
   1929  1.1    dante 	 */
   1930  1.7    dante 	sc->icq_sp->next_vpa = new_carrp->carr_pa;
   1931  1.1    dante 
   1932  1.1    dante 	/*
   1933  1.7    dante 	 * Set the host adapter stopper pointer to point to the new carrier.
   1934  1.1    dante 	 */
   1935  1.7    dante 	sc->icq_sp = new_carrp;
   1936  1.7    dante 
   1937  1.7    dante /*	ccb_carr = ccb->carr_list;
   1938  1.7    dante 	while(ccb_carr != ASC_CQ_STOPPER) {
   1939  1.7    dante 		bus_dmamap_load(sc->sc_dmat, ccb_carr->dmamap_xfer,
   1940  1.7    dante 				ccb_carr, ADW_CARRIER_SIZE,
   1941  1.7    dante 				NULL, BUS_DMA_NOWAIT);
   1942  1.7    dante 		bus_dmamap_sync(sc->sc_dmat, ccb_carr->dmamap_xfer, 0,
   1943  1.7    dante 				ccb_carr->dmamap_xfer->dm_mapsize,
   1944  1.7    dante 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1945  1.7    dante 		ccb_carr = adw_carrier_phys_kv(sc,
   1946  1.7    dante 				ASC_GET_CARRP(ccb_carr->next_vpa));
   1947  1.7    dante 	}
   1948  1.1    dante 
   1949  1.7    dante 	ccb_carr = sc->irq_sp;
   1950  1.7    dante 	for(i=0; i<2 && ccb_carr != ASC_CQ_STOPPER; i++) {
   1951  1.7    dante 		bus_dmamap_load(sc->sc_dmat, ccb_carr->dmamap_xfer,
   1952  1.7    dante 				ccb_carr, ADW_CARRIER_SIZE,
   1953  1.7    dante 				NULL, BUS_DMA_NOWAIT);
   1954  1.7    dante 		bus_dmamap_sync(sc->sc_dmat, ccb_carr->dmamap_xfer, 0,
   1955  1.7    dante 				ccb_carr->dmamap_xfer->dm_mapsize,
   1956  1.7    dante 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1957  1.7    dante 		ccb_carr = adw_carrier_phys_kv(sc,
   1958  1.7    dante 				ASC_GET_CARRP(ccb_carr->next_vpa));
   1959  1.7    dante 	}
   1960  1.7    dante */
   1961  1.7    dante 	bus_dmamap_load(sc->sc_dmat, sc->sc_control->dmamap_xfer,
   1962  1.7    dante 			sc->sc_control->carriers, ADW_CARRIER_SIZE * ADW_MAX_CARRIER,
   1963  1.7    dante 			NULL, BUS_DMA_NOWAIT);
   1964  1.7    dante 	bus_dmamap_sync(sc->sc_dmat, sc->sc_control->dmamap_xfer, 0,
   1965  1.7    dante 			sc->sc_control->dmamap_xfer->dm_mapsize,
   1966  1.7    dante 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1967  1.1    dante 
   1968  1.1    dante 	/*
   1969  1.7    dante 	 * Tickle the RISC to tell it to read its Command Queue Head pointer.
   1970  1.1    dante 	 */
   1971  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   1972  1.7    dante 	if (sc->chip_type == ADV_CHIP_ASC3550)
   1973  1.7    dante 	{
   1974  1.7    dante 		/*
   1975  1.7    dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   1976  1.7    dante 		 * command 'clr_tickle_a' does not work unless the host
   1977  1.7    dante 		 * value is cleared.
   1978  1.7    dante 		 */
   1979  1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   1980  1.7    dante 	}
   1981  1.7    dante 
   1982  1.7    dante 	return ADW_SUCCESS;
   1983  1.1    dante }
   1984  1.1    dante 
   1985  1.7    dante 
   1986  1.7    dante void
   1987  1.7    dante AdvResetChip(iot, ioh)
   1988  1.7    dante 	bus_space_tag_t iot;
   1989  1.7    dante 	bus_space_handle_t ioh;
   1990  1.1    dante {
   1991  1.7    dante 
   1992  1.7    dante 	/*
   1993  1.7    dante 	 * Reset Chip.
   1994  1.7    dante 	 */
   1995  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1996  1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   1997  1.7    dante 	AdvSleepMilliSecond(100);
   1998  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   1999  1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2000  1.1    dante }
   2001  1.1    dante 
   2002  1.7    dante 
   2003  1.1    dante /*
   2004  1.1    dante  * Reset SCSI Bus and purge all outstanding requests.
   2005  1.1    dante  *
   2006  1.1    dante  * Return Value:
   2007  1.7    dante  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2008  1.7    dante  *      ADW_FALSE(0) -  Microcode command failed.
   2009  1.7    dante  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2010  1.7    dante  *                      may be hung which requires driver recovery.
   2011  1.1    dante  */
   2012  1.1    dante int
   2013  1.1    dante AdvResetCCB(sc)
   2014  1.7    dante ADW_SOFTC	*sc;
   2015  1.1    dante {
   2016  1.7    dante 	int	    status;
   2017  1.7    dante 
   2018  1.7    dante 	/*
   2019  1.7    dante 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2020  1.7    dante 	 * the SCSI Bus Reset signal.
   2021  1.7    dante 	 */
   2022  1.7    dante 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2023  1.7    dante 	if (status != ADW_TRUE)
   2024  1.7    dante 	{
   2025  1.7    dante 		return status;
   2026  1.7    dante 	}
   2027  1.7    dante 
   2028  1.7    dante 	/*
   2029  1.7    dante 	 * Delay for the specified SCSI Bus Reset hold time.
   2030  1.7    dante 	 *
   2031  1.7    dante 	 * The hold time delay is done on the host because the RISC has no
   2032  1.7    dante 	 * microsecond accurate timer.
   2033  1.7    dante 	 */
   2034  1.7    dante 	AdvDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2035  1.1    dante 
   2036  1.7    dante 	/*
   2037  1.7    dante 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2038  1.7    dante 	 * the SCSI Bus Reset signal and purges any pending requests.
   2039  1.7    dante 	 */
   2040  1.7    dante 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2041  1.7    dante 	if (status != ADW_TRUE)
   2042  1.7    dante 	{
   2043  1.7    dante 		return status;
   2044  1.7    dante 	}
   2045  1.1    dante 
   2046  1.7    dante 	AdvSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2047  1.1    dante 
   2048  1.1    dante 	return status;
   2049  1.1    dante }
   2050  1.1    dante 
   2051  1.7    dante 
   2052  1.1    dante /*
   2053  1.7    dante  * Reset chip and SCSI Bus.
   2054  1.7    dante  *
   2055  1.7    dante  * Return Value:
   2056  1.7    dante  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   2057  1.7    dante  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   2058  1.1    dante  */
   2059  1.7    dante int
   2060  1.1    dante AdvResetSCSIBus(sc)
   2061  1.7    dante ADW_SOFTC	*sc;
   2062  1.1    dante {
   2063  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2064  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2065  1.7    dante 	int		status;
   2066  1.7    dante 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
   2067  1.7    dante 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   2068  1.7    dante 	u_int16_t	bios_sig;
   2069  1.7    dante 
   2070  1.7    dante 
   2071  1.7    dante 	/*
   2072  1.7    dante 	 * Save current per TID negotiated values.
   2073  1.7    dante 	 */
   2074  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   2075  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   2076  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   2077  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++)
   2078  1.7    dante 	{
   2079  1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   2080  1.7    dante 			max_cmd[tid]);
   2081  1.7    dante 	}
   2082  1.7    dante 
   2083  1.7    dante 	/*
   2084  1.7    dante 	 * Force the AdvInitAsc3550/38C0800Driver() function to
   2085  1.7    dante 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   2086  1.7    dante 	 * The initialization functions assumes a SCSI Bus Reset is not
   2087  1.7    dante 	 * needed if the BIOS signature word is present.
   2088  1.7    dante 	 */
   2089  1.7    dante 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   2090  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, 0);
   2091  1.7    dante 
   2092  1.7    dante 	/*
   2093  1.7    dante 	 * Stop chip and reset it.
   2094  1.7    dante 	 */
   2095  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   2096  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2097  1.7    dante 			ADW_CTRL_REG_CMD_RESET);
   2098  1.7    dante 	AdvSleepMilliSecond(100);
   2099  1.7    dante 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2100  1.7    dante 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2101  1.7    dante 
   2102  1.7    dante 	/*
   2103  1.7    dante 	 * Reset Adv Library error code, if any, and try
   2104  1.7    dante 	 * re-initializing the chip.
   2105  1.7    dante 	 */
   2106  1.7    dante 	if (sc->chip_type == ADV_CHIP_ASC38C0800) {
   2107  1.7    dante 		status = AdvInitAsc38C0800Driver(sc);
   2108  1.7    dante 	} else {
   2109  1.7    dante 		status = AdvInitAsc3550Driver(sc);
   2110  1.7    dante 	}
   2111  1.1    dante 
   2112  1.7    dante 	/* Translate initialization return value to status value. */
   2113  1.7    dante 	if (status == 0) {
   2114  1.7    dante 		status = ADW_TRUE;
   2115  1.7    dante 	} else {
   2116  1.7    dante 		status = ADW_FALSE;
   2117  1.7    dante 	}
   2118  1.1    dante 
   2119  1.7    dante 	/*
   2120  1.7    dante 	 * Restore the BIOS signature word.
   2121  1.7    dante 	 */
   2122  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   2123  1.1    dante 
   2124  1.1    dante 	/*
   2125  1.7    dante 	 * Restore per TID negotiated values.
   2126  1.1    dante 	 */
   2127  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   2128  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   2129  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   2130  1.7    dante 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2131  1.7    dante 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   2132  1.7    dante 			max_cmd[tid]);
   2133  1.7    dante 	}
   2134  1.1    dante 
   2135  1.7    dante 	return status;
   2136  1.1    dante }
   2137  1.1    dante 
   2138  1.1    dante 
   2139  1.1    dante /*
   2140  1.1    dante  * Adv Library Interrupt Service Routine
   2141  1.1    dante  *
   2142  1.1    dante  *  This function is called by a driver's interrupt service routine.
   2143  1.1    dante  *  The function disables and re-enables interrupts.
   2144  1.1    dante  *
   2145  1.7    dante  *  When a microcode idle command is completed, the ADV_DVC_VAR
   2146  1.1    dante  *  'idle_cmd_done' field is set to ADW_TRUE.
   2147  1.1    dante  *
   2148  1.1    dante  *  Note: AdvISR() can be called when interrupts are disabled or even
   2149  1.1    dante  *  when there is no hardware interrupt condition present. It will
   2150  1.1    dante  *  always check for completed idle commands and microcode requests.
   2151  1.1    dante  *  This is an important feature that shouldn't be changed because it
   2152  1.1    dante  *  allows commands to be completed from polling mode loops.
   2153  1.1    dante  *
   2154  1.1    dante  * Return:
   2155  1.1    dante  *   ADW_TRUE(1) - interrupt was pending
   2156  1.1    dante  *   ADW_FALSE(0) - no interrupt was pending
   2157  1.1    dante  */
   2158  1.1    dante int
   2159  1.1    dante AdvISR(sc)
   2160  1.7    dante ADW_SOFTC	*sc;
   2161  1.1    dante {
   2162  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2163  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2164  1.7    dante 	u_int8_t	int_stat;
   2165  1.7    dante 	u_int16_t	target_bit;
   2166  1.7    dante 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   2167  1.7    dante 	u_int32_t	irq_next_pa;
   2168  1.7    dante 	ADW_SCSI_REQ_Q	*scsiq;
   2169  1.7    dante 	ADW_CCB		*ccb;
   2170  1.7    dante //	int		i;
   2171  1.1    dante 
   2172  1.1    dante 
   2173  1.1    dante 	/* Reading the register clears the interrupt. */
   2174  1.1    dante 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   2175  1.1    dante 
   2176  1.7    dante 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   2177  1.7    dante 	     ADW_INTR_STATUS_INTRC)) == 0) {
   2178  1.7    dante 		return ADW_FALSE;
   2179  1.1    dante 	}
   2180  1.7    dante 
   2181  1.7    dante 	bus_dmamap_sync(sc->sc_dmat, sc->sc_control->dmamap_xfer, 0,
   2182  1.7    dante 		sc->sc_control->dmamap_xfer->dm_mapsize,
   2183  1.7    dante 		BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2184  1.7    dante 	bus_dmamap_unload(sc->sc_dmat, sc->sc_control->dmamap_xfer);
   2185  1.7    dante 
   2186  1.7    dante /*	ccb_carr = sc->irq_sp;
   2187  1.7    dante 	for(i=0; i<2 && ccb_carr != ASC_CQ_STOPPER; i++) {
   2188  1.7    dante 		bus_dmamap_sync(sc->sc_dmat, ccb_carr->dmamap_xfer, 0,
   2189  1.7    dante 			ccb_carr->dmamap_xfer->dm_mapsize,
   2190  1.7    dante 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2191  1.7    dante 		bus_dmamap_unload(sc->sc_dmat, ccb_carr->dmamap_xfer);
   2192  1.7    dante 		ccb_carr = adw_carrier_phys_kv(sc,
   2193  1.7    dante 			ASC_GET_CARRP(ccb_carr->next_vpa));
   2194  1.7    dante 	}
   2195  1.7    dante */
   2196  1.7    dante 	/*
   2197  1.7    dante 	 * Notify the driver of an asynchronous microcode condition by
   2198  1.7    dante 	 * calling the ADV_DVC_VAR.async_callback function. The function
   2199  1.7    dante 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
   2200  1.1    dante 	 */
   2201  1.7    dante 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   2202  1.7    dante 		u_int8_t intrb_code;
   2203  1.7    dante 
   2204  1.7    dante 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_INTRB_CODE, intrb_code);
   2205  1.7    dante 		if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   2206  1.7    dante 		    sc->carr_pending_cnt != 0) {
   2207  1.7    dante 		    ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2208  1.7    dante 		    if (sc->chip_type == ADV_CHIP_ASC3550) {
   2209  1.7    dante 		    	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   2210  1.7    dante 		    }
   2211  1.7    dante 		}
   2212  1.7    dante 
   2213  1.7    dante 		if (sc->async_callback != 0) {
   2214  1.7    dante 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   2215  1.1    dante 		}
   2216  1.1    dante 	}
   2217  1.7    dante 
   2218  1.1    dante 	/*
   2219  1.7    dante 	 * Check if the IRQ stopper carrier contains a completed request.
   2220  1.1    dante 	 */
   2221  1.7    dante 	while (((irq_next_pa = sc->irq_sp->next_vpa) & ASC_RQ_DONE) != 0)
   2222  1.7    dante 	{
   2223  1.7    dante 		/*
   2224  1.7    dante 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q structure.
   2225  1.7    dante 		 * The RISC will have set 'areq_vpa' to a virtual address.
   2226  1.7    dante 		 *
   2227  1.7    dante 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   2228  1.7    dante 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
   2229  1.7    dante 		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
   2230  1.7    dante 		 * in AdvExeScsiQueue().
   2231  1.7    dante 		 */
   2232  1.7    dante 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_vpa);
   2233  1.7    dante 		scsiq = &ccb->scsiq;
   2234  1.7    dante 		scsiq->ccb_ptr = sc->irq_sp->areq_vpa;
   2235  1.7    dante 
   2236  1.7    dante /*		ccb_carr = ccb->carr_list;
   2237  1.7    dante 		while(ccb_carr != ASC_CQ_STOPPER) {
   2238  1.7    dante 			bus_dmamap_sync(sc->sc_dmat, ccb_carr->dmamap_xfer, 0,
   2239  1.7    dante 				ccb_carr->dmamap_xfer->dm_mapsize,
   2240  1.7    dante 				BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2241  1.7    dante 			bus_dmamap_unload(sc->sc_dmat, ccb_carr->dmamap_xfer);
   2242  1.7    dante 			ccb_carr = adw_carrier_phys_kv(sc,
   2243  1.7    dante 				ASC_GET_CARRP(ccb_carr->next_vpa));
   2244  1.7    dante 		}
   2245  1.1    dante 
   2246  1.7    dante 		bus_dmamap_sync(sc->sc_dmat, sc->irq_sp->dmamap_xfer, 0,
   2247  1.7    dante 			sc->irq_sp->dmamap_xfer->dm_mapsize,
   2248  1.7    dante 			BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   2249  1.7    dante 		bus_dmamap_unload(sc->sc_dmat, sc->irq_sp->dmamap_xfer);
   2250  1.7    dante */
   2251  1.1    dante 		/*
   2252  1.7    dante 		 * Advance the stopper pointer to the next carrier
   2253  1.7    dante 		 * ignoring the lower four bits. Free the previous
   2254  1.7    dante 		 * stopper carrier.
   2255  1.1    dante 		 */
   2256  1.7    dante 		free_carrp = sc->irq_sp;
   2257  1.7    dante 		sc->irq_sp = adw_carrier_phys_kv(sc, ASC_GET_CARRP(irq_next_pa));
   2258  1.7    dante 
   2259  1.7    dante 		free_carrp->next_vpa = sc->carr_freelist->carr_pa;
   2260  1.7    dante 		sc->carr_freelist = free_carrp;
   2261  1.7    dante 		sc->carr_pending_cnt--;
   2262  1.1    dante 
   2263  1.1    dante 
   2264  1.1    dante 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   2265  1.1    dante 
   2266  1.1    dante 		/*
   2267  1.1    dante 		 * Clear request microcode control flag.
   2268  1.1    dante 		 */
   2269  1.1    dante 		scsiq->cntl = 0;
   2270  1.1    dante 
   2271  1.1    dante 		/*
   2272  1.1    dante 		 * Check Condition handling
   2273  1.1    dante 		 */
   2274  1.1    dante 		/*
   2275  1.1    dante 		 * If the command that completed was a SCSI INQUIRY and
   2276  1.1    dante 		 * LUN 0 was sent the command, then process the INQUIRY
   2277  1.1    dante 		 * command information for the device.
   2278  1.1    dante 		 */
   2279  1.7    dante 		if (scsiq->done_status == QD_NO_ERROR &&
   2280  1.7    dante 		    	 scsiq->cdb[0] == INQUIRY &&
   2281  1.7    dante 		    	 scsiq->target_lun == 0) {
   2282  1.1    dante 			AdvInquiryHandling(sc, scsiq);
   2283  1.1    dante 		}
   2284  1.1    dante 
   2285  1.1    dante 		/*
   2286  1.1    dante 		 * Notify the driver of the completed request by passing
   2287  1.1    dante 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   2288  1.1    dante 		 */
   2289  1.7    dante 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   2290  1.1    dante 		/*
   2291  1.1    dante 		 * Note: After the driver callback function is called, 'scsiq'
   2292  1.1    dante 		 * can no longer be referenced.
   2293  1.1    dante 		 *
   2294  1.1    dante 		 * Fall through and continue processing other completed
   2295  1.1    dante 		 * requests...
   2296  1.1    dante 		 */
   2297  1.1    dante 	}
   2298  1.7    dante 
   2299  1.7    dante 	return ADW_TRUE;
   2300  1.1    dante }
   2301  1.1    dante 
   2302  1.7    dante 
   2303  1.1    dante /*
   2304  1.1    dante  * Send an idle command to the chip and wait for completion.
   2305  1.1    dante  *
   2306  1.7    dante  * Command completion is polled for once per microsecond.
   2307  1.7    dante  *
   2308  1.7    dante  * The function can be called from anywhere including an interrupt handler.
   2309  1.7    dante  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
   2310  1.7    dante  * functions to prevent reentrancy.
   2311  1.1    dante  *
   2312  1.1    dante  * Return Values:
   2313  1.1    dante  *   ADW_TRUE - command completed successfully
   2314  1.1    dante  *   ADW_FALSE - command failed
   2315  1.7    dante  *   ADW_ERROR - command timed out
   2316  1.1    dante  */
   2317  1.1    dante int
   2318  1.7    dante AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   2319  1.7    dante ADW_SOFTC      *sc;
   2320  1.7    dante u_int16_t       idle_cmd;
   2321  1.7    dante u_int32_t       idle_cmd_parameter;
   2322  1.1    dante {
   2323  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2324  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2325  1.7    dante 	int		result;
   2326  1.7    dante 	u_int32_t	i, j;
   2327  1.1    dante 
   2328  1.7    dante 
   2329  1.7    dante 	/*
   2330  1.7    dante 	 * Clear the idle command status which is set by the microcode
   2331  1.7    dante 	 * to a non-zero value to indicate when the command is completed.
   2332  1.7    dante 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
   2333  1.7    dante 	 * defined in a_advlib.h.
   2334  1.7    dante 	 */
   2335  1.7    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   2336  1.1    dante 
   2337  1.1    dante 	/*
   2338  1.1    dante 	 * Write the idle command value after the idle command parameter
   2339  1.1    dante 	 * has been written to avoid a race condition. If the order is not
   2340  1.1    dante 	 * followed, the microcode may process the idle command before the
   2341  1.1    dante 	 * parameters have been written to LRAM.
   2342  1.1    dante 	 */
   2343  1.7    dante 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_PARAMETER,
   2344  1.7    dante 	    idle_cmd_parameter);
   2345  1.1    dante 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
   2346  1.1    dante 
   2347  1.1    dante 	/*
   2348  1.7    dante 	 * Tickle the RISC to tell it to process the idle command.
   2349  1.1    dante 	 */
   2350  1.7    dante 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   2351  1.7    dante 	if (sc->chip_type == ADV_CHIP_ASC3550) {
   2352  1.1    dante 		/*
   2353  1.7    dante 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   2354  1.7    dante 		 * command 'clr_tickle_b' does not work unless the host
   2355  1.7    dante 		 * value is cleared.
   2356  1.1    dante 		 */
   2357  1.7    dante 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   2358  1.7    dante 	}
   2359  1.1    dante 
   2360  1.7    dante 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   2361  1.7    dante 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   2362  1.7    dante 		/* Poll once each microsecond for command completion. */
   2363  1.7    dante 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   2364  1.7    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, result);
   2365  1.7    dante 			if (result != 0) {
   2366  1.7    dante 				return result;
   2367  1.7    dante 			}
   2368  1.7    dante 			AdvDelayMicroSecond(1);
   2369  1.7    dante 		}
   2370  1.1    dante 	}
   2371  1.1    dante 
   2372  1.7    dante 	return ADW_ERROR;
   2373  1.1    dante }
   2374  1.1    dante 
   2375  1.1    dante 
   2376  1.1    dante /*
   2377  1.1    dante  * Inquiry Information Byte 7 Handling
   2378  1.1    dante  *
   2379  1.1    dante  * Handle SCSI Inquiry Command information for a device by setting
   2380  1.2    dante  * microcode operating variables that affect WDTR, SDTR, and Tag
   2381  1.1    dante  * Queuing.
   2382  1.1    dante  */
   2383  1.1    dante static void
   2384  1.1    dante AdvInquiryHandling(sc, scsiq)
   2385  1.7    dante ADW_SOFTC	*sc;
   2386  1.7    dante ADW_SCSI_REQ_Q *scsiq;
   2387  1.1    dante {
   2388  1.9    dante #ifndef FAILSAFE
   2389  1.2    dante 	bus_space_tag_t iot = sc->sc_iot;
   2390  1.2    dante 	bus_space_handle_t ioh = sc->sc_ioh;
   2391  1.7    dante 	u_int8_t		tid;
   2392  1.7    dante 	ADW_SCSI_INQUIRY	*inq;
   2393  1.7    dante 	u_int16_t		tidmask;
   2394  1.7    dante 	u_int16_t		cfg_word;
   2395  1.7    dante 
   2396  1.1    dante 
   2397  1.1    dante 	/*
   2398  1.1    dante 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
   2399  1.1    dante 	 * to be available.
   2400  1.1    dante 	 *
   2401  1.1    dante 	 * If less than 8 bytes of INQUIRY information were requested or less
   2402  1.1    dante 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   2403  1.1    dante 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   2404  1.1    dante 	 * microcode to the transfer residual count.
   2405  1.1    dante 	 */
   2406  1.7    dante 
   2407  1.2    dante 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   2408  1.1    dante 		return;
   2409  1.1    dante 	}
   2410  1.7    dante 
   2411  1.1    dante 	tid = scsiq->target_id;
   2412  1.7    dante 
   2413  1.7    dante 	inq = (ADW_SCSI_INQUIRY *) scsiq->vdata_addr;
   2414  1.1    dante 
   2415  1.1    dante 	/*
   2416  1.1    dante 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   2417  1.1    dante 	 */
   2418  1.7    dante 	if (inq->rsp_data_fmt < 2 && inq->ansi_apr_ver < 2) {
   2419  1.1    dante 		return;
   2420  1.2    dante 	} else {
   2421  1.1    dante 		/*
   2422  1.1    dante 		 * INQUIRY Byte 7 Handling
   2423  1.1    dante 		 *
   2424  1.1    dante 		 * Use a device's INQUIRY byte 7 to determine whether it
   2425  1.1    dante 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   2426  1.1    dante 		 * is enabled in the EEPROM and the device supports the
   2427  1.1    dante 		 * feature, then enable it in the microcode.
   2428  1.1    dante 		 */
   2429  1.1    dante 
   2430  1.1    dante 		tidmask = ADW_TID_TO_TIDMASK(tid);
   2431  1.7    dante 
   2432  1.1    dante 		/*
   2433  1.1    dante 		 * Wide Transfers
   2434  1.1    dante 		 *
   2435  1.1    dante 		 * If the EEPROM enabled WDTR for the device and the device
   2436  1.1    dante 		 * supports wide bus (16 bit) transfers, then turn on the
   2437  1.1    dante 		 * device's 'wdtr_able' bit and write the new value to the
   2438  1.1    dante 		 * microcode.
   2439  1.1    dante 		 */
   2440  1.7    dante #ifdef SCSI_ADW_WDTR_DISABLE
   2441  1.8    dante 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   2442  1.7    dante #endif /* SCSI_ADW_WDTR_DISABLE */
   2443  1.7    dante 		if ((sc->wdtr_able & tidmask) && inq->WBus16) {
   2444  1.1    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   2445  1.7    dante 					cfg_word);
   2446  1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2447  1.1    dante 				cfg_word |= tidmask;
   2448  1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   2449  1.7    dante 						cfg_word);
   2450  1.1    dante 
   2451  1.1    dante 				/*
   2452  1.7    dante 				 * Clear the microcode "SDTR negotiation" and "WDTR
   2453  1.7    dante 				 * negotiation" done indicators for the target to cause
   2454  1.7    dante 				 * it to negotiate with the new setting set above.
   2455  1.7    dante 				 * WDTR when accepted causes the target to enter
   2456  1.7    dante 				 * asynchronous mode, so SDTR must be negotiated.
   2457  1.1    dante 				 */
   2458  1.7    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   2459  1.7    dante 						cfg_word);
   2460  1.7    dante 				cfg_word &= ~tidmask;
   2461  1.7    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   2462  1.7    dante 						cfg_word);
   2463  1.1    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   2464  1.7    dante 						cfg_word);
   2465  1.1    dante 				cfg_word &= ~tidmask;
   2466  1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   2467  1.7    dante 						cfg_word);
   2468  1.1    dante 			}
   2469  1.1    dante 		}
   2470  1.7    dante 
   2471  1.1    dante 		/*
   2472  1.1    dante 		 * Synchronous Transfers
   2473  1.1    dante 		 *
   2474  1.1    dante 		 * If the EEPROM enabled SDTR for the device and the device
   2475  1.1    dante 		 * supports synchronous transfers, then turn on the device's
   2476  1.1    dante 		 * 'sdtr_able' bit. Write the new value to the microcode.
   2477  1.1    dante 		 */
   2478  1.7    dante #ifdef SCSI_ADW_SDTR_DISABLE
   2479  1.8    dante 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   2480  1.7    dante #endif /* SCSI_ADW_SDTR_DISABLE */
   2481  1.7    dante 		if ((sc->sdtr_able & tidmask) && inq->Sync) {
   2482  1.7    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, cfg_word);
   2483  1.2    dante 			if ((cfg_word & tidmask) == 0) {
   2484  1.1    dante 				cfg_word |= tidmask;
   2485  1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   2486  1.7    dante 						cfg_word);
   2487  1.1    dante 
   2488  1.1    dante 				/*
   2489  1.7    dante 				 * Clear the microcode "SDTR negotiation" done indicator
   2490  1.7    dante 				 * for the target to cause it to negotiate with the new
   2491  1.7    dante 				 * setting set above.
   2492  1.1    dante 				 */
   2493  1.1    dante 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   2494  1.7    dante 						cfg_word);
   2495  1.1    dante 				cfg_word &= ~tidmask;
   2496  1.1    dante 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   2497  1.7    dante 						cfg_word);
   2498  1.1    dante 			}
   2499  1.1    dante 		}
   2500  1.7    dante 
   2501  1.1    dante 		/*
   2502  1.7    dante 		 * If the EEPROM enabled Tag Queuing for the device and the
   2503  1.7    dante 		 * device supports Tag Queueing, then turn on the device's
   2504  1.1    dante 		 * 'tagqng_enable' bit in the microcode and set the microcode
   2505  1.7    dante 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   2506  1.1    dante 		 * value.
   2507  1.1    dante 		 *
   2508  1.1    dante 		 * Tag Queuing is disabled for the BIOS which runs in polled
   2509  1.1    dante 		 * mode and would see no benefit from Tag Queuing. Also by
   2510  1.1    dante 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   2511  1.1    dante 		 * bugs will at least work with the BIOS.
   2512  1.1    dante 		 */
   2513  1.7    dante #ifdef SCSI_ADW_TAGQ_DISABLE
   2514  1.8    dante 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   2515  1.7    dante #endif /* SCSI_ADW_TAGQ_DISABLE */
   2516  1.7    dante 		if ((sc->tagqng_able & tidmask) && inq->CmdQue) {
   2517  1.1    dante 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   2518  1.7    dante 					cfg_word);
   2519  1.1    dante 			cfg_word |= tidmask;
   2520  1.1    dante 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   2521  1.7    dante 					cfg_word);
   2522  1.7    dante 
   2523  1.1    dante 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   2524  1.7    dante 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
   2525  1.7    dante 					sc->max_dvc_qng);
   2526  1.1    dante 		}
   2527  1.9    dante 	}
   2528  1.7    dante #endif /* FAILSAFE */
   2529  1.1    dante }
   2530  1.1    dante 
   2531  1.7    dante 
   2532  1.1    dante static void
   2533  1.7    dante AdvSleepMilliSecond(n)
   2534  1.7    dante u_int32_t	n;
   2535  1.1    dante {
   2536  1.1    dante 
   2537  1.1    dante 	DELAY(n * 1000);
   2538  1.1    dante }
   2539  1.1    dante 
   2540  1.7    dante 
   2541  1.1    dante static void
   2542  1.7    dante AdvDelayMicroSecond(n)
   2543  1.7    dante u_int32_t	n;
   2544  1.1    dante {
   2545  1.1    dante 
   2546  1.1    dante 	DELAY(n);
   2547  1.1    dante }
   2548  1.7    dante 
   2549