Home | History | Annotate | Line # | Download | only in ic
adwlib.c revision 1.11
      1 /* $NetBSD: adwlib.c,v 1.11 2000/05/08 17:21:34 dante Exp $        */
      2 
      3 /*
      4  * Low level routines for the Advanced Systems Inc. SCSI controllers chips
      5  *
      6  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * Author: Baldassare Dante Profeta <dante (at) mclink.it>
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *        This product includes software developed by the NetBSD
     22  *        Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 /*
     40  * Ported from:
     41  */
     42 /*
     43  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
     44  *
     45  * Copyright (c) 1995-2000 Advanced System Products, Inc.
     46  * All Rights Reserved.
     47  *
     48  * Redistribution and use in source and binary forms, with or without
     49  * modification, are permitted provided that redistributions of source
     50  * code retain the above copyright notice and this comment without
     51  * modification.
     52  */
     53 
     54 #include <sys/types.h>
     55 #include <sys/param.h>
     56 #include <sys/systm.h>
     57 #include <sys/malloc.h>
     58 #include <sys/kernel.h>
     59 #include <sys/queue.h>
     60 #include <sys/device.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 
     65 #include <dev/scsipi/scsi_all.h>
     66 #include <dev/scsipi/scsipi_all.h>
     67 #include <dev/scsipi/scsiconf.h>
     68 
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <vm/vm.h>
     72 #include <vm/vm_param.h>
     73 #include <vm/pmap.h>
     74 
     75 #include <dev/ic/adwlib.h>
     76 #include <dev/ic/adw.h>
     77 #include <dev/ic/adwmcode.h>
     78 
     79 
     80 /* Static Functions */
     81 
     82 static u_int16_t AdvGet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     83      							ADW_EEP_3550_CONFIG *));
     84 static u_int16_t AdvGet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     85      							ADW_EEP_38C0800_CONFIG *));
     86 static u_int16_t AdvGet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     87      							ADW_EEP_38C1600_CONFIG *));
     88 static u_int16_t AdvReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
     89 static void AdvWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
     90 static void AdvSet3550EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     91 					                 ADW_EEP_3550_CONFIG *));
     92 static void AdvSet38C0800EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     93 					                 ADW_EEP_38C0800_CONFIG *));
     94 static void AdvSet38C1600EEPConfig __P((bus_space_tag_t, bus_space_handle_t,
     95 					                 ADW_EEP_38C1600_CONFIG *));
     96 static void AdvInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
     97 
     98 static void AdvSleepMilliSecond __P((u_int32_t));
     99 static void AdvDelayMicroSecond __P((u_int32_t));
    100 
    101 
    102 /*
    103  * EEPROM Configuration.
    104  *
    105  * All drivers should use this structure to set the default EEPROM
    106  * configuration. The BIOS now uses this structure when it is built.
    107  * Additional structure information can be found in advlib.h where
    108  * the structure is defined.
    109  */
    110 static ADW_EEP_3550_CONFIG
    111 Default_3550_EEPROM_Config = {
    112 	ADW_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
    113 	0x0000,			/* cfg_msw */
    114 	0xFFFF,			/* disc_enable */
    115 	0xFFFF,			/* wdtr_able */
    116 	0xFFFF,			/* sdtr_able */
    117 	0xFFFF,			/* start_motor */
    118 	0xFFFF,			/* tagqng_able */
    119 	0xFFFF,			/* bios_scan */
    120 	0,			/* scam_tolerant */
    121 	7,			/* adapter_scsi_id */
    122 	0,			/* bios_boot_delay */
    123 	3,			/* scsi_reset_delay */
    124 	0,			/* bios_id_lun */
    125 	0,			/* termination */
    126 	0,			/* reserved1 */
    127 	0xFFE7,			/* bios_ctrl */
    128 	0xFFFF,			/* ultra_able */
    129 	0,			/* reserved2 */
    130 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
    131 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
    132 	0,			/* dvc_cntl */
    133 	0,			/* bug_fix */
    134 	0,			/* serial_number_word1 */
    135 	0,			/* serial_number_word2 */
    136 	0,			/* serial_number_word3 */
    137 	0,			/* check_sum */
    138 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* oem_name[16] */
    139 	0,			/* dvc_err_code */
    140 	0,			/* adv_err_code */
    141 	0,			/* adv_err_addr */
    142 	0,			/* saved_dvc_err_code */
    143 	0,			/* saved_adv_err_code */
    144 	0,			/* saved_adv_err_addr */
    145 	0			/* num_of_err */
    146 };
    147 
    148 static ADW_EEP_38C0800_CONFIG
    149 Default_38C0800_EEPROM_Config = {
    150 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    151 	0x0000,			/* 01 cfg_msw */
    152 	0xFFFF,			/* 02 disc_enable */
    153 	0xFFFF,			/* 03 wdtr_able */
    154 	0x4444,			/* 04 sdtr_speed1 */
    155 	0xFFFF,			/* 05 start_motor */
    156 	0xFFFF,			/* 06 tagqng_able */
    157 	0xFFFF,			/* 07 bios_scan */
    158 	0,			/* 08 scam_tolerant */
    159 	7,			/* 09 adapter_scsi_id */
    160 	0,			/*    bios_boot_delay */
    161 	3,			/* 10 scsi_reset_delay */
    162 	0,			/*    bios_id_lun */
    163 	0,			/* 11 termination_se */
    164 	0,			/*    termination_lvd */
    165 	0xFFE7,			/* 12 bios_ctrl */
    166 	0x4444,			/* 13 sdtr_speed2 */
    167 	0x4444,			/* 14 sdtr_speed3 */
    168 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    169 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    170 	0,			/* 16 dvc_cntl */
    171 	0x4444,			/* 17 sdtr_speed4 */
    172 	0,			/* 18 serial_number_word1 */
    173 	0,			/* 19 serial_number_word2 */
    174 	0,			/* 20 serial_number_word3 */
    175 	0,			/* 21 check_sum */
    176 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    177 	0,			/* 30 dvc_err_code */
    178 	0,			/* 31 adv_err_code */
    179 	0,			/* 32 adv_err_addr */
    180 	0,			/* 33 saved_dvc_err_code */
    181 	0,			/* 34 saved_adv_err_code */
    182 	0,			/* 35 saved_adv_err_addr */
    183 	0,			/* 36 reserved */
    184 	0,			/* 37 reserved */
    185 	0,			/* 38 reserved */
    186 	0,			/* 39 reserved */
    187 	0,			/* 40 reserved */
    188 	0,			/* 41 reserved */
    189 	0,			/* 42 reserved */
    190 	0,			/* 43 reserved */
    191 	0,			/* 44 reserved */
    192 	0,			/* 45 reserved */
    193 	0,			/* 46 reserved */
    194 	0,			/* 47 reserved */
    195 	0,			/* 48 reserved */
    196 	0,			/* 49 reserved */
    197 	0,			/* 50 reserved */
    198 	0,			/* 51 reserved */
    199 	0,			/* 52 reserved */
    200 	0,			/* 53 reserved */
    201 	0,			/* 54 reserved */
    202 	0,			/* 55 reserved */
    203 	0,			/* 56 cisptr_lsw */
    204 	0,			/* 57 cisprt_msw */
    205 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    206 	PCI_PRODUCT_ADVSYS_U2W,	/* 59 subsysid */
    207 	0,			/* 60 reserved */
    208 	0,			/* 61 reserved */
    209 	0,			/* 62 reserved */
    210 	0			/* 63 reserved */
    211 };
    212 
    213 static ADW_EEP_38C1600_CONFIG
    214 Default_38C1600_EEPROM_Config = {
    215 	ADW_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
    216 	0x0000,			/* 01 cfg_msw */
    217 	0xFFFF,			/* 02 disc_enable */
    218 	0xFFFF,			/* 03 wdtr_able */
    219 	0x5555,			/* 04 sdtr_speed1 */
    220 	0xFFFF,			/* 05 start_motor */
    221 	0xFFFF,			/* 06 tagqng_able */
    222 	0xFFFF,			/* 07 bios_scan */
    223 	0,			/* 08 scam_tolerant */
    224 	7,			/* 09 adapter_scsi_id */
    225 	0,			/*    bios_boot_delay */
    226 	3,			/* 10 scsi_reset_delay */
    227 	0,			/*    bios_id_lun */
    228 	0,			/* 11 termination_se */
    229 	0,			/*    termination_lvd */
    230 	0xFFE7,			/* 12 bios_ctrl */
    231 	0x5555,			/* 13 sdtr_speed2 */
    232 	0x5555,			/* 14 sdtr_speed3 */
    233 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
    234 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
    235 	0,			/* 16 dvc_cntl */
    236 	0x5555,			/* 17 sdtr_speed4 */
    237 	0,			/* 18 serial_number_word1 */
    238 	0,			/* 19 serial_number_word2 */
    239 	0,			/* 20 serial_number_word3 */
    240 	0,			/* 21 check_sum */
    241 	{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* 22-29 oem_name[16] */
    242 	0,			/* 30 dvc_err_code */
    243 	0,			/* 31 adv_err_code */
    244 	0,			/* 32 adv_err_addr */
    245 	0,			/* 33 saved_dvc_err_code */
    246 	0,			/* 34 saved_adv_err_code */
    247 	0,			/* 35 saved_adv_err_addr */
    248 	0,			/* 36 reserved */
    249 	0,			/* 37 reserved */
    250 	0,			/* 38 reserved */
    251 	0,			/* 39 reserved */
    252 	0,			/* 40 reserved */
    253 	0,			/* 41 reserved */
    254 	0,			/* 42 reserved */
    255 	0,			/* 43 reserved */
    256 	0,			/* 44 reserved */
    257 	0,			/* 45 reserved */
    258 	0,			/* 46 reserved */
    259 	0,			/* 47 reserved */
    260 	0,			/* 48 reserved */
    261 	0,			/* 49 reserved */
    262 	0,			/* 50 reserved */
    263 	0,			/* 51 reserved */
    264 	0,			/* 52 reserved */
    265 	0,			/* 53 reserved */
    266 	0,			/* 54 reserved */
    267 	0,			/* 55 reserved */
    268 	0,			/* 56 cisptr_lsw */
    269 	0,			/* 57 cisprt_msw */
    270 	PCI_VENDOR_ADVSYS,	/* 58 subsysvid */
    271 	PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
    272 	0,			/* 60 reserved */
    273 	0,			/* 61 reserved */
    274 	0,			/* 62 reserved */
    275 	0			/* 63 reserved */
    276 };
    277 
    278 /*
    279  * Initialize the ASC3550.
    280  *
    281  * On failure set the ADW_SOFTC field 'err_code' and return ADW_ERROR.
    282  *
    283  * For a non-fatal error return a warning code. If there are no warnings
    284  * then 0 is returned.
    285  */
    286 int
    287 AdvInitAsc3550Driver(sc)
    288 ADW_SOFTC      *sc;
    289 {
    290 	bus_space_tag_t iot = sc->sc_iot;
    291 	bus_space_handle_t ioh = sc->sc_ioh;
    292 	u_int16_t	warn_code;
    293 	u_int32_t	sum;
    294 	int		begin_addr;
    295 	int		end_addr;
    296 	u_int16_t	code_sum;
    297 	int		word;
    298 	int		i, j;
    299 	int		adv_asc3550_expanded_size;
    300 	u_int16_t	scsi_cfg1;
    301 	u_int8_t	tid;
    302 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    303 								0x40-0x8F. */
    304 	u_int16_t	wdtr_able = 0, sdtr_able, tagqng_able;
    305 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    306 
    307 
    308 	warn_code = 0;
    309 
    310 	/*
    311 	 * Save the RISC memory BIOS region before writing the microcode.
    312 	 * The BIOS may already be loaded and using its RISC LRAM region
    313 	 * so its region must be saved and restored.
    314 	 *
    315 	 * Note: This code makes the assumption, which is currently true,
    316 	 * that a chip reset does not clear RISC LRAM.
    317 	 */
    318 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    319 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM+(2*i), bios_mem[i]);
    320 	}
    321 
    322 	/*
    323 	 * Save current per TID negotiated values.
    324 	 */
    325 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] == 0x55AA) {
    326 
    327 		u_int16_t  bios_version, major, minor;
    328 
    329 		bios_version = bios_mem[(ASC_MC_BIOS_VERSION-ASC_MC_BIOSMEM)/2];
    330 		major = (bios_version  >> 12) & 0xF;
    331 		minor = (bios_version  >> 8) & 0xF;
    332 		if (major < 3 || (major == 3 && minor == 1)) {
    333 		    /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
    334 		    ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
    335 		} else {
    336 		    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    337 		}
    338 	}
    339 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    340 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    341 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    342 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    343 			max_cmd[tid]);
    344 	}
    345 
    346 	/*
    347 	 * Load the Microcode
    348 	 *
    349 	 * Write the microcode image to RISC memory starting at address 0.
    350 	 */
    351 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    352 
    353 	/* Assume the following compressed format of the microcode buffer:
    354 	 *
    355 	 *  254 word (508 byte) table indexed by byte code followed
    356 	 *  by the following byte codes:
    357 	 *
    358 	 *    1-Byte Code:
    359 	 *	00: Emit word 0 in table.
    360 	 *	01: Emit word 1 in table.
    361 	 *	.
    362 	 *	FD: Emit word 253 in table.
    363 	 *
    364 	 *    Multi-Byte Code:
    365 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    366 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    367 	 */
    368 	word = 0;
    369 	for (i = 253 * 2; i < adv_asc3550_mcode_size; i++) {
    370 		if (adv_asc3550_mcode[i] == 0xff) {
    371 			for (j = 0; j < adv_asc3550_mcode[i + 1]; j++) {
    372 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    373 				  (((u_int16_t)adv_asc3550_mcode[i + 3] << 8) |
    374 				  adv_asc3550_mcode[i + 2]));
    375 				word++;
    376 			}
    377 			i += 3;
    378 		} else if (adv_asc3550_mcode[i] == 0xfe) {
    379 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    380 			    (((u_int16_t)adv_asc3550_mcode[i + 2] << 8) |
    381 			    adv_asc3550_mcode[i + 1]));
    382 			i += 2;
    383 			word++;
    384 		} else {
    385 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    386 			 adv_asc3550_mcode[(adv_asc3550_mcode[i] * 2) + 1] <<8)|
    387 			 adv_asc3550_mcode[adv_asc3550_mcode[i] * 2]));
    388 			word++;
    389 		}
    390 	}
    391 
    392 	/*
    393 	 * Set 'word' for later use to clear the rest of memory and save
    394 	 * the expanded mcode size.
    395 	 */
    396 	word *= 2;
    397 	adv_asc3550_expanded_size = word;
    398 
    399 	/*
    400 	 * Clear the rest of ASC-3550 Internal RAM (8KB).
    401 	 */
    402 	for (; word < ADV_3550_MEMSIZE; word += 2) {
    403 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    404 	}
    405 
    406 	/*
    407 	 * Verify the microcode checksum.
    408 	 */
    409 	sum = 0;
    410 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    411 
    412 	for (word = 0; word < adv_asc3550_expanded_size; word += 2) {
    413 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    414 	}
    415 
    416 	if (sum != adv_asc3550_mcode_chksum) {
    417 		return ASC_IERR_MCODE_CHKSUM;
    418 	}
    419 
    420 	/*
    421 	 * Restore the RISC memory BIOS region.
    422 	 */
    423 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    424 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    425 				bios_mem[i]);
    426 	}
    427 
    428 	/*
    429 	 * Calculate and write the microcode code checksum to the microcode
    430 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    431 	 */
    432 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    433 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    434 	code_sum = 0;
    435 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    436 	for (word = begin_addr; word < end_addr; word += 2) {
    437 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    438 	}
    439 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    440 
    441 	/*
    442 	 * Read and save microcode version and date.
    443 	 */
    444 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    445 			sc->cfg.mcode_date);
    446 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    447 			sc->cfg.mcode_version);
    448 
    449 	/*
    450 	 * Set the chip type to indicate the ASC3550.
    451 	 */
    452 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
    453 
    454 	/*
    455 	 * If the PCI Configuration Command Register "Parity Error Response
    456 	 * Control" Bit was clear (0), then set the microcode variable
    457 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
    458 	 * to ignore DMA parity errors.
    459 	 */
    460 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
    461 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    462 		word |= CONTROL_FLAG_IGNORE_PERR;
    463 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
    464 	}
    465 
    466 	/*
    467 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
    468 	 * threshold of 128 bytes. This register is only accessible to the host.
    469 	 */
    470 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
    471 			START_CTL_EMFU | READ_CMD_MRM);
    472 
    473 	/*
    474 	 * Microcode operating variables for WDTR, SDTR, and command tag
    475 	 * queuing will be set in AdvInquiryHandling() based on what a
    476 	 * device reports it is capable of in Inquiry byte 7.
    477 	 *
    478 	 * If SCSI Bus Resets haev been disabled, then directly set
    479 	 * SDTR and WDTR from the EEPROM configuration. This will allow
    480 	 * the BIOS and warm boot to work without a SCSI bus hang on
    481 	 * the Inquiry caused by host and target mismatched DTR values.
    482 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
    483 	 * be assumed to be in Asynchronous, Narrow mode.
    484 	 */
    485 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
    486 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    487 				sc->wdtr_able);
    488 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    489 				sc->sdtr_able);
    490 	}
    491 
    492 	/*
    493 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
    494 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
    495 	 * bitmask. These values determine the maximum SDTR speed negotiated
    496 	 * with a device.
    497 	 *
    498 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
    499 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
    500 	 * without determining here whether the device supports SDTR.
    501 	 *
    502 	 * 4-bit speed  SDTR speed name
    503 	 * ===========  ===============
    504 	 * 0000b (0x0)  SDTR disabled
    505 	 * 0001b (0x1)  5 Mhz
    506 	 * 0010b (0x2)  10 Mhz
    507 	 * 0011b (0x3)  20 Mhz (Ultra)
    508 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
    509 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
    510 	 * 0110b (0x6)  Undefined
    511 	 * .
    512 	 * 1111b (0xF)  Undefined
    513 	 */
    514 	word = 0;
    515 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    516 		if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
    517 			/* Set Ultra speed for TID 'tid'. */
    518 			word |= (0x3 << (4 * (tid % 4)));
    519 		} else {
    520 			/* Set Fast speed for TID 'tid'. */
    521 			word |= (0x2 << (4 * (tid % 4)));
    522 		}
    523 		/* Check if done with sdtr_speed1. */
    524 		if (tid == 3) {
    525 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, word);
    526 			word = 0;
    527 		/* Check if done with sdtr_speed2. */
    528 		} else if (tid == 7) {
    529 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, word);
    530 			word = 0;
    531 		/* Check if done with sdtr_speed3. */
    532 		} else if (tid == 11) {
    533 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, word);
    534 			word = 0;
    535 		/* Check if done with sdtr_speed4. */
    536 		} else if (tid == 15) {
    537 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, word);
    538 			/* End of loop. */
    539 		}
    540 	}
    541 
    542 	/*
    543 	 * Set microcode operating variable for the disconnect per TID bitmask.
    544 	 */
    545 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
    546 
    547 
    548 	/*
    549 	 * Set SCSI_CFG0 Microcode Default Value.
    550 	 *
    551 	 * The microcode will set the SCSI_CFG0 register using this value
    552 	 * after it is started below.
    553 	 */
    554 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
    555 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
    556 		ADW_OUR_ID_EN | sc->chip_scsi_id);
    557 
    558 	/*
    559 	 * Determine SCSI_CFG1 Microcode Default Value.
    560 	 *
    561 	 * The microcode will set the SCSI_CFG1 register using this value
    562 	 * after it is started below.
    563 	 */
    564 
    565 	/* Read current SCSI_CFG1 Register value. */
    566 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
    567 
    568 	/*
    569 	 * If all three connectors are in use, return an error.
    570 	 */
    571 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
    572 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
    573 		return ASC_IERR_ILLEGAL_CONNECTION;
    574 	}
    575 
    576 	/*
    577 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
    578 	 * register signals will be set. Check for and return an error if
    579 	 * this condition is found.
    580 	 */
    581 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
    582 			0x3F07) {
    583 		return ASC_IERR_REVERSED_CABLE;
    584 	}
    585 
    586 	/*
    587 	 * If this is a differential board and a single-ended device
    588 	 * is attached to one of the connectors, return an error.
    589 	 */
    590 	if ((scsi_cfg1 & ADW_DIFF_MODE) && (scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
    591 		return ASC_IERR_SINGLE_END_DEVICE;
    592 	}
    593 
    594 	/*
    595 	 * If automatic termination control is enabled, then set the
    596 	 * termination value based on a table listed in a_condor.h.
    597 	 *
    598 	 * If manual termination was specified with an EEPROM setting
    599 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
    600 	 * is ready to be 'ored' into SCSI_CFG1.
    601 	 */
    602 	if (sc->cfg.termination == 0) {
    603 		/*
    604 		 * The software always controls termination by setting
    605 		 * TERM_CTL_SEL.
    606 		 * If TERM_CTL_SEL were set to 0, the hardware would set
    607 		 * termination.
    608 		 */
    609 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
    610 
    611 		switch(scsi_cfg1 & ADW_CABLE_DETECT) {
    612 			/* TERM_CTL_H: on, TERM_CTL_L: on */
    613 			case 0x3: case 0x7: case 0xB:
    614 			case 0xD: case 0xE: case 0xF:
    615 				sc->cfg.termination |=
    616 					(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
    617 				break;
    618 
    619 			/* TERM_CTL_H: on, TERM_CTL_L: off */
    620 			case 0x1: case 0x5: case 0x9: case 0xA: case 0xC:
    621 				sc->cfg.termination |= ADW_TERM_CTL_H;
    622 				break;
    623 
    624 			/* TERM_CTL_H: off, TERM_CTL_L: off */
    625 			case 0x2: case 0x6:
    626 				break;
    627 		}
    628 	}
    629 
    630 	/*
    631 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
    632 	 */
    633 	scsi_cfg1 &= ~ADW_TERM_CTL;
    634 
    635 	/*
    636 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
    637 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
    638 	 * referenced, because the hardware internally inverts
    639 	 * the Termination High and Low bits if TERM_POL is set.
    640 	 */
    641 	scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~sc->cfg.termination & ADW_TERM_CTL));
    642 
    643 	/*
    644 	 * Set SCSI_CFG1 Microcode Default Value
    645 	 *
    646 	 * Set filter value and possibly modified termination control
    647 	 * bits in the Microcode SCSI_CFG1 Register Value.
    648 	 *
    649 	 * The microcode will set the SCSI_CFG1 register using this value
    650 	 * after it is started below.
    651 	 */
    652 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1,
    653 		ADW_FLTR_DISABLE | scsi_cfg1);
    654 
    655 	/*
    656 	 * Set MEM_CFG Microcode Default Value
    657 	 *
    658 	 * The microcode will set the MEM_CFG register using this value
    659 	 * after it is started below.
    660 	 *
    661 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
    662 	 * are defined.
    663 	 *
    664 	 * ASC-3550 has 8KB internal memory.
    665 	 */
    666 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
    667 		ADW_BIOS_EN | ADW_RAM_SZ_8KB);
    668 
    669 	/*
    670 	 * Set SEL_MASK Microcode Default Value
    671 	 *
    672 	 * The microcode will set the SEL_MASK register using this value
    673 	 * after it is started below.
    674 	 */
    675 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
    676 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
    677 
    678 
    679 	/*
    680 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
    681 	 */
    682 
    683 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
    684 		return ASC_IERR_NO_CARRIER;
    685 	}
    686 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    687 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
    688 
    689 	/*
    690 	 * The first command issued will be placed in the stopper carrier.
    691 	 */
    692 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
    693 
    694 	/*
    695 	 * Set RISC ICQ physical address start value.
    696 	 */
    697 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
    698 
    699 	/*
    700 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
    701 	 */
    702 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
    703 		return ASC_IERR_NO_CARRIER;
    704 	}
    705 	sc->carr_freelist = adw_carrier_phys_kv(sc,
    706 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
    707 
    708 	/*
    709 	 * The first command completed by the RISC will be placed in
    710 	 * the stopper.
    711 	 *
    712 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
    713 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
    714 	 */
    715 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
    716 
    717 	/*
    718 	 * Set RISC IRQ physical address start value.
    719 	 */
    720 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
    721 	sc->carr_pending_cnt = 0;
    722 
    723 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
    724 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
    725 
    726 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
    727 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
    728 
    729 	/* finally, finally, gentlemen, start your engine */
    730 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
    731 
    732 	/*
    733 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
    734 	 * Resets should be performed. The RISC has to be running
    735 	 * to issue a SCSI Bus Reset.
    736 	 */
    737 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
    738 	{
    739 		/*
    740 		 * If the BIOS Signature is present in memory, restore the
    741 		 * BIOS Handshake Configuration Table and do not perform
    742 		 * a SCSI Bus Reset.
    743 		 */
    744 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
    745 				0x55AA) {
    746 			/*
    747 			 * Restore per TID negotiated values.
    748 			 */
    749 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
    750 					wdtr_able);
    751 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
    752 					sdtr_able);
    753 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
    754 					tagqng_able);
    755 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    756 				ADW_WRITE_BYTE_LRAM(iot, ioh,
    757 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
    758 					max_cmd[tid]);
    759 			}
    760 		} else {
    761 			if (AdvResetCCB(sc) != ADW_TRUE) {
    762 				warn_code = ASC_WARN_BUSRESET_ERROR;
    763 			}
    764 		}
    765 	}
    766 
    767     return warn_code;
    768 }
    769 
    770 /*
    771  * Initialize the ASC-38C0800.
    772  *
    773  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
    774  *
    775  * For a non-fatal error return a warning code. If there are no warnings
    776  * then 0 is returned.
    777  */
    778 int
    779 AdvInitAsc38C0800Driver(sc)
    780 ADW_SOFTC      *sc;
    781 {
    782 	bus_space_tag_t iot = sc->sc_iot;
    783 	bus_space_handle_t ioh = sc->sc_ioh;
    784 	u_int16_t	warn_code;
    785 	u_int32_t	sum;
    786 	int	  	begin_addr;
    787 	int	   	end_addr;
    788 	u_int16_t	code_sum;
    789 	int	   	word;
    790 	int	   	i, j;
    791 	int	   	adv_asc38C0800_expanded_size;
    792 	u_int16_t	scsi_cfg1;
    793 	u_int8_t	byte;
    794 	u_int8_t	tid;
    795 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
    796 								0x40-0x8F. */
    797 	u_int16_t	wdtr_able, sdtr_able, tagqng_able;
    798 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
    799 
    800 
    801 	warn_code = 0;
    802 
    803 	/*
    804 	 * Save the RISC memory BIOS region before writing the microcode.
    805 	 * The BIOS may already be loaded and using its RISC LRAM region
    806 	 * so its region must be saved and restored.
    807 	 *
    808 	 * Note: This code makes the assumption, which is currently true,
    809 	 * that a chip reset does not clear RISC LRAM.
    810 	 */
    811 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    812 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
    813 	}
    814 
    815 	/*
    816 	 * Save current per TID negotiated values.
    817 	 */
    818 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
    819 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
    820 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
    821 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
    822 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
    823 			max_cmd[tid]);
    824 	}
    825 
    826 	/*
    827 	 * RAM BIST (RAM Built-In Self Test)
    828 	 *
    829 	 * Address : I/O base + offset 0x38h register (byte).
    830 	 * Function: Bit 7-6(RW) : RAM mode
    831 	 *			    Normal Mode   : 0x00
    832 	 *			    Pre-test Mode : 0x40
    833 	 *			    RAM Test Mode : 0x80
    834 	 *	     Bit 5	 : unused
    835 	 *	     Bit 4(RO)   : Done bit
    836 	 *	     Bit 3-0(RO) : Status
    837 	 *			    Host Error    : 0x08
    838 	 *			    Int_RAM Error : 0x04
    839 	 *			    RISC Error    : 0x02
    840 	 *			    SCSI Error    : 0x01
    841 	 *			    No Error	  : 0x00
    842 	 *
    843 	 * Note: RAM BIST code should be put right here, before loading the
    844 	 * microcode and after saving the RISC memory BIOS region.
    845 	 */
    846 
    847 	/*
    848 	 * LRAM Pre-test
    849 	 *
    850 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
    851 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
    852 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
    853 	 * to NORMAL_MODE, return an error too.
    854 	 */
    855 	for (i = 0; i < 2; i++) {
    856 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
    857 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    858 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    859 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
    860 				PRE_TEST_VALUE) {
    861 			return ASC_IERR_BIST_PRE_TEST;
    862 		}
    863 
    864 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    865 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
    866 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
    867 		    != NORMAL_VALUE) {
    868 			return ASC_IERR_BIST_PRE_TEST;
    869 		}
    870 	}
    871 
    872 	/*
    873 	 * LRAM Test - It takes about 1.5 ms to run through the test.
    874 	 *
    875 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
    876 	 * If Done bit not set or Status not 0, save register byte, set the
    877 	 * err_code, and return an error.
    878 	 */
    879 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
    880 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
    881 
    882 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
    883 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
    884 		/* Get here if Done bit not set or Status not 0. */
    885 		return ASC_IERR_BIST_RAM_TEST;
    886 	}
    887 
    888 	/* We need to reset back to normal mode after LRAM test passes. */
    889 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
    890 
    891 	/*
    892 	 * Load the Microcode
    893 	 *
    894 	 * Write the microcode image to RISC memory starting at address 0.
    895 	 *
    896 	 */
    897 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    898 
    899 	/* Assume the following compressed format of the microcode buffer:
    900 	 *
    901 	 *  254 word (508 byte) table indexed by byte code followed
    902 	 *  by the following byte codes:
    903 	 *
    904 	 *    1-Byte Code:
    905 	 *	00: Emit word 0 in table.
    906 	 *	01: Emit word 1 in table.
    907 	 *	.
    908 	 *	FD: Emit word 253 in table.
    909 	 *
    910 	 *    Multi-Byte Code:
    911 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
    912 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
    913 	 */
    914 	word = 0;
    915 	for (i = 253 * 2; i < adv_asc38C0800_mcode_size; i++) {
    916 		if (adv_asc38C0800_mcode[i] == 0xff) {
    917 			for (j = 0; j < adv_asc38C0800_mcode[i + 1]; j++) {
    918 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
    919 				    (((u_int16_t)
    920 				    adv_asc38C0800_mcode[i + 3] << 8) |
    921 				    adv_asc38C0800_mcode[i + 2]));
    922 				word++;
    923 			}
    924 			i += 3;
    925 		} else if (adv_asc38C0800_mcode[i] == 0xfe) {
    926 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    927 			    adv_asc38C0800_mcode[i + 2] << 8) |
    928 			    adv_asc38C0800_mcode[i + 1]));
    929 			i += 2;
    930 			word++;
    931 		} else {
    932 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
    933 			  adv_asc38C0800_mcode[(adv_asc38C0800_mcode[i] * 2) + 1] << 8) |
    934 			  adv_asc38C0800_mcode[adv_asc38C0800_mcode[i] * 2]));
    935 			word++;
    936 		}
    937 	}
    938 
    939 	/*
    940 	 * Set 'word' for later use to clear the rest of memory and save
    941 	 * the expanded mcode size.
    942 	 */
    943 	word *= 2;
    944 	adv_asc38C0800_expanded_size = word;
    945 
    946 	/*
    947 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
    948 	 */
    949 	for (; word < ADV_38C0800_MEMSIZE; word += 2) {
    950 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
    951 	}
    952 
    953 	/*
    954 	 * Verify the microcode checksum.
    955 	 */
    956 	sum = 0;
    957 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
    958 
    959 	for (word = 0; word < adv_asc38C0800_expanded_size; word += 2) {
    960 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    961 	}
    962 
    963 	if (sum != adv_asc38C0800_mcode_chksum) {
    964 	    return ASC_IERR_MCODE_CHKSUM;
    965 	}
    966 
    967 	/*
    968 	 * Restore the RISC memory BIOS region.
    969 	 */
    970 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
    971 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
    972 				bios_mem[i]);
    973 	}
    974 
    975 	/*
    976 	 * Calculate and write the microcode code checksum to the microcode
    977 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
    978 	 */
    979 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
    980 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
    981 	code_sum = 0;
    982 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
    983 	for (word = begin_addr; word < end_addr; word += 2) {
    984 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
    985 	}
    986 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
    987 
    988 	/*
    989 	 * Read microcode version and date.
    990 	 */
    991 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
    992 			sc->cfg.mcode_date);
    993 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
    994 			sc->cfg.mcode_version);
    995 
    996 	/*
    997 	 * Set the chip type to indicate the ASC38C0800.
    998 	 */
    999 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
   1000 
   1001 	/*
   1002 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1003 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1004 	 * cable detection and then we are able to read C_DET[3:0].
   1005 	 *
   1006 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1007 	 * Microcode Default Value' section below.
   1008 	 */
   1009 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1010 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1011 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1012 
   1013 	/*
   1014 	 * If the PCI Configuration Command Register "Parity Error Response
   1015 	 * Control" Bit was clear (0), then set the microcode variable
   1016 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1017 	 * to ignore DMA parity errors.
   1018 	 */
   1019 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1020 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1021 		word |= CONTROL_FLAG_IGNORE_PERR;
   1022 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1023 	}
   1024 
   1025 	/*
   1026 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
   1027 	 * START_CTL_TH [3:2] bits for the default FIFO threshold.
   1028 	 *
   1029 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
   1030 	 *
   1031 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
   1032 	 */
   1033 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1034 		BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1035 
   1036 	/*
   1037 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1038 	 * queuing will be set in AdvInquiryHandling() based on what a
   1039 	 * device reports it is capable of in Inquiry byte 7.
   1040 	 *
   1041 	 * If SCSI Bus Resets have been disabled, then directly set
   1042 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1043 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1044 	 * the Inquiry caused by host and target mismatched DTR values.
   1045 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1046 	 * be assumed to be in Asynchronous, Narrow mode.
   1047 	 */
   1048 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1049 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1050 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1051 	}
   1052 
   1053 	/*
   1054 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1055 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1056 	 * configuration values.
   1057 	 *
   1058 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1059 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1060 	 * without determining here whether the device supports SDTR.
   1061 	 */
   1062 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1063 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1064 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1065 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1066 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1067 
   1068 	/*
   1069 	 * Set SCSI_CFG0 Microcode Default Value.
   1070 	 *
   1071 	 * The microcode will set the SCSI_CFG0 register using this value
   1072 	 * after it is started below.
   1073 	 */
   1074 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1075 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1076 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1077 
   1078 	/*
   1079 	 * Determine SCSI_CFG1 Microcode Default Value.
   1080 	 *
   1081 	 * The microcode will set the SCSI_CFG1 register using this value
   1082 	 * after it is started below.
   1083 	 */
   1084 
   1085 	/* Read current SCSI_CFG1 Register value. */
   1086 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1087 
   1088 	/*
   1089 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
   1090 	 * register signals will be set. Check for and return an error if
   1091 	 * this condition is found.
   1092 	 */
   1093 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1094 			0x3F07) {
   1095 		return ASC_IERR_REVERSED_CABLE;
   1096 	}
   1097 
   1098 	/*
   1099 	 * All kind of combinations of devices attached to one of four connectors
   1100 	 * are acceptable except HVD device attached. For example, LVD device can
   1101 	 * be attached to SE connector while SE device attached to LVD connector.
   1102 	 * If LVD device attached to SE connector, it only runs up to Ultra speed.
   1103 	 *
   1104 	 * If an HVD device is attached to one of LVD connectors, return an error.
   1105 	 * However, there is no way to detect HVD device attached to SE connectors.
   1106 	 */
   1107 	if (scsi_cfg1 & ADW_HVD) {
   1108 		return ASC_IERR_HVD_DEVICE;
   1109 	}
   1110 
   1111 	/*
   1112 	 * If either SE or LVD automatic termination control is enabled, then
   1113 	 * set the termination value based on a table listed in a_condor.h.
   1114 	 *
   1115 	 * If manual termination was specified with an EEPROM setting then
   1116 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready to
   1117 	 * be 'ored' into SCSI_CFG1.
   1118 	 */
   1119 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1120 		/* SE automatic termination control is enabled. */
   1121 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1122 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1123 			case 0x1: case 0x2: case 0x3:
   1124 				sc->cfg.termination |= ADW_TERM_SE;
   1125 				break;
   1126 
   1127 			/* TERM_SE_HI: on, TERM_SE_LO: off */
   1128 			case 0x0:
   1129 				sc->cfg.termination |= ADW_TERM_SE_HI;
   1130 				break;
   1131 		}
   1132 	}
   1133 
   1134 	if ((sc->cfg.termination & ADW_TERM_LVD) == 0) {
   1135 		/* LVD automatic termination control is enabled. */
   1136 		switch(scsi_cfg1 & ADW_C_DET_LVD) {
   1137 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
   1138 			case 0x4: case 0x8: case 0xC:
   1139 				sc->cfg.termination |= ADW_TERM_LVD;
   1140 				break;
   1141 
   1142 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
   1143 			case 0x0:
   1144 				break;
   1145 		}
   1146 	}
   1147 
   1148 	/*
   1149 	 * Clear any set TERM_SE and TERM_LVD bits.
   1150 	 */
   1151 	scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
   1152 
   1153 	/*
   1154 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
   1155 	 */
   1156 	scsi_cfg1 |= (~sc->cfg.termination & 0xF0);
   1157 
   1158 	/*
   1159 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE bits
   1160 	 * and set possibly modified termination control bits in the Microcode
   1161 	 * SCSI_CFG1 Register Value.
   1162 	 */
   1163 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
   1164 			~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
   1165 
   1166 	/*
   1167 	 * Set SCSI_CFG1 Microcode Default Value
   1168 	 *
   1169 	 * Set possibly modified termination control and reset DIS_TERM_DRV
   1170 	 * bits in the Microcode SCSI_CFG1 Register Value.
   1171 	 *
   1172 	 * The microcode will set the SCSI_CFG1 register using this value
   1173 	 * after it is started below.
   1174 	 */
   1175 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1176 
   1177 	/*
   1178 	 * Set MEM_CFG Microcode Default Value
   1179 	 *
   1180 	 * The microcode will set the MEM_CFG register using this value
   1181 	 * after it is started below.
   1182 	 *
   1183 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1184 	 * are defined.
   1185 	 *
   1186 	 * ASC-38C0800 has 16KB internal memory.
   1187 	 */
   1188 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1189 		ADW_BIOS_EN | ADW_RAM_SZ_16KB);
   1190 
   1191 	/*
   1192 	 * Set SEL_MASK Microcode Default Value
   1193 	 *
   1194 	 * The microcode will set the SEL_MASK register using this value
   1195 	 * after it is started below.
   1196 	 */
   1197 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1198 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1199 
   1200 
   1201 	/*
   1202 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1203 	 */
   1204 
   1205 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1206 		return ASC_IERR_NO_CARRIER;
   1207 	}
   1208 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1209 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
   1210 
   1211 
   1212 	/*
   1213 	 * The first command issued will be placed in the stopper carrier.
   1214 	 */
   1215 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
   1216 
   1217 	/*
   1218 	 * Set RISC ICQ physical address start value.
   1219 	 */
   1220 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
   1221 
   1222 	/*
   1223 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1224 	 */
   1225 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1226 		return ASC_IERR_NO_CARRIER;
   1227 	}
   1228 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1229 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
   1230 
   1231 	/*
   1232 	 * The first command completed by the RISC will be placed in
   1233 	 * the stopper.
   1234 	 *
   1235 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
   1236 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1237 	 */
   1238 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
   1239 
   1240 	/*
   1241 	 * Set RISC IRQ physical address start value.
   1242 	 */
   1243 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
   1244 	sc->carr_pending_cnt = 0;
   1245 
   1246 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1247 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1248 	/*
   1249 	 * Note: Don't remove the use of a temporary variable in
   1250 	 * the following code, otherwise some C compiler
   1251 	 * might turn the following lines into a no-op.
   1252 	 */
   1253 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1254 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1255 
   1256 	/* finally, finally, gentlemen, start your engine */
   1257 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1258 
   1259 	/*
   1260 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1261 	 * Resets should be performed. The RISC has to be running
   1262 	 * to issue a SCSI Bus Reset.
   1263 	 */
   1264 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1265 		/*
   1266 		 * If the BIOS Signature is present in memory, restore the
   1267 		 * BIOS Handshake Configuration Table and do not perform
   1268 		 * a SCSI Bus Reset.
   1269 		 */
   1270 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1271 				0x55AA) {
   1272 			/*
   1273 			 * Restore per TID negotiated values.
   1274 			 */
   1275 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1276 					wdtr_able);
   1277 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1278 					sdtr_able);
   1279 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1280 					tagqng_able);
   1281 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1282 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1283 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1284 						max_cmd[tid]);
   1285 			}
   1286 		} else {
   1287 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1288 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1289 			}
   1290 		}
   1291 	}
   1292 
   1293 	return warn_code;
   1294 }
   1295 
   1296 
   1297 /*
   1298  * Initialize the ASC-38C1600.
   1299  *
   1300  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   1301  *
   1302  * For a non-fatal error return a warning code. If there are no warnings
   1303  * then 0 is returned.
   1304  */
   1305 int
   1306 AdvInitAsc38C1600Driver(sc)
   1307 ADW_SOFTC      *sc;
   1308 {
   1309 	bus_space_tag_t iot = sc->sc_iot;
   1310 	bus_space_handle_t ioh = sc->sc_ioh;
   1311 	u_int16_t	warn_code;
   1312 	u_int32_t	sum;
   1313 	int	  	begin_addr;
   1314 	int	   	end_addr;
   1315 	u_int16_t	code_sum;
   1316 	int	   	word;
   1317 	int	   	i, j;
   1318 	int		adv_asc38C1600_expanded_size;
   1319 	u_int16_t	scsi_cfg1;
   1320 	u_int8_t	byte;
   1321 	u_int8_t	tid;
   1322 	u_int16_t	bios_mem[ASC_MC_BIOSLEN/2];	/* BIOS RISC Memory
   1323 								0x40-0x8F. */
   1324 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   1325 	u_int8_t	max_cmd[ADW_MAX_TID + 1];
   1326 
   1327 
   1328 	warn_code = 0;
   1329 
   1330 
   1331 	/*
   1332 	 * Save the RISC memory BIOS region before writing the microcode.
   1333 	 * The BIOS may already be loaded and using its RISC LRAM region
   1334 	 * so its region must be saved and restored.
   1335 	 *
   1336 	 * Note: This code makes the assumption, which is currently true,
   1337 	 * that a chip reset does not clear RISC LRAM.
   1338 	 */
   1339 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1340 	    ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]);
   1341 	}
   1342 
   1343 	/*
   1344 	 * Save current per TID negotiated values.
   1345 	 */
   1346 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   1347 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   1348 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   1349 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   1350 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1351 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1352 			max_cmd[tid]);
   1353 	}
   1354 
   1355 	/*
   1356 	 * RAM BIST (RAM Built-In Self Test)
   1357 	 *
   1358 	 * Address : I/O base + offset 0x38h register (byte).
   1359 	 * Function: Bit 7-6(RW) : RAM mode
   1360 	 *			    Normal Mode   : 0x00
   1361 	 *			    Pre-test Mode : 0x40
   1362 	 *			    RAM Test Mode : 0x80
   1363 	 *	     Bit 5	 : unused
   1364 	 *	     Bit 4(RO)   : Done bit
   1365 	 *	     Bit 3-0(RO) : Status
   1366 	 *			    Host Error    : 0x08
   1367 	 *			    Int_RAM Error : 0x04
   1368 	 *			    RISC Error    : 0x02
   1369 	 *			    SCSI Error    : 0x01
   1370 	 *			    No Error	  : 0x00
   1371 	 *
   1372 	 * Note: RAM BIST code should be put right here, before loading the
   1373 	 * microcode and after saving the RISC memory BIOS region.
   1374 	 */
   1375 
   1376 	/*
   1377 	 * LRAM Pre-test
   1378 	 *
   1379 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
   1380 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
   1381 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
   1382 	 * to NORMAL_MODE, return an error too.
   1383 	 */
   1384 	for (i = 0; i < 2; i++) {
   1385 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, PRE_TEST_MODE);
   1386 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1387 		byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1388 		if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
   1389 				PRE_TEST_VALUE) {
   1390 			return ASC_IERR_BIST_PRE_TEST;
   1391 		}
   1392 
   1393 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1394 		AdvSleepMilliSecond(10);  /* Wait for 10ms before reading back. */
   1395 		if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
   1396 		    != NORMAL_VALUE) {
   1397 			return ASC_IERR_BIST_PRE_TEST;
   1398 		}
   1399 	}
   1400 
   1401 	/*
   1402 	 * LRAM Test - It takes about 1.5 ms to run through the test.
   1403 	 *
   1404 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
   1405 	 * If Done bit not set or Status not 0, save register byte, set the
   1406 	 * err_code, and return an error.
   1407 	 */
   1408 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
   1409 	AdvSleepMilliSecond(10);  /* Wait for 10ms before checking status. */
   1410 
   1411 	byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
   1412 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
   1413 		/* Get here if Done bit not set or Status not 0. */
   1414 		return ASC_IERR_BIST_RAM_TEST;
   1415 	}
   1416 
   1417 	/* We need to reset back to normal mode after LRAM test passes. */
   1418 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
   1419 
   1420 
   1421 	/*
   1422 	 * Load the Microcode
   1423 	 *
   1424 	 * Write the microcode image to RISC memory starting at address 0.
   1425 	 *
   1426 	 */
   1427 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1428 
   1429 	/* Assume the following compressed format of the microcode buffer:
   1430 	 *
   1431 	 *  254 word (508 byte) table indexed by byte code followed
   1432 	 *  by the following byte codes:
   1433 	 *
   1434 	 *    1-Byte Code:
   1435 	 *	00: Emit word 0 in table.
   1436 	 *	01: Emit word 1 in table.
   1437 	 *	.
   1438 	 *	FD: Emit word 253 in table.
   1439 	 *
   1440 	 *    Multi-Byte Code:
   1441 	 *	FE WW WW: (3 byte code) Word to emit is the next word WW WW.
   1442 	 *	FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
   1443 	 */
   1444 	word = 0;
   1445 	for (i = 253 * 2; i < adv_asc38C1600_mcode_size; i++) {
   1446 		if (adv_asc38C1600_mcode[i] == 0xff) {
   1447 			for (j = 0; j < adv_asc38C1600_mcode[i + 1]; j++) {
   1448 				ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
   1449 				    (((u_int16_t)
   1450 				    adv_asc38C1600_mcode[i + 3] << 8) |
   1451 				    adv_asc38C1600_mcode[i + 2]));
   1452 				word++;
   1453 			}
   1454 			i += 3;
   1455 		} else if (adv_asc38C1600_mcode[i] == 0xfe) {
   1456 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1457 			    adv_asc38C1600_mcode[i + 2] << 8) |
   1458 			    adv_asc38C1600_mcode[i + 1]));
   1459 			i += 2;
   1460 			word++;
   1461 		} else {
   1462 			ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
   1463 			  adv_asc38C1600_mcode[(adv_asc38C1600_mcode[i] * 2) + 1] << 8) |
   1464 			  adv_asc38C1600_mcode[adv_asc38C1600_mcode[i] * 2]));
   1465 			word++;
   1466 		}
   1467 	}
   1468 
   1469 	/*
   1470 	 * Set 'word' for later use to clear the rest of memory and save
   1471 	 * the expanded mcode size.
   1472 	 */
   1473 	word *= 2;
   1474 	adv_asc38C1600_expanded_size = word;
   1475 
   1476 	/*
   1477 	 * Clear the rest of ASC-38C0800 Internal RAM (16KB).
   1478 	 */
   1479 	for (; word < ADV_38C1600_MEMSIZE; word += 2) {
   1480 		ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
   1481 	}
   1482 
   1483 	/*
   1484 	 * Verify the microcode checksum.
   1485 	 */
   1486 	sum = 0;
   1487 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
   1488 
   1489 	for (word = 0; word < adv_asc38C1600_expanded_size; word += 2) {
   1490 		sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1491 	}
   1492 
   1493 	if (sum != adv_asc38C1600_mcode_chksum) {
   1494 	    return ASC_IERR_MCODE_CHKSUM;
   1495 	}
   1496 
   1497 	/*
   1498 	 * Restore the RISC memory BIOS region.
   1499 	 */
   1500 	for (i = 0; i < ASC_MC_BIOSLEN/2; i++) {
   1501 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOSMEM + (2 * i),
   1502 				bios_mem[i]);
   1503 	}
   1504 
   1505 	/*
   1506 	 * Calculate and write the microcode code checksum to the microcode
   1507 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
   1508 	 */
   1509 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
   1510 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_END_ADDR, end_addr);
   1511 	code_sum = 0;
   1512 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
   1513 	for (word = begin_addr; word < end_addr; word += 2) {
   1514 		code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
   1515 	}
   1516 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CODE_CHK_SUM, code_sum);
   1517 
   1518 	/*
   1519 	 * Read microcode version and date.
   1520 	 */
   1521 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_DATE,
   1522 			sc->cfg.mcode_date);
   1523 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_VERSION_NUM,
   1524 			sc->cfg.mcode_version);
   1525 
   1526 	/*
   1527 	 * Set the chip type to indicate the ASC38C1600.
   1528 	 */
   1529 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
   1530 
   1531 	/*
   1532 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
   1533 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
   1534 	 * cable detection and then we are able to read C_DET[3:0].
   1535 	 *
   1536 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
   1537 	 * Microcode Default Value' section below.
   1538 	 */
   1539 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1540 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
   1541 			scsi_cfg1 | ADW_DIS_TERM_DRV);
   1542 
   1543 	/*
   1544 	 * If the PCI Configuration Command Register "Parity Error Response
   1545 	 * Control" Bit was clear (0), then set the microcode variable
   1546 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
   1547 	 * to ignore DMA parity errors.
   1548 	 */
   1549 	if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
   1550 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1551 		word |= CONTROL_FLAG_IGNORE_PERR;
   1552 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1553 	}
   1554 
   1555 	/*
   1556 	 * If the BIOS control flag AIPP (Asynchronous Information
   1557 	 * Phase Protection) disable bit is not set, then set the firmware
   1558 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
   1559 	 * AIPP checking and encoding.
   1560 	 */
   1561 	if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
   1562 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1563 		word |= CONTROL_FLAG_ENABLE_AIPP;
   1564 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_CONTROL_FLAG, word);
   1565 	}
   1566 
   1567 	/*
   1568 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
   1569 	 * and START_CTL_TH [3:2].
   1570 	 */
   1571 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
   1572 		FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
   1573 
   1574 	/*
   1575 	 * Microcode operating variables for WDTR, SDTR, and command tag
   1576 	 * queuing will be set in AdvInquiryHandling() based on what a
   1577 	 * device reports it is capable of in Inquiry byte 7.
   1578 	 *
   1579 	 * If SCSI Bus Resets have been disabled, then directly set
   1580 	 * SDTR and WDTR from the EEPROM configuration. This will allow
   1581 	 * the BIOS and warm boot to work without a SCSI bus hang on
   1582 	 * the Inquiry caused by host and target mismatched DTR values.
   1583 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
   1584 	 * be assumed to be in Asynchronous, Narrow mode.
   1585 	 */
   1586 	if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
   1587 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, sc->wdtr_able);
   1588 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sc->sdtr_able);
   1589 	}
   1590 
   1591 	/*
   1592 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
   1593 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
   1594 	 * configuration values.
   1595 	 *
   1596 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
   1597 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
   1598 	 * without determining here whether the device supports SDTR.
   1599 	 */
   1600 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DISC_ENABLE, sc->cfg.disc_enable);
   1601 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED1, sc->sdtr_speed1);
   1602 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED2, sc->sdtr_speed2);
   1603 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED3, sc->sdtr_speed3);
   1604 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_SPEED4, sc->sdtr_speed4);
   1605 
   1606 	/*
   1607 	 * Set SCSI_CFG0 Microcode Default Value.
   1608 	 *
   1609 	 * The microcode will set the SCSI_CFG0 register using this value
   1610 	 * after it is started below.
   1611 	 */
   1612 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG0,
   1613 		ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
   1614 		ADW_OUR_ID_EN | sc->chip_scsi_id);
   1615 
   1616 	/*
   1617 	 * Calculate SCSI_CFG1 Microcode Default Value.
   1618 	 *
   1619 	 * The microcode will set the SCSI_CFG1 register using this value
   1620 	 * after it is started below.
   1621 	 *
   1622 	 * Each ASC-38C1600 function has only two cable detect bits.
   1623 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
   1624 	 */
   1625 	scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
   1626 
   1627 	/*
   1628 	 * If the cable is reversed all of the SCSI_CTRL register signals
   1629 	 * will be set. Check for and return an error if this condition is
   1630 	 * found.
   1631 	 */
   1632 	if ((ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CTRL) & 0x3F07) ==
   1633 			0x3F07) {
   1634 		return ASC_IERR_REVERSED_CABLE;
   1635 	}
   1636 
   1637 	/*
   1638 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
   1639 	 * can not be connected to either connector. An LVD device or SE device
   1640 	 * may be connected to either connecor. If an SE device is connected,
   1641 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
   1642 	 *
   1643 	 * If an HVD device is attached, return an error.
   1644 	 */
   1645 	if (scsi_cfg1 & ADW_HVD) {
   1646 		return ASC_IERR_HVD_DEVICE;
   1647 	}
   1648 
   1649 	/*
   1650 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
   1651 	 * termination because there are two connectors for each function. Each
   1652 	 * function may use either LVD or SE mode. Corresponding the SE automatic
   1653 	 * termination control EEPROM bits are used for each function. Each
   1654 	 * function has its own EEPROM. If SE automatic control is enabled for
   1655 	 * the function, then set the termination value based on a table listed
   1656 	 * in a_condor.h.
   1657 	 *
   1658 	 * If manual termination is specified in the EEPROM for the function,
   1659 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
   1660 	 * ready to be 'ored' into SCSI_CFG1.
   1661 	 */
   1662 	if ((sc->cfg.termination & ADW_TERM_SE) == 0) {
   1663 		/* SE automatic termination control is enabled. */
   1664 		switch(scsi_cfg1 & ADW_C_DET_SE) {
   1665 			/* TERM_SE_HI: on, TERM_SE_LO: on */
   1666 			case 0x1: case 0x2: case 0x3:
   1667 				sc->cfg.termination |= ADW_TERM_SE;
   1668 				break;
   1669 
   1670 			case 0x0:
   1671 	/* !!!!TODO!!!! */
   1672 //				if (ASC_PCI_ID2FUNC(asc_dvc->cfg->pci_slot_info) == 0) {
   1673 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
   1674 //				}
   1675 //				else
   1676 //				{
   1677 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
   1678 					sc->cfg.termination |= ADW_TERM_SE_HI;
   1679 //				}
   1680 				break;
   1681 			}
   1682 	}
   1683 
   1684 	/*
   1685 	 * Clear any set TERM_SE bits.
   1686 	 */
   1687 	scsi_cfg1 &= ~ADW_TERM_SE;
   1688 
   1689 	/*
   1690 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
   1691 	 */
   1692 	scsi_cfg1 |= (~sc->cfg.termination & ADW_TERM_SE);
   1693 
   1694 	/*
   1695 	 * Clear Big Endian and Terminator Polarity bits and set possibly
   1696 	 * modified termination control bits in the Microcode SCSI_CFG1
   1697 	 * Register Value.
   1698 	 */
   1699 	scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
   1700 
   1701 	/*
   1702 	 * Set SCSI_CFG1 Microcode Default Value
   1703 	 *
   1704 	 * Set possibly modified termination control bits in the Microcode
   1705 	 * SCSI_CFG1 Register Value.
   1706 	 *
   1707 	 * The microcode will set the SCSI_CFG1 register using this value
   1708 	 * after it is started below.
   1709 	 */
   1710 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
   1711 
   1712 	/*
   1713 	 * Set MEM_CFG Microcode Default Value
   1714 	 *
   1715 	 * The microcode will set the MEM_CFG register using this value
   1716 	 * after it is started below.
   1717 	 *
   1718 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
   1719 	 * are defined.
   1720 	 *
   1721 	 * ASC-38C1600 has 32KB internal memory.
   1722 	 */
   1723 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_MEM_CFG,
   1724 		ADW_BIOS_EN | ADW_RAM_SZ_32KB);
   1725 
   1726 	/*
   1727 	 * Set SEL_MASK Microcode Default Value
   1728 	 *
   1729 	 * The microcode will set the SEL_MASK register using this value
   1730 	 * after it is started below.
   1731 	 */
   1732 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_DEFAULT_SEL_MASK,
   1733 		ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
   1734 
   1735 	/*
   1736 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
   1737 	 */
   1738 
   1739 	if ((sc->icq_sp = sc->carr_freelist) == NULL) {
   1740 		return ASC_IERR_NO_CARRIER;
   1741 	}
   1742 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1743 			ASC_GET_CARRP(sc->icq_sp->next_vpa));
   1744 
   1745 	/*
   1746 	 * The first command issued will be placed in the stopper carrier.
   1747 	 */
   1748 	sc->icq_sp->next_vpa = ASC_CQ_STOPPER;
   1749 
   1750 	/*
   1751 	 * Set RISC ICQ physical address start value. Initialize the
   1752 	 * COMMA register to the same value otherwise the RISC will
   1753 	 * prematurely detect a command is available.
   1754 	 */
   1755 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_ICQ, sc->icq_sp->carr_pa);
   1756 	ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA, sc->icq_sp->carr_pa);
   1757 
   1758 	/*
   1759 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
   1760 	 */
   1761 	if ((sc->irq_sp = sc->carr_freelist) == NULL) {
   1762 		return ASC_IERR_NO_CARRIER;
   1763 	}
   1764 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   1765 			ASC_GET_CARRP(sc->irq_sp->next_vpa));
   1766 
   1767 	/*
   1768 	 * The first command completed by the RISC will be placed in
   1769 	 * the stopper.
   1770 	 *
   1771 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
   1772 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
   1773 	 */
   1774 	sc->irq_sp->next_vpa = ASC_CQ_STOPPER;
   1775 
   1776 	/*
   1777 	 * Set RISC IRQ physical address start value.
   1778 	 */
   1779 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IRQ, sc->irq_sp->carr_pa);
   1780 	sc->carr_pending_cnt = 0;
   1781 
   1782 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
   1783 		(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
   1784 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_CODE_BEGIN_ADDR, word);
   1785 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
   1786 
   1787 	/* finally, finally, gentlemen, start your engine */
   1788 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
   1789 
   1790 	/*
   1791 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
   1792 	 * Resets should be performed. The RISC has to be running
   1793 	 * to issue a SCSI Bus Reset.
   1794 	 */
   1795 	if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
   1796 		/*
   1797 		 * If the BIOS Signature is present in memory, restore the
   1798 		 * per TID microcode operating variables.
   1799 		 */
   1800 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM)/2] ==
   1801 				0x55AA) {
   1802 			/*
   1803 			 * Restore per TID negotiated values.
   1804 			 */
   1805 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   1806 					wdtr_able);
   1807 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   1808 					sdtr_able);
   1809 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   1810 					ppr_able);
   1811 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   1812 					tagqng_able);
   1813 			for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   1814 				ADW_WRITE_BYTE_LRAM(iot, ioh,
   1815 						ASC_MC_NUMBER_OF_MAX_CMD + tid,
   1816 						max_cmd[tid]);
   1817 			}
   1818 		} else {
   1819 			if (AdvResetCCB(sc) != ADW_TRUE) {
   1820 				warn_code = ASC_WARN_BUSRESET_ERROR;
   1821 			}
   1822 		}
   1823 	}
   1824 
   1825 	return warn_code;
   1826 }
   1827 
   1828 
   1829 /*
   1830  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1831  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1832  * all of this is done.
   1833  *
   1834  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1835  *
   1836  * For a non-fatal error return a warning code. If there are no warnings
   1837  * then 0 is returned.
   1838  *
   1839  * Note: Chip is stopped on entry.
   1840  */
   1841 int
   1842 AdvInitFrom3550EEP(sc)
   1843 ADW_SOFTC      *sc;
   1844 {
   1845 	bus_space_tag_t iot = sc->sc_iot;
   1846 	bus_space_handle_t ioh = sc->sc_ioh;
   1847 	u_int16_t		warn_code;
   1848 	ADW_EEP_3550_CONFIG	eep_config;
   1849 	int			i;
   1850 
   1851 
   1852 	warn_code = 0;
   1853 
   1854 	/*
   1855 	 * Read the board's EEPROM configuration.
   1856 	 *
   1857 	 * Set default values if a bad checksum is found.
   1858 	 *
   1859 	 * XXX - Don't handle big-endian access to EEPROM yet.
   1860 	 */
   1861 	if (AdvGet3550EEPConfig(iot, ioh, &eep_config) != eep_config.check_sum){
   1862 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   1863 
   1864 		/*
   1865 		 * Set EEPROM default values.
   1866 		 */
   1867 		for (i = 0; i < sizeof(ADW_EEP_3550_CONFIG); i++) {
   1868 			*((u_int8_t *) &eep_config + i) =
   1869 				*((u_int8_t *) &Default_3550_EEPROM_Config + i);
   1870 		}
   1871 
   1872 		/*
   1873 		 * Assume the 6 byte board serial number that was read
   1874 		 * from EEPROM is correct even if the EEPROM checksum
   1875 		 * failed.
   1876 		 */
   1877 		eep_config.serial_number_word3 =
   1878 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   1879 
   1880 		eep_config.serial_number_word2 =
   1881 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   1882 
   1883 		eep_config.serial_number_word1 =
   1884 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   1885 
   1886 		AdvSet3550EEPConfig(iot, ioh, &eep_config);
   1887 	}
   1888 	/*
   1889 	 * Set sc and sc->cfg variables from the EEPROM configuration
   1890 	 * that was read.
   1891 	 *
   1892 	 * This is the mapping of EEPROM fields to Adv Library fields.
   1893 	 */
   1894 	sc->wdtr_able = eep_config.wdtr_able;
   1895 	sc->sdtr_able = eep_config.sdtr_able;
   1896 	sc->ultra_able = eep_config.ultra_able;
   1897 	sc->tagqng_able = eep_config.tagqng_able;
   1898 	sc->cfg.disc_enable = eep_config.disc_enable;
   1899 	sc->max_host_qng = eep_config.max_host_qng;
   1900 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1901 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   1902 	sc->start_motor = eep_config.start_motor;
   1903 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   1904 	sc->bios_ctrl = eep_config.bios_ctrl;
   1905 	sc->no_scam = eep_config.scam_tolerant;
   1906 	sc->cfg.serial1 = eep_config.serial_number_word1;
   1907 	sc->cfg.serial2 = eep_config.serial_number_word2;
   1908 	sc->cfg.serial3 = eep_config.serial_number_word3;
   1909 
   1910 	/*
   1911 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   1912 	 * maximum queuing (max. 63, min. 4).
   1913 	 */
   1914 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   1915 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1916 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG)
   1917 	{
   1918 		/* If the value is zero, assume it is uninitialized. */
   1919 		if (eep_config.max_host_qng == 0) {
   1920 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   1921 		} else {
   1922 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   1923 		}
   1924 	}
   1925 
   1926 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   1927 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1928 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   1929 		/* If the value is zero, assume it is uninitialized. */
   1930 		if (eep_config.max_dvc_qng == 0) {
   1931 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   1932 		} else {
   1933 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   1934 		}
   1935 	}
   1936 
   1937 	/*
   1938 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   1939 	 * set 'max_dvc_qng' to 'max_host_qng'.
   1940 	 */
   1941 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   1942 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   1943 	}
   1944 
   1945 	/*
   1946 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   1947 	 * values based on possibly adjusted EEPROM values.
   1948 	 */
   1949 	sc->max_host_qng = eep_config.max_host_qng;
   1950 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   1951 
   1952 
   1953 	/*
   1954 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   1955 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   1956 	 *
   1957 	 * If the termination is specified with a non-zero 'termination'
   1958 	 * value check that a legal value is set and set the ADV_DVC_CFG
   1959 	 * 'termination' field appropriately.
   1960 	 */
   1961 
   1962 	sc->cfg.termination = 0;	/* auto termination */
   1963 	switch(eep_config.termination) {
   1964 	case 3:
   1965 		/* Enable manual control with low on / high on. */
   1966 		sc->cfg.termination |= ADW_TERM_CTL_L;
   1967 	case 2:
   1968 		/* Enable manual control with low off / high on. */
   1969 		sc->cfg.termination |= ADW_TERM_CTL_H;
   1970 	case 1:
   1971 		/* Enable manual control with low off / high off. */
   1972 		sc->cfg.termination |= ADW_TERM_CTL_SEL;
   1973 	case 0:
   1974 		break;
   1975 	default:
   1976 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   1977 	}
   1978 
   1979 	return warn_code;
   1980 }
   1981 
   1982 
   1983 /*
   1984  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
   1985  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
   1986  * all of this is done.
   1987  *
   1988  * On failure set the ADV_DVC_VAR field 'err_code' and return ADW_ERROR.
   1989  *
   1990  * For a non-fatal error return a warning code. If there are no warnings
   1991  * then 0 is returned.
   1992  *
   1993  * Note: Chip is stopped on entry.
   1994  */
   1995 int
   1996 AdvInitFrom38C0800EEP(sc)
   1997 ADW_SOFTC      *sc;
   1998 {
   1999 	bus_space_tag_t iot = sc->sc_iot;
   2000 	bus_space_handle_t ioh = sc->sc_ioh;
   2001 	u_int16_t		warn_code;
   2002 	ADW_EEP_38C0800_CONFIG	eep_config;
   2003 	int			i;
   2004 	u_int8_t		tid, termination;
   2005 	u_int16_t		sdtr_speed = 0;
   2006 
   2007 
   2008 	warn_code = 0;
   2009 
   2010 	/*
   2011 	 * Read the board's EEPROM configuration.
   2012 	 *
   2013 	 * Set default values if a bad checksum is found.
   2014 	 */
   2015 	if (AdvGet38C0800EEPConfig(iot, ioh, &eep_config) !=
   2016 			eep_config.check_sum) {
   2017 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2018 
   2019 		/*
   2020 		 * Set EEPROM default values.
   2021 		 */
   2022 		for (i = 0; i < sizeof(ADW_EEP_38C0800_CONFIG); i++) {
   2023 			*((u_int8_t *) &eep_config + i) =
   2024 				*((u_int8_t *)&Default_38C0800_EEPROM_Config+i);
   2025 		}
   2026 
   2027 		/*
   2028 		 * Assume the 6 byte board serial number that was read
   2029 		 * from EEPROM is correct even if the EEPROM checksum
   2030 		 * failed.
   2031 		 */
   2032 		eep_config.serial_number_word3 =
   2033 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2034 
   2035 		eep_config.serial_number_word2 =
   2036 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2037 
   2038 		eep_config.serial_number_word1 =
   2039 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2040 
   2041 		AdvSet38C0800EEPConfig(iot, ioh, &eep_config);
   2042 	}
   2043 	/*
   2044 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
   2045 	 * EEPROM configuration that was read.
   2046 	 *
   2047 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2048 	 */
   2049 	sc->wdtr_able = eep_config.wdtr_able;
   2050 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2051 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2052 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2053 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2054 	sc->tagqng_able = eep_config.tagqng_able;
   2055 	sc->cfg.disc_enable = eep_config.disc_enable;
   2056 	sc->max_host_qng = eep_config.max_host_qng;
   2057 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2058 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2059 	sc->start_motor = eep_config.start_motor;
   2060 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2061 	sc->bios_ctrl = eep_config.bios_ctrl;
   2062 	sc->no_scam = eep_config.scam_tolerant;
   2063 	sc->cfg.serial1 = eep_config.serial_number_word1;
   2064 	sc->cfg.serial2 = eep_config.serial_number_word2;
   2065 	sc->cfg.serial3 = eep_config.serial_number_word3;
   2066 
   2067 	/*
   2068 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2069 	 * are set, then set an 'sdtr_able' bit for it.
   2070 	 */
   2071 	sc->sdtr_able = 0;
   2072 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2073 		if (tid == 0) {
   2074 			sdtr_speed = sc->sdtr_speed1;
   2075 		} else if (tid == 4) {
   2076 			sdtr_speed = sc->sdtr_speed2;
   2077 		} else if (tid == 8) {
   2078 			sdtr_speed = sc->sdtr_speed3;
   2079 		} else if (tid == 12) {
   2080 			sdtr_speed = sc->sdtr_speed4;
   2081 		}
   2082 		if (sdtr_speed & ADW_MAX_TID) {
   2083 			sc->sdtr_able |= (1 << tid);
   2084 		}
   2085 		sdtr_speed >>= 4;
   2086 	}
   2087 
   2088 	/*
   2089 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2090 	 * maximum queuing (max. 63, min. 4).
   2091 	 */
   2092 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2093 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2094 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2095 		/* If the value is zero, assume it is uninitialized. */
   2096 		if (eep_config.max_host_qng == 0) {
   2097 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2098 		} else {
   2099 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2100 		}
   2101 	}
   2102 
   2103 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2104 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2105 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2106 		/* If the value is zero, assume it is uninitialized. */
   2107 		if (eep_config.max_dvc_qng == 0) {
   2108 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2109 		} else {
   2110 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2111 		}
   2112 	}
   2113 
   2114 	/*
   2115 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2116 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2117 	 */
   2118 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2119 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2120 	}
   2121 
   2122 	/*
   2123 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
   2124 	 * values based on possibly adjusted EEPROM values.
   2125 	 */
   2126 	sc->max_host_qng = eep_config.max_host_qng;
   2127 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2128 
   2129 	/*
   2130 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2131 	 * the ADV_DVC_CFG 'termination' field to automatic also.
   2132 	 *
   2133 	 * If the termination is specified with a non-zero 'termination'
   2134 	 * value check that a legal value is set and set the ADV_DVC_CFG
   2135 	 * 'termination' field appropriately.
   2136 	 */
   2137 
   2138 	switch(eep_config.termination_se) {
   2139 	case 0:
   2140 		/* auto termination for SE */
   2141 		termination = 0;
   2142 		break;
   2143 	case 1:
   2144 		/* Enable manual control with low off / high off. */
   2145 		termination = 0;
   2146 		break;
   2147 	case 2:
   2148 		/* Enable manual control with low off / high on. */
   2149 		termination = ADW_TERM_SE_HI;
   2150 		break;
   2151 	case 3:
   2152 		/* Enable manual control with low on / high on. */
   2153 		termination = ADW_TERM_SE;
   2154 		break;
   2155 	default:
   2156 		/*
   2157 		 * The EEPROM 'termination_se' field contains a bad value.
   2158 		 * Use automatic termination instead.
   2159 		 */
   2160 		termination = 0;
   2161 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2162 	}
   2163 
   2164 	switch(eep_config.termination_lvd) {
   2165 	case 0:
   2166 		/* auto termination for LVD */
   2167 		sc->cfg.termination = termination;
   2168 		break;
   2169 	case 1:
   2170 		/* Enable manual control with low off / high off. */
   2171 		sc->cfg.termination = termination;
   2172 		break;
   2173 	case 2:
   2174 		/* Enable manual control with low off / high on. */
   2175 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2176 		break;
   2177 	case 3:
   2178 		/* Enable manual control with low on / high on. */
   2179 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2180 		break;
   2181 	default:
   2182 		/*
   2183 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2184 		 * Use automatic termination instead.
   2185 		 */
   2186 		sc->cfg.termination = termination;
   2187 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2188 	}
   2189 
   2190 	return warn_code;
   2191 }
   2192 
   2193 
   2194 /*
   2195  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
   2196  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
   2197  * all of this is done.
   2198  *
   2199  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
   2200  *
   2201  * For a non-fatal error return a warning code. If there are no warnings
   2202  * then 0 is returned.
   2203  *
   2204  * Note: Chip is stopped on entry.
   2205  */
   2206 int
   2207 AdvInitFrom38C1600EEP(sc)
   2208 ADW_SOFTC      *sc;
   2209 {
   2210 	bus_space_tag_t iot = sc->sc_iot;
   2211 	bus_space_handle_t ioh = sc->sc_ioh;
   2212 	u_int16_t		warn_code;
   2213 	ADW_EEP_38C1600_CONFIG	eep_config;
   2214 	int			i;
   2215 	u_int8_t		tid, termination;
   2216 	u_int16_t		sdtr_speed = 0;
   2217 
   2218 
   2219 	warn_code = 0;
   2220 
   2221 	/*
   2222 	 * Read the board's EEPROM configuration.
   2223 	 *
   2224 	 * Set default values if a bad checksum is found.
   2225 	 */
   2226 	if (AdvGet38C1600EEPConfig(iot, ioh, &eep_config) !=
   2227 			eep_config.check_sum) {
   2228 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
   2229 
   2230 		/*
   2231 		 * Set EEPROM default values.
   2232 		 */
   2233  		for (i = 0; i < sizeof(ADW_EEP_38C1600_CONFIG); i++) {
   2234 	/* !!!!TODO!!!! */
   2235 //			if (i == 1 && ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
   2236 			if (i == 1 ) {
   2237 				/*
   2238 				 * Set Function 1 EEPROM Word 0 MSB
   2239 				 *
   2240 				 * Clear the BIOS_ENABLE (bit 14) and INTAB (bit 11)
   2241 				 * EEPROM bits.
   2242 				 *
   2243 				 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 and
   2244 				 * old Mac system booting problem. The Expansion ROM must
   2245 				 * be disabled in Function 1 for these systems.
   2246 				 *
   2247 				 */
   2248 				*((u_int8_t *) &eep_config + i) =
   2249 					((*((u_int8_t *) &Default_38C1600_EEPROM_Config + i)) &
   2250 					(~(((ADW_EEPROM_BIOS_ENABLE | ADW_EEPROM_INTAB) >> 8) &
   2251 					0xFF)));
   2252 
   2253 				/*
   2254 				 * Set the INTAB (bit 11) if the GPIO 0 input
   2255 				 * indicates the Function 1 interrupt line is
   2256 				 * wired to INTA.
   2257 				 *
   2258 				 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
   2259 				 *   1 - Function 1 interrupt line wired to INT A.
   2260 				 *   0 - Function 1 interrupt line wired to INT B.
   2261 				 *
   2262 				 * Note: Adapter boards always have Function 0
   2263 				 * wired to INTA.
   2264 				 * Put all 5 GPIO bits in input mode and then
   2265 				 * read their input values.
   2266 				 */
   2267 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   2268 					IOPB_GPIO_CNTL, 0);
   2269 				if (ADW_READ_BYTE_REGISTER(iot, ioh,
   2270 						IOPB_GPIO_DATA) & 0x01) {
   2271 					/* Function 1 interrupt wired to INTA;
   2272 					   Set EEPROM bit. */
   2273 					*((u_int8_t *) &eep_config + i) |=
   2274 						((ADW_EEPROM_INTAB >> 8) &0xFF);
   2275 				}
   2276 			} else {
   2277 				*((u_int8_t *)&eep_config + i) =
   2278 				*((u_int8_t *)&Default_38C1600_EEPROM_Config+i);
   2279 			}
   2280 		}
   2281 
   2282 		/*
   2283 		 * Assume the 6 byte board serial number that was read
   2284 		 * from EEPROM is correct even if the EEPROM checksum
   2285 		 * failed.
   2286 		 */
   2287 		eep_config.serial_number_word3 =
   2288 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 1);
   2289 
   2290 		eep_config.serial_number_word2 =
   2291 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 2);
   2292 
   2293 		eep_config.serial_number_word1 =
   2294 			AdvReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - 3);
   2295 
   2296 		AdvSet38C1600EEPConfig(iot, ioh, &eep_config);
   2297 	}
   2298 
   2299 	/*
   2300 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
   2301 	 * EEPROM configuration that was read.
   2302 	 *
   2303 	 * This is the mapping of EEPROM fields to Adv Library fields.
   2304 	 */
   2305 	sc->wdtr_able = eep_config.wdtr_able;
   2306 	sc->sdtr_speed1 = eep_config.sdtr_speed1;
   2307 	sc->sdtr_speed2 = eep_config.sdtr_speed2;
   2308 	sc->sdtr_speed3 = eep_config.sdtr_speed3;
   2309 	sc->sdtr_speed4 = eep_config.sdtr_speed4;
   2310 	sc->ppr_able = 0;
   2311 	sc->tagqng_able = eep_config.tagqng_able;
   2312 	sc->cfg.disc_enable = eep_config.disc_enable;
   2313 	sc->max_host_qng = eep_config.max_host_qng;
   2314 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2315 	sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
   2316 	sc->start_motor = eep_config.start_motor;
   2317 	sc->scsi_reset_wait = eep_config.scsi_reset_delay;
   2318 	sc->bios_ctrl = eep_config.bios_ctrl;
   2319 	sc->no_scam = eep_config.scam_tolerant;
   2320 
   2321 	/*
   2322 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
   2323 	 * are set, then set an 'sdtr_able' bit for it.
   2324 	 */
   2325 	sc->sdtr_able = 0;
   2326 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2327 		if (tid == 0) {
   2328 			sdtr_speed = sc->sdtr_speed1;
   2329 		} else if (tid == 4) {
   2330 			sdtr_speed = sc->sdtr_speed2;
   2331 		} else if (tid == 8) {
   2332 			sdtr_speed = sc->sdtr_speed3;
   2333 		} else if (tid == 12) {
   2334 			sdtr_speed = sc->sdtr_speed4;
   2335 		}
   2336 		if (sdtr_speed & ADW_MAX_TID) {
   2337 			sc->sdtr_able |= (1 << tid);
   2338 		}
   2339 		sdtr_speed >>= 4;
   2340 	}
   2341 
   2342 	/*
   2343 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
   2344 	 * maximum queuing (max. 63, min. 4).
   2345 	 */
   2346 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
   2347 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2348 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
   2349 		/* If the value is zero, assume it is uninitialized. */
   2350 		if (eep_config.max_host_qng == 0) {
   2351 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
   2352 		} else {
   2353 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
   2354 		}
   2355 	}
   2356 
   2357 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
   2358 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2359 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
   2360 		/* If the value is zero, assume it is uninitialized. */
   2361 		if (eep_config.max_dvc_qng == 0) {
   2362 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
   2363 		} else {
   2364 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
   2365 		}
   2366 	}
   2367 
   2368 	/*
   2369 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
   2370 	 * set 'max_dvc_qng' to 'max_host_qng'.
   2371 	 */
   2372 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
   2373 		eep_config.max_dvc_qng = eep_config.max_host_qng;
   2374 	}
   2375 
   2376 	/*
   2377 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
   2378 	 * values based on possibly adjusted EEPROM values.
   2379 	 */
   2380 	sc->max_host_qng = eep_config.max_host_qng;
   2381 	sc->max_dvc_qng = eep_config.max_dvc_qng;
   2382 
   2383 	/*
   2384 	 * If the EEPROM 'termination' field is set to automatic (0), then set
   2385 	 * the ASC_DVC_CFG 'termination' field to automatic also.
   2386 	 *
   2387 	 * If the termination is specified with a non-zero 'termination'
   2388 	 * value check that a legal value is set and set the ASC_DVC_CFG
   2389 	 * 'termination' field appropriately.
   2390 	 */
   2391 
   2392 	switch(eep_config.termination_se) {
   2393 	case 0:	/* auto termination for SE */
   2394 		termination = 0;
   2395 		break;
   2396 	case 1:	/* Enable manual control with low off / high off. */
   2397 		termination = 0;
   2398 		break;
   2399 	case 2:	/* Enable manual control with low off / high on. */
   2400 		termination = ADW_TERM_SE_HI;
   2401 		break;
   2402 	case 3:	/* Enable manual control with low on / high on. */
   2403 		termination = ADW_TERM_SE;
   2404 		break;
   2405 	default:
   2406 		/*
   2407 		 * The EEPROM 'termination_se' field contains a bad value.
   2408 		 * Use automatic termination instead.
   2409 		 */
   2410 		termination = 0;
   2411 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2412 	}
   2413 
   2414 	switch(eep_config.termination_lvd) {
   2415 	case 0:	/* auto termination for LVD */
   2416 		sc->cfg.termination = termination;
   2417 		break;
   2418 	case 1:	/* Enable manual control with low off / high off. */
   2419 		sc->cfg.termination = termination;
   2420 		break;
   2421 	case 2:	/* Enable manual control with low off / high on. */
   2422 		sc->cfg.termination = termination | ADW_TERM_LVD_HI;
   2423 		break;
   2424 	case 3:	/* Enable manual control with low on / high on. */
   2425 		sc->cfg.termination = termination | ADW_TERM_LVD;
   2426 		break;
   2427 	default:
   2428 		/*
   2429 		 * The EEPROM 'termination_lvd' field contains a bad value.
   2430 		 * Use automatic termination instead.
   2431 		 */
   2432 		sc->cfg.termination = termination;
   2433 		warn_code |= ASC_WARN_EEPROM_TERMINATION;
   2434 	}
   2435 
   2436 	return warn_code;
   2437 }
   2438 
   2439 
   2440 /*
   2441  * Read EEPROM configuration into the specified buffer.
   2442  *
   2443  * Return a checksum based on the EEPROM configuration read.
   2444  */
   2445 static u_int16_t
   2446 AdvGet3550EEPConfig(iot, ioh, cfg_buf)
   2447 	bus_space_tag_t		iot;
   2448 	bus_space_handle_t	ioh;
   2449 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2450 {
   2451 	u_int16_t	       wval, chksum;
   2452 	u_int16_t	       *wbuf;
   2453 	int		    eep_addr;
   2454 
   2455 
   2456 	wbuf = (u_int16_t *) cfg_buf;
   2457 	chksum = 0;
   2458 
   2459 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2460 		eep_addr < ASC_EEP_DVC_CFG_END;
   2461 		eep_addr++, wbuf++) {
   2462 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2463 		chksum += wval;
   2464 		*wbuf = wval;
   2465 	}
   2466 
   2467 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2468 	wbuf++;
   2469 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2470 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2471 			eep_addr++, wbuf++) {
   2472 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2473 	}
   2474 
   2475 	return chksum;
   2476 }
   2477 
   2478 
   2479 /*
   2480  * Read EEPROM configuration into the specified buffer.
   2481  *
   2482  * Return a checksum based on the EEPROM configuration read.
   2483  */
   2484 static u_int16_t
   2485 AdvGet38C0800EEPConfig(iot, ioh, cfg_buf)
   2486 	bus_space_tag_t		iot;
   2487 	bus_space_handle_t	ioh;
   2488 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2489 {
   2490 	u_int16_t	wval, chksum;
   2491 	u_int16_t	*wbuf;
   2492 	int		eep_addr;
   2493 
   2494 
   2495 	wbuf = (u_int16_t *) cfg_buf;
   2496 	chksum = 0;
   2497 
   2498 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2499 		eep_addr < ASC_EEP_DVC_CFG_END;
   2500 		eep_addr++, wbuf++) {
   2501 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2502 		chksum += wval;
   2503 		*wbuf = wval;
   2504 	}
   2505 
   2506 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2507 	wbuf++;
   2508 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2509 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2510 			eep_addr++, wbuf++) {
   2511 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2512 	}
   2513 
   2514 	return chksum;
   2515 }
   2516 
   2517 
   2518 /*
   2519  * Read EEPROM configuration into the specified buffer.
   2520  *
   2521  * Return a checksum based on the EEPROM configuration read.
   2522  */
   2523 static u_int16_t
   2524 AdvGet38C1600EEPConfig(iot, ioh, cfg_buf)
   2525 	bus_space_tag_t		iot;
   2526 	bus_space_handle_t	ioh;
   2527 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2528 {
   2529 	u_int16_t	wval, chksum;
   2530 	u_int16_t	*wbuf;
   2531 	int		eep_addr;
   2532 
   2533 
   2534 	wbuf = (u_int16_t *) cfg_buf;
   2535 	chksum = 0;
   2536 
   2537 	for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
   2538 		eep_addr < ASC_EEP_DVC_CFG_END;
   2539 		eep_addr++, wbuf++) {
   2540 		wval = AdvReadEEPWord(iot, ioh, eep_addr);
   2541 		chksum += wval;
   2542 		*wbuf = wval;
   2543 	}
   2544 
   2545 	*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2546 	wbuf++;
   2547 	for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
   2548 			eep_addr < ASC_EEP_MAX_WORD_ADDR;
   2549 			eep_addr++, wbuf++) {
   2550 		*wbuf = AdvReadEEPWord(iot, ioh, eep_addr);
   2551 	}
   2552 
   2553 	return chksum;
   2554 }
   2555 
   2556 
   2557 /*
   2558  * Read the EEPROM from specified location
   2559  */
   2560 static u_int16_t
   2561 AdvReadEEPWord(iot, ioh, eep_word_addr)
   2562 	bus_space_tag_t		iot;
   2563 	bus_space_handle_t	ioh;
   2564 	int			eep_word_addr;
   2565 {
   2566 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2567 		ASC_EEP_CMD_READ | eep_word_addr);
   2568 	AdvWaitEEPCmd(iot, ioh);
   2569 
   2570 	return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
   2571 }
   2572 
   2573 
   2574 /*
   2575  * Wait for EEPROM command to complete
   2576  */
   2577 static void
   2578 AdvWaitEEPCmd(iot, ioh)
   2579 	bus_space_tag_t		iot;
   2580 	bus_space_handle_t	ioh;
   2581 {
   2582 	int eep_delay_ms;
   2583 
   2584 
   2585 	for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
   2586 		if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
   2587 				ASC_EEP_CMD_DONE) {
   2588 			break;
   2589 		}
   2590 		AdvSleepMilliSecond(1);
   2591 	}
   2592 
   2593 	ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
   2594 }
   2595 
   2596 
   2597 /*
   2598  * Write the EEPROM from 'cfg_buf'.
   2599  */
   2600 static void
   2601 AdvSet3550EEPConfig(iot, ioh, cfg_buf)
   2602 	bus_space_tag_t		iot;
   2603 	bus_space_handle_t	ioh;
   2604 	ADW_EEP_3550_CONFIG	*cfg_buf;
   2605 {
   2606 	u_int16_t *wbuf;
   2607 	u_int16_t addr, chksum;
   2608 
   2609 
   2610 	wbuf = (u_int16_t *) cfg_buf;
   2611 	chksum = 0;
   2612 
   2613 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2614 	AdvWaitEEPCmd(iot, ioh);
   2615 
   2616 	/*
   2617 	 * Write EEPROM from word 0 to word 20
   2618 	 */
   2619 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2620 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2621 		chksum += *wbuf;
   2622 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2623 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2624 				ASC_EEP_CMD_WRITE | addr);
   2625 		AdvWaitEEPCmd(iot, ioh);
   2626 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2627 	}
   2628 
   2629 	/*
   2630 	 * Write EEPROM checksum at word 21
   2631 	 */
   2632 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2633 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2634 			ASC_EEP_CMD_WRITE | addr);
   2635 	AdvWaitEEPCmd(iot, ioh);
   2636 	wbuf++;        /* skip over check_sum */
   2637 
   2638 	/*
   2639 	 * Write EEPROM OEM name at words 22 to 29
   2640 	 */
   2641 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2642 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2643 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2644 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2645 				ASC_EEP_CMD_WRITE | addr);
   2646 		AdvWaitEEPCmd(iot, ioh);
   2647 	}
   2648 
   2649 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2650 			ASC_EEP_CMD_WRITE_DISABLE);
   2651 	AdvWaitEEPCmd(iot, ioh);
   2652 
   2653 	return;
   2654 }
   2655 
   2656 
   2657 /*
   2658  * Write the EEPROM from 'cfg_buf'.
   2659  */
   2660 static void
   2661 AdvSet38C0800EEPConfig(iot, ioh, cfg_buf)
   2662 	bus_space_tag_t		iot;
   2663 	bus_space_handle_t	ioh;
   2664 	ADW_EEP_38C0800_CONFIG	*cfg_buf;
   2665 {
   2666 	u_int16_t *wbuf;
   2667 	u_int16_t addr, chksum;
   2668 
   2669 
   2670 	wbuf = (u_int16_t *) cfg_buf;
   2671 	chksum = 0;
   2672 
   2673 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2674 	AdvWaitEEPCmd(iot, ioh);
   2675 
   2676 	/*
   2677 	 * Write EEPROM from word 0 to word 20
   2678 	 */
   2679 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2680 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2681 		chksum += *wbuf;
   2682 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2683 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2684 				ASC_EEP_CMD_WRITE | addr);
   2685 		AdvWaitEEPCmd(iot, ioh);
   2686 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2687 	}
   2688 
   2689 	/*
   2690 	 * Write EEPROM checksum at word 21
   2691 	 */
   2692 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2693 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2694 			ASC_EEP_CMD_WRITE | addr);
   2695 	AdvWaitEEPCmd(iot, ioh);
   2696 	wbuf++;        /* skip over check_sum */
   2697 
   2698 	/*
   2699 	 * Write EEPROM OEM name at words 22 to 29
   2700 	 */
   2701 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2702 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2703 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2704 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2705 				ASC_EEP_CMD_WRITE | addr);
   2706 		AdvWaitEEPCmd(iot, ioh);
   2707 	}
   2708 
   2709 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2710 			ASC_EEP_CMD_WRITE_DISABLE);
   2711 	AdvWaitEEPCmd(iot, ioh);
   2712 
   2713 	return;
   2714 }
   2715 
   2716 
   2717 /*
   2718  * Write the EEPROM from 'cfg_buf'.
   2719  */
   2720 static void
   2721 AdvSet38C1600EEPConfig(iot, ioh, cfg_buf)
   2722 	bus_space_tag_t		iot;
   2723 	bus_space_handle_t	ioh;
   2724 	ADW_EEP_38C1600_CONFIG	*cfg_buf;
   2725 {
   2726 	u_int16_t *wbuf;
   2727 	u_int16_t addr, chksum;
   2728 
   2729 
   2730 	wbuf = (u_int16_t *) cfg_buf;
   2731 	chksum = 0;
   2732 
   2733 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
   2734 	AdvWaitEEPCmd(iot, ioh);
   2735 
   2736 	/*
   2737 	 * Write EEPROM from word 0 to word 20
   2738 	 */
   2739 	for (addr = ASC_EEP_DVC_CFG_BEGIN;
   2740 	     addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
   2741 		chksum += *wbuf;
   2742 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2743 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2744 				ASC_EEP_CMD_WRITE | addr);
   2745 		AdvWaitEEPCmd(iot, ioh);
   2746 		AdvSleepMilliSecond(ASC_EEP_DELAY_MS);
   2747 	}
   2748 
   2749 	/*
   2750 	 * Write EEPROM checksum at word 21
   2751 	 */
   2752 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
   2753 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2754 			ASC_EEP_CMD_WRITE | addr);
   2755 	AdvWaitEEPCmd(iot, ioh);
   2756 	wbuf++;        /* skip over check_sum */
   2757 
   2758 	/*
   2759 	 * Write EEPROM OEM name at words 22 to 29
   2760 	 */
   2761 	for (addr = ASC_EEP_DVC_CTL_BEGIN;
   2762 	     addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
   2763 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
   2764 		ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2765 				ASC_EEP_CMD_WRITE | addr);
   2766 		AdvWaitEEPCmd(iot, ioh);
   2767 	}
   2768 
   2769 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
   2770 			ASC_EEP_CMD_WRITE_DISABLE);
   2771 	AdvWaitEEPCmd(iot, ioh);
   2772 
   2773 	return;
   2774 }
   2775 
   2776 
   2777 /*
   2778  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
   2779  *
   2780  *   Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
   2781  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
   2782  *   RISC to notify it a new command is ready to be executed.
   2783  *
   2784  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
   2785  * set to SCSI_MAX_RETRY.
   2786  *
   2787  * Return:
   2788  *      ADW_SUCCESS(1) - The request was successfully queued.
   2789  *      ADW_BUSY(0) -    Resource unavailable; Retry again after pending
   2790  *                       request completes.
   2791  *      ADW_ERROR(-1) -  Invalid ADW_SCSI_REQ_Q request structure
   2792  *                       host IC error.
   2793  */
   2794 int
   2795 AdvExeScsiQueue(sc, scsiq)
   2796 ADW_SOFTC	*sc;
   2797 ADW_SCSI_REQ_Q	*scsiq;
   2798 {
   2799 	bus_space_tag_t iot = sc->sc_iot;
   2800 	bus_space_handle_t ioh = sc->sc_ioh;
   2801 	ADW_CCB		*ccb;
   2802 	long		req_size;
   2803 	u_int32_t	req_paddr;
   2804 	ADW_CARRIER	*new_carrp;
   2805 
   2806 	/*
   2807 	 * The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
   2808 	 */
   2809 	if (scsiq->target_id > ADW_MAX_TID) {
   2810 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
   2811 		scsiq->done_status = QD_WITH_ERROR;
   2812 		return ADW_ERROR;
   2813 	}
   2814 
   2815 	/*
   2816 	 * Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
   2817 	 */
   2818 
   2819 	ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
   2820 
   2821 	/*
   2822 	 * Allocate a carrier ensuring at least one carrier always
   2823 	 * remains on the freelist and initialize fields.
   2824 	 */
   2825 	if ((new_carrp = sc->carr_freelist) == NULL) {
   2826 		return ADW_BUSY;
   2827 	}
   2828 	sc->carr_freelist = adw_carrier_phys_kv(sc,
   2829 			ASC_GET_CARRP(new_carrp->next_vpa));
   2830 	sc->carr_pending_cnt++;
   2831 
   2832 	/*
   2833 	 * Set the carrier to be a stopper by setting 'next_vpa'
   2834 	 * to the stopper value. The current stopper will be changed
   2835 	 * below to point to the new stopper.
   2836 	 */
   2837 	new_carrp->next_vpa = ASC_CQ_STOPPER;
   2838 
   2839 	req_size = sizeof(ADW_SCSI_REQ_Q);
   2840 	req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
   2841 		ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
   2842 
   2843 	/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
   2844 	scsiq->scsiq_rptr = req_paddr;
   2845 
   2846 	/*
   2847 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
   2848 	 * order during initialization.
   2849 	 */
   2850 	scsiq->carr_pa = sc->icq_sp->carr_pa;
   2851 	scsiq->carr_va = sc->icq_sp->carr_pa;
   2852 
   2853 	/*
   2854 	 * Use the current stopper to send the ADW_SCSI_REQ_Q command to
   2855 	 * the microcode. The newly allocated stopper will become the new
   2856 	 * stopper.
   2857 	 */
   2858 	sc->icq_sp->areq_vpa = req_paddr;
   2859 
   2860 	/*
   2861 	 * Set the 'next_vpa' pointer for the old stopper to be the
   2862 	 * physical address of the new stopper. The RISC can only
   2863 	 * follow physical addresses.
   2864 	 */
   2865 	sc->icq_sp->next_vpa = new_carrp->carr_pa;
   2866 
   2867 	/*
   2868 	 * Set the host adapter stopper pointer to point to the new carrier.
   2869 	 */
   2870 	sc->icq_sp = new_carrp;
   2871 
   2872 	if (sc->chip_type == ADV_CHIP_ASC3550 ||
   2873 	    sc->chip_type == ADV_CHIP_ASC38C0800) {
   2874 		/*
   2875 		 * Tickle the RISC to tell it to read its Command Queue Head
   2876 		 * pointer.
   2877 		 */
   2878 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_A);
   2879 		if (sc->chip_type == ADV_CHIP_ASC3550) {
   2880 			/*
   2881 			 * Clear the tickle value. In the ASC-3550 the RISC flag
   2882 			 * command 'clr_tickle_a' does not work unless the host
   2883 			 * value is cleared.
   2884 			 */
   2885 			ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
   2886 					ADV_TICKLE_NOP);
   2887 		}
   2888 	} else if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   2889 		/*
   2890 		 * Notify the RISC a carrier is ready by writing the physical
   2891 		 * address of the new carrier stopper to the COMMA register.
   2892 		 */
   2893 		ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
   2894 				new_carrp->carr_pa);
   2895 	}
   2896 
   2897 	/*
   2898 	 * End of CRITICAL SECTION: Must be protected within splbio/splx pair
   2899 	 */
   2900 
   2901 	return ADW_SUCCESS;
   2902 }
   2903 
   2904 
   2905 void
   2906 AdvResetChip(iot, ioh)
   2907 	bus_space_tag_t iot;
   2908 	bus_space_handle_t ioh;
   2909 {
   2910 
   2911 	/*
   2912 	 * Reset Chip.
   2913 	 */
   2914 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2915 			ADW_CTRL_REG_CMD_RESET);
   2916 	AdvSleepMilliSecond(100);
   2917 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   2918 			ADW_CTRL_REG_CMD_WR_IO_REG);
   2919 }
   2920 
   2921 
   2922 /*
   2923  * Reset SCSI Bus and purge all outstanding requests.
   2924  *
   2925  * Return Value:
   2926  *      ADW_TRUE(1) -   All requests are purged and SCSI Bus is reset.
   2927  *      ADW_FALSE(0) -  Microcode command failed.
   2928  *      ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
   2929  *                      may be hung which requires driver recovery.
   2930  */
   2931 int
   2932 AdvResetCCB(sc)
   2933 ADW_SOFTC	*sc;
   2934 {
   2935 	int	    status;
   2936 
   2937 	/*
   2938 	 * Send the SCSI Bus Reset idle start idle command which asserts
   2939 	 * the SCSI Bus Reset signal.
   2940 	 */
   2941 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
   2942 	if (status != ADW_TRUE) {
   2943 		return status;
   2944 	}
   2945 
   2946 	/*
   2947 	 * Delay for the specified SCSI Bus Reset hold time.
   2948 	 *
   2949 	 * The hold time delay is done on the host because the RISC has no
   2950 	 * microsecond accurate timer.
   2951 	 */
   2952 	AdvDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
   2953 
   2954 	/*
   2955 	 * Send the SCSI Bus Reset end idle command which de-asserts
   2956 	 * the SCSI Bus Reset signal and purges any pending requests.
   2957 	 */
   2958 	status = AdvSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
   2959 	if (status != ADW_TRUE) {
   2960 		return status;
   2961 	}
   2962 
   2963 	AdvSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
   2964 
   2965 	return status;
   2966 }
   2967 
   2968 
   2969 /*
   2970  * Reset chip and SCSI Bus.
   2971  *
   2972  * Return Value:
   2973  *      ADW_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
   2974  *      ADW_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
   2975  */
   2976 int
   2977 AdvResetSCSIBus(sc)
   2978 ADW_SOFTC	*sc;
   2979 {
   2980 	bus_space_tag_t iot = sc->sc_iot;
   2981 	bus_space_handle_t ioh = sc->sc_ioh;
   2982 	int		status;
   2983 	u_int16_t	wdtr_able, sdtr_able, ppr_able, tagqng_able;
   2984 	u_int8_t	tid, max_cmd[ADW_MAX_TID + 1];
   2985 	u_int16_t	bios_sig;
   2986 
   2987 
   2988 	/*
   2989 	 * Save current per TID negotiated values.
   2990 	 */
   2991 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   2992 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   2993 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   2994 		ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   2995 	}
   2996 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   2997 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   2998 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   2999 			max_cmd[tid]);
   3000 	}
   3001 
   3002 	/*
   3003 	 * Force the AdvInitAsc3550/38C0800Driver() function to
   3004 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
   3005 	 * The initialization functions assumes a SCSI Bus Reset is not
   3006 	 * needed if the BIOS signature word is present.
   3007 	 */
   3008 	ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3009 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, 0);
   3010 
   3011 	/*
   3012 	 * Stop chip and reset it.
   3013 	 */
   3014 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
   3015 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3016 			ADW_CTRL_REG_CMD_RESET);
   3017 	AdvSleepMilliSecond(100);
   3018 	ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
   3019 			ADW_CTRL_REG_CMD_WR_IO_REG);
   3020 
   3021 	/*
   3022 	 * Reset Adv Library error code, if any, and try
   3023 	 * re-initializing the chip.
   3024 	 */
   3025 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3026 	    status = AdvInitAsc38C1600Driver(sc);
   3027 	} else if (sc->chip_type == ADV_CHIP_ASC38C0800) {
   3028 		status = AdvInitAsc38C0800Driver(sc);
   3029 	} else {
   3030 		status = AdvInitAsc3550Driver(sc);
   3031 	}
   3032 
   3033 	/* Translate initialization return value to status value. */
   3034 	if (status == 0) {
   3035 		status = ADW_TRUE;
   3036 	} else {
   3037 		status = ADW_FALSE;
   3038 	}
   3039 
   3040 	/*
   3041 	 * Restore the BIOS signature word.
   3042 	 */
   3043 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_BIOS_SIGNATURE, bios_sig);
   3044 
   3045 	/*
   3046 	 * Restore per TID negotiated values.
   3047 	 */
   3048 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE, wdtr_able);
   3049 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, sdtr_able);
   3050 	if (sc->chip_type == ADV_CHIP_ASC38C1600) {
   3051 		ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE, ppr_able);
   3052 	}
   3053 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE, tagqng_able);
   3054 	for (tid = 0; tid <= ADW_MAX_TID; tid++) {
   3055 		ADW_WRITE_BYTE_LRAM(iot, ioh, ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3056 			max_cmd[tid]);
   3057 	}
   3058 
   3059 	return status;
   3060 }
   3061 
   3062 
   3063 /*
   3064  * Adv Library Interrupt Service Routine
   3065  *
   3066  *  This function is called by a driver's interrupt service routine.
   3067  *  The function disables and re-enables interrupts.
   3068  *
   3069  *  When a microcode idle command is completed, the ADV_DVC_VAR
   3070  *  'idle_cmd_done' field is set to ADW_TRUE.
   3071  *
   3072  *  Note: AdvISR() can be called when interrupts are disabled or even
   3073  *  when there is no hardware interrupt condition present. It will
   3074  *  always check for completed idle commands and microcode requests.
   3075  *  This is an important feature that shouldn't be changed because it
   3076  *  allows commands to be completed from polling mode loops.
   3077  *
   3078  * Return:
   3079  *   ADW_TRUE(1) - interrupt was pending
   3080  *   ADW_FALSE(0) - no interrupt was pending
   3081  */
   3082 int
   3083 AdvISR(sc)
   3084 ADW_SOFTC	*sc;
   3085 {
   3086 	bus_space_tag_t iot = sc->sc_iot;
   3087 	bus_space_handle_t ioh = sc->sc_ioh;
   3088 	u_int8_t	int_stat;
   3089 	u_int16_t	target_bit;
   3090 	ADW_CARRIER	*free_carrp/*, *ccb_carr*/;
   3091 	u_int32_t	irq_next_pa;
   3092 	ADW_SCSI_REQ_Q	*scsiq;
   3093 	ADW_CCB		*ccb;
   3094 	int		s;
   3095 
   3096 
   3097 	s = splbio();
   3098 
   3099 	/* Reading the register clears the interrupt. */
   3100 	int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
   3101 
   3102 	if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
   3103 	     ADW_INTR_STATUS_INTRC)) == 0) {
   3104 		splx(s);
   3105 		return ADW_FALSE;
   3106 	}
   3107 
   3108 	/*
   3109 	 * Notify the driver of an asynchronous microcode condition by
   3110 	 * calling the ADV_DVC_VAR.async_callback function. The function
   3111 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
   3112 	 */
   3113 	if (int_stat & ADW_INTR_STATUS_INTRB) {
   3114 		u_int8_t intrb_code;
   3115 
   3116 		ADW_READ_BYTE_LRAM(iot, ioh, ASC_MC_INTRB_CODE, intrb_code);
   3117 
   3118 		if (sc->chip_type == ADV_CHIP_ASC3550 ||
   3119 	    	    sc->chip_type == ADV_CHIP_ASC38C0800) {
   3120 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
   3121 				sc->carr_pending_cnt != 0) {
   3122 				ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3123 					IOPB_TICKLE, ADV_TICKLE_A);
   3124 				if (sc->chip_type == ADV_CHIP_ASC3550) {
   3125 					ADW_WRITE_BYTE_REGISTER(iot, ioh,
   3126 						IOPB_TICKLE, ADV_TICKLE_NOP);
   3127 				}
   3128 			}
   3129 		}
   3130 
   3131 		if (sc->async_callback != 0) {
   3132 		    (*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
   3133 		}
   3134 	}
   3135 
   3136 	/*
   3137 	 * Check if the IRQ stopper carrier contains a completed request.
   3138 	 */
   3139 	while (((irq_next_pa = sc->irq_sp->next_vpa) & ASC_RQ_DONE) != 0)
   3140 	{
   3141 		/*
   3142 		 * Get a pointer to the newly completed ADW_SCSI_REQ_Q
   3143 		 * structure.
   3144 		 * The RISC will have set 'areq_vpa' to a virtual address.
   3145 		 *
   3146 		 * The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
   3147 		 * field to the carrier ADV_CARR_T.areq_vpa field.
   3148 		 * The conversion below complements the conversion of
   3149 		 * ASC_SCSI_REQ_Q.scsiq_ptr' in AdvExeScsiQueue().
   3150 		 */
   3151 		ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_vpa);
   3152 		scsiq = &ccb->scsiq;
   3153 		scsiq->ccb_ptr = sc->irq_sp->areq_vpa;
   3154 
   3155 		/*
   3156 		 * Request finished with good status and the queue was not
   3157 		 * DMAed to host memory by the firmware. Set all status fields
   3158 		 * to indicate good status.
   3159 		 */
   3160 		if ((irq_next_pa & ASC_RQ_GOOD) != 0) {
   3161 			scsiq->done_status = QD_NO_ERROR;
   3162 			scsiq->host_status = scsiq->scsi_status = 0;
   3163 			scsiq->data_cnt = 0L;
   3164 		}
   3165 
   3166 		/*
   3167 		 * Advance the stopper pointer to the next carrier
   3168 		 * ignoring the lower four bits. Free the previous
   3169 		 * stopper carrier.
   3170 		 */
   3171 		free_carrp = sc->irq_sp;
   3172 		sc->irq_sp = adw_carrier_phys_kv(sc, ASC_GET_CARRP(irq_next_pa));
   3173 
   3174 		free_carrp->next_vpa = sc->carr_freelist->carr_pa;
   3175 		sc->carr_freelist = free_carrp;
   3176 		sc->carr_pending_cnt--;
   3177 
   3178 
   3179 		target_bit = ADW_TID_TO_TIDMASK(scsiq->target_id);
   3180 
   3181 		/*
   3182 		 * Clear request microcode control flag.
   3183 		 */
   3184 		scsiq->cntl = 0;
   3185 
   3186 		/*
   3187 		 * Check Condition handling
   3188 		 */
   3189 		/*
   3190 		 * If the command that completed was a SCSI INQUIRY and
   3191 		 * LUN 0 was sent the command, then process the INQUIRY
   3192 		 * command information for the device.
   3193 		 */
   3194 		if (scsiq->done_status == QD_NO_ERROR &&
   3195 		    scsiq->cdb[0] == INQUIRY &&
   3196 		    scsiq->target_lun == 0) {
   3197 			AdvInquiryHandling(sc, scsiq);
   3198 		}
   3199 
   3200 		/*
   3201 		 * Notify the driver of the completed request by passing
   3202 		 * the ADW_SCSI_REQ_Q pointer to its callback function.
   3203 		 */
   3204 		(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
   3205 		/*
   3206 		 * Note: After the driver callback function is called, 'scsiq'
   3207 		 * can no longer be referenced.
   3208 		 *
   3209 		 * Fall through and continue processing other completed
   3210 		 * requests...
   3211 		 */
   3212 	}
   3213 
   3214 	splx(s);
   3215 
   3216 	return ADW_TRUE;
   3217 }
   3218 
   3219 
   3220 /*
   3221  * Send an idle command to the chip and wait for completion.
   3222  *
   3223  * Command completion is polled for once per microsecond.
   3224  *
   3225  * The function can be called from anywhere including an interrupt handler.
   3226  * But the function is not re-entrant, so it uses the splbio/splx()
   3227  * functions to prevent reentrancy.
   3228  *
   3229  * Return Values:
   3230  *   ADW_TRUE - command completed successfully
   3231  *   ADW_FALSE - command failed
   3232  *   ADW_ERROR - command timed out
   3233  */
   3234 int
   3235 AdvSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
   3236 ADW_SOFTC      *sc;
   3237 u_int16_t       idle_cmd;
   3238 u_int32_t       idle_cmd_parameter;
   3239 {
   3240 	bus_space_tag_t iot = sc->sc_iot;
   3241 	bus_space_handle_t ioh = sc->sc_ioh;
   3242 	int		result;
   3243 	u_int32_t	i, j, s;
   3244 
   3245 	s = splbio();
   3246 
   3247 	/*
   3248 	 * Clear the idle command status which is set by the microcode
   3249 	 * to a non-zero value to indicate when the command is completed.
   3250 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
   3251 	 * defined in a_advlib.h.
   3252 	 */
   3253 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
   3254 
   3255 	/*
   3256 	 * Write the idle command value after the idle command parameter
   3257 	 * has been written to avoid a race condition. If the order is not
   3258 	 * followed, the microcode may process the idle command before the
   3259 	 * parameters have been written to LRAM.
   3260 	 */
   3261 	ADW_WRITE_DWORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_PARAMETER,
   3262 	    idle_cmd_parameter);
   3263 	ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD, idle_cmd);
   3264 
   3265 	/*
   3266 	 * Tickle the RISC to tell it to process the idle command.
   3267 	 */
   3268 	ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_B);
   3269 	if (sc->chip_type == ADV_CHIP_ASC3550) {
   3270 		/*
   3271 		 * Clear the tickle value. In the ASC-3550 the RISC flag
   3272 		 * command 'clr_tickle_b' does not work unless the host
   3273 		 * value is cleared.
   3274 		 */
   3275 		ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADV_TICKLE_NOP);
   3276 	}
   3277 
   3278 	/* Wait for up to 100 millisecond for the idle command to timeout. */
   3279 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
   3280 		/* Poll once each microsecond for command completion. */
   3281 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
   3282 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_IDLE_CMD_STATUS, result);
   3283 			if (result != 0) {
   3284 				splx(s);
   3285 				return result;
   3286 			}
   3287 			AdvDelayMicroSecond(1);
   3288 		}
   3289 	}
   3290 
   3291 	splx(s);
   3292 	return ADW_ERROR;
   3293 }
   3294 
   3295 
   3296 /*
   3297  * Inquiry Information Byte 7 Handling
   3298  *
   3299  * Handle SCSI Inquiry Command information for a device by setting
   3300  * microcode operating variables that affect WDTR, SDTR, and Tag
   3301  * Queuing.
   3302  */
   3303 static void
   3304 AdvInquiryHandling(sc, scsiq)
   3305 ADW_SOFTC	*sc;
   3306 ADW_SCSI_REQ_Q *scsiq;
   3307 {
   3308 #ifndef FAILSAFE
   3309 	bus_space_tag_t iot = sc->sc_iot;
   3310 	bus_space_handle_t ioh = sc->sc_ioh;
   3311 	u_int8_t		tid;
   3312 	ADW_SCSI_INQUIRY	*inq;
   3313 	u_int16_t		tidmask;
   3314 	u_int16_t		cfg_word;
   3315 
   3316 
   3317 	/*
   3318 	 * AdvInquiryHandling() requires up to INQUIRY information Byte 7
   3319 	 * to be available.
   3320 	 *
   3321 	 * If less than 8 bytes of INQUIRY information were requested or less
   3322 	 * than 8 bytes were transferred, then return. cdb[4] is the request
   3323 	 * length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
   3324 	 * microcode to the transfer residual count.
   3325 	 */
   3326 
   3327 	if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
   3328 		return;
   3329 	}
   3330 
   3331 	tid = scsiq->target_id;
   3332 
   3333 	inq = (ADW_SCSI_INQUIRY *) scsiq->vdata_addr;
   3334 
   3335 	/*
   3336 	 * WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
   3337 	 */
   3338 	if (inq->rsp_data_fmt < 2 && inq->ansi_apr_ver < 2) {
   3339 		return;
   3340 	} else {
   3341 		/*
   3342 		 * INQUIRY Byte 7 Handling
   3343 		 *
   3344 		 * Use a device's INQUIRY byte 7 to determine whether it
   3345 		 * supports WDTR, SDTR, and Tag Queuing. If the feature
   3346 		 * is enabled in the EEPROM and the device supports the
   3347 		 * feature, then enable it in the microcode.
   3348 		 */
   3349 
   3350 		tidmask = ADW_TID_TO_TIDMASK(tid);
   3351 
   3352 		/*
   3353 		 * Wide Transfers
   3354 		 *
   3355 		 * If the EEPROM enabled WDTR for the device and the device
   3356 		 * supports wide bus (16 bit) transfers, then turn on the
   3357 		 * device's 'wdtr_able' bit and write the new value to the
   3358 		 * microcode.
   3359 		 */
   3360 #ifdef SCSI_ADW_WDTR_DISABLE
   3361 	if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
   3362 #endif /* SCSI_ADW_WDTR_DISABLE */
   3363 		if ((sc->wdtr_able & tidmask) && inq->WBus16) {
   3364 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3365 					cfg_word);
   3366 			if ((cfg_word & tidmask) == 0) {
   3367 				cfg_word |= tidmask;
   3368 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_ABLE,
   3369 						cfg_word);
   3370 
   3371 				/*
   3372 				 * Clear the microcode "SDTR negotiation" and "WDTR
   3373 				 * negotiation" done indicators for the target to cause
   3374 				 * it to negotiate with the new setting set above.
   3375 				 * WDTR when accepted causes the target to enter
   3376 				 * asynchronous mode, so SDTR must be negotiated.
   3377 				 */
   3378 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3379 						cfg_word);
   3380 				cfg_word &= ~tidmask;
   3381 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3382 						cfg_word);
   3383 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3384 						cfg_word);
   3385 				cfg_word &= ~tidmask;
   3386 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_WDTR_DONE,
   3387 						cfg_word);
   3388 			}
   3389 		}
   3390 
   3391 		/*
   3392 		 * Synchronous Transfers
   3393 		 *
   3394 		 * If the EEPROM enabled SDTR for the device and the device
   3395 		 * supports synchronous transfers, then turn on the device's
   3396 		 * 'sdtr_able' bit. Write the new value to the microcode.
   3397 		 */
   3398 #ifdef SCSI_ADW_SDTR_DISABLE
   3399 	if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
   3400 #endif /* SCSI_ADW_SDTR_DISABLE */
   3401 		if ((sc->sdtr_able & tidmask) && inq->Sync) {
   3402 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE, cfg_word);
   3403 			if ((cfg_word & tidmask) == 0) {
   3404 				cfg_word |= tidmask;
   3405 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_ABLE,
   3406 						cfg_word);
   3407 
   3408 				/*
   3409 				 * Clear the microcode "SDTR negotiation" done indicator
   3410 				 * for the target to cause it to negotiate with the new
   3411 				 * setting set above.
   3412 				 */
   3413 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3414 						cfg_word);
   3415 				cfg_word &= ~tidmask;
   3416 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_SDTR_DONE,
   3417 						cfg_word);
   3418 			}
   3419 		}
   3420 		/*
   3421 		 * If the Inquiry data included enough space for the SPI-3
   3422 		 * Clocking field, then check if DT mode is supported.
   3423 		 */
   3424 		if (sc->chip_type == ADV_CHIP_ASC38C1600 &&
   3425 			(scsiq->cdb[4] >= 57 ||
   3426 				(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
   3427 			/*
   3428 			 * PPR (Parallel Protocol Request) Capable
   3429 			 *
   3430 			 * If the device supports DT mode, then it must be
   3431 			 * PPR capable.
   3432 			 * The PPR message will be used in place of the SDTR
   3433 			 * and WDTR messages to negotiate synchronous speed
   3434 			 * and offset, transfer width, and protocol options.
   3435 			 */
   3436 			if (inq->Clocking & INQ_CLOCKING_DT_ONLY)
   3437 			{
   3438 				ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3439 						sc->ppr_able);
   3440 				sc->ppr_able |= tidmask;
   3441 				ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_PPR_ABLE,
   3442 						sc->ppr_able);
   3443 			}
   3444 		}
   3445 
   3446 		/*
   3447 		 * If the EEPROM enabled Tag Queuing for the device and the
   3448 		 * device supports Tag Queueing, then turn on the device's
   3449 		 * 'tagqng_enable' bit in the microcode and set the microcode
   3450 		 * maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
   3451 		 * value.
   3452 		 *
   3453 		 * Tag Queuing is disabled for the BIOS which runs in polled
   3454 		 * mode and would see no benefit from Tag Queuing. Also by
   3455 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
   3456 		 * bugs will at least work with the BIOS.
   3457 		 */
   3458 #ifdef SCSI_ADW_TAGQ_DISABLE
   3459 	if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
   3460 #endif /* SCSI_ADW_TAGQ_DISABLE */
   3461 		if ((sc->tagqng_able & tidmask) && inq->CmdQue) {
   3462 			ADW_READ_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3463 					cfg_word);
   3464 			cfg_word |= tidmask;
   3465 			ADW_WRITE_WORD_LRAM(iot, ioh, ASC_MC_TAGQNG_ABLE,
   3466 					cfg_word);
   3467 
   3468 			ADW_WRITE_BYTE_LRAM(iot, ioh,
   3469 					ASC_MC_NUMBER_OF_MAX_CMD + tid,
   3470 					sc->max_dvc_qng);
   3471 		}
   3472 	}
   3473 #endif /* FAILSAFE */
   3474 }
   3475 
   3476 
   3477 static void
   3478 AdvSleepMilliSecond(n)
   3479 u_int32_t	n;
   3480 {
   3481 
   3482 	DELAY(n * 1000);
   3483 }
   3484 
   3485 
   3486 static void
   3487 AdvDelayMicroSecond(n)
   3488 u_int32_t	n;
   3489 {
   3490 
   3491 	DELAY(n);
   3492 }
   3493 
   3494